
RoleEP: Role Based Evolutionary Programming
for Cooperative Mobile Agent Applications

Naoyasu Ubayashi
Toshiba Corporation

2-9 Suehiro-cho, Ome-city
Tokyo 198-8710, Japan

naoyasu.ubayashi@toshiba.co.jp

Tetsuo Tamai
University of Tokyo

3-8-1 Komaba, Meguro-ku
Tokyo 153-8902, Japan

tamai@graco.c.u-tokyo.ac.jp

ABSTRACT
Using mobile agent systems, cooperative distributed appli-
cations that run over the Internet can be constructed flex-
ibly. However, there are some problems: it is difficult to
understand collaborations among agents as a whole; it is
difficult to define behaviors of agents because they are influ-
enced by their external context dynamically. So, in general,
constructions of cooperative distributed applications based
on mobile agent systems are considered as very hard and
difficult works.

In this paper, the concept of RoleEP(Role Based Evolu-
tionary Programming) is proposed in order to alleviate these
problems. RoleEP provides a systematic evolutionary pro-
gramming style. In RoleEP, a field where a group of agents
collaborate with each other is regarded as an environment
and a function that an agent assumes in an environment is
defined as a role. Descriptions only concerning to collabora-
tions among agents can be abstracted by environments. An
object becomes an agent by binding itself with a role that
is defined in an environment, and acquires functions needed
for collaborating with other agents that exist in the same en-
vironment. Distributed applications based on mobile agent
systems, which may change their functions dynamically in
order to adapt themselves to their external context, can be
constructed by synthesizing environments dynamically.

Keywords
Evolution, Environment, Mobile Agents

1. INTRODUCTION
Recently, cooperative distributed applications based on

mobile agent systems are increasing. Most of these appli-
cations are implemented in Java so that it can run on any
platform[16]. Using mobile agents, we can develop coopera-
tive distributed applications that run over the Internet more
easily and more flexibly than before. One of the most typical

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright 2000 ACM 0-89791-88-6/97/05 ..$5.00

applications is the information retrieval system that searches
through the Internet. In this type of systems, an agent that
receives requests from a user moves to a host where the in-
formation to be searched may exist. If the agent finds the
target information, the agent negotiates an agent that man-
ages the information and gets it from the peer agent. After
that, the agent goes back to the previous host and returns
the result to the user. If the agent cannot find the target
information, it roams around other hosts and repeats the
process. The agent may decide search-paths dynamically by
using information that it gets on the way. The agent may
acquire new functions - for example, a function to access
directory services - on the way and searches information by
using the function. Though it is beneficial to use mobile
agent systems in order to build cooperative distributed ap-
plications, there are problems as follows: it is difficult to
understand collaborations among agents and travels of in-
dividual agents as a whole because traveling/collaboration
functions come to be intertwined in the code; it is difficult
to define behaviors of agents because they are influenced
by the external context. Properties of mobile agent based
cooperative distributed applications are as follows:

1. An application is constructed through a number of col-
laborations among agents.

2. Number of agents and kinds of agents change dynam-
ically. Agents may be dispersed over the Internet.

3. Agents may move over the Internet. So, topologies of
collaborations among agents may change dynamically.

4. Agents may acquire new functions dynamically in or-
der to adapt themselves to their external context. Al-
though objects do not change their functions through
their life-cycles, agents may change their functions dy-
namically.

5. An agent may participate in a number of collabora-
tions simultaneously. In such a case, the agent is en-
gaged in different roles in different collaborations.

This paper proposes the concept of RoleEP(Role Based
Evolutionary Programming) in order to alleviate the above
problems. RoleEP provides a systematic evolutionary pro-
gramming style. In RoleEP, a field where a group of mobile
agents collaborate with each other is regarded as an envi-
ronment and a function that an agent assumes in the field
is defined as a role[25]. An environment can be described as

Proceedings of the International Symposium on Principles of Software Evolution (ISPSE’00)
0-7695-0906-1/00 $ 17.00 © 2000 IEEE

Host

Host

Host

(contractor)

(manager)

(contractor)

(manager)

contractor

manager

Host

roaming around
 a number of hosts contract-net

 protocol

user proxy

user proxy

user proxyuser proxy

seacher

seacher

seacher

Figure 1: Distributed information retrieval system

an interaction among roles. Cooperative distributed appli-
cations based on mobile agent systems, which may change
their functions dynamically in order to adapt themselves to
their external context, can be constructed by synthesizing
multiple environments dynamically. In this paper, problems
that may occur when distributed applications are designed
by using traditional construction approaches are pointed out
in section 2. In section 3, the concept of RoleEP is intro-
duced to address these problems. The framework Epsilon/J1

that realizes RoleEP on Java is explained in section 4, and
examples described in Epsilon/J are shown. Section 5 is a
discussion on RoleEP. In section 6, reference to a number of
works related to RoleEP is given. Lastly, in section 7, we
conclude this paper.

2. PROBLEMS OF CONSTRUCTING
COOPERATIVE MOBILE AGENT
APPLICATIONS

In this section, a distributed information retrieval system
– a typical example of cooperative distributed applications
based on mobile agent systems – is described by using tra-
ditional development approaches, and problems that may
occur in those approaches are pointed out. An example
problem is illustrated in Figure 1.

Example problem

A user requests an agent to search information on speci-
fied topics. The agent divides the request into several sub-
tasks according to the kinds of topics and assigns them to
searcher agents that are dispersed over the Internet by roam-
ing around a number of hosts and executing the contract-net
protocol[22] at each host. The contract-net protocol is a pro-
tocol for assigning tasks to objects through negotiations. In
the contract-net protocol, managers and contractors exist.
First, a manager announces a task to all contractors. Then,
each contractor compares his/her own condition with a con-
dition shown by the manager, and if the latter condition

1This name originates from the head letter of environment.

satisfies the former condition, the contractor sends his/her
bidding to the manager. The manager selects a contractor
that shows the most satisfactory bid-condition and awards
the contract to him/her.

2.1 Case1: Orthodox approach
In the orthodox approach, a program description maps do-

main structures to program structures. The following pro-
gram is written in Java 2.

public class UserProxy {
public void roam(){

:
dispatch(getNextHostAddress(),

"contractNet_start");
}
public void contractNet_start(){

:
// broadcasts a task-announcement message
// to all agents existing in the host.

}
public void contractNet_bid(){

:
// if all biddings are finished,
// selects the best contractor.
:

best-contractor.award();
}
public void contractNet_end(){

:
// saves results of the task execution.
// moves to the next host.

}}

This program starts from the roam method. In the roam
method, the dispatch method is called, whose first param-
eter is a host address to which an agent moves and second
parameter is a method that the agent executes at arriving to
the host. In the above program, the agent moves to the next
host and executes the contractNet start method. In the con-
tractNet start method, the agent (as a manager) broadcasts
a task announcement to all agents (as contractors) that ex-
ist in the host. The manager agent receives responses from
other contractor agents by the contractNet bid method and
selects the best contractor agent. Then, the manager agent
awards the contract to the contractor agent. The manager
agent saves results of the task execution in the contract-
Net end method and moves to the next host.

In this program, code for roaming around hosts is mixed
with code for executing the contract-net protocol. In most
cases, distributed applications based on mobile agent sys-
tems are described in such a programming style. However,
the style has problems as follows:

• It is difficult to understand a program behavior as
a whole since traveling/collaboration functions that
compose a program are not described separately. For
example, code for roaming around hosts is not sepa-
rated from code for the contract-net protocol in the
above program. As a result, it is difficult to extend
program code.

If another function is added to this program, the contract-
Net start method and the contractNet bid method may be
2This program is described based on weak mobility[8]. In
weak mobility, only program code and instance data are
moved. Execution information such as a program counter
is not moved. After an agent moves, program execution
restarts from the beginning of the method specified at dis-
patching. The mobility such that execution information is
moved is called strong mobility.

Proceedings of the International Symposium on Principles of Software Evolution (ISPSE’00)
0-7695-0906-1/00 $ 17.00 © 2000 IEEE

changed so that this program adapts itself to the new func-
tion. These methods will include code that is not related to
the contract-net protocol. The approach contains problems
that program code becomes more complex as new functions
are added to the code.

2.2 Case2: Design-pattern approach
Next, we take the design-pattern approach in order to al-

leviate the problems that are pointed out in Case1. Collab-
orations among agents can be structured using design pat-
terns[9]. Recently, design patterns focused on mobile agents
are proposed. For example, Aridor, Y. and Lange, D.B.
propose design patterns for Aglets[13][20], a typical mobile
agent system based on Java, as follows[2]:

• Traveling Patterns: Itinerary,Forwarding,Ticket, etc.

• Task Patterns: Master-Slave, Plan, etc.

• Collaboration Patterns: Meeting, Locker, Messenger,
Facilitator, Organized Group, etc.

The following Aglets program is described using the Itinerary
pattern, a design pattern for roaming around hosts and ex-
ecuting a task at each host. In Aglets, a mobile agent is
defined as an instance that is created from a subclass of the
Aglets class. In this pattern, information for roaming is en-
capsulated in the instance of the Itinerary class. It is only
necessary to change the content of instance when host ad-
dresses for roaming are changed. Programs can be described
that an agent roams around hosts and executes many kinds
of tasks at each host by defining the subclass of the Itinerary
class.

public class UserProxy extends Aglets{
public void roam(){
// sets sequential planning itinerary
itinerary = new SeqPlanItinerary(this);
itinerary.addPlan(HostAddress1,

"contractNet_start");
itinerary.addPlan(HostAddress2,

"contractNet_start");
:
:

itinerary.addPlan(HostAddressN,
"contractNet_start");

// starts the trip
itinerary.startTrip();

}
public void contractNet_start(){

:
// broadcasts a task-announcement message
// to all agents existing in the host.
:

// waits until contract-net process is finished
}
public void contractNet_bid(){

:
// if all biddings are finished,
// selects the best contractor.
:

best-contractor.award();
}
public void contractNet_end(){

:
// saves results of the task execution.
:

// notifies this agent.
}}

In this program, an instance is created from the SeqPlan-
Itinerary class that is a subclass of the Itinerary class, and
host addresses for roaming and methods that are executed

at each host are specified in the addPlan method 3. Here, N
host addresses and the contractNet start method are spec-
ified. An agent starts to roam around hosts when the in-
stance of the SeqPlanItinerary class receives the startTrip
message. Though the contractNet start method is directly
specified as a method that is executed at each host in the
addPlan method, it can be parameterized so that code for
roaming around hosts is separated from code for executing
the contract-net protocol. As shown in the program, how-
ever, if a roaming agent wants to behave as a manager at
the host machine the agent moves into, functions requested
for a manager should be described as methods of the agent.
So, separations of traveling/collaboration descriptions are
limited only within an agent.

2.3 Case3: AOP approach
AOP(Aspect Oriented Programming)[15][11] is a program-

ming paradigm such that a system is divided into a number
of aspects and a program is described per aspect. A func-
tion that is dispersed among a group of objects is defined
as an aspect. A compiler, called weaver, weaves aspects
and objects together into a system. For example, a complex
distributed system is described by a number of aspects in-
cluding a main aspect, communication aspects and failure
handling aspects. These aspects are automatically woven
into a single program. Using AOP, it is possible to define
a function as a global module that cuts across a set of dis-
tributed objects.

AspectJ[3], AOP language, is an aspect-oriented exten-
sion to Java. A program in AspectJ is composed of aspect
definitions and ordinary Java class definitions. An aspect is
defined by aspect that is an AspectJ specific language ex-
tension to Java. Aspects and classes are are woven together
by AspectJ weaver. Main language constructs in AspectJ
are introduces and advises. Introduces adds a new method
(cross-cutting code is described in the method) to a class
that already exists. Introduces executes static weaving and
affects all objects instantiated from a specified class. That
is, all objects have a common introduced method. Advises
modifies a method that already exists. Advises can append
cross-cutting code to specified method. Before is used in
order to append code before a given method, and after is
used in order to append code after a given method. Advises
executes static or dynamic weaving. In the case of dynamic
weaving, cross-cutting code can be added to a specific ob-
ject.

Kendall, E.A. proposed role model designs and implemen-
tations with AspectJ in [14]. Kendall showed that there are
five options for AOP of Role Models as follows:

Option1: Static aspect introduces extrinsic role members
to a core class.

Option2: Aspect instance implements role behavior by ad-
vising role members that already exist in a core in-
stance.

3In the Itinerary pattern, only one method can be invoked at
each host. However, a set of method executions are needed
in order to perform the contract-net protocol. So, in the
contractNet start method, after a manager agent broadcasts
a task announcement message, it must wait until it gets ex-
ecution result. If the contractNet start method is described
as same as Case1, the agent may move to next host after
broadcasting a task announcement.

Proceedings of the International Symposium on Principles of Software Evolution (ISPSE’00)
0-7695-0906-1/00 $ 17.00 © 2000 IEEE

Option3: Aspect instance contains role members separate
from a core instance. Two separate entities are used.

Option4: Aspect instance filters out invalid role members
from a core instance with advise weaves. The core
instance contains members for all roles.

Option5: Role and core are objects. Static aspect inte-
grates or composes them, using introduce weaves. This
option is called ”Glue Aspects”.

Kendall pointed out that no one solution is complete and
recommended a hybrid approach: 1) introduces the interface
for the role specific behavior to the core class (option1): 2)
advises the implementation of the role specific behavior to
instances of the core class dynamically (option2); 3) adds
role relationships and role context in the aspect instance
(option3). The the contract-net protocol can be described
as follows by applying Kendall’s approach.

public class UserProxy{
public void roam(){
itinerary = new SeqPlanItinerary(this);
:

}}
aspect Manager extends Role{
// role relationships in aspect (uses option3)
protected Contractor[] contractor;
public void setContractor(){...}
// introduces empty behavior
// to the class UserProxy (uses option1)
introduce public void UserProxy.start(){}
introduce public void UserProxy.bid(){}
introduce public void UserProxy.end(){}
// advise weaves for aspect instances
// that will be attached to an instance
// of the class UserProxy (uses option2)
advise public void UserProxy.start(){
before{ ... } }

advise public void UserProxy.bid(){
before{ ... } }

advise public void UserProxy.end(){
before{ ... } }

}

public class InfoSearcher{
public void executeTask(){
// do something.

}}
aspect Contractor extends Role{
// role relationships in aspect
// (uses option3)
protected Manager manager;
public void setManager(){...}
// introduces empty behavior
// to the class InfoSearcher (uses option1)
introduce public void InfoSearcher.taskAnnounce(){}
introduce public void InfoSearcher.award(){}
// advise weaves for aspect instances
// that will be attached to an instance
// of the class InfoSearcher (uses option2)
advise public void InfoSearcher.taskAnnounce(){
before{ ... } }

advise public void InfoSearcher.award(){
before{

:
// calls a method of the class InfoSearcher
executeTask();
:

}
}}

Although this approach has good points, the following
problems still remain.

Host

Role

Object

Binding-Interface

concrete
method

bind

Agent

migrate

Environment

abstract method message
communication

Figure 2: RoleEP model constructs

• Description of aspects depends on specific core classes.
The name UserProxy appears in the definition of the
aspect Manager. So, the description of Manager can-
not be applied to other core classes.

• Description of role behavior depends on interface-names
of core classes. That is, when a role uses a method of
a core class, the role must call the method directly.
In the aspect Contractor, InfoSearcher.award() must
call executeTask() that is a method of the core class
InfoSearcher. In general, there are many kinds of con-
tractor agents that implement their own task execution
methods whose names may be different. For example,
a contractor agent that has an information searching
function may have a task execution method named
searchInfo. On the other hand, a contractor agent that
has an information delivering function may have a task
execution method named deliverInfo.

• Each aspect must be defined per a role. A descrip-
tion that cross-cuts roles may be dispersed in several
aspects.

3. ROLE-EP

3.1 Basic concepts
In this section, RoleEP is proposed as one of approaches

that address problems pointed out in section 2. RoleEP is
composed of four model constructs – agents, roles, objects
and environments as shown in Figure 2. Agents can roam
around hosts, collaborate with other agents that exist in the
same environment by sending messages to each other and
execute its original functions. These functions requested to
agents can be separated to traveling/collaboration functions
and original functions. Corresponding to the example shown
in section 2, functions for roaming around hosts can be re-
garded as traveling functions and functions for the contract-
net protocol can be regarded as collaboration functions. A
function that is executed by the executeTask(in Case 3) can
be regarded as an original function. Original functions are
functions that are not related to travels or collaborations di-
rectly. In the contract-net protocol, functions of the execute-
Task vary according to target applications. It is desirable
to separate original functions from traveling/collaboration

Proceedings of the International Symposium on Principles of Software Evolution (ISPSE’00)
0-7695-0906-1/00 $ 17.00 © 2000 IEEE

functions. If concrete functions of the executeTask can be
described separately, applications that use the contract-net
protocol can be implemented by changing the description
of executeTask. In RoleEP, these two kinds of functions
are described separately. Environments and roles are model
constructs that describe traveling/collaboration functions,
and objects are model constructs that describe original func-
tions. An agent is composed dynamically by binding an
object with a role that belongs to an environment. Detail
definitions of environments, roles, agents and objects are as
follows4:

environment ::= [environment attributes,
environment methods, roles]

role ::= [role attributes, role methods,
binding-interfaces]

agent ::= [roles, object]
object ::= [attributes, methods]
agent.binding-interface => object.method

The symbol ::= means that the left hand side is defined
as the right hand side. The symbol ⇒ means that the left
hand side is replaced by the right hand side. The symbol ’.’
means a message sending.

3.2 Environment and role
An environment is composed of environment attributes,

environment methods and roles. A role, which can move
between hosts that exist in an environment, is composed of
role attributes, role methods and binding-interfaces. Trav-
eling/collaboration functions including tours around hosts
and message communications among agents are described
by role attributes and role methods. Role attributes and
role methods are only available in an environment that the
role belongs to. A binding-interface, which looks like an
abstract method interface, is used when an object binds
itself with an role. Mechanisms of binding-interfaces and
binding-operations are explained after. Common data and
functions that are used in roles are described by environ-
ment attributes and methods. Directory services such as
role-lookup-services are presented as built-in environment
methods. A travel or collaboration is encapsulated by an
environment and roles.

3.3 Object and agent
An object, which cannot move between hosts, is composed

of attributes and methods. Although an object cannot move
between hosts, it can move by binding itself with a role that
has traveling/collaboration functions. An object can bind
with roles that exist in the same host. If an object binds
itself with two role – one role has a function for moving to
host A and another role has a function for moving to host
B –, the object cannot decide where it may go. An ob-
ject cannot bind with roles that do not exist in the same
host. An Object that binds itself with some roles and ac-
quires traveling/collaboration functions is called agent. An
object becomes an agent by binding itself with a role that
belongs to an environment, and can collaborate with other
agents within the environment. An object can participate
in a number of environments simultaneously. Agent identity
is same as object identity. Role identities can be regarded
as aliases of the object identity. An agent can be recognized
by its role identity from other agents that exist in the same
environment.
4Environment, role, agent and object are instances.

Host 1

Host N

Host 2
Environment "Roaming"

(visitor)

Step1

Host 1

Host N

Host 2
Environment "Roaming"

Environment "ContractNet"

(contractor)

(contractor)

(contractor)

(manager)
(visitor)

Step2

Host 1

Host N

Host 2

Host

Environment "Roaming"

Other Environments

Host

Host

Environment "ContractNet"

(contractor)

(contractor)

(contractor)

(manager)
(visitor)

Step3

notation
(role)

agent

message communication

migration

Figure 3: Dynamic evolution of environment

3.4 Binding-operation
Binding-operations are implemented by creating delega-

tional relations between roles and objects dynamically. That
is, if a role receives a message corresponding to a binding-
interface, the role delegates the message to an object bound
with the role. For example, if the binding-interface execute-
Task defined in a role is bound to the searchInfo method
defined in an object, the message ”executeTask” received
by the role is renamed to ”searchInfo” and delegated to the
object. Many kinds of collaborations can be described by
changing combinations between roles and objects. Binding-
operations in RoleEP correspond to weaver in AOP.

3.5 Example
Figure 3 illustrates the notion of RoleEP. In general AOP,

aspects that construct a system are statically defined when
the system is designed, and do not change from the begin-

Proceedings of the International Symposium on Principles of Software Evolution (ISPSE’00)
0-7695-0906-1/00 $ 17.00 © 2000 IEEE

ning of computation to the end. On the other hand, environ-
ments proposed in RoleEP can be defined dynamically and
compositions of environments can be re-arranged dynami-
cally. A distributed application based on mobile agent sys-
tems is composed of a number of environments that can be
added or deleted dynamically. Number, kinds and topolo-
gies of collaborations among agents may change dynami-
cally. Compositions of environments can be re-arranged dy-
namically as a distributed application evolves its functions
dynamically in order to adapt itself to its external context.
Participating in environments, an agent can be engaged in
several roles and can collaborate with other agents that exist
in each environment.

4. JAVA ROLE-EP FRAMEWORK
Epsilon/J is a framework that supports RoleEP concepts

including environment and roles. This framework, which is
presented as class libraries, is implemented on Aglets that
is a mobile agent system based on Java. In this section,
features of Epsilon/J are explained through describing the
example presented in section 2.

4.1 Environment descriptions
In Epsilon/J, an environment class is defined as a sub-

class of the Environment class, and a role class is defined
as a subclass of the Role class. The following is a program
that defines the environment class Roaming and Contract-
Net. In the Roaming environment class, the Visitor role
class is defined. An object becomes an agent that can roam
around hosts by binding itself with a role instantiated from
the Visitor class. On the other hand, in the ContractNet en-
vironment class, the Manager role class and the Contractor
role class are defined. An agent, which arrives from other
host, acquires new functions that are necessary to behave
as a manager by binding itself with a role instantiated from
the Manager role.

The Roaming environment class

public class Roaming extends Environment{
public class Visitor extends Role{

public void onRoleCreation(String roleName){
// adds this role
// whose name is specified by "roleName"
// to the "Roaming" environment.
thisEnvironment.addRole(roleName, this);
addBindingInterface("executeTask");

}
public void roam(){
// sets sequential planning itinerary.
itinerary = new SeqPlanItinerary(this);
itinerary.addPlan(HostAddress1, "executeTask");
itinerary.addPlan(HostAddress2, "executeTask");
:
:

itinerary.addPlan(HostAddressN, "executeTask");
// starts the trip.
itinerary.startTrip();

}}}

The onCreation method is called when a role is instanti-
ated. In the Visitor role class, the binding-interface execute-
Task, which is an interface of a method that is invoked when
an agent arrives at a host, is added dynamically. An agent,
which is composed of an object and an instance created from
the Visitor role class, roams around hosts and execute the
executeTask at each host.

The ContractNet environment class

public class ContractNet extends Environment{
public class Manager extends Role{

public void onRoleCreation(String roleName){
thisEnvironment.addRole(roleName, this);

}
public void start(){}
public void bid(){}
public void end(){}

}
public class Contractor extends Role{

public void onCreation(){
thisEnvironment.addRole(roleName, this);
addBindingInterface("executeTask");

}
public void award(){}

}}

4.2 Object descriptions
The following is a program that define the class UserProxy

and the class SearchInfo. An object instantiated from the
UserProxy class is bound with a visitor role instantiated
from the Visitor class and a manager role instantiated from
the Manager class. A class of an Epsilon/J’s object is defined
as a subclass of the EpsilonObj class that presents functions
for binding-operations.

The UserProxy class

public class UserProxy extends EpsilonObj{
public void life() {

:
// searches a visitor role
// and binds itself with the visitor role.
// this object becomes an agent

// that can roam around hosts.
visitorRole.bind(this, "executeTask",

"executeContractNet");
visitorRole.roam();

}
public void executeContractNet() {

:
// searches a manager role
// and binds itself with the manager role.
// this object becomes an agent
// that can act as a manager
// in the contract-net protocol.
managerRole.bind(this);

// there are not binding-interfaces.
managerRole.start();

}}

The InfoSearcher class

public class InfoSearcher extends EpsilonObj{
public void life() {

// searches contractor roles existing in
// the environment "contractnetEnv"
// that is instantiated from "ContractNet".
Contractor [] allContractorRoles
= contractnetEnv.searchRole("Contractor");

// select a role "contractorRole"
// from "allContractorRoles"
// and binds itself with the role.
// this object becomes an agent
// that can act as a contractor
// in the "contractnetEnv".
contractorRole.bind(this, "executeTask",

"searchInfo");
:

}
public void searchInfo(){}
public void search2Info(){}

}

Proceedings of the International Symposium on Principles of Software Evolution (ISPSE’00)
0-7695-0906-1/00 $ 17.00 © 2000 IEEE

Role

Environment

object

binding-interface

concrete method

converts & delegates
 messages

Figure 4: Binding-operation

4.3 Epsilon/J implementation
Epsilon/J presents built-in classes including Environment,

Role and EpsilonObject. Mechanisms such as binding-interfaces
and binding-operations are contained in these built-in classes
that are implemented by using Java core reflection APIs
(Application Programming Interfaces). Using reflection mech-
anisms, method signatures defined in objects/roles/environments
can be introspected and invoked dynamically. If a message
received by a role corresponds to a binding-interface, the
message is transformed to a signature that is specified as
an argument in a binding-operation and delegated to an ob-
ject bound with the role (Figure 4). Since mechanisms of
binding-interfaces and binding-operations are implemented
very simply in Epsilon/J, performance-down that is caused
by adding this kind of RoleEP features to original Aglets mo-
bile agent system is a little. In Aglets, moreover, dynamic
method dispatching mechanism is already used in order to
realize a message as an object.

Other features such as implementation of environment
methods/attributes may raise a discussion. In Epsilon/J,
information on an environment such as role references, role
host addresses and environment methods/attributes is stored
intensively in a host where the environment is instantiated.
If a role does not reside in a host where the corresponding
environment exists, the role has to execute remote-accessing
in order to use above kind of information. In Epsilon/J, the
notion of messenger role is introduced in order to realize
role-to-role remote communication and role-to-environment
remote communication as shown in Figure 5. Messenger role
is a special role that brings a message object from one host
to another host. In Epsilon/J, an API function for mes-
sage communication is prepared to encapsulate existence of
messenger roles. This API function decides automatically
whether communication is remote or local. If communi-
cation is remote, the API function uses a messenger role.
Otherwise, the function sends a message normally. Mecha-
nism of messenger role may cause some kind of performance-
down.

5. DISCUSSIONS
By introducing RoleEP, problems pointed out in section

2 can be solved as follows:

Host

Host

Host

message communication
through messnger role

messenger role

role

role

role

environment
manager

direct
message
communication

Figure 5: Messenger role

• Traveling/collaboration functions can be separated from
original functions completely and can be encapsulated
within environment descriptions. This solves problems
appeared commonly in Case 1, 2, and 3.

• Agents, which are objects bound with roles, can ac-
quire new functions in order to collaborate with other
agents through binding-operations. This solves prob-
lems pointed out in Case 1 and 2.

• The problem that descriptions of role behavior de-
pends on interface names of core classes in Case 3 can
be solved by the binding-interface mechanism.

All characteristics of distributed applications based on
mobile agent systems pointed out in section 1 can be de-
scribed completely in RoleEP. Moreover, there are nice prop-
erties as follows:

1. Construction mechanisms for traveling/collaboration
components: RoleEP is beneficial for constructing trav-
eling/collaboration components. For example, the en-
vironment class ContractNet can be reused in many
distributed applications based on mobile agent sys-
tems. Environment classes can be regarded as trav-
eling/collaboration components.

2. Evolution mechanisms for agents: In RoleEP, an ob-
ject becomes an agent by binding itself with a role that
belongs to an environment. An object can dynamically
evolve to an agent that can behave multiple roles. Us-
ing RoleEP, programs that adapt to external context
can be described easily.

3. Agentification mechanisms: Genesereth, M.R. and Ketch-
pel, S.P. shows three approaches for converting objects
into agents[10]: 1) an approach that implements a
transducer that mediates between an object and other
agents, 2) an approach that implements a wrapper,
and 3) an approach that rewrites an original objects.
In RoleEP, a role corresponds to a transducer that ac-
cepts messages from other agents and translates them
into messages that an object can understand. Al-
though general agentifications are implemented stati-
cally, a connection between an object and a transducer
is created dynamically through a binding-operation in
RoleEP. RoleEP can be regarded as one of dynamic
agentification mechanisms.

Proceedings of the International Symposium on Principles of Software Evolution (ISPSE’00)
0-7695-0906-1/00 $ 17.00 © 2000 IEEE

viewpoint AOP RoleEP
aspects aspects environments and roles
components components objects
joint points join points roles
(between aspects and components)
weaving method weaver binding-operation
aspect reuse emphasized emphasized
dynamic aspect syntheses not so emphasized emphasized
dynamic evolution not so emphasized emphasized
dynamic method adding emphasized emphasized
dynamic method modification emphasized —

Table 1: AOP vs RoleEP

Table1, which extends an AOP comparison method pro-
posed in [5], compares RoleEP with AOP. RoleEP empha-
sizes dynamic aspect syntheses and dynamic evolution.

In RoleEP, the use of binding-operation eliminates op-
portunities for AOP style weaving. Introduces weaving in
AspectJ can be replaced by adding role methods through
binding-operation. However, advises weaving does not cor-
respond to any model constructs in RoleEP. This is a weak
point of RoleEP, and reduces ability to prevent code duplica-
tion. From a viewpoint of static evolution, advises weaving
is very useful because it prevent code duplication. From a
viewpoint of dynamic evolution, however, advises weaving
is slightly danger because it is difficult to understand real
behaviors. In Kendall’s approach, introduces weaving only
adds a method interface, and the body of the method is
added through advises weaving. This kind of advises weav-
ing can be realized by binding-operation.

6. RELATED WORKS
Bardou, D. shows comparison AOP and related approaches

including Role Modeling[1], Activities and roles[19], Subject-
Oriented Programming[12], Split objects[4] and Us ”a sub-
jective version of SELF”[23] in [5].

Role modeling consists of role model and role. A role
model is a design unit that describes a collaboration among
roles. Several role models are synthesized by a technique
called projection of role. By a projection, a new aggregate
role is created that manages related roles. Role models in
Role Modeling correspond to environments in RoleEP. In-
cluding Role modeling, there are several researches concern-
ing to role concepts[17][18][7][24]. VanHilst, M. and Notkin,
D. propose an idea of role components, which are described
by C++ templates, to implement collaboration-based de-
sign[26]. This approach looks like the mix-in approach. In
Coordinated Roles proposed by [21], descriptions of collabo-
rations are separated from descriptions of objects by using
role concepts. This approach looks like the binding-interface
concepts. However, there are not concepts of dynamic bind-
ing between an object and a role in Coordinated Roles. In
these approaches, dynamic evolution or dynamic synthesis
of collaboration structures is not so emphasized. In most
cases, collaboration structures are synthesized at compile-
time. Split objects and Us are based on delegation mecha-
nisms that enable dynamic evolution. In Split objects that
presents a way to express viewpoints, each object in a dele-
gation hierarchy of a split representation denotes a different
viewpoint on the represented entity[5]. However, language
constructs on collaborations are not presented sufficiently.

Kristensen, B.B. proposed notion of transverse activities and
role. An activity is a single entity defined by a set of partic-
ipants and a directive that describes a collaboration among
participants.

On the other hand, adaptations to external context are
studied from the viewpoint how a single object evolves it-
self dynamically - for example, how a person acquires meth-
ods and attributes when he gets a job, he gets married and
so on. In the Subject Oriented Programming, an object
acquires new functions by participating in subjects. The
concept of subjects are similar to the concept of environ-
ments in RoleEP. Mobile Ambients is a model that gives
a layered agent structure[6]. In this model, agents run on
fields constructed by synthesizing contexts (environments)
dynamically.

7. CONCLUSIONS
Distributed applications that reside in

mobile/Internet/Intra-net environments, whose structures
change dynamically, are spreading rapidly. Most applica-
tions are implemented in traditional programming languages,
and have many embedded logics according to individual en-
vironments. These applications must switch to new log-
ics as environments change. As a result, these applications
need to be restructured drastically when they must adapt to
new environments. It is necessary to have new computation
paradigms and programming languages in order to allevi-
ate such a problem. RoleEP that we have proposed in this
paper is one approach to address such a problem.

8. REFERENCES
[1] Andersen, E.P. and Reenskaug, T.: System Design by

Composing Structures of Interacting Objects,
Proceedings of the 6th European Conference on
Object-Oriented Programming (ECOOP’92), Lecture
Notes in Computer Science, Springer, vol.615,
pp.133-152, 1992.

[2] Aridor, Y. and Lange, D.B.: Agent design patterns:
Elements of agent application design, Proceedings of
Agents’98, 1998.

[3] AspectJ. http://aspectj.org/.

[4] Bardou, D. and Dony, C.: Split Objects: a Disciplined
Use of Delegation within Objects, Proceedings of the
11th Conference on Object-Oriented Programming
Systems, Language, and Applications (OOPSLA’96),
pp.122-137, 1996.

[5] Bardou, D.: Roles, Subjects and Aspects: How do
they relate?, Proceedings of the Aspect-Oriented

Proceedings of the International Symposium on Principles of Software Evolution (ISPSE’00)
0-7695-0906-1/00 $ 17.00 © 2000 IEEE

Programming Workshop at ECOOP’98, 1998.

[6] Cardelli, L. and Gordon, A.D.: Mobile Ambients
(Extended Abstract), the proceedings of the workshop
on Higher Order Operational Techniques in Semantics,
1997.

[7] Fowler, M.: Dealing with Roles, Proceedings of the 4th
Annual Conference on Pattern Languages of
Programs, 1997.

[8] Fuggetta, A., Picco, G.P.d and Vigna, G.:
Understanding Code Mobility, IEEE Transactions on
Software Engineering, vol.24, No.5, pp.342-361, 1998.

[9] Gamma, E., Helm, R., Johnson, R. and Vlissides, J.:
Design Patterns, Addison-Wesley Publishing
Company, Inc., 1995.

[10] Genesereth, M.R. and Ketchpel, S.P.: Software
Agents, Communications of the ACM, vol.37, No.7,
pp.48-53, 1994.

[11] Guerraoui, R. et al.: Strategic Directions in
Object-Oriented Programming. ACM Computing
Surveys, Vol.28, No.4, pages 691-700, 1996.

[12] Harrison, W. and Ossher, H.: Subject-oriented
Programming, Proceedings of the 8th Conference on
Object-Oriented Programming Systems, Language, and
Applications (OOPSLA’93), pp.411-428, 1993.

[13] IBM: Aglets Software Development Kit Home Page,
http://www.trl.ibm.co.jp/aglets/index.html, 1999.

[14] Kendall, E.A.: Role Model Designs and
Implementations with Aspect-oriented Programming,
Proceedings of the 14th Conference on Object-Oriented
Programming Systems, Language, and Applications
(OOPSLA’99), pp.353-369, 1999.

[15] Kiczales, G., Lamping, J., Mendhekar A., Maeda, C.,
Lopes, C., Loingtier, J. and Irwin, J.: Aspect-Oriented
Programming, Proceedings of the 11th European
Conference on Object-Oriented Programming
(ECOOP’97), Lecture Notes in Computer Science,
Springer, vol.1241, pp.220-242, 1997.

[16] Kiniry, J. and Zimmerman, D.: A Hands-On Look at
Java Mobile Agents, IEEE Internet Computing, vol.1,
No.4, 1997.

[17] Kristensen, B.B.: Object-oriented Modeling with
Roles, Proceedings of the 2nd International Conference
on Object-oriented Information Systems (OOIS’95),
1996.

[18] Kristensen, B.B. and Osterbye, K.: Roles: Conceptual
Abstraction Theory and Practical Language Issues,
Special Issue of Theory and Practice of Object Systems
(TAPOS) on Subjectivity in Object-oriented Systems,
1996.

[19] Kristensen, B.B. and May, D.C.M.: Activities:
Abstractions for Collective Behavior, Proceedings of
the 10th European Conference on Object-Oriented
Programming (ECOOP’96), Lecture Notes in
Computer Science, Springer, vol.1098, pp.472-501,
1996.

[20] Lange, D. and Oshima M.: Programming and
Deploying Java Mobile Agents with Aglets,
Addison-Wesley, 1998.

[21] Murillo, J.M., Hernandez, J., Sanchez, F. and Alvarez,
L.A.: Coordinated Roles: Promoting Re-usability of
Coordinated Active Objects Using Event Notification

Protocols, COORDINATION’99 Proceedings,
pp.53-68, 1999.

[22] Smith, R.G.: The Contract Net Protocol: High-Level
Communication and Control in a Distributed Problem
Solver. IEEE Trans. on Computers, vol.29, No.12,
pp.1104-1113, 1980.

[23] Smith, R.B. and Ungar, D.: Programming as an
Experience: The Inspiration for Self, Proceedings of
the 9th European Conference on Object-Oriented
Programming (ECOOP’95), Lecture Notes in
Computer Science, Springer, vol.952, pp.303-330, 1995.

[24] Tamai, T.: Objects and roles: modeling based on the
dualistic view, Information and Software Technology,
Vol. 41, No. 14, pp. 1005–1010, 1999.

[25] Ubayashi, N. and Tamai, T.: An Evolutional
Cooperative Computation Based on Adaptation to
Environment, Proceedings of Sixth Asia Pacific
Software Engineering Conference (APSEC’99), IEEE
Computer Society, pp.334-341, 1999.

[26] VanHilst, M. and Notkin, D.: Using Role Components
to Implement Collaboration-Based Designs,
Proceedings of the 11th Conference on Object-Oriented
Programming Systems, Language, and Applications
(OOPSLA’96), pp.359-369, 1996.

Proceedings of the International Symposium on Principles of Software Evolution (ISPSE’00)
0-7695-0906-1/00 $ 17.00 © 2000 IEEE

