
Model Evolution with Aspect-Oriented Mechanisms

Naoyasu Ubayashi
Kyushu Institute of Technology

Fukuoka, Japan
ubayashi@acm.org

Tetsuo Tamai
University of Tokyo

Tokyo, Japan
tamai@acm.org

Shinji Sano, Yusaku Maeno, Satoshi Murakami
Kyushu Institute of Technology

Fukuoka, Japan
{sano,maeno,msatoshi}@minnie.ai.kyutech.ac.jp

Abstract

Model-based development is a software development
method in which models are created before source code is
written. Although the method is effective, we have to mod-
ify models when we face evolution such as change of plat-
forms. These modifications crosscut over many places in
the models, and tend to cause unexpected errors. In or-
der to tackle this problem, we propose a method for model
evolution using model transformations based on aspect ori-
entation, a mechanism that modularizes crosscutting con-
cerns. A modeler can extend model transformation rules by
defining new aspects in the process of modeling. In this pa-
per, we demonstrate the effectiveness of aspect orientation
in terms of model evolution.

1. Introduction

A software development process consists of multiple
phases including analysis, design, and implementation: user
requirements are refined in an analysis phase; software ar-
chitecture is determined in a design phase; and program is
implemented based on design decisions. Unified modeling
language (UML)[19] is used in each phase. For example,
use case diagrams are used for extracting functional require-
ments, and class diagrams are used for representing static
software architecture. Although UML-based software de-
velopments are effective, it is not necessarily easy to reuse
a design model because platform-independent descriptions
and platform-specific descriptions are mixed in the same de-
sign model. The term platform includes OS, middleware
such as database systems and application servers, and ap-
plication development frameworks. When we want to reuse

a previous design model, we must conform the model to a
new platform by modifying model elements that depend on
platform specifications. These modifications crosscut over
many places in the model, and tend to cause unexpected er-
rors. Platform-specific concerns are certain kinds of cross-
cutting concerns.

In order to deal with this problem, OMG (Object Man-
agement Group)[13] proposes model-driven architecture
(MDA)[11] in which UML design models are divided into
platform-independent models (PIMs) and platform-specific
models (PSMs). A model compiler transforms the former
models into the latter automatically. We can regard PIMs
as a new kind of reusable software component because they
can be reused even if a platform is changed. It is not nec-
essary to modify a design model for conforming it to a spe-
cific platform. We have only to use a model compiler that
supports the platform. MDA facilitates model-based agile
software development process[2] because we have only to
maintain a model. We need not to maintain source code
generated from a model.

Although MDA is effective for software development,
it mainly focuses on platform-specific concerns. We have
to modify models when we face evolution related to other
kinds of concerns including application-specific optimiza-
tion, security policies, and deployment.

This paper proposes a method for dealing with model
evolution using model transformations based on aspect
orientation[4][8][9], a mechanism that modularizes cross-
cutting concerns as aspects. Previously we proposed an
aspect-oriented modeling language called AspectM (Aspect
for modeling) that supports modeling-level aspects[17][18].
Using AspectM, a modeler can extend model transforma-
tion rules by defining new aspects in the process of mod-
eling. In this paper, we demonstrate the effectiveness of

Proceedings of the 2005 Eighth International Workshop on Principles of Software Evolution (IWPSE’05)
1550-4077/05 $20.00 © 2005 IEEE

Base Model

First Version

Second Version

Model for
Product 1

Model for
Product 2

Model for
Product n

...

Model for
Product 1

Model for
Product 2

Model for
Product n

...

model transformation
using aspect

Version

Variation

model transformation
using aspect

Figure 1. Evolution at the modeling level

AspectM in terms of model evolution.
The remainder of this paper is structured as follows. In

Section 2, we illustrate model evolution in terms of transfor-
mations. In Section 3, we show a method for model trans-
formations based on aspect orientation, and introduce As-
pectM for supporting the method. In Section 4, we show
a model evolution example using AspectM. In Section 5,
we show a relation between evolution and metamodel. In
Section 6, we discuss issues on aspect-based model trans-
formations. Lastly, Section 7 concludes this paper.

2. Model evolution

Using model transformations, a series of models can be
generated from a single abstract model that embodies only
core concerns such as business logics. The model does
not include such concerns as platforms and application-
specific optimizations. These concerns vary according to
product specifications. Model transformations enable us to
shift from code-centric product-line engineering (PLE)[3]
to model-centric PLE.

In the viewpoint of PLE, there are two kinds of evolu-
tion: variation and version as shown in Figure 1. The former
indicates a set of products corresponding to a specific ver-
sion. Using model transformations, we can generate these
product variations and product versions. This paper pro-
poses a method for defining model transformation rules us-
ing aspect-oriented mechanisms.

3. AspectM

In this section, we briefly excerpt an aspect-
oriented modeling language AspectM from the previous

work[17][18], and then illustrate model transformations
using aspects.

3.1. Aspect orientation at the modeling level

Aspect-oriented programming (AOP) is based on the join
point model (JPM) consisting of join points, pointcuts, and
advice[9]. Program execution points including method in-
vocations and field access points are detected as join points,
and a pointcut extracts a set of join points related to a spe-
cific crosscutting concern from all join points. A compiler
called a weaver inserts advice code at the join points se-
lected by pointcut definitions.

Although JPMs have been proposed as a mechanism at
the programming level, they can be applied for construct-
ing a model compiler that transforms a UML model into
another UML model. Figure 2 shows an example of a
model transformation. In Figure 2, a class is regarded as a
join point. The pointcut definition ’classA || classB’
extracts the two classes classA and classB from the
three join points class A, classB, and classC. Model
transformations such as add new attributes and add new op-
erations are regarded as advice. In Figure 2, new attributes
and operations are added to the two classes, classA and
classB.

AspectM supports six kinds of modeling-level JPMs: PA
(pointcut & advice as in AspectJ[1][9]), CM (composition
as in Hyper/J[16]), NE (new element), OC (open class as in
AspectJ inter-type declaration), RN (rename), and RL (re-
lation). Figure 2 is an example of an OC. Table 1 shows the
outline of these JPMs.

Proceedings of the 2005 Eighth International Workshop on Principles of Software Evolution (IWPSE’05)
1550-4077/05 $20.00 © 2005 IEEE

join point(class)

join point(class)

join point(class)

classA||classB
(extract join point
 whose name is
 classA or classB)

pointcutclassA

attributes

operations

classB

attributes

operations

classC

attributes

operations

classA

attributes

operations

new attributes

new operations

classB

attributes

operations

new attributes

new operations

advice

add new attributes
add new operations

weave

Figure 2. Aspect orientation at the modeling level

JPM type Join point type Advice type
PA (pointcut & advice) operation before, after, around
CM (composition) class merge-by-name
NE (new element) class diagram add-class, delete-class
OC (open class) class add-operation, delete-operation

add-attribute, delete-attribute
RN (rename) class, operation, attribute rename
RL (relation) class add-inheritance, delete-inheritance

add-aggregation, delete-aggregation
add-relationship, delete-relationship

Table 1. JPMs in AspectM

3.2. Language features

AspectM provides a set of notations for describing as-
pects. In AspectM, an aspect can be described in either a
diagram or an XML (eXtensible Markup Language) format.

Figure 3 shows an example of the AspectM diagram no-
tations and the corresponding XML formats. AspectM is
not only a diagram language but also an XML-based AOP
language. AspectM provides the two kinds of aspects: an
ordinary aspect and a component aspect. A component as-
pect is a special aspect used for composing aspects. In this
paper, we use simply the term aspect when we need not to
distinguish between an ordinary aspect and a component as-
pect. An aspect can have parameters for supporting generic
facilities. By filling parameters, an aspect for a specific pur-
pose is generated.

The notations of aspect diagrams are similar to those of
UML class diagrams. A diagram is separated into three
compartments: 1) aspect name and JPM type, 2) pointcut
definitions, and 3) advice definitions. An aspect name and
a JPM type are described in the first compartment. A JPM

type is specified using a stereo type. Pointcut definitions
are described in the second compartment. Each of them
consists of a pointcut name, a join point type, and a point-
cut body. In pointcut definitions, we can use three pred-
icates: cname (class name matching), aname (attribute
name matching), and oname operation name matching).
We can also use three logical operations: && (and), || (or),
and ! (not). Advice definitions are described in the third
compartment. Each of them consists of an advice name, a
pointcut name, an advice type, and an advice body. A point-
cut name is a pointer to a pointcut definition in the second
compartment. An advice is applied at join points selected
by a pointcut.

3.3. Metamodel for aspects

AspectM is defined as an extension of the UML meta-
model1. OMG defines the four-level metamodel hierarchy
consisting of M0, M1, M2, and M3: M0 contains the data

1Currently, AspectM is based on UML 1.5. We plan to support UML
2.0 in the near future.

Proceedings of the 2005 Eighth International Workshop on Principles of Software Evolution (IWPSE’05)
1550-4077/05 $20.00 © 2005 IEEE

 <<CM>>
MergeClasses

inputClasses:class
 {pointcut-body="cname(Message)
 ||cname(MessageProfile)"}

merge[inputClasses]:merge-by-name
 {advice-body="PostMessage"}

aspect <aspect name="MergeClasses"
 type="ordinary" jpm="CM">
 <pointcut name="inputClasses"
 type="class">
 <pointcut-body>
 cname(Message)||cname(MessageProfile)
 </pointcut-body>
 </pointcut>
 <advice name="merge" type="merge-by-name"
 ref-pointcut="inputClasses">
 <advice-body>PostMessage</advice-body>
 </advice>
</aspect>

Figure 3. AspectM notation

Element

ModelElement

Feature Namespace GeneralizableElement

Classifier

Class Aspect

ComponentAspectOrdinaryAspectAspectFeature

Advice AdviceBody

PointcutAndAdvice NewElement

OpenClass

Rename

Relation

Pointcut PointcutBody

Composition

extension for an aspect

Figure 4. AspectM metamodel

such as object instances; M1 contains application models
described by a modeling language such as UML; M2 con-
tains metamodels that defines the modeling language; M3
contains metametamodels that defines metamodels in M2.
For example, a class diagram and the UML metamodel re-
side at the level M1 and M2, respectively. MOF (Meta Ob-
ject Facility) proposed by OMG is a language for modeling
a metamodel. MOF resides at the level M3. Figure 4 shows
a part of our metamodel (parameterization is not included).
This metamodel resides at the level M2. Introducing this
metamodel, we can define an aspect in a UML diagram that
resides at the M1 level.

Now, we explain the AspectM metamodel briefly. The
OrdinaryAspect class and the ComponentAspect
represent an ordinary aspect and a component aspect,

respectively. The Aspect class, which inherits the
Classifier class, is a super class of the above two
classes. The GoF Compositor pattern[6] is applied to define
a component aspect. An aspect consists of pointcuts and
advice. They are represented by the Pointcut class and
the Advice class, respectively. The AspectFeature
class is a super class of these two classes, and has an
aggregation relation with the OrdinaryAspect class.
The Pointcut class and the Advice class have the
PointcutBody class and the AdviceBody class, re-
spectively. Concrete advice bodies corresponding to the six
JPMs are defined as subclasses of the AdviceBody class:
PointcutAndAdvice for PA, Composition for CM,
NewElement for NE, OpenClass for OC, Rename
for RN, and Relation for RL. The PointcutBody

Proceedings of the 2005 Eighth International Workshop on Principles of Software Evolution (IWPSE’05)
1550-4077/05 $20.00 © 2005 IEEE

UML diagrams

PIM

PSM

Model editor

Aspect diagrams

UML diagrams

weave

Model compiler

XML

XML

XML
Aspect Libraries

XML

Figure 5. AspectM implementation outline

is common to all JPMs because pointcuts can be speci-
fied uniformly. We can change/add/delete JPMs by chang-
ing/adding/deleting these subclasses.

3.4. Supporting tool

We have developed a prototype of AspectM. The tool for
supporting AspectM consists of the model editor and the
model compiler as illustrated in Figure 52.

The model editor provides facilities for editing UML
and aspect diagrams. The model editor is developed using
Eclipse Modeling Framework (EMF)[5], a tool that gener-
ates a model editor from a metamodel. We defined a meta-
model for aspects, and generated the model editor from the
metamodel using EMF. The model editor can save diagrams
in the XML format.

The model compiler is implemented as an XML trans-
formation tool because UML class diagrams can be repre-
sented in the XML format.

4. Model evolution using AspectM

We illustrate model evolution using the following sim-
ple bulletin board system as an example3: a user submits a
message to a bulletin board, and the system administrator
observes administrative information such as daily message
traffic. This system must be developed using the web appli-
cation framework called Struts[15].

2A PSM class can be translated into Java source code although this is
not shown in the figure.

3This is the same example used in our previous work[17][18]. In this
paper, we demonstrate the effectiveness of AspectM from the viewpoint of
model evolution.

We illustrate an evolution process consisting of the fol-
lowing two versions and one variation: 1) make a product
that is executable on the Struts platform (the first version);
2) optimize memory usage (the second version); and 3) add
a logging function for debugging (variation of the second
version).

4.1. Original model

We define PIMs that do not depend on a specific product.
There are two PIMs in this example as shown in the left of
Figure 64. One is the Message class, and the other is the
MessageProfile class. The former is a PIM defined
from the viewpoint of a user. The latter, which includes ad-
ministrative information such as a message id and a date, is
a PIM defined from the viewpoint of the system administra-
tor.

4.2. The first version

As the first version, we generate a product that is exe-
cutable on Struts. We transform the PIMs (the above origi-
nal model) into a PSM targeted to Struts. Figure 6 illustrates
this transformation process. The following shows the trans-
formation steps from the PIMs into the PSM .

4.2.1 Step 1

First, we deal with the above two viewpoints. The two PIM
classes Message and MessageProfile are merged
into the single class PostMessage.

4In general, PIMs and PSMs are described as sets of UML diagrams.
In this example, we use only class diagrams for simplicity.

Proceedings of the 2005 Eighth International Workshop on Principles of Software Evolution (IWPSE’05)
1550-4077/05 $20.00 © 2005 IEEE

Message

- subject
- name
- message

MessageProfile

- messageID
- date
- subject
- name

PostMessageForm

- messageID
- date
- subject
- name
- message

+ getMessageID()
+ setMessageID()
+ getDate()
+ setDate()
+ getSubject()
+ setSubject()
+ getName()
+ setName()
+ getMessage()
+ setMessage()

ActionForm

PostMessageAction

+ execute()

PIM PSM
Action

<<refer>>

Figure 6. Model transformation for Struts

4.2.2 Step 2

In Step 2 and Step 3, we conform the merged class to the
conventions specified in Struts. In Struts, a request from a
web browser is stored in an object called action form bean.
The PostMessage class is transformed to an action form
bean class. First, the name of the PostMessage class is
changed to PostMessageForm. Next, the parent class
of the PostMessageForm is set to the ActionForm
framework class. After that, a set of accessors (setter/getter)
are added to the PostMessageForm class.

4.2.3 Step 3

In Struts, an action logic, which handles a request from a
web browser, is defined as the execute operation in an ac-
tion class. First, the action class PostMessageAction
is created, and its parent class is set to the Action class
prepared in Struts. Next, the execute operation is added
to the PostMessageAction class.

Figure 3 shows Step 1 in the bulletin board system. In
this step, the MergeClasses aspect, whose JPM type is
CM, is defined for merging two PIM classes Message and
MessageProfile into the PostMessage class. Step 2
and Step 3 can be also realized with the same approach as
shown in Table 2.

4.3. The second version

As the second version, we optimize the first version
in terms of memory usages. Adopting AspectM, we can
extend the functionality of the model transformations by
adding aspect definitions. The following is the aspect that
deletes the date attribute when the two classes Message
and MessageProfile are merged. An XML format is
used here due to limitations of space.

<aspect name="DeleteAttribute"
type="ordinary"
jpm="OC">

<pointcut name="postMessageClass"
type="class">

<pointcut-body>
cname(PostMessage)

</pointcut-body>
</pointcut>
<advice name="deleteDate"

adviceType="delete-attribute"
ref-pointcut="postMessageClass">

<advice-body>
date

</advice-body>
</advice>

</aspect>

This kind of aspect is useful for PLE. A specific PSM,
a model of a specific product, may have to be optimized in
terms of memory resources. The above aspect, which elim-
inates the date attribute unused in a specific product, is

Proceedings of the 2005 Eighth International Workshop on Principles of Software Evolution (IWPSE’05)
1550-4077/05 $20.00 © 2005 IEEE

Step Model transformation PA CM NE OC RN RL
step 1 1-1) merge Message and MessageProfile ©

into PostMessage
step 2 2-1) rename PostMessage to PostMessageForm ©

2-2) add an inheritance relation ©
between ActionForm and PostMessageForm

2-3) add accessors to PostMessageForm ©
step 3 3-1) create an action class PostMessageAction ©

3-2) add an inheritance relation ©
between Action and PostMessageAction

3-3) add the execute method to PostMessageAction ©
3-4) add the body of the execute method ©

Table 2. Model transformation steps for Struts

applied after the MergeClasses aspect is applied. Using
AspectM, a process of tuning up can be componentized as
an aspect.

4.4. Variation of the second version

As the variation of the second version, we add a logging
function. This variation is necessary in the case of debug-
ging or testing. The logging function may be eliminated in
the final product. The following is an aspect for logging
setter method calls. The Log.write() is a log writer.

<aspect name="LoggingSetter"
type="ordinary"
jpm="PA">

<pointcut name="allSetter"
type="method">

<pointcut-body>
oname(set*)</pointcut-body>

</pointcut>
<advice name="logSetter"

adviceType="before"
ref-pointcut="allSetter">

<advice-body>
Log.write()

</advice-body>
</advice>

</aspect>

5. Evolution of metamodel

AspectM is effective for model evolution because a mod-
eler can extend the functionality of the AspectM model
compiler by defining new aspects as shown in Section 4.
However, the ability of model evolution is restricted to the
six JPMs. A modeler cannot define new kinds of transfor-
mation rules that need new JPMs. There may be questions:
are they enough for dealing with all kinds of model trans-
formations?, and is there a method for adding new JPMs
or modifying existing JPMs? AspectM includes JPMs sup-
ported by major AOP languages. However, it is not still
clear whether all kinds of model transformations can be de-

scribed by the six JPMs. We think that there are situations
for which new kinds of JPMs must be introduced.

It would be better if a modeler can modify the AspectM
metamodel using the model editor. In the AspectM meta-
model, we can introduce a new kind of advice by defining a
new subclass of the AdviceBody class. In this situation,
model transformations can be categorized as follows: trans-
formation using pre-defined aspect libraries; transformation
using user-defined aspects based on pre-defined metamod-
els; and transformation using user-defined aspects based on
user-defined metamodels. This function can be considered
as a modeling-level reflection, a kind of compile-time re-
flection. The idea of extensible programming languages,
such as computational reflection[14][10] and metaobject
protocols[7] would be also useful at the modeling-level. We
think that metaobject protocols in AspectM can be provided
as hot-spots such as the AdviceBody class. Designs of
metaobject protocols are similar to designs of an applica-
tion framework in which hot-spots should be exposed. We
think that the idea of the modeling-level reflection will be
important research issues in the future.

6. Discussion

AOP is effective in unanticipated software evolution be-
cause crosscutting concerns can be added or removed with-
out making invasive modifications on original programs.
This is also true at the modeling-level aspect orientation
as shown in this paper. That is, we can deal with model
evolution by adding aspect definitions. However, it is not
realistic for a modeler to define all of aspects in terms of
scalability. It is necessary for model transformation founda-
tions, aspects commonly applied to many transformations,
to be pre-defined by model compiler developers. For ex-
ample, it is preferable to prepare aspect libraries that sup-
port de facto standard platforms including J2EE, Web ser-
vice, and .NET. If a set of aspect libraries are provided by

Proceedings of the 2005 Eighth International Workshop on Principles of Software Evolution (IWPSE’05)
1550-4077/05 $20.00 © 2005 IEEE

model compiler developers, modelers have only to define
application-specific aspects. As shown in Section 3.2, As-
pectM supports generic aspects that is effective for devel-
oping libraries. By filling parameters, a specific aspect is
generated from a common generic aspect.

Introducing AspectM, model transformations, which is
represented as an aspect, can be accumulated as aspect li-
braries. This approach is similar to that of Draco[12] pro-
posed by J. Neighbors in 1980s. In Draco, software devel-
opment processes were considered as a series of transfor-
mations: requirements are transformed into analysis spec-
ifications; analysis specifications are transformed into de-
sign specifications; design specifications are transformed
into source code. These transformations are componentized
in Draco. J. Neighbors claimed that software development
processes could be automated by composing these transfor-
mation components. In AspectM, these components can be
described by aspects. Although Draco’s approach failed to
become popular, the idea of Draco is effective even now.

In order to use AspectM for model transformation, it is
important to have good original models. Otherwise, we
need to check the all the aspects in the library for their nu-
merous combinations. There can be consistency problem
on the interactions among aspects, which may become an-
other source of errors. This problem is essential for model
evolution. To deal with this problem, we plan to develop a
mechanisms for verifying a model compiler that consists of
pre-defined aspects and user-defined aspects.

7. Conclusion

In this paper, we showed model evolution in terms of
transformations based on aspect-oriented mechanisms. A
modeler can extend model transformation rules by defining
new aspects when evolution occurs. The idea proposed in
this paper will give a new research direction in terms of evo-
lution on MDA.

References

[1] AspectJ. http://www.eclipse.org/aspectj/.

[2] Cockburn, A.: Agile Software Development, Addison-
Wesley, 2000.

[3] Czarnecki, K., and Eisenecker, U. W.: Genera-
tive Programming: Methods, Tools and Applications,
Addison-Wesley, 2000.

[4] Elrad, T., Filman, R.E. and Bader A.: Aspect-oriented
programming, Communications of the ACM, vol.44,
no.10, pp.29-32, 2001.

[5] EMF, http://www.eclipse.org/emf/.

[6] Gamma, E. et al.: Design Patterns – Elements of
Reusable Object-Oriented Software, Addison-Wesley,
1994.

[7] Kiczales, G., Rivieres, J.des , Bobrow, D. G.: The Art
of the Metaobject Protocol, MIT Press, Cambridge,
MA, 1991.

[8] Kiczales, G., Lamping, J., Mendhekar A., Maeda, C.,
Lopes, C., Loingtier, J. and Irwin, J.: Aspect-Oriented
Programming, In Proceeding of European Confer-
ence on Object-Oriented Programming (ECOOP’97),
pp.220-242, 1997.

[9] Kiczales, G., Hilsdale, E., Hugunin, J., et al.: An
Overview of AspectJ, In Proceedings of Euro-
pean Conference on Object-Oriented Programming
(ECOOP 2001), pp.327-353, 2001.

[10] Maes, P.: Concepts and Experiments in Computa-
tional Reflection, In Proceedings of Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA’87), pp.147-155, 1987.

[11] MDA, http://www.omg.org/mda/.

[12] Neighbors, J.: The Draco Approach to Construction
Software from Reusable Components, In IEEE Trans-
actions on Software Engineering, vol.SE-10, no.5,
pp.564-573, 1984.

[13] OMG, http://www.omg.org/.

[14] Smith, B. C.: Reflection and Semantics in Lisp, In
Proceedings of Annual Symposium on Principles of
Programming Languages (POPL’84), pp.23-35, 1984.

[15] Struts, http://struts.apache.org/.

[16] Tarr, P., Ossher, H., Harrison, W. and Sutton,
S.M., Jr.: N Degrees of Separation: Multi-
dimensional Separation of Concerns, In Proceedings
of International Conference on Software Engineering
(ICSE’99), pp.107-119, 1999.

[17] Ubayashi, N. and Tamai, T.: Concern Manage-
ment for Constructing Model Compilers, In Proceed-
ings of First International Workshop on the Modeling
and Analysis of Concerns in Software (MACS 2005)
(Workshop at ICSE 2005), pp.9-13, 2005.

[18] Ubayashi, N., Tamai, T., Sano, S., Maeno, Y., and
Murakami, S.: Model Compiler Construction Based
on Aspect-Oriented Mechanisms, In Proceedings
of Fourth International Conference on Generative
Programming and Component Engineering (GPCE
2005), to appear.

[19] UML, http://www.uml.org/.

Proceedings of the 2005 Eighth International Workshop on Principles of Software Evolution (IWPSE’05)
1550-4077/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

