
An Analysis Method with Failure Scenario Matrix
for Specifying Unexpected Obstacles in Embedded Systems

Toshiro Mise
Matsushita Electoric Works System Solutions Co., Ltd.

3-1-24 Yakuin, Chuo-ku, Fukuoka, 810-0022, Japan
mise@qrl.mew.co.jp

Yasufumi Shinyashiki
Matsushita Electoric Works, Ltd.

1048 Kadoma, Osaka, 571-8686, Japan
yasufumi@icrl.mew.co.jp

Masaaki Hashimoto
Kyushu Institute of Technology

680-4 Kawazu, Iizuka, 820-8502, Japan
hasimoto@ci.kyutech.ac.jp

Naoyasu Ubayashi
Kyushu Institute of Technology

680-4 Kawazu, Iizuka, 820-8502, Japan
ubayashi@ai.kyutech.ac.jp

Keiichi Katamine
Kyushu Institute of Technology

680-4 Kawazu, Iizuka, 820-8502, Japan
katamine@ci.kyutech.ac.jp

Takako Nakatani
S-Lagoon Co., Ltd.

4-12-14-102 Ainokawa Ichikawa, 272-0143, Japan
tina@s-lagoon.co.jp

Abstract

This paper describes an analysis method with failure
scenario matrix for specifying unexpected obstacles in or-
der to improve the quality of embedded systems. Although
embedded software has become increasingly large in scale
and complexity, companies are requiring the software to be
developed within shorter periods of time. Therefore, the
quality of the software is bound to suffer. This problem is
one of the most serious concerns in a coming age of ubiqui-
tous embedded systems. In order to improve the quality, it is
very important to specify the forbidden behavior of embed-
ded systems. The forbidden behavior of unexpected obsta-
cles is analyzed by using a matrix and scenarios. This pa-
per provides a detailed description of the analysis method
used, in particular the cause, phenomenon, and goal in the
scenario, relating them to each other by using a matrix.

1. Introduction

In the domain of developing embedded systems, sys-
tems software, which is called “embedded software”, has
become increasingly large in scale and complexity, since
the software has to provide sophisticated functions. How-
ever, companies are requiring the software to be developed
within shorter periods of time. Therefore, software quality
problems, especially system safety problems, have been de-
scribed in journals and newspapers [2, 12]. The problem is
one of the most serious concerns in a coming age of ubiqui-

tous embedded systems.

Products such as electrical appliances within which com-
puter systems are embedded, are used by various kinds of
users, including children who know nothing about com-
puter systems, in their individual environments. More-
over, the products are required to be used safely for a
long time. To satisfy these quality requirements, embed-
ded software has to provide many functions that can handle
exceptions[6, 23]. These functions are implemented by 70
% of the size of the embedded software.

In the early stages of the requirement analysis process,
the behavior of the system to be developed must be defined.
However, specifying forbidden behavior of the system in or-
der to operate the system safely in various environments in
the real world, is very important when developing embed-
ded systems, and the forbidden behavior should therefore
be previously defined in the software design.

In this paper, software specifications are divided into two
parts, “expected specifications” and “unexpected obstacle
specifications”. The former specifies the behavior usually
described in the software operation manual, and can be ex-
plicitly defined when the architecture design process is be-
gun. The latter concerns any deviation from the behavior
determined by the former. The deviations that can occur are
failure, abnormal behavior, and fading of the system hard-
ware, overload, mis-operation and wrong operation in the
operation environment, high temperature, radio noise and
rain in the natural environment. Of course, the unexpected

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

obstacle specifications must be explicitly defined by the sys-
tem specifications. However, we call them “unexpected ob-
stacle specifications” throughout the whole process of sys-
tem development, in order to distinguish them from the ex-
pected specifications, because they are sometimes left un-
defined.

We have been studying a method for analyzing unex-
pected obstacle specifications by investigating the work of
embedded software experts. This method analyzes failure
scenarios by using matrixes to which the advantage of the
state transition table, such as the constructibility and com-
prehensibility of the state and event combination resulting
in the unexpected obstacles, is applied. We call the ma-
trixes “Failure Scenario Matrixes”. Our previous paper re-
lated the matrixes to failure scenarios, and indicated that
experts find failure scenarios by using typical phenomena
of the scenarios[14, 15].

This paper proposes an analysis method which is de-
tailed as follows: the failure scenario goals which are as-
sumed against satisfying the system quality characteristics,
are very useful for finding the scenarios. In each failure sce-
nario, the causes, phenomena, and goal are connected by
using the failure scenario matrixes. Section 2 makes clear
the research challenges. Section 3 describes the analysis
method. Section 4 studies an example. Section 5 discusses
the research. Finally, section 6 concludes.

2. Research Challenges

As quality requirements for embedded systems, the fol-
lowing non-functional requirements are as important as
those for real time processing efficiency: safety against fire,
injury, and electric shock accidents, robustness for main-
taining the main function at a maximum despite partial fail-
ure, reliability without function errors, and failure preven-
tion against the ripple effect of failure. To improve the qual-
ity of embedded systems, the usage and operational envi-
ronment of the systems as well as the systems themselves
should be analyzed throughout their whole life cycle. How-
ever, the specification analysis methods for embedded sys-
tems have been designed mainly for expected specifications.
Therefore, the quality of the specification analysis for un-
expected obstacles depends entirely on the skill of the engi-
neers doing the analysis.

Although the information about system problems that
have ever arisen has been described in the documents by
many companies, the documents have not been fully used.
The reason why the documents have not been fully used
is as follows: if the information about the problems is de-
scribed in detail, but fragmentarily, non-experts will be un-
able to assume problems other than those mentioned by the
information. Thus, the range of applicability of the detailed
information for non-experts to suppose other problems is

too narrow. In contrast, only experts of embedded software
will be able to understand information about the problems
if the information is described abstractly. However, the ex-
perts do not need such abstract information because they
already know it.

In order to improve the quality of embedded software,
possible failures have to be identified in the specification
and design phases of the software. However, there can be
unexpected scenarios leading to failures other than the ex-
pected scenarios. Actually, the unexpected scenarios some-
times lead to failures because the scenarios are not analyzed
in the specification and design phases. As illustrated in
Fig. 1, if an event arises, the state transfers to another state.
Then, we can see a new phenomenon. Thus, the state tran-
sition continues. The continuous transition is understood as
a scenario. The scenario can result in an undesirable phe-
nomenon as failure. Failures happen when the behavior of
the system deviates from the constraint conditions imposed
on the system. However, the constraint conditions are hid-
den behind the complicated combination of behaviors and
unexpected obstacles. It would be difficult to find the con-
straint conditions without clarifying the failure scenarios.

Primary Factor

event

Factor

Factor

event

Failure

event

(state)
Phenomenon

(state)
Phenomenon

Figure 1. Failure Scenario.

The following two methods were used for analyzing pos-
sible failures: FTA (Fault Tree Analysis) and FMEA (Fail-
ure Modes and Effect Analysis) [7, 12]. The FTA method
analyzes the causes of a failure specified at the root of
tree from the root toward the leaves in a stepwise man-
ner. Therefore, the method cannot analyze the causes of
failures other than those failures which have been already
thought of. The method also does not analyze scenarios and
combinations of phenomena. FMEA method analyzes the
failures that occur because of problems with system parts
[7, 12, 22]. The method does not analyze the scenarios and
combinations of phenomena.

We have been being studying two kinds of methods for
analyzing embedded software requirements from the view-
point of unexpected obstacles. One method analyzes them
dynamically, although analyzing by this method requires
a certain body of expert knowledge [13, 14]. The other
method analyzes them statically under some restrictions
since analyzing by this method requires a smaller body

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

of expert knowledge [16]. The former method is the one
described in this paper. It is a method used for detect-
ing the deficient specifications caused by multiple unex-
pected obstacles in the phase in which the expected spec-
ifications of the system requirements and system architec-
ture such as devices and mechanisms are already obtained
by using a tool like UML (Unified Modeling Language)
[4, 5, 17, 24, 25, 26, 27].

3. Analysis Method

This section describes the analysis procedure, and then
explains the technique used by the embedded software ex-
perts.

3.1. Analysis Procedure

The analysis proceeds in the following sequence:

(1) Extracting primary factors of unexpected obstacles

First, the system component objects that have any effect
on the system are identified. The effect may consist of giv-
ing or modifying the information in the system. The fol-
lowing objects are extracted in order to be analyzed: input
circuit, mechanism, target, environment and their construc-
tion state as system input, output circuit, mechanism, target,
environment and their construction state as system output,
function, and memory data as system processing.

The primary unexpected obstacle factors are extracted
from the above-mentioned objects. The primary factors
specify the states and events which arise directly from
the problem’s causes such as fading, failure and abnormal
behavior of the system parts, contamination, wear down,
looseness, breakdown, abnormal positioning, and abnormal
behavior of mechanisms.

Next, the unexpected obstacles in the system operation
are extracted. The obstacles are unexpected human behav-
iors such as mis-operation, mis-usage and wrong operation.
This analysis should not be done with the aim of developing
the system. Rather, it should be done by taking into account
what the system’s users can do by using the system function
and architecture. Moreover, the legal obligations under the
Law of Product Liability for foreseeing and avoiding fail-
ures, should be met.

The objects listed above and their relationships are de-
scribed in the system function and architecture diagram.
The primary factors are also described in the diagram. By
analyzing the diagram, the deficient objects, relationships,
and primary factors are checked. In the diagram, a rectan-
gular box specifies an object. Its name is described in the
upper part of the box. The names of the individual states
that the object can have are written in the lower part of the

box. The relationships between the objects are specified
by solid lines between the boxes representing the objects.
In analyzing the system operation, humans are specified as
objects.

(2) Analyzing failure scenario by using failure scenario
matrix

In analyzing failure scenarios, the failure scenario matrix
is made to include the states and events that are obtained as
the above-mentioned primary factors and expected specifi-
cations. However, it would be impractical to think of all the
states and events that are obtained from every unexpected
obstacle, because the number of combinations of states and
events is huge. Only the scenarios leading to failures, are
required. Therefore, the scope of the states obtained from
the unexpected obstacles to be analyzed, is restricted. The
states in the scope are analyzed by being combined with the
events, whether or not the states result in failure.

Fig.2 illustrates an failure scenario matrix. The states
and events obtained from expected specifications and unex-
pected obstacles are respectively described in the top line
and left-most column of the matrix. A rectangular box with
three parts is set on each intersection of each line and col-
umn. In the top part, a phenomenon that arises when the
event specified by the line comes while staying in the state
determined by the column is described. The phenomenon
specifies a state or event. In the middle part, means to de-
tect the phenomenon is written if the means exist. In the
bottom part, means to avoid the phenomenon are described
if the means are obtained. If the means cannot avoid the
phenomenon perfectly, the phenomenon is added to the top
state row as a state or to left-most event column as an event,
in order to continue the analysis. The phenomenon can be
added to both the row and column as a state and event if it
is needed.

3.2. Empirical Techniques of Embedded
Software Experts

Sometimes, non-experts of embedded software cannot
develop efficiently the failure scenario matrixes from the
primary unexpected obstacle factors. On the contrary, ex-
perts can analyze a system although they have no experi-
ence of it. Therefore, we have analyzed the technique and
knowledge of experts for studying a method to help non-
experts as follows:

(1) Analyzing failure scenarios

Experts analyze failure scenarios using the following
procedure:

a) Quality and possible failures: Embedded systems re-
quire different quality characteristics, such as safety, ro-
bustness, reliability, and failure controllability, from each

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

Expected
event

U
nexpected

obstacles event

Phenomenon of unexpected obstacles
which can be a state or / and event.

The means to detect the above-
mentioned phenomenon (when exist)

The means to avoid the above-
mentioned phenomenon (when exist)

Expected state Unexpected obstacles state

Figure 2. Form of Failure Scenario Matrix.

other. Therefore, the quality characteristics are first de-
termined for the system to be developed. To satisfy these
quality characteristics, possible failures to be avoided are
extracted from the function and structure of the system. For
example, fire accidents which are caused by friction heat
generated during no-load operation, can be extracted. Of
course, the possibility of application specific failures is in-
vestigated from points of view such as legal and operational
constraints. To analyze the end result failures in detail, the
above-mentioned method FTA is applied. Extracting possi-
ble failures like this helps to construct failure scenarios.

b) Unexpected obstacle phenomena on failure scenar-
ios: HAZOP (the Hazard and Operability) is a method
for analyzing the safety of plants like oil refineries. It as-
sumes deviational phenomena, such as flow stopped and
flow increased, by combining the process parameters in the
place to be analyzed like volume, pressure, temperature and
level of fluid with the guide words such as “increase”, “de-
crease”, “lack” and “reverse”. Then, it analyzes the impact
of the phenomena against the plant, and evaluates the safety
[9, 20, 21]. Embedded systems including their operational
environment to be analyzed, can be represented as a group
of objects and communications between them. The places
to be analyzed are arranged on the communications as il-
lustrated in Fig. 3. The guide words concerning the value,
timing, form and so on of information are applied to the
places in order to suppose the deviational phenomena. They
are added to the failure scenario matrix in order to lead the
building of failure scenarios as specified in Fig. 4.

(2) Decomposing analysis domain

The larger an embedded system is in scale, the greater its
analysis domain is in volume. Therefore, the analysis do-

Meaning of Information

Amount of Information

Timing of Information

Composition of Information

Subject of Information
State of Information

Objects to be analyzed

Each object has a state and
communicates with other objects.
(communication of information)

objectobject

Guide Word

Communication

Shifted greatly (value) /
Shifted small (value)
contradicted from the
situation (value)
A lot / A little
Too long / Too short
Too early / Too slow
Synchronous / Asynchronous
Too long / Too short
The order is different.
The composition is different.
Not a true subject
Lost, Irregular, Fixed,
Unstable, oscillated

Figure 3. Guide Words for Unexpected Obsta-
cles.

main is decomposed in two ways. One is determined by the
system architecture which is the hierarchy of hardware, op-
erating systems, middleware and application software. For
example, the unexpected obstacles that have arisen as a re-
sult of communications noise are analyzed only in the mid-
dleware level. The other is decided by a set of service do-
mains. In the architectural level of application software, ex-
pected specifications are decomposed into a set of service
specifications. For the service specifications, failure scenar-
ios are analyzed. Of course, interactions can happen among
the services. Then, the interactions are described as exter-
nal events of the services and reference to states of other
services in the failure scenario matrix.

4. Case Study

SESSAME (the Society of Embedded Software Skill Ac-
quisition for Managers and Engineers) provides require-
ment specifications for an electric pot as a kind of embed-
ded system [19]. Electric pots are considered a type of
consumer goods, and consumer goods should be designed
with quality characteristics such as high reliability, durabil-
ity, safety and fault preventability. Thus, we selected the re-
quirement specifications as a target to reveal the undefined
requirements of the pot for satisfying the above-mentioned
quality characteristics. This section describes the case study
conducted on an electric pot by using the analysis method.

(1) Extracting primary unexpected obstacle factors

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

Failure

Circuit

Primary obstacle

Mechanism
Environment
Operation

Phenomenon

Dependent on product

Phenomenon

Dependent on product

Deviating from Constraints

Phenomenon

Guide Words

Analysis Point Deviation Cause Consequences Safeguards Measures

Analysis flow of failure scenario matrix

Worksheet

Examination by failure scenario matrix

Figure 4. HAZOP Worksheet and Failure Scenario Matrix.

Fig. 5 illustrates partially the function and architecture
diagram of the electric pot used in the analysis. First, the
water level sensor detects only the volume of water. Then,
the functions to observe the increasing rate of water tem-
perature when the heater of the pot is ON and decreasing
rate when OFF are extracted to find the cover-open detec-
tion sensor failure, pot body tilt and fall down. Moreover,
the outside air temperature and pressure are extracted. Con-
cerning the operation, throwing down and shaking the pot,
pulling out the electric power cord, pouring alcohol or oil
into the pot, and pressing two buttons simultaneously are
extracted.

(2) Analyzing the failure scenario by using the failure
scenario matrix

The quality characteristics of the pot are analyzed. Then
possible failures are extracted as failure scenario goals to
be avoided to satisfy the quality characteristics as follows:
an accident which would cause a burn can occur against
the safety of the pot when using the pot, if boiled water is
spilled, or if a fire starts near the heater used to heat the
pot. To satisfy the robustness of the pot, an occurrence of a
single problem of the cover-open detection sensor or water
level detection sensor, should not stop the main function of
the pot that heats water. The failure that the water temper-
ature is not adjusted to a specified temperature is extracted
against the reliability of the pot.

Next, unexpected obstacle phenomena are extracted. By
using the guide words applied to the communications illus-
trated in Fig. 4, the following deviation phenomena of the
water level are extracted: The water level shown by a water
level detection sensor suddenly rises. It is caused by falling
of the pot with the cover closed, pouring water into the pot,
or trouble with the sensor. The water level shown by a water
level detection sensor suddenly falls. The cause of the phe-
nomenon is falling of the pot with the cover opened, spilling

water out of the pot though the electric power is on, or trou-
ble with the sensor. The water level shown by a water level
detection sensor is shaking. Its cause is the pot being shaken
or trouble with the sensor.

Then, failure scenarios such as a burn accident by boiling
water leaking from an inclining pot and a fire accident by
overheating without water are analyzed by using the failure
scenario matrix. The examples of the failure scenario ma-
trix and failure scenario of a burn accident are illustrated in
Figs 6 and 7 respectively. In the matrix, only the phenom-
ena are specified on the intersections of rows and columns.
Their detecting and processing methods are not described
in the figure. The analysis procedure is:

a) The end resulting failure “a person is burned by boil-
ing water from the pot” has already been assumed by ana-
lyzing the quality characteristic: safety. The failure is writ-
ten as the end result of the scenario.

b) From the end resulting failure, its cause “the boiled
water leaks from the gap between the lid and the body of
pot” has already been extracted. The cause is described as
the phenomenon preceding the end resulting failure.

c) The exceptional state “the pot inclines” has already
been extracted as one of the primary factors. The state is
entered in the top state row of the matrix.

d) Then, a normal event “the heater turns on” arises. The
event is written in the left-most event column of the matrix.

e) The exceptional phenomenon “the water level de-
tected by the level sensor is not equal to the water level in-
ferred from the rising rate of water temperature.” is found
from the state and event mentioned in c) and d) respectively.
The phenomenon is entered at the intersection of the state
column and event row.

f) The phenomenon is written as an event in the left-most
event column.

g) The normal state “high level is indicated by the water
level detection sensor” is described on the top state row.

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

Amount of water

Shaken
Supply operation

Pour water into pot

Body of pot Water level sensor

Malfunction (noise)
Breakdown (ON fixes)

Breakdown (unstable)

level
time

Hot water pump

Thermistor
(temperature sensor)

Heater
Temperature
Type of liquid

ON,OFF

Person

Water temperature

Lid

Electromagnetic
radiation

Level
Time

Electromagnetic radiation

Inclination

Breakdown (OFF fixes)

Atmosphere
Temperature (low, high)
Atmospheric pressure

(low, high)
Malfunction (noise)
Breakdown (unexpected value)
Breakdown (gap)
Breakdown (oscillation)

Heater control

Release

Heater control

Release

Amount

Water level detection

Water temperature detection

Hot Water Pump
Shake

(liquor, oil, ice, milk)

Figure 5. Function and Architecture Diagram.

h) The state and event specified in g) and f) respectively
generate the exceptional phenomenon “the water level may
get near to the lid although the full water sensor does not
detect a full level of water.”

i) The phenomenon is written as a state in the top state
row.

j) The normal event “the water begins to boil.” is speci-
fied in the left-most event column.

k) From the state and event described in i) and j) respec-
tively, the exceptional phenomenon of the cause described
in b) happens. The phenomenon leads to the end resulting
failure described in a).

The failure scenario illustrated in Fig. 7 is built from the
above-mentioned analysis. To prevent the failure extracted
from the scenario, the heater must not be turned on when the
pot reaches the state described in h). Thus, the unexpected
obstacle specifications are obtained.

5. Discussion

This section discusses the validity of the method de-
scribed in this paper.

(1) Comparing with existing methods

From the viewpoint of analyzing unexpected obstacle
specifications, FMEA is a method of finding possible trou-
bles and failures of hardware devices. By using the method,
the primary factors are obtained. HAZOP is a method for
detecting deviations of system parameters. By applying the
method, typical phenomena are gained. FTA is a method
to find the causes of failures. By using the method, failure
scenarios are traced in the reverse direction from resulting
failures to the causes. The method described in this paper
applies the existing methods as component tools, and com-
bines them by the failure scenario matrixes to find failure
scenarios efficiently.

Recently, exception handling is being studied in the do-
main of requirements engineering. For example, misuse
cases as use cases with hostile intent were analyzed by ap-
plying the UML method [1, 18]. Obstacle handling was
studied in a goal-oriented manner [8]. Abuse frames were
used to bound the scope of security problems [3, 10, 11].
These studies adopted a top-down manner in their methods
in oder to analyze only serious failures. However, failures
of embedded systems are caused by various kinds of factors

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

The water level detected
by the level sensor is not
equal to the water level
inferred from the rising
rate of water
temperature .

The pot is tilted .

The water begins to boil .

State
Event

High level is indicated
by the water level sensor .

A person is burned by
boiling water from the

The heater turns on .
(d)

The water level may get near to
the lid althoughthe full water
sensor does not detect full level
of water .

The water level detected by the
level sensor is not equal to the water
level inferred from the rising rate of
water temperature .

The water level may get near to
the lid although the full water
sensor does not detect full level
of water .

The boiling water leaks
from the gap between the
lid and body of the pot .

FTA
(j)

(f)

(c)

(e)

(h)

(b)(k)

(g)

(i)

(a)pot .

Figure 6. Failure Scenario Matrix for Burn Accident Scenario by Inclining Pot.

The water level detected by the
level sensor is not equal to the
water level inferred from the
rising rate of water

The pot is tilted . The water begins to boil .(j)High level is indicated
by the water level sensor .

A person is burned
by boiling water
from pot .

The water level may get
near to the lid although
the full water sensor does
not detect full level of
water .

The boiling water leaks
from the gap between the
lid and body of pot .

The heater turns on .(d)

(c)

temperature .(e)

(g)

(h)

(b)(k) (a)

Figure 7. Burn Accident Scenario by Inclining Pot.

in the hardware, environment and operations. Moreover,
slight failures of the systems must be found and analyzed
for the simple operations and robustness because even chil-
dren use the systems. From these points of view, this pa-
per has proposed a failure scenario analysis method which
adopted both top-down and bottom-up manners.

(2) Comparing the failure scenario matrix with the
state transition table for software design

The state transition table relates exhaustively every event
to every state. On contrary, the failure scenario matrix man-
ages only the state and event combination resulting in the
unexpected obstacles. Concerning the order of making the
state transition table and scenarios, the table is designed on
the base of the scenarios. In contrast, the matrix is build
prior to the scenarios. The states and events in the table
are used for controlling the system. On contrary, the states
and events in the matrix restrict the range of thinking for
analysts to make the thinking efficient. Thus, the matrix is
quite different from the table.

(3) Empirical techniques of embedded software experts

The method described in this paper has been developed
by investigating the techniques of experts. Experts have an

inexplicit analysis procedure and abstract knowledge. The
inexplicit procedure has been made clean in this paper. The
abstract knowledge is mainly composed of the viewpoints
of classifying failures, phenomena and causes. Since this
paper has made a clear distinction between procedure and
knowledge, the knowledge could be studied for being for-
malized.

(4) Future study

Experimental verification of the analysis method de-
scribed in this paper is required. Prior to the experiment, the
above-mentioned knowledge formalization about the clas-
sifying viewpoints should be studied. This paper has de-
scribed the analysis method for unexpected obstacles in the
software design process. The method is applicable to the
software requirement analysis process. Therefore, we also
should study applying the method to requirement analy-
sis process. The above-mentioned knowledge formaliza-
tion would lead to studying the database of knowledge. Of
course, the method described in this paper does not satisfy
exhaustive analysis. The limits of the exhaustiveness should
be made clear.

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

6. Conclusion

This paper has described an analysis method for extract-
ing unexpected obstacle specifications by using an failure
scenario matrix to which the advantage of the state transi-
tion table is applied. We have clarified the following by an-
alyzing the knowledge of embedded software experts: the
failure scenario goals which can be determined by referring
to the system quality are indispensable for developing the
scenarios. The initial causes, resulting phenomena and final
goal can be connected using the failure scenario matrix.

The requirement analysis for unexpected obstacle spec-
ifications has needed experts in the domain of developing
embedded systems. Therefore, the quality and productiv-
ity of embedded software have been unstable if the experts
have not been assigned to the analysis process. We need to
study methods that will decrease the need for experts and
make the system quality stable. We also need to study orga-
nizational devices for reusing the expert knowledge about
unexpected obstacles.

Acknowledgments

The authors would like to thank Masayuki Hirayama and
Takeshi Sumi for fruitful discussions.

References

[1] I. Alexander. Misuse cases, use cases with hostile intent. In
IEEE Transactions on Software Engineering, volume 20(1),
pages 22–33, 2003.

[2] T. Aoki. Trend of embedded systems. In IPSJ SIG Technical
Report, volume 2002-SE-137(9), pages 61–64, 2002.

[3] R. Crook. Security requirements engineering: when anti-
requirements hit the fan. In Proceedings of Requirement En-
gineering, pages 22–33, 2002.

[4] B. P. Douglass. Real Time UML: Advances in the UML for
Real–Time Systems. Addison-Wesley, 2004.

[5] T. Hosokawa, T. Tsurumi, T. Okamoto, and H. Koizumi. A
proposal of use–case analysis/design method in embedded
software developments. In IPSJ SIG Technical Report, vol-
ume 2003-SE-140(2), pages 9–14, 2003.

[6] F. Kasati and G. Cugola. Error Handling in Process Support
Systems, pages 251–270. LNCS 2002, 1998.

[7] K. Kitagawa. Introduction method of FMEA and FTA. Re-
search Center, 1984.

[8] A. V. Lamsweerde and E. Letier. Handling obstacles in goal-
oriented requirements engineering. In IEEE Transactions on
Software Engineering, Special Issue on Exception Handling,
volume 26(10), pages 978–1005, 2000.

[9] N. G. Leveson. Safeware: System Safety and Computers.
Addison-Wesley, 1995.

[10] L. Liu, B. Nuseibeh, D. C. Ince, and M. Jackson. Using
abuse frames to bound the scope of security problems. In
Proceedings of Requirement Engineering, pages 354–355,
2004.

[11] L. Liu, E. Yu, and J. Mylopoulos. Security and privacy re-
quirements analysis within a social setting. In Proceedings
of Requirement Engineering, pages 151–161, 2003.

[12] Ministry of Economy, Trade and Industry, editor. Report
of actual field survey of embedded software. Ministry of
Economy, Trade and Industry, 2004 (In Japanese).

[13] T. Mise, Y. Shinyashiki, M. Hashimoto, N. Ubayashi,
K. Katamine, and T. Nakatani. Exception Analysis Matrix
for Embedded Systems Software Specification. In Proceed-
ings of Embedded Software Symposium, October 2004 (In
Japanese).

[14] T. Mise, Y. Shinyashiki, M. Hashimoto, N. Ubayashi,
K. Katamine, and T. Nakatani. A Basic Model and Spec-
ification Analysis Method for Embedded Software Excep-
tions. In IPSJ SIG Technical Report, volume 147-11, 2005
(In Japanese).

[15] T. Mise, Y. Shinyashiki, M. Hashimoto, N. Ubayashi,
K. Katamine, and T. Nakatani. A Specification Analy-
sis Method for Unexpected Obstables in Embedded Soft-
ware. In Proceedings of Foundation of Software Engineering
2005, November 2005 (To be appeared) (In Japanese).

[16] Y. Shinyashiki, T. Mise, Y. Eura, H. Hatanaka,
M. Hashimoto, N. Ubayashi, K. Katamine, and T. Nakatani.
A Conceptual Model of Exceptions in Embedded Software.
In Proceedings of Embedded Software Symposium, October
2004.

[17] S. Shlaer and S. J. Mellor. Object Lifecycles: Modeling the
World in States. Yourdon Press Computing, 1991.

[18] G. Sindre and A. Opdahl. Eliciting security requirements
with misuse cases. In Journal of Requirements Engineering,
volume 10, pages 34–44, 2005.

[19] Society of Embedded Software Skill Acquisition for Man-
agers and Engineers, editor. Specification of Boiling
Jar(GOMA-1015) 3rd edition. Society of Embedded Soft-
ware Skill Acquisition for Managers and Engineers, 2003
(In Japanese).

[20] T. Sumi, M. Hirayama, and N. Ubayashi. Analysis of the
external environment for embedded systems. In IPSJ SIG
Technical Report, volume 2004-SE-146(5), pages 33–40,
2003.

[21] T. Sumi, O. Mizuno, T. Kizuno, and M. Hirayama. An ef-
fective testing method for hardware related fault in enbed-
ded software. In IEICE Transactions on Information and
Systems, volume E88-D, pages 1142–1149, June 2005.

[22] J. Suzuki. Executin method of FMEA and FTA. JUSE Press,
1998 (In Japanese).

[23] The Institution of Professional Engineers, editor. Risk Anal-
ysis Engineering. Maruzen, 2004 (In Japanese).

[24] H. Watanabe, M. Watanabe, K. Horimatsu, and K. Tomo-
take. Embedded UML. Shoeisha, 2002.

[25] M. Watanabe. Enhancing Hierarchy State Transition Table
Design Technique Version 2.0. Cats, 1998 (In Japanese).

[26] M. Watanabe, S. Ishida, K. Asari, S. Iida, and S. Yamamoto.
Embedded System Development by UML Dynamic Model (in
Japanese). Ohmsha, 2003.

[27] K. E. Wiegers. Software Requirements: Practical
Techniques for Gathering and Managing Requirements
Throughtout the Product Development Cycle. Microsoft
Press, 2003.

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

