
An Evolutional Cooperative Computation

Based on Adaptation to Environment

Naoyasu Ubayashi and Tetsuo Tamai
Graduate School of Arts and Sciences, University of Tokyo

3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
{uba,tamai}@graco.c.u-tokyo.ac.jp

Abstract

A framework in which a group of objects collabo-
rating with each other evolve their functions dynam-
ically is presented in this paper. We call the frame-
work evolutional cooperative computation and present
an environment-adaptive computation model for its
foundation. Then, a programming language Epsilon/0,
which supports the computation model and has the re-
flection mechanism, is presented. In this paper, the
concept of environments that give objects collaboration
fields is introduced. An object evolves itself and changes
relations among other objects by adapting itself to en-
vironments or seceding from environments.

1. Introduction

A framework in which a group of objects collabo-
rating with each other evolve their functions dynami-
cally is presented in this paper. By collaboration, we
mean that a number of objects engaging in their own
roles send messages to each other and perform a job
that cannot be executed by a single object. By evolu-
tion, we mean that an object acquires or discards func-
tions and attributes dynamically. There are a number
of researches on evolution targeted on a single object.
However, researches that treat evolution in terms of
collaboration among objects are few. In this paper,
the concept of environments that provide fields for ob-
jects collaboration is introduced. An object evolves it-
self and changes relations with other objects by adapt-
ing itself to environments or seceding from environ-
ments. At the same time, an environment evolves as
objects join into or leave from the environment. We
call such a framework evolutional cooperative compu-
tation and present an environment-adaptive computa-
tion model for its foundation. Then, a programming

language Epsilon/01 , which supports the computation
model and has the reflection mechanism, is presented.

This paper is organized as follows. In section 2,
the environment-adaptive computation model is pro-
posed. In section 3, a programming language Epsilon/0
that supports the computation model is introduced. In
section 4, several examples described in Epsilon/0 are
given. In section 5, methods for software architecture
constructions in Epsilon/0 are shown. In section 6,
reference to a number of works related to environment
adaptation is given. Lastly, in section 7, we conclude
this paper.

2. Environment Adaptation Model

2.1. Basic Concepts

In the environment-adaptive computation model, a
logical field where a group of objects collaborate with
each other is called environment, and a set of meth-
ods/attributes that each object should have in order
to execute functions assigned to it in an environment
is called role. Procedures for collaborating with other
roles are described in role methods. Both environments
and roles are instances. Types of environments are
called environment classes and composed of following
constructs.

• environment methods

• environment attributes

• role class definitions

Aims to introduce the concept of environments are
as follows: 1) to give name spaces (fields). An object
acquires a name from the space and collaborates with

1This name originates from the head letter of environment.



role role

role

environment

collaboration field

role role

role

environment

object

object object

bind

unbind

multiple
adaptations

Figure 1. Environment adaptation

objects that have names; 2) to give common meth-
ods/attributes, which are called environment meth-
ods/attributes, in the field; 3) to coordinate behav-
iors of objects in the field; 4) to define object behav-
iors that are available only in the field. Environment
methods/attributes are defined in environment classes
to realize 1)2)3), and role classes are defined to real-
ize 4). Using the name space facilities, an object can
look for other objects the object wants to collaborate
with by role (class) names. It is not necessary to use
object references that make collaboration descriptions
complicated.

An object has to acquire behaviors and naming con-
ventions that are only available in an environment in
order to collaborate with other objects in the environ-
ment. These behaviors and naming conventions are
described in role class definitions that are composed of
role methods/attributes.

An object joins into an environment (instance) by
combining itself with roles (instances) that exist in the
environment. This mechanism is called adaptation to
environment. An object can join into a number of
environments simultaneously. The operation for envi-
ronment adaptation is called binding-operation and the
reverse operation is called unbinding-operation. With
binding-operations, an object can dynamically get role
methods/attributes available in an environment and
collaborate with other objects that are bound to roles
in the same environment (Figure 1). An environment
can join into another environment. In this case, the
former environment behaves as the representative of

roles that belong to the environment. As a result, a
number of environments compose a layered structure.

Collaborations are performed by message passing
among roles that belong to the same environment. Af-
ter executing a binding-operation, the semantics of self
changes. Both self appeared in an object and self ap-
peared in a role indicate the former. All messages are
received by an object. First, the object searches cor-
responding methods in roles, and after that, searches
them in itself. An object can invoke not only its origi-
nal methods but also role methods by sending messages
to self 2.

2.2. Evolutional Mechanisms

The evolutional cooperative computation is au-
tonomous as well as evolutional. Autonomy means
that an object has strategies for its actions. Strate-
gies is composed of the following program logics: what
kind of environments an object adapts itself to; when
an object adapts itself to an environment. Evolution
means that an object adapts itself to an environment
and acquires and discards its methods/attributes dy-
namically. An object may go through a number of
evolutional processes according to its strategies.

The environment-adaptive computation model uses
the reflection mechanism to realize evolution. The
mechanism is as follows:

• Applications have models that represent compu-
tation structures and behaviors. These represen-
tations are called meta information;

• Applications can control their computation struc-
tures and behaviors by handling meta informa-
tion.

In the reflection framework, interactions between
the base level (the level to execute applications) and
the meta level (the level to control meta information)
are described in the same model.

In the environment-adaptive computation model,
original object functions are described in the base level
and strategies are described in the meta level. Since
these descriptions are separated, an object can execute
autonomous actions by rewriting meta level strategies.

3. Programming Language Epsilon/0

Epsilon/0 is a programming language that sup-
ports the environment-adaptive computation model

2When an object invoke role methods, it must specify an en-
vironment that it belongs to. A number of roles that have the
same method name may exist in several environments.

2



and the reflection mechanism. This language is
implemented using ABCL/R3 [3] that is a reflec-
tive concurrent object oriented programming language
based on Scheme[5]. The constructs contained in
the environment-adaptive computation model - for ex-
ample, environments, roles, environment adaptation
- are implemented by the reflection mechanism of
ABCL/R3. Basic language constructs of Epsilon/0 are
as follows.
;;--------------------------
;; Class
;;--------------------------
;; Class definition
(define-class CLASS-NAME (SUPER-CLASS)
{SLOT-NAME | (SLOT-NAME EXP)}*)

;; Instantiation
(make CLASS-NAME {:SLOT-NAME EXP}*)
;; Method definition
(define-method CLASS-NAME (METHOD-NAME ARG+) BODY+)
;;--------------------------
;; Environment class
;;--------------------------
(define-context CONTEXT-NAME (SUPER-CLASS)
{SLOT-NAME | (SLOT-NAME EXP)}*)

(make-context CONTEXT-NAME {:SLOT-NAME EXP}*)
(define-context-method CONTEXT-NAME
(METHOD-NAME ARG+) BODY+)

;;--------------------------
;; Role class
;;--------------------------
(define-role CONTEXT-NAME ROLE-NAME (SUPER-CLASS)
{SLOT-NAME | (SLOT-NAME EXP)}*)

(make-role CONTEXT-NAME ROLE-NAME CONTEXT-INSTANCE
{:SLOT-NAME EXP}*)

(define-role-method CONTEXT-NAME ROLE-NAME
(METHOD-NAME ARG+) BODY+)

;;-------------------------------------
;; Environment adaptation operations
;;-------------------------------------
;; bind
(bind CONTEXT-INSTANCE
{CLASS- | CONTEXT-}INSTANCE ROLE-INSTANCE)

;; unbind
(unbind CONTEXT-INSTANCE
{CLASS- | CONTEXT-}INSTANCE)

;; search combinations between objects and roles
(search-role {CLASS- | CONTEXT-}INSTANCE

CONTEXT-INSTANCE)
;;-------------------------------------
;; Collaboration (message passing)
;;-------------------------------------
;; method invocation
(METHOD-NAME ARG+)

The syntax of classes and objects (instantiated from
classes) are the same as ABCL/R3. Programs com-
posed of only classes and objects can be executed by the
ABCL/R3 interpretor. Environments, which are called
contexts in Epsilon/0, are defined by define-context.
Other language constructs on environments - includ-
ing attributes (called slots in Epsilon/0), method defi-
nitions, instantiations and message passing - have the
syntax based on ABCL/R3. The first argument of a
method definition is constrained to be the instance that
is the target of the method execution. Roles are defined
by define-role. Like environments, other language con-
structs on roles have the syntax based on ABCL/R3.
The built-in function bind is used when an object joins
into an environment. On the other hand, the built-in
function unbind is used when an object secedes from an
environment. The built-in function search-role is used

in order to search a role instance that is bound to an
instance specified by the first argument in an environ-
ment specified by the second argument.

Considering implementation easiness, bind/unbind
are defined as built-in functions. But it may be bet-
ter to define them as standard environment methods.
Moreover, it may be better to let programmers cus-
tomize bind/unbind functions and behaviors by using
the reflection mechanism that realize open implemen-
tation programming styles. If bind/unbind can be re-
defined in meta-objects of environments, their func-
tions and behaviors are customized for target applica-
tions. Though bind executes a binding-operation un-
conditionally in the current implementation, it will be
possible to check some conditions - including security
checking and application specific constraints - by re-
defining bind in the future implementation.

A language processor for Epsilon/0 is implemented
by extending ABCL/R3. Epsilon/0 introduces the
idea of environments on ABCL/R3. Usually, reflec-
tive programming languages have problems on perfor-
mance grounds. To resolve these problems, ABCL/R3
is implemented efficiently using the partial evaluation
technique[3]. So, programs written in Epsilon/0 are
also executed efficiently.

4. Example

In this section, an example called contract-net
protocol[10] is described in Epsilon/0. This protocol
is a collaboration model that divides a problem into
several subproblems and assigns them to a number of
objects through negotiations. Objects that take part
in a contract-net protocol may become a manager that
proposes a contract in some situation and may become
a contractor that undertakes a contract in another situ-
ation. Roles that objects take may change dynamically.
For simplicity, a contract-net protocol that contains
only one manager is considered in this section (Figure
2).

Environment definition

The environment class contract-net and the two role
classes manager and contractor are defined in the pro-
gram. First, in the start method defined in the manager
role class3, the task-announcement message is broad-

3Get-role is one of the built-in functions that support the
name space facilities. This function returns a list of roles that
exist in an environment specified by the first argument and have
a role class name specified by the second argument. Context-of
returns an environment that a role specified by the argument
belongs to. Details of these built-in functions will be explained
in section 6.

3



manager
contractor

manager

manager

contractor

contractor

object object

behaves
as manager

behaves
as contractor

behaves
as manager

behaves
as contractor

contract−net protocol
environment

contract−net protocol
environment

contract−net protocol
environment

Figure 2. Contract-net protocol

casted to all contractor roles that belong to the same
environment. Each contractor role that receives the
task-announcement message compares his or her own
condition with a condition shown by the manager role.
If the latter condition satisfies the former condition, the
contractor role sends the bid message to the manager
role. The manager role selects one of the contractor
roles that show satisfactory bid-conditions, and sends
the award message to the selected contractor role. The
contractor role invokes the execute-task method and
executes the task requested by the manager role. The
execute-task method is not defined as a role method.
Thus, a method search is executed to ask the object
bound to the role whether it has the specified method
definition or not. If the execute-task method is defined
in the object, this method is invoked. Otherwise, this
program execution fails.

As this example shows, Epsilon/0 makes it possible
to describe collaboration of the contract-net protocol
explicitly and independent from runtime objects.

;; Environment contract-net
(define-context contract-net () )
;; Role manager
(define-role contract-net manager ()

condition-shown-by-manager)
(define-role-method contract-net manager
(start self)
(let ((contractor-list

(get-role (context-of self) ’contractor)))
... broadcasts a task-announcement message

to all roles that are contained
in the contractor-list.

))
(define-role-method contract-net manager
(bid self a-contractor

a-condition-shown-by-contractor)
... stores a bid-information

into internal memories.
(if (bidding is finished)
... selects a contractor role

that shows the best bid-condition,
and sends the award message
to the selected contractor role.

... if there are not contractor roles
that satisfy the award-condition,
this negotiation fails.

))
;; Role contractor
(define-role contract-net contractor ()
condition-shown-by-contractor)

(define-role-method contract-net contractor
(task-announcement self

a-condition-shown-by-manager)
(if (a-condition-shown-by-manager

satisfies condition-shown-by-contractor)
(let ((a-manager

(car (get-role (context-of self)
’manager))))

... sends a bid message to a-manager.
)))

(define-role-method contract-net contractor
(award self)
(execute-task self))

Execution

The following program describes an execution of the
contract-net protocol that follows evolutional process.
In this program, an object that has the name john
searches through a number of contract-net protocol en-
vironments and joins into some environments that sat-
isfy his requirements. John has a job, which is com-
posed of several sub-tasks, and owns funds to execute
the job. When john does not have sufficient funds to
execute a sub-task, he becomes a contractor to earn
money. At this time, he collaborates with a manager.
On the other hand, he becomes a manager to assign
sub-tasks to contractors. At this time, he collaborates
with contractors. This program terminates when john
performs all sub-tasks. Figure 3 illustrates john’s exe-
cution process.

;; class definition (base level)
(define-class person () name money)
(define-method person (execute-task self) ...)
(define-method person (life self job)
(meta-life (meta-of self) job))

;; adaptation strategy (meta level)
(meta
(define-class john-meta (metaobject))
(define (make-john-meta class slots

evaluator options)
(make john-meta :class class

:slots slots
:evaluator evaluator
:lock (make-lock)))

(define-method john-meta (meta-life self job)
(future-to-base
... John divides a job into a number of

sub-tasks.
... He repeats the following activities

until he performs all sub-tasks.
(let ((env (get-all-context)))

4



manager
contractor

manager

contractor

manager

contractor

contract−net protocol
environment

contract−net protocol
environment

evolves

evolves

evolves

John Nancy

Stieve

Figure 3. Contract net protocol that has
evolutional processes

(begin
... John searches through contract-net

environments where he can join
as a manager.
If there are a number of environments,
he selects the most fitting environment
that satisfies his requirements.

... John joins into a contract-net environment
that he selects and bind himself
with a manager role.

(bind selected-contract-net
(den-of self) selected-manager)

(start (search-role (den-of self)
selected-contract-net))

... If John does not have sufficient funds
and fails to make a contract,
he searches through contract-net
environments where he can join
as a contractor.

(bind selected-contract-net
(den-of self) selected-contractor)

... If John succeeds in making this contract,
he can increase his funds.

))))
;; start
(define john

(make person
:name "John Smith"
:metaobject-creator make-john-meta))

(life john a-job)

The expression (meta ...) indicates that it is evalu-
ated at the meta level. The class definition john-meta
inherits the default meta object metaobject, and it is
defined as a meta object. Make-john-meta is a func-
tion to create a meta object. This function is specified

as an initial value for metaobject-creator slot when the
object john is created. By this specification, a meta
object of john is created.

The life method is defined in the person class. Ac-
tual contents of life are described in the meta-life
method contained in the meta object. The life method
merely calls the meta-life4. In the case of the object
john, the meta-life method is defined in the meta ob-
ject john-meta. The expression (future-to-base ...) is
used in order to invoke a method contained in the base
level object from the meta level program.

The life method can be regarded as a design pat-
tern to describe autonomy of an object. By defining
the life method in a meta object, an object can refer
its meta information and act according to its compu-
tation states. For example, an object can dynamically
adapt itself to appropriate environments by referring
its loads.

Although a simple contract-net protocol environ-
ment that contains only one manager is described in
this section, a general contract-net protocol environ-
ment that contains multiple managers and contractors
can be described by combining these simple contract-
net protocol environments. The outline is as follows:
1) create a set of simple contract-net protocol environ-
ments; 2) let a number of objects join into these envi-
ronments. If an object joins into multiple environments
as a contractor, it can make contracts with managers
who belong to individual environments.

In the current programming paradigms such as the
object oriented technology, it is believed that interfaces
of program modules must be separated from implemen-
tations. It is not necessary for module users to know
how they are implemented. Users only have to obey
interfaces. Users are not influenced even when imple-
mentations are changed.

Such module encapsulation has advantages like pro-
gram readability, maintenability and reusability. But,
this type of encapsulation also has a problem of inflex-
ibility in module usage. If module users can change a
part of a program module implementation, they may
be able to reuse the module. Unfortunately, it is not
permitted in the current programming paradigms. Re-
cently, the idea called open implementation, a pro-
gramming paradigm that opens a part of program mod-
ule implementations and permits module users to cus-
tomize the part, is proposed in order to resolve this
problem[1]. Open implementations usually need the
reflection mechanism. There are a number of reflec-

4The meta-of function returns a meta object corresponding
to the base level object specified as a parameter. On the other
hand, the den-of function returns an object corresponding to a
meta object specified as a parameter.

5



tive object oriented programming languages that per-
mit programmers to customize basic language mech-
anisms such as message reception mechanism. Using
the reflection mechanism, applications can be imple-
mented such that meta information including load of
message receptions and message logging information
are preserved.

Collaboration protocols can be defined as patterns
by the evolutional cooperative computation. Moreover,
introducing the idea of open implementation, collabo-
ration protocols can be defined as flexible collaboration
parts. Meta patterns that let methods create design
patterns are proposed by Pree[13]. Target problem do-
mains are divided into invariant parts and variant parts
by using meta patterns. Variant parts are picked up as
hot spots. Methods to pick up hot spots, which will
be exposed as reflective points, are important when
parts based on open implementation are defined. In
the evolutional cooperative computation, autonomy of
an object can be described in the life method that is
defined in the meta object and may be customized by
programmers. This mechanism can be regarded as a
kind of open implementation.

5. Constructing Cooperative Compo-
nents

Epsilon/0 can abstract collaboration among objects
as a global module that describes a software architec-
ture. Software architectures can be mapped to Ep-
silon/0 language structures. Software architectures
that are reused many times can be regarded as cooper-
ative components. It is difficult to make reusable col-
laborative components by using traditional program-
ming languages such as C++, because it is difficult to
abstract global runtime structures as follows:

• Number, kinds and names of objects that com-
pose a collaboration;

• Relations and network topologies among objects.

These structures may change dynamically whenever
programs are executed. In order to define a collab-
oration as a reusable component, it is necessary to
present abstraction mechanisms that encapsulate these
runtime structures within language constructs. Ep-
silon/0 presents such runtime information as meta level
information of environment constructs. Roles can in-
trospect the meta level information within language
frameworks by using the reflection mechanism. The
runtime structures can be encapsulated within an en-
vironment. An environment can be regarded as a col-

laborative component. The Epsilon/0 presents a set of
built-in functions as follows:

get-all-context: returns a list that contains all envi-
ronments in a system;

get-all-contextname: returns a list that contains
names of all environments in a system;

context-of: returns an environment where a role spec-
ified by an argument exists;

get-role: returns a list that contains roles that have a
name specified by an argument;

get-all-role: returns a list that contains all roles that
belong to an environment specified by an argu-
ment;

get-all-rolename: returns a list that contains name
of all roles that belong to an environment speci-
fied by an argument;

bound?: judges whether a role specified by an argu-
ment is bound to another object or not.

5.1. Example

A collaborative component called publish-subscribe
pattern, which is often used in software agent systems,
is described as an example. This pattern is composed
of a facilitator, subscribers and a publisher (Figure 4).
Subscribers are objects that want to subscribe informa-
tion and a publisher is an object that present informa-
tion. A facilitator is an object that mediates between
subscribers and a publisher. If a publisher presents
information, a facilitator forwards the information to
subscribers that need it. Using the built-in function
get-role, a facilitator can be referenced by the role name
of the environment. It is not necessary to use variables
in order to manage role instances. Using built-in func-
tions that support reflective facilities, references of role
instances are not necessary to describe a collaboration.

;; Environment: publish-subscribe
(define-context publish-subscribe () )
;; Role: subscriber
(define-role publish-subscribe subscriber ())
(define-role-method publish-subscribe subscriber
(start self)

subscriber facilitator publisher

subscribe
tell

tell

Figure 4. Publish-subscribe pattern

6



(subscribe
(car (get-role (context-of self) ’facilitator))
self category))

(define-role-method publish-subscribe subscriber
(tell self an-info) ...)

;; Role: publisher
(define-role publish-subscribe publisher ())
(define-role-method publish-subscribe publisher
(publish self)
(tell
(car (get-role (context-of self) ’facilitator))
category info))

;; Role facilitator
(define-role publish-subscribe facilitator ())
(define-role-method publish-subscribe facilitator
(subscribe self a-subscriber a-category)
... ’a-subscriber’ and ‘a-category’

are stored to a table
that manages information forwarding.

)
(define-role-method publish-subscribe facilitator
(tell self a-category an-info)
... information is forwarded

to subscribers that want information
corresponding to ’a-category’.

)

If an object wants to request some object to medi-
ate something, the object may search an environment
that can mediate it. A facilitator role exists in the en-
vironment at any time, and objects that join into the
environment may merely make a request to the facili-
taor role.

A facilitator is defined as a role in the above pro-
gram. Environments are fields that mediate collabora-
tions among objects. So, a facilitator can be defined
as an environment as follows. This program is simpler
than the above program.
;; Environment: facilitator
(define-context facilitator ())
(define-context-method facilitator
(subscribe self a-subscriber a-category)
... ’a-subscriber’ and ‘a-category’

are stored to a table
that manages information forwarding.

)
(define-context-method facilitator
(tell self a-category an-info)
... information is forwarded

to subscribers that want information
corresponding to ’a-category’.

)
;; Role: subscriber
(define-role facilitator subscriber ())
(define-role-method facilitator subscriber
(start self)
(subscribe (context-of self) self category))

(define-role-method facilitator subscriber
(tell self an-info) ...)

;; Role: publisher
(define-role facilitator publisher ())
(define-role-method facilitator publisher
(publish self)
(tell (context-of self) category info))

Mediations - including exclusive controls, resource
management and scheduling - can be described by us-
ing environments. The monitor concept can be de-
scribed as an environment too. It is important to judge

whether an element that is at the center of the collabo-
ration should be defined as a role or as an environment.
An element may be defined as an environment if there
is only one object that mediates a collaboration. On
the other hand, an element may be defined as a role if
there are a number of objects that are at the center of
the collaboration. In such a case, an environment may
be defined as a common space such as the blackboard
model[9].

Using the concept of environments that have the
reflection mechanism, many kinds of software architec-
tures - including resource allocations, load balancing
and exclusive controls - can be described as language
level components.

5.2. Adaptable AOP

Modules (or collaborative components, software
architectures) in Epsilon/0 are constructed by the
method such that a system is divided into a num-
ber of environments and a program is described per
environment. This idea is similar to the concept of
AOP(Aspect Oriented Programming)[2][11]. In AOP,
a system is divided into a number of aspects and a
program is described per aspect. A compiler, called
weaver, weaves aspects together into a system. For ex-
ample, a complex distributed system is described by a
number of aspects - a main aspect that is programmed
by an object oriented programming language, commu-
nication aspects that are programmed by a special lan-
guage, failure handling aspects that are programmed
by an other special language. These aspects are auto-
matically woven into a single program. AOP resolve
the problem that it is difficult to define a function as
a global module that is implemented by a number of
distributed objects. The idea of aspects corresponds to
the idea of environments. Though AOP mechanism is
different from the evolutional cooperative computation,
the concept programming by aspects (or environments)
is common.

In AOP, aspects that construct a system are stati-
cally defined when the system is designed, and do not
change from the beginning of computation to the end.
On the other hand, in Epsilon/0, aspects (environ-
ments) can be defined dynamically and compositions
of aspects can be re-arranged dynamically. It can be
regarded that Epsilon/0 realizes the Adaptable AOP.

6. Related Works

Researches on collaborations have been considered
different from researches on adaptation to environ-
ment. Methods to describe collaborations are mainly

7



studied in software engineering, especially in object ori-
ented analysis and design. For example, in UML (Uni-
fied Modeling Language)[7], the standard object ori-
ented description notation, collaborations among ob-
jects are described by sequence diagrams. Sequential
diagrams describe interactions by temporal message
tracings among objects. M.VanHilst and D.Notkin pro-
pose an idea of role components, which are described
by C++ templates, to implement collaboration-based
design[8]. Usually, collaboration structures described
by these methods cannot be changed dynamically.
Moreover, objects that participate in collaborations
cannot acquire new functions dynamically.

On the other hand, environment adaptation is stud-
ied from the viewpoint how a single object evolves itself
dynamically - for example, how a person acquires meth-
ods and attributes when he gets a job, he gets married
and so on. In the Subject Oriented Programming[12],
an object acquires new functions by participating in
subjects. The concept of subjects are similar to the
concept of environments in the evolutional coopera-
tive computation. In many researches, evolution of
static objects are mainly considered, and dynamic in-
teractions among objects are not so emphasized. Re-
searches on mobile agents also treat aspects of environ-
ment adaptation. A mobile agent moves on networks
from one computer to another in order to perform tasks
as a proxy of a user. An agent moves to remote places
and uses functions that objects located in the places
provide. Though the concept of environments does not
exist clearly in mobile agents, the capability explained
above is a kind of environment adaptation. Recently, a
number of mobile agent systems and languages are pro-
posed including Telescript[6] and Aglets[4]. As other
approaches, there are researches on reflective operating
systems such as Aperios (aka. Apertos or Muse)[14].
In Aperios, the concept of meta-spaces composed of a
group of meta objects that offer some kinds of services
to objects is introduced. An object can use many ser-
vices by moving among meta-spaces.

Actually, researches on collaborations must be
closely related to those of environment adaptation.
When objects collaborate with each other, each object
must perform its own roles. An object may dynami-
cally change its roles or acquire new roles. In such a
case, an object has to evolve itself. An object evolves
itself in order to collaborate with other objects by using
functions that it acquires. It is meaningless to evolve
without collaborations. As mentioned here, researches,
which are concerning to only collaborations or environ-
ment adaptations, already exist. But, researches com-
bining the two approaches are few.

7. Conclusions

Distributed applications that reside in
mobile/internet/intranet environments, whose struc-
tures change dynamically, are spreading rapidly. Most
applications are implemented in traditional program-
ming languages, and have many embedded logics ac-
cording to individual environments. These applications
must switch to new logics as environments change. As a
result, these applications need to be restructured dras-
tically when they must adapt to new environments. It
is necessary to have new computation paradigms and
programming languages in order to resolve such a prob-
lem. The evolutional cooperative computation that we
have proposed in this paper is one approach to resolve
such a problem.

References

[1] G.Kiczales. Beyond the black box: Open implemen-
tation. IEEE Software, January 1996.

[2] G.Kiczales, et al. Aspect-oriented programming.
Proceedings of the European Conference on Object-
Oriented Programming (ECOOP), Finland, Springer-
Verlag LNCS 1241, 1997.

[3] H.Masuhara, S.Matsuoka and A.Yonezawa. Imple-
menting parallel language constructs using a reflective
object-oriented language. In Reflection’96 Conference,
San Francisco, California, April 1996.

[4] IBM. http://www.trl.ibm.co.jp/aglets/index.html.
1999.

[5] IEEE Std 1178-1990. IEEE Standard for the Scheme
Programming Language. 1990.

[6] Jeffrey M.Bradshaw. Software Agents. The MIT Press,
1997.

[7] M.Fowler and K.Scott. UML Distilled. Addison-
Wesley Publishing Company, Inc., 1997.

[8] M.VanHilst and D.Notkin. Using role components to
implement collaboration-based designs. Proceedings of
OOPSLA’96 Conference, pages 359–369, 1996.

[9] R.Engelmore, et at. Blackboard System. Addison Wes-
ley, 1988.

[10] R.G.Smith. The contract net protocol: High-level
communication and control in a distributed problem
solver. IEEE Trans. on Computers, 29(12):1104–1113,
1980.

[11] R.Guerraoui, et al. Strategic directions in object-
oriented programming. ACM Computing Surveys,
28(4):691–700, 1996.

[12] W.Harrison and H.Ossher. Subject-oriented program-
ming. Proceedings of OOPSLA’93 Conference, pages
411–428, 1993.

[13] W.Pree. Design Patterns for Object-Oriented Software
Development. the ACM Press, 1995.

[14] Y.Yokote. The apertos reflective operating system:
The concept and its implementation. Proceedings of
OOPSLA’92 Conference, pages 414–434, 1992.

8


