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The Relation Between Multiple Markov Sequences
of Interpoint Intervals and Density
Modulated Point Sequences

Torao YANARU and Yasuyuki ISO

Abstract

Markov sequences of interpoint intervals are generated by computer simulation. A kind of
rational transitional probability density function is found to be satisfactory to simulate wide varieties
of neuronal spike trains. Three examples of the Markov sequences are examined, two of which are
to simulate the actual spike trains obtained from the central neurons of the cat. The third one has

exponential type interval histogram.

The generated Markov sequences as well as the neuronal spike trains usually show stow fluct-
uation of point densities. When a point sequence of this kind is smoothed by an appropriate filter,
the point density fluctuation is extracted. By an inverse procedure of integral density modulation
with this point density as the modulating signal, the point sequence is transfomed into another

sequence which has nearly constant point density.

It is found that the transformed point sequence

can be approximately regarded as a renewal sequence, if the right kind of filter is selected.

1. Iniroduction

Neuronal spike trains usually have rather com-
plex structure, and cannot be described successful-

ly by simple Poisson point processes or renewal
processes.

We previously proposed a density modulated
point secuence as a model of the neuronal spike
train (Iso, Yanaru and Nakayama, 1971, Yanaru and
lso, 1974). While Nakahama et al. (Nakahama,
Ishil and Yamamoto, 1972, 1974) have shown that

the neuronal spike trains recorded from the mesen-

cephalic reticular formation (MRF) and the red
mucleus (RN) neurons can be regarded as the
Markov sequences of interspike intervals. The rela-
tion between these two kinds of point sequences is
ot yet clear. We noticed in the course of previ-
s investigation that the neuronal spike trains
obtained by Nakahama et al. showed slow fluctu-
alion of point densities. It will be natural to ask
Whether these sequences can also be regarded as
L.he point sequences resulted from density modula-
tion of renewal processes.

To investigate this, we choose the following
Method : 1, A Markov sequence of intervals with

known transition probability density function is
generated. 2. An approximate point density is
obtained by smoothing the point sequence by an
appropriate filter. 3. The point sequence is trans-
formed into an another point sequcence, by an in-
verse procedure of integral density modulation with
the approxinate point density as the modulating
signal. 4. The transformed sequence is statistically
examined.

Three kinds of Markov sequences are generat-
ed, two of which are similar to the spike trains of
MRF and RN neurons respectively, in the intey-
point intervel histograms and in the first order se-
rial correlation coefficients. The third one has an
exponenential type interval histogram. The neu-
ronal spike trains are also investigated by the same
method.

We will use the following notations lo repre-
sent five point sequences, .

{MRF| :the neuronal spike train of MRF neu-
ron,

IRN} : the neuronal spike train of RN neuron,

{MP~MRF} :the generated Markov point se-
quence simulating {MRF{ ,

{MP —RN| :the generated Markov point sequ-
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ence Simulating [RN} ,
{MP —EXP| :the generated Markov point sequ-

ence which has exponential type intervaj histogram.

It is found that all the point sequences exa-

mined can be approximately regarded as the modu-

lated point spquences of renewal processes, though
the different types of filters are used to smooth the
simulated point sequences and the neuronal spike
trains :the ideal filter for the simulated point se-
quences and the Gaussian filter for the neuronal
spike trains.

2. Generation of Markov Point Sequence
2.1. General remarks of Morkov process of
order k_

Let = {x} (>0, i=0, £, £2 ----- Ybea
sequence of successive interpoint intervals X:'s
and {¢) be the universe of p. Assume that
{¢} forms a stationary stochastic process, i e. we
assume the existence of (k+1) dimensional distri-
bution function,

Flxo, x-1, =, X-2) = Prob{Xo < 10, =+, X-u < X-s)

il

{for every n. (1)
A discrete parameter stochastic process (&) is
said to be a Markov process of order & (wold), if
, I-n)

oxoy), forall >k (2)

E\’nl,\'..m..\'..(.ro|.l'-1.
= Froixon-x-t{xo| -1,

where, Fxpx.p.-.x.n and Fxox.,.-x. are conditional
distribution functions. We shall call this simply
“Markov process”, and if we need to indicate expli-
citly the multiplicity 4, we use the term "4 -Markov
process”.

2.2. The method of generation

One of the authors previously reported on a
method of generating Markov sequences of inter-
vals with known transition probability densities
(Yanaru and Nakahara, 1974}, The same method
is used here.

Let U be a uniform random number and F{x)
be an arbitrary distribution function, then, X = F~!
(U), where F~'(-) is the inverse function of F(-),
1s the random number with the distribution func-
tion F(x).If we use the conditional distribution
function Fx,is,.,(xdg:1){i =0, 1, 2, ) in place of
F(x). where G.-1 denotes the set of £ conditional
random numbers, (X, =+, Xi.e), and it s
the set of corresponding realizations, (xi, <,

Prob (X« < xo. =+, Xn-x < 1-a),

ri-x), we can generate a £-Markov sequence by
the {ollowing procedure.
1) Choose an arbitrary set of % initial canstans

g-r={xo,, x.4), for example zoy = =g = ]

2) Take a realization #e of a uniform random
number {7 (0, 1),and find xo satisfying the equati[m
Fxoie. (Tolg-1) = w0, then, xo is a realization of the .. -

random number with the the distribution function ~ .

F-\'nlc., (Injg‘-l).

3 )The condition g-1 = (x-1, «+vee . I-4) is replaced
by g0 = (xo, x-1, +-+e+- , X-x-1), 1. €., the oldest of the
conditional values, r-x, is removed from the set of
condition, and the newly obtained value is added in
the latest position.

4 ) Take the second realization u of the uniform
random number U (¢, 1),and find x which satisfies
the relation, Fx, g (xilge) = .

5 ) Repeat the steps 3) and 4), but each time the
condition g.., is replaced by the new condition g;.

Thus, the sequence {rJ(Gi=0, 1, 2, - }is
obtained. If sufficient numbers of x’s, which
may possibly have the after-effect of the initial
values, are discarded, the remaining sequece can be
regarded as the stationary %-Markov point sequ-
ence. .
As the transitional probability density function

e, (xd gi) (for convenience, i=0 is used below),
we use Eq. (3),

D‘Hmlm”)“_”'l'(? (3)

T.\'an-n(qug-I) = (In+1‘1)""m-”.

where.
H=x,+x+-+1x.+C
D>0, C>0,
Xo, X-1, v, Xk 2 0,
m=20,1,2, -, n=4,5,6, -

Note that an integer larger than or equal to four is
used for #, this is necessary for the first and se-
cond order moment to exist. The reason why Ea.
(3} is used is given in the appendix.
The corresponding conditional distribution fun-
ction 1s
Frae, (xalg-1) . H e
m — n+2 2-r
= D‘f?u(7;{1)')1-:-2;1};2+j.{]_(m) }.(4)
The following three types of sequences aré
generated.

Type 1, (MP-MRF) : k=3, n=23% m=9 c=28



D =2.908x10"

Type 2, [(MP-RN} : £=3, n=2l, m=3, ¢c=4.0
D = 1.438x10°
Type 3, [MP-EXP} : k=3, n=4, m=0,¢c=2.0

D = 6.000

As mentioned in the introduction, the sequ-
ences of type 1 and 2 are intended for simulating
the neuronal spike trains obtained from the MRF
and RN neurons respectively. The sequence of
type 3 has the exponential type interval histogram.

For the type 1 and 2 sequences, the parameter
values are determined so as to satisfy the following
conditions.

{ i ) The order of multiplicity # is equal to three.

(ii )The probability density functions of intervals
should resemble in shape the interval histograms of
the corresponding neuronal spike trains, as closely
as possible.

A {MP-MRF}

i A (MP-RN} |

Txare {zolzr-1}

{MP-EXP}

Examples of the transitional probability
density functions of intervals of three types of

sequences,
curve 4 @ 1 = x.:=xr-5= 0.2,
curve B @ xr =x;=rx,=1.0,
curve C @ ra =X =ura=2.0

Fig. 1
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(iii} The first order correlation coefficients of
intervals should be nearly equal to those of the
corresponding neuronal spike trains.

Fig. 1 shows examples of the transitional pro-
bability density function of three types of sequen-
ces. The conditional values are as follows, curve
A ry=x2=x,:=0.2 curve B 1ry=z1.0.= x4
=1.0, curve C : .y = 2.2 = 19 = 2.0

3. Inverse Density Modulation

We want to know what kind of point sequence
results from a Markov sequence of intervals, when
its slow fluctuation of point density is eliminated.
In this section we first describe the method to
obtain an approximate point density. Next, the
processes of density modulation and inverse den-
sity modulation are briefly surveyed. We then
apply the above methods to the simulated point
sequences and neuronal spike trains, that is, we
obtain the approximate point densities from these
sequences, and using this approximate point den-
sities and inverse modulation procedure, we trans-
form the original poinl sequences to new paint
sequences which have nearly constant point den-
sities. The original sequences, their approximate

» point densities, and the inverse modulated point
sequences are statistically examined.
3.1. Approximate point density

Let ({(i=1, 2 - N)be the occurrence
times of points, then,
(1) = £8(1- 12, )

where §(/) is the delta function, repesents the pulse
train. When this pulse train is smoothed by an
appropriate filter, the approximate point density is
obtained. We try two kinds of fillers :an ideal
filter, which has an impulse response or a time
weighting function W.(#), and a Gaussian filter
with an impulse response Wal(f). The ideal filter
has the rectangular shape in frequency domain,
with the central frequency 5 and the frequency
bandwidth F.. The Gaussian filter has the shape
of normal probaility density function in both frequ-
ency domain and time domain.
The smoothed signal A\(¢) is given by

Al = 21 Wit—1,) (i=1Ior G) ()

When the filter is an ideal type, A.({) can take
negative value. But, since the point density must
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be nonnegative, A1) is shifted uniformly in the
positive direction as follows,

Ax() = Ault)— Aumin (7}

where Aimin is the minimum value of A,(t). To
avoid the edge effect, we discard the sufficient
length of parts, £ - My, where ¢ is a positive integer,
and M is the mean interval, from the both ends of
A:(¢).  Finally, normalizing A.(t) to haye unit mean
value, we obtain the approximate point density,

Aalt) = (1::!1)'&:(”
'/: At)dt

where, &y = e My, t: = (N—¢g)-My.
- 3.2. Density modulation and inverse density
modulation

As reported previously (Yanaru and Iso 1974),
density modulation is carried out as follows. Fig. 2
shows the mudulation procedure. R*(¢*) is the
unmodulated point sequence, A(#) is the modulating
signal, L(#) is the integral of A4}, L e,

L) = fD’A(u)du. (@)

(8

R(#)is the modulated poin!{ sequence.

Alt)

R.(f') —

K e e e —

X = e e =
|

N e

R() —»r¢

The modulation procedure. R*(f*): the
unmoedulated point sequence, R{(!):the modu-
lated point sequence, A(f):the modulating
signal, L{f): the integral of A1)

Fig. 2

If a certain point sequence with a point density
fluctuation is given, we can extract the approyi.
mate point density A.(¢) as described in the last
setion. Further, using as the modulating signal,
we can obtain the inverse modulated point sequ-
ence Ra(/*) by the inverse procedure of the density
modulation.

3.3. Results

Five kind of point sequences are examined
{MP-MRF} , {MRF} , {MP-RN}{ | {RN} , |MP-
EXP}, each of which consists of 2000 interpoint
intenals, The duration of the corresponding appro-
ximate point density is 1600 My, i. e., the values of
N and ¢ in Eq. (8} are 2000 and 200 respectively.

The results obtained by statistically processing
these point sequences |MP-MRF} & |MRF} and

{MP-EXP| are shown in Fig. 3, Fig. 4 and Fig.5
respectively. (As for the point sequences | MP -
RN} and {RN] the results are not illustrated to
save the space, but we come to the similar conclu-
sions to those for the point sequences |MP-MRF]|
and {MRF} )

Fig. 3. The results of point sequence {MP-MRF)

Aa(t)

1 1 L

0 110 20 30 1o —t 50 50 70 5 % Mx
(A HESHHEH BN R HHLH
(C) HHHHH-HH S HH U H-HEHH B HHH

(A : a part of original point sequence, (B):
the approximate point density, (C}: the inverse
modulated point pequence.

Fig.3 —(1
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1ok 1
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3 [ 2 40 80
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(A the histogram Ha{2a) of the approxi-
mate point density {(solid line), and the theore:
tical probability density function

ftl(l‘a){=%%:: :‘-exp(—zgfla)} (broken curvel.
(B): the autocorrelation function pa(1) of
the approximate point density (solid curve),

and the shape of the time weighting function
Ww{t) (broken curve).

Fig. 3 —(ii)
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2% N =2000(1600)
x & T My=1.000(0.989)
= n Vx=0.137(0.0974)
i.f = s EN=0{(0)
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The probability density function
. 4.387X10° 1b

f.\'.(Iu) {— 4_(1.74-2.8)"
and the conditional probability density function

Sl .u(xnll){=é—?‘-‘}3-exp(—10n)} (broken curve).

The interval histogram Hx,(x) of the ori-
ginal sequence |MP-MRF| (solid line), and
that of the inverse modulated point sequence
{MP-MRF|.. (broke line).

} (solid curve),

Fig. 3 —(iii)

0.2k © .
0 AN A A Ao
o -4
-0.2 | 1 |
20 40 60 80

W the serial correlation coefficients of
mntervals, ox(j) of the ariginal point sequence
IMP-MRF| , (®: ox(/) of the inverse
modulated point sequence {MP-MRF} ne (©

* pxly) of the point sequence [MP-MRF | nc.amune

Fig. 3 ——(iV)
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Fig.4. The results of point sequence {MRF}

o

m !

Aali)

] llo .’.;0 3‘0 4'0_.., r;o eo fo ,y; * Mz
w %M%H%W—HWWHHW‘HH
€ HEHHHEHH HHE R AR R R

{(A): a part of the original point sequence, (B)
: the approximate point density, ) the in-
verse modulated point sequence.

Fig. 4 -(i)
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3 60 4]
a XMx — X Mz

(W the histogram Ha(da) of the approxi-
mate density, (B): the autocorrelation function
2:{1) of the approximate point density (solid
curve), and the shape of the time weghting
function Welt) (broken curve).

Fig. 4 —(ii)
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g’ N =2000{1600)
=T " Mx=1.000{1.000) ]|
k] ;Ll Vx=0.290(0.204)
P EN=4(0
& L1I {(0)
I
1F ] -
|
1
0.5} n
] | —
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The interval histogram Hx.(x) of the oni-
ginal sequence {MRF! (solid line), and that
of the inverse modulated point sequence
IMRF| ine (broken line).

Fig. 4 —(iii)
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o.zF © i

—-0. 1 1 L J
2 20 40 60 80

(A the serial correlation coefficients of
ntervals, px.(7) of the original point sequence
{IMRF| .8 px,()) of the inverse modulated
point sequence |MRF!... (O: px(f) of the
point sequence {MRF| ins.qnutr

Fig. 4—(iv)

Fig. 5. The results of point sequence {MP-EXP)

W00 e 0 kA,
w - S e L S
O R FEH R
). a part of original point sequence, (8):
the approximate point density, (C): the inverse
modulated point sequence.

Fig. 5 —(i)
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{m): the histogram H.{4e) of the approxi-
mate point density (solid line), and the theore-
tical probability density function

fA(/la){ = zl;ﬁiexp(—-ua)} (broken curve).

(B : the autocorrelation function palt) of
the approximate point density (solid curve),
and the shape of the time weighting func-
tion Wit} (broken curve).

Fig. 5—(ii}

ot I ‘ '
% = N=2000(1570)
~Ef M=1000(1.016)
2 < Vx=1.436 (0.878)
=N EN=15(8)
=~ 2

<3

1

0.5

0

— X XMy
The probability density function
f.tu(In){= (:3%)‘} (solid curve),

and the conditional probability density func.
tion /xaa{xe|1){= exp{—ro)} (broken curve),

The interval histogram Hy,(zo) of the o
ginal sequence {MP-EXP| (solid line), and
that of the inverse modulated point pequence
IMP-EXP},.; (broken line).

Fig. 5 —(iii)

(A): the serial correlation cofficents of in-
tervals px.(/) of the original point sequence
IMP-EXP!, (B): px(j) of the inverse modu-
lated point sequence [MP-EXPlin. ©: o
(f)of the point sequence [MP-EXP} np.shurs

Fig. 5— (i¥)



Each of these figures contains four parts (i)
~{iv)as follows.

(i}, (. A part of the original point sequence, the
point of occurrences are marked by vertical bars.

(B), The approximate point density of the point
sequence.

{©). The inverse modulated point sequence.

The time scale 1s common to all figures, and the
mean interval is taken as the unit.
(ii), @), The The histogram Ha(Aa) of the approxi-
mate point density Aa(/) (solid hne), and the theo-
retical probability function f1 (Ae)of Eq. 3 (broken
curve). The binwidth for H.(4:)1s 0.05. N is the
total number of samples. EN is the number of
samples whose values exceed the maximum value
of the abscissa. V., is the variance of A.

(B, The autocorrelation function pa(t) of the

approximate point density A.(¢) (solid curve), and
the shape of the time weighting function W,{(¢)
(i=Tor G) {broken curve).
(iii), The probability density function fx{x)given by
Eq. 29 (solid curve), and the conditional probability
density function fy, 4(x|1) given by Eq. 5 (broken
curve).

The interval histogram Hy,(x.) of the original
point sequence | - | (solid line), and that of the
inverse modulated point sequence (- }ine (broken
line). The time binwidth is 0.1 My, N is the total
number of sample intervals. EN is the number of
sample intervals whose values exceed the maxi-
mum value of the abscissa. V4 is the variance of
intervals. The values of these numbers in paren-
theses are for the inverse modulated point sequ-
énce [ }mu,

(%), @), The serial correlation coefficients of inter-
vals, px,(7) of the original pointsequence | - |

B, px.(/) of the inverse modulated point sequ-

ence { * }inu.

{©), pxo(7) of the point sequence [ - Jinp-snatr
which is obtained by shuffling the inverse modu-
lated point sequence. The shuffling is carried out
as follows. Two numbers i and ; are drawn {rom
the integer uniform random number o/ (1,1600),
the /-th and 7-th intervals are interchanged, this
Procedure is repeated 2000 times.

The shuffled sequence thus obtained may be
Tegarded as the homogeneous renewal point sequ-
Ence. The comparison between the curves (8) and
©helps us to find how close the inverse modulated
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point sequence is to the homogeneous renewal
point sequence.

To minimize the serial correlation coefficient of
intervals, we need to adjust the filter shape, i.e.,
the central frequency F, and the frequency band-
width F, for the ideal filter, and the frequency
bandwidth for the Gaussian filter. Each of the
above figures shows the best result of several trials.

We observe the following from these figures.
1) The approximate point densities A(#), of (i)~
(B) represent fairly well the slow flutuations of (i)—
(A
2) The slow fluctuations are greatly decreased in
the inverse modulated point sequences {- }u, as
shown in (i)—().

3) The autocorrelation functions of the approxi-
mate point densities, p.(¢) of the simulated point
sequences and the time weighting functions W, (¢}
show fairly similar shapes, but the functions p,(¢)
are somewhat wider than the corresponding time
weighting functions We(¢) for the case of neuronal
point sequences.

4) There is sufficient similarity between the
shapes of the histograms of the approximate point
densities, Ha(4.), and those of the probability den-
sity function fu{Aa) given by Eq.23) in the appendix.
5 )There is close resemblance between the interval
histograms Hy,(xo) of the inverse modulated point
sequence (- };» and the conditional probability
density functions fu,.(x{1) of Eq. ) in theappen-
dix.

4)and 5)show that an approach adopted in
the appendix is adeguate.

6 ) By comparing the curves in {i¥)—(8), the senal
correlation coefficient of intervals, px.(j) of inverse
modulated point sequence { - }i.r, Wwith the cur-
ves of (i¥)—(C)., those of the shuffled sequences {-}
e seutt, We nNotice slight residuals of correlations
at small j values inex(i)of {-}in. Thus we
may roughly regard the inverse medulated point
sequences as homogenecus repewal point sequen-
ces, In other words, some Markov sequences of
intervals can also be regarded as density modulated
renewal point sequences.

7 ) There is fairly close similanty between the neu-
ronal point sequence |{MRF!| and its simulated
point sequence |{MP-MRF}] or between [RN|
and |MP-RN{ . But it should be noted that the
Gaussian filter is used to smooth the neuronal point
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sequence because it leads to smaller correlation
coefficients than the ideal filter does.

(=)

0.2 © 9
0 = -
—-0.2 1 L 1 ]
0.2 w -
—-0.24 .
1 1 1
20 40 60 80

Variation of the serial cerrelation coeffici-
ents of intervals, px(f) of the point sequence
{MP-MRF}.ne , when the frequency band-
width of the ideal filter is changed.

W: Fo=Fu=05 ®: FR=F,=0.],
Cy: Fo=F:=0.03 @O: F=F.=0.0l,

Fig. 6.

Fig. 6 shows how the serial correlation coeffi-
cients, px.(7) of the inverse modulated point sequ-
ence |MP-MRF} .., vary when the frequency
bandwidth of the ideal filter is changed. The
wider the bandwidth is, the more enhanced is the
negative values of the lower order correlation.

We have found that the serial correlation co-
efficient curve which is very similar to curve (&) or
(B) is obtained, when several renewal point sequ-
ences are superposed (Yanaru, Oda and Iso, 1975).
In the nervous system, the supersosition of spike
trains is widely observed. Therefore, it will be
worthwhile to study the density medulation of the
superposed renewal point sequence.

4. Conclutions

1) When a given point sequence has slow fluctu-

ation of point density, we can find a class of pro-
bability density functions, which are convenient to
represent the histograms of the point density va.
lues and those of intervals of this point sequence,
and are easy to manipulate.

2 )From one of these probability density functions,
we can derive the transitional probability density
function of Markov process of order %, which can
be used to generate a Markov sequence of intervals
by means of computer simulation.

3) Some of Markov sequences of intervals, both
simulated sequences and neuronal spike trains, can
be regarded as point sequences which are obtained
by density by density modulation of renewal pro-
cesses.

Appendix

Derivation of Equation (3)

Assume that a given sequence of intervals has
large positive senal correlation coefficients of inter-
vals extending over considerable serial numbers.
The point sequnce usually shows slow fluctuation
of the point density. It the fluctuation is so slow
that the point denstiy does not change its value
appreciably during the period equal to the mean
interval, then we can approximate the point density
by a steplike signal as shown in Fig. 7.

Steplike signal

Diagram showing the derivation of Eq.(10).
(A): original point sequence, (B): the correspo-
nding steplike signal, (C): the point sequence
obtained by arranging the intervals which have
the same value Aq, (D): the point sequence
obtained by arranging the intervals which have
the same value Aa,.

Fig. 7.

The steplike signal is composed as follows A
step width is equal to the sum of two successive
intervals, and the value of the signal is equal to the
mean value of the point density in the interval of
the step.



By considering all the steps which have the
same value A = A, together, the conditional proba-
bility density function fx,x-ya{xe, x-1 [Ae) of (X,
X..), given A = A,, can be obtaned. From the

definition of the conditional probacility density fun-

ction,
Sxoxor (o, X1, Aa)

AT IR

Srox-stalxo, x-1[Ao) =
where, frex-.a{to, X1, Aa) is the three dimensional
probability density function of (Xe, X, A) and
fa(Aa) is the marginal probability density function
of A-

From the joint probability density function, we
can derive various marginal probability density
functions

Jrox. (2o, 2-1) = j;”f.\'u..\'.../t(.l‘o. I-1, Aa)dAa, (1

fxdx) = j::/;mf.rqu.n(xo, X1, Aa)dzidAa, 12
where, (i, /) = (0, —=1) or (-1, 0),
flda) = [T Frorealto, 21, Addrodzr. 1

We previously reported that when a renewal
process is density modulated, the local independ-
ence is preserved between successive fnterpoint
intervals, i. e.

Sroxonan{zo, 2-1|AlL), teT)
= fraan{ze]A(2), teT)
s Feonan{x-i|AC8), teT). 19

If a Markov sequence of intervals can be re-
garded as the density modulated renewal sequence,
the same relation must hold for an appropriate sig-
nal Aa(¢).

If the steplike signal is used for Alf), Eq.0d
assumes the form,

f-\'mx-;]A(Io, I—llAu) - fxgl.i(.rolfla)‘f.\'»lm(—r-l|Aa)(]5)

From Eqgs. (16} and (15,

Sroxepa(xo, X-1, Aa) = noelxo, Aa) p-1lx-1, Ae),

where, 2z Aay={f4(A)) xalzidda) (=0 0r —1)

A ) ) (16)
ssume the following function for 7,

72, Aa) = bilada) =P 1P -expl— adalzi+5)h
(i=0or—1), (1
Where, »n and m are positive integers satisfy-

ng the conditions » = m+4, ntm=2£ (£=2, 3,
""" Y. a, b and c are also positive integers and are
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determined so as to satis{y the relation,

j:, _I;’ _/‘;nf«\‘n..\:..,i(-l'o, X-1, Aaddrodr-dAs =1 {18)
Eq. (9 reduces to
U= m—2)1
Boba{m! Y- (n—m—2)! _ . 9

A=-m-i

a~c

Thus, various probability density functions are deri-
ved as follows,

Sxox-pa{Zo, 2-1, Ap) = bob_y+(ada)" 117

- exp{—adalzo+ 10+ ), 00
Froxalxo, x.4) = {M}

z
G O
- @

Geror i=0or-)
FalAa) = bob i {m ¥ (ada)" ™ *-expl — acda), )
f.\’n..\'.;l.d(.'l'o, I—;Ilta)

(Ma)ﬁrnli
= alE 18 rfexpl— adalxo+x.,)), 2}
f.\'fu(IsMa)
Ma m+1
_¢ )'I:‘”‘EXD('-‘MaIi) (i=0o0r —1). 23

m!

Further, we add the normalization conditions, ¥; =
1 and A = 1,(where, X and A are the mean values
of intervals and steplike signal respectively), i. e.,

gn(m)(—l)'/(tﬁ r—m-1)

;
3 (m+1)(-1)' (n+r=m=2) '

el r

e

a=

a-¢=n—m-—1. on
Consequently, all the probability density functions
of Eqs. )~ (29 are perfectly characterized by the
two parameters # and m.

Note that some of these probability density
functions are rational functions, and the others are
the special Erlangean types. Further, they can
take sufficiently wide varieties of shases, and can
be fitted to various interval histograms of actual
neuronal point sequences.

To generate the #-Markov sequence, we need
the joint probability density functions of successive
intervals, whose two dimensional and one dimen-
sional marginal probability density functions are
expressed by Egs. £1) and €2 respectively.

Consider the (i+1) dimensional extension of
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Eq. g1,
.f.ta.‘\'...m, .\'.,(Io, X1, o, I‘.')
. axexn 1
T (Lot Tt T + o)A ea
boba{nt+m)l @& my (—=1)"
here, go =—— 70, ( ) .
W o a rmo \ 7/ (n+7r)
a = i (i=1,2),

£(7)/ e retma -1

then the conditional probability density function of

Xo. given the 7 intervals imediately preceding Xo,
Xoi=zx4, X2=x. -, X.;,=1x,isgiven by
f.\-an.\'-..-u:f.,(-l'o'-r‘l. ey X))

— fA'ou\'-..—x..(In, X1, v, X-i)
Srxoxaex. (T, o2, 0, To0)

D'Hrn(md-ll(u’-d)
where, D = 2L = 1/{2 —(T)*}
' @icy =0 p4r+(m+1Xi—1) '

H=x+x 1+ x-i+c¢ ,
(n—m-l)-g;(mjl)'(—l)y(n-i- F—m—2)
g:n (’:)(—1)"/ (n+r—m—1)
When 7 is replaced by k. this agrees with Eq. (3).

29

c
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