
Realized through a Marriage with Modular-Networks

Tetsuo Furukawa and Kazuhiro Tokunaga

Department of Brain Science and Engineering, Kyushu Institute of Technology
Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan

E-mail: furukawa@brain.kyutech.ac.jp

Abstract— This paper presents a new development of self-
organizing maps (SOM), realized by combining them with the
idea of a modular network. This we called a modular network
SOM (mnSOM) in which each reference vector unit of a
conventional SOM is replaced by a functional module. Since users
can choose the functional module from any trainable architecture
such as neural networks, the mnSOM is very flexible as well as
having a high data processing ability. In this paper, we first
introduce the basic idea and then describe its theory. Finally we
introduce some applications of mnSOMs.

Keywords: Self-Organizing Map, SOM, Modular Network,
mnSOM, Adaptive Control

I. Introduction

To develop intelligent agents such as autonomous robots,
much higher functions must be given to them than those so
far realized. For example, such agents need to have a large
scale memory system that has an effective learning algorithm
without interference between memories, a high adaptability
to the changes of context and environment, and an ability
to generalize their knowledge from a limited number of
experiences. As well, it is important to transcend the dualism
of supervised and unsupervised learning schemes. To develop
such systems, we need fundamental architectures that provide
good platforms on which to build these systems.

In this paper, we introduce a fundamental architecture
we call a modular network SOM (mnSOM). This is an
architecture that will provide good platforms on which to
develop intelligent agents. The basic idea of an mnSOM is to
combine Kohonen’s self-organizing map (SOM) with modular
networks. This idea was first proposed by Tokunaga et al.
[1], [2], and many variations have been developed. Here, the
concept and the theory of mnSOM are first described, and then
some applications are introduced.

II. Architecture and Algorithm of mnSOM

A. Architecture

The concept of an mnSOM is simple. Every reference
vector unit of the Kohonen’s SOM is replaced by a functional
module of neural network (Fig. 1). Thus, the mnSOM can
also be regarded as a kind of modular network in which
the modules are arrayed on a lattice. Therefore, the mnSOM
has features of both an SOM and a modular network. This
strategy has several advantages. First, the mnSOM allows users
to deal with not only a set of vector data but also sets of

Multilayer Perceptron Recurrent neural network Auto-associative neural network

Functional module

Fig. 1. The concept of modular network SOM (mnSOM)

functions, systems, time series, manifolds, and so on. Second,
users can design the functional modules depending on their
purpose. Users can choose an appropriate module type from
a great number of already proposed trainable architectures.
Therefore, the mnSOM provides users with a high degree of
flexibility and freedom. Third, the theoretical aspects of the
conventional SOM, e.g., statistical properties, are consistent
with the mnSOM, because the backbone algorithm of an SOM
is kept untouched. This aspect assures the theoretical reliability
of an mnSOM to users [3].

As an example, let us consider the case in which an mnSOM
user wants to make an adaptive controller system using an
mnSOM. The user’s purpose is to build an mnSOM with
lots of controller modules, each of which is specialized to
a different context. In such a case, all the user has to do
is to (i) determine the architecture of the trainable controller
modules, and (ii) define an appropriate distance measure that
determines the distance between two controllers. The task of
the mnSOM is to train those functional modules under various
contexts, while at the same time generating a feature map that
indicates similarities or differences between those controllers.
If the required controllers under context A and B are similar,
then the corresponding controllers should be located near each

637

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

1-4244-0703-6/07/$20.00 ©2007 IEEE

other in the map space of the mnSOM, whereas if context C
and D require quite different controllers, then those controllers
should be arranged further apart. Additionally, the intermediate
modules are expected to become controllers for intermediate
contexts. The backbone algorithm of an SOM assures such
continuity between modules. After the training has finished,
the user can use the mnSOM as an assembly of controllers
that can adapt to dynamic changes of the context. This is a
new aspect that is not found in a conventional SOM, which
only generates a static map. These advantages are realized
through the synergy of an SOM and a modular network.

B. Framework: Episode and Class

There are two important concepts to describe the algorithm
of an mnSOM, episode and class. Episode is a set of data
vectors observed together. It is the minimum unit and cannot
be divided. Thus, data vectors belonging to the same episode
should be processed by the same functional module. On the
other hand, class is a set of data vectors observed from the
same object, e.g., the same system, but this does not mean
that they should be observed together.

As an example, suppose that there are static systems
A, B, C, · · · . In such a case, class A means a set of
input-output data vectors observed from system A, i.e.,
CA = {(xA1 , yA1), . . . , (xAn , yAn)}. Suppose further that there are
episodes D1, D2, · · · , and Di = {(xi,1, yi,1), . . . , (xi,m, yi,m)}. If
the episode Di is observed from system A, then Di should
be a subset of CA, but there may be other episodes that are
observed from system A as well.

It is worth stressing that an episode does not necessarily
have label, which indicates the class it belongs to. In the case
of unlabeled episode, the data vectors of an episode should be
members of the same class, but there is no information about
which class they should belong to. In other words, every data
vector has a tag that indicates the episode it belongs to, but
they do not have labels. In the case of labeled episodes, the
class information is given to every episode. In this case, every
class can be regarded as a sum of episodes. The important
point is that the mnSOM can deal with both cases. It is
sometimes misunderstood that an mnSOM needs class labels,
but this is not true.

Another typical case is where there is only one data
sequence observed from an object, e.g., a system, and the
property of the object is slowly modulated. In this case, the
sequence is assumed to consist of a lot of short period episodes
in which the property of the system is assumed to be fixed.
The mnSOM can deal with this case as well [4].

C. Algorithm of MLP-mnSOM

As a representative case, let us consider the case in which
the mnSOM consists of multilayer perceptron (MLP) modules
(MLP-mnSOM). Since each MLP module can represent a
nonlinear function, i.e., an input-output relation, the entire
mnSOM can generate a map of functions or static systems.

Now suppose that there are I episodes D1, . . . ,DI are
given, and each episode has J data vectors. Here, Di =

{(xi,1, yi,1), . . . , (xi,J , yi,J)} are a set of input-output vectors
sampled from the same static system, and they are assumed
to satisfy yi, j = fi(xi, j). The tasks of the MLP-mnSOM are;
(i) to identify the unknown functions { fi(·)}, (ii) to generate a
feature map of those functions, and (iii) to map the episodes
to the map space of the mnSOM.

The algorithm of an mnSOM consists of four processes:
evaluative process, competitive process, cooperative process
and adaptive process [3].

In the evaluative process, the outputs of all mnSOM mod-
ules are evaluated for each input-output pair. Suppose that
an input data vector xi, j is picked up; the outputs of all
modules {ỹ1

i, j, . . . , ỹ
K
i, j} are then calculated for that input. (Here

K denotes the number of modules of the mnSOM. Subscripts
mean the indexes of data vectors and episodes, while a
superscript indicates the index of modules). This calculation is
repeated for all input-output data vector pairs of all episodes.
After evaluating all outputs, then the errors of all modules for
each episode are evaluated. Now, let Ek

i be the error of the
k-th module for the i-th episode, then it is given as

Ek
i =

1
J

J∑
j=1

∥∥∥ỹk
i, j − yi, j

∥∥∥2 (1)

=
1
J

J∑
j=1

∥∥∥gk(xi, j) − fi(xi, j)
∥∥∥2 . (2)

Here, gk(·) denotes the input-output function of the k-th MLP
module. If J is large enough, the distance between fi(·) and
gk(·) is approximated by the error Ek

i as follows.

L2(fi, g
k) =
∫ ∥∥∥gk(xi, j) − fi(xi, j)

∥∥∥2 p(x)dx � Ek
i (3)

Here, p(x) is the probability density function of the input.
Please note that (3) means the definition of distance between
two functions. Therefore, the distance between an episode and
an MLP module is measured in function space.

In the competitive process, the MLP module that minimizes
Ek

i is determined as the best matching module (BMM) or
the winner of the i-th episode. Thus, the index of the BMM,
denoted as k∗i here, is defined as

k∗i � arg min
k

Ek
i . (4)

Theoretically, k∗i means the most likelihood estimation of the
mapped position of the i-th episode. The BMM is determined
for every episode.

In the cooperative process, the rate of how much each
MLP module should learn for every episode is calculated.
Here the rate is called learning mass. BMM and its neighbor
modules gain larger learning masses than the other modules,
as determined by the neighborhood function. Let mk

i (t) denote
the learning mass of the i-th MLP module of the k-th episode
at calculation time t. Then mk

i is given by

mk
i = h

(
d(k, k∗i); t

)
. (5)

638

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

Here d(k, k∗i) expresses the distance between the k-th module
and the BMM of the i-th episode in the map space, i.e., the
distance on the lattice of mnSOM. h(d; t) is a neighborhood
function that shrinks with the calculation time t. Normalized
learning mass μk

i is also calculated as follows.

μk
i =

mk
i

I∑
i′=1

mk
i′

(6)

In the adaptive process, all MLP modules are updated by
the backpropagation learning algorithm as follows.

Δwk = −η
I∑

i=1

μk
i

∂Ek
i

∂wk
= −η∂E

k

∂wk
(7)

Here, wk denotes the weight vector of the k-th MLP module
and Ek =

∑
i μ

k
i Ek

i . Note that Ek has the global minimum point
at which gk(x) satisfies

gk(x) =
I∑

i=1

μk
i fi(x) =

∑
i mk

i fi(x)∑
i′ mk

i′
. (8)

Thus, gk(x) is updated so as to converge to the mass center
of { fi(x)} with the masses {mi}. During the training of MLPs,
each input vector xi, j is presented one by one as the input,
and the corresponding output yi, j is presented as the teacher
signal. These four processes are iterated until the network gets
to a steady state with shrinking of the neighborhood size.

Theoretically, the above process is identical with the batch-
learning algorithm of a conventional SOM (BL-SOM) with an
exception. The exception is the definition of the distance; in
the case of the conventional SOM, the distance is measured
in Euclid space, whereas the distance is measured in function
space in the case of an mnSOM. Fig. 2 shows a comparison
between the maps generated by a conventional SOM and the
MLP-mnSOM. The left map was generated by the mnSOM
directly from the given episodes, whereas the right map was
generated by the conventional BL-SOM by giving the coeffi-
cient vectors of orthonormal expansion, which are estimated
from the observed episodes. Thus, in the case of the BL-SOM,
each episode should be first fitted by linear sum of orthonormal
basis functions {φ j(x)}, i.e.,

fi(x) = ai,0φ0(x) + ai,1φ1(x) + · · · + ai,nφn(x). (9)

Then a set of coefficient vector {ai} = {(ai,0, . . . , ai,n)} are given
to the conventional SOM as a set of data vectors. Finally, the
functions represented by the SOM are regenerated as

gk(x) = vk,0φ0(x) + · · · + vk,nφn(x), (10)

where vk = (vk,0, . . . , vk,n) means the k the reference vector
of the BL-SOM. Under this situation, the distance measure
of function space is identical to the one in coefficient vector

space.

L2
function

(
fi(x), gk(x)

)
=

∫ ∞
−∞

(
fi(x) − gk(x)

)2
p(x)dx (11)

=

n∑
j=0

(
ai, j − vk, j

)2
(12)

= L2
coefficient vector(ai, vk) (13)

Therefore, the equivalence between the mnSOM and the BL-
SOM with orthonormal expansion are theortically assured. In
the case of Fig. 2, episodes are assumed be observed from a set
of polynomial functions, and normalized Legendre functions
are used as the orthonormal basis functions. The two maps are
identical, like twins, because of the theoretical equivalence.
However, it is important to note that such orthonormal expan-
sion before training is difficult in many practical cases, since
the functions are usually unknown. In the case of the mnSOM,
these functions are estimated in parallel with generating a map
of them, and there is no necessary to identify them in advance.
This is an important advantage of an mnSOM.

D. Naive generalization of mnSOM algorithm

Now let us consider more generalized module architecture
cases of an mnSOM. Suppose that an mnSOM user has a
set of episodes D = {D1, . . . ,DI}, and each of these has J
data vectors, i.e., Di = {ri,1, . . . , ri,J}. In the previous case,
ri, j = (xi, j, yi, j). To simplify the situation, let us assume
that these episodes are observed from a set of objects O =
{O1, . . .OI}. In a conventional SOM, each data vector is a
mapping object, whereas in the case of an MLP-mnSOM, each
object corresponds to each of the nonlinear functions.

There is an essential difference between a conventional
SOM and the mnSOM. In the conventional case, all the
mapping objects, i.e., the data vectors, are known and there
is no need to estimate the objects. On the other hand, it often
happens that the entities of the objects are unknown in the case
of a generalized mnSOM. Therefore, the user should identify
those objects in parallel with generating their self-organizing
map. Thus the mnSOM should solve the simultaneous estima-
tion problem.

Let us suppose that the mnSOM has K functional modules
{M1, . . . ,MK}, which are designed to have the ability to
regenerate, or mimic the objects. In other words, a module
is capable of approximating an object Oi after training by
the episode Di. Suppose further that the property of each
functional module Mk is determined by a parameter vector
wk. Under this situation, the tasks of the mnSOM are; (i) to
identify the objects {Oi} from the episodes {Di}, and (ii) to
generate a map of those objects. These two tasks should be
processed in parallel.

The most straightforward and naive generalization of the
mnSOM algorithm is as follows. Let r̃k

i, j be an approximation
of ri, j by the k-th module. Then the average error between the

639

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

-1.0

-0.5

0.0

 0.5

1.0

 -1.0 -0.5 0.0 0.5 1.0

6a5a4a3a2a1a

SOM

 1
v

 2
v

 3
v

 K
v

mnSOM

Observed episodes

System identification

Orthonormal expansion

Weight vectors

Regenerated systems

mnSOM SOM

Coefficient vectors

Fig. 2. A comparison of polynomial function maps generated by mnSOM (left) and SOM (right).

i-th episode and the k-th module Ek
i is measured by

Ek
i =

1
J

J∑
j=1

∥∥∥r̃k
i, j − ri, j

∥∥∥2 . (14)

The BMM is then determined by (4), and the learning mass
{mk

i } and the normalized learning mass {μk
i } are calculated by

(5) and (6), respectively. Finally, every module is trained by
using episodes with the learning mass {μk

i }. If the module
algorithm is described by the gradient descendent method, then
the modules are updated as follows.

wk = −η
I∑

i=1

μk
i

∂Ek
i

∂wk
(15)

This is the naive algorithm of a generalized mnSOM. This
naive generalization may look all right, and actually it has been

often used in the past works. In fact the naive algorithm would
work appropriately in many cases, but not always. Though it
is worth trying this naive version, users are recommended to
examine the relevance in the following way.

E. Generalized mnSOM Algorithm

Now let us consider the true generalization of the mnSOM
algorithm, which includes naive cases. In the naive case, the
distance measure is defined by the average error between a
data vector and a module output. To obtain a more theoretically
plausible algorithm, we must consider the distance measured
between an object Oi and a module Mk. Thus, users need to
define an appropriate distance measure L(Oi,Mk) that signifies
the difference between an entire object Oi and an entire
model obtained by Mk, instead of the difference between

640

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

an individual data vector and the corresponding output of a
module. Since the distance depends on how the user wants to
define the differences between two objects, the measure should
be defined depending on the user’s purpose.

By using the distance measure, the definition of mass center
can be determined as follows.

Ō � arg min
O

I∑
i=1

miL
2(Oi,O). (16)

Here Ō is the mass center of the given objects {O1, . . .OI}
with the masses {mi}. If O belongs to a vector space, then Ō
is given by

Ō =
m1O1 + · · ·mIOI

m1 + · · ·mI
=

I∑
i=1

μiOi. (17)

Here μk
i denotes the normalized mass given by μi = mi/

∑
i′ mi′ .

Since each object Oi is assumed to be unknown, we can
measure only the distance between an estimated object and a
module, i.e., L2(Õ(Di),Mk). Here Õ(Di) is the object estimated
from the i-th episode Di.

Each module is updated so as to be the mass center, the
mass of which is given by the neighborhood function. Thus,
the updated algorithm is formulated as

wk(t + 1) = arg min
w

I∑
i=1

mk
i L2
(
Õ(Di),M(w)

)
. (18)

When the estimated distance L2(Õ(Di),Mk) can be approxi-
mated by the mean square error, i.e.,

L2
(
Õ(Di),M

k
)
� 1

J

J∑
j=1

∥∥∥r̃k
i, j − ri, j

∥∥∥2 , (19)

then the naive algorithm is obtained.
Typical cases that require this generalization is an SOM-

module-mnSOM, that is called SOM2, and an mnSOM with
autoassociative neural network modules.

III. Variations of mnSOMs and their Applications

In this section, we introduce some representative module
architectures of mnSOMs and their applications.

A. MLP-mnSOM

MLP-module-mnSOM (MLP-mnSOM) is a typical archi-
tecture of the mnSOM family. Tokunaga et al. applied an
MLP-mnSOM to the analysis of weather dynamics [2], [3]. In
their case, the task of the mnSOM was to predict tomorrow’s
weather from the weather of the past three days. Therefore,
their mnSOM can be regarded as a huge assembly of weather
forecast systems. They showed that the geographic topology
was preserved in the map of the weather dynamics.

An MLP-mnSOM is also applied to adaptive controllers.
Minatohara et al. proposed a concept of self-organizing adap-
tive controller (SOAC) [5] as an extension of MOSAIC
proposed by Wolpert and Kawato [6]. In the SOAC, each
module consists of a pair of a controller and a predictor;

and BMM is determined by the predictor block. Thus, the
module that predicts best becomes the winner, i.e., the BMM,
and the target object is controlled by the controller block of
the winner module. They applied a SOAC to controlling an
inverted pendulum, the mass and the length of the pendulum
suddenly changed. Nishida et al. also proposed architecture
similar to that of an SOAC based on an MLP-mnSOM. He
applied the mnSOM to an underwater autonomous vehicle [7].

B. RNN-mnSOM

Recurrent neural networks (RNN) such as Elman Net and
Jordan Net are available as functional modules of an mnSOM.
In this case, the RNN-mnSOM can generate a map of dynam-
ical systems. Kaneko et al. reported that an RNN-mnSOM
generates a map of neuron models [8]. They gave some firing
patterns generated by a Bonhoefer-van der Pol (BVP) model
with different synaptic parameters. As the result, the mnSOM
generated an appropriate map that indicates the changes of
the synaptic parameter value. They also proposed a concept
of self-organizing bifurcation map (SOBM).

Aziz et al. applied an RNN-mnSOM to a mobile robot,
trying to articulate a sequence of sensor data when a robot
moves [9]. In their model, a continuous sequence is articulated
by the discrete transition of BMM.

C. ANN-mnSOM

A mnSOM with autoassociative neural network (ANN)
modules is a variation of an MLP-mnSOM. An ANN has a
sand clock like symmetrical structure, the task of which is to
regenerate input vectors in the output layer. It is known that
a 3-layer ANN can represent a data distribution in a linear
subspace, while a 5-layer ANN can approximate a nonlinear
subspace, i.e., a manifold. Thus, an ANN-mnSOM is an SOM
of manifolds.

Tokunaga et al. showed that a 5-layer-ANN-mnSOM gen-
erated a map of periodical waveforms. The ANN-mnSOM
generated a map indicating the differences of shapes and the
frequencies of the waveforms [10]. They also applied an ANN-
mnSOM to texture classification task.

D. SOM2: SOM-module-mnSOM

SOM-module-mnSOM proposed by Furukawa is a main
member of mnSOM, and it also forms another family of
generalized SOM. He calls this architecture SOM2, because
an SOM2 represents a product manifold, namely, SOM×SOM
[11], [12], [13]. Like the case of the ANN-mnSOM, SOM2

also generates a map of manifolds, but the ability of the SOM2

is much higher than that of the ANN-mnSOM.
The essence of the algorithm of SOM2 is as follows.

Suppose that wk,l is the l-th reference vector of the k-th SOM
module, and xi, j is the j-th data vector of the i-th episode.
Then the reference vectors of SOM2 are updated as

wk,l(t + 1) =
I∑

i=1

J∑
j=1

αk
i (t) βl

i, j(t) xi, j. (20)

641

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

(a)

(b)

(c)

(b)

(c)

Fig. 3. ‘Face map’ generated by SOM2. The parent map (a) and the child maps of face0 (b) and face11 (c).

Here αk
i is the normalized learning mass of the k-th SOM

module for the i-th episode, while βl
i, j denotes the normalized

learning mass of the l-th reference vector for xi, j, i.e.,

αk
i (t) =

hα
(
d(k, k∗i), t

)
I∑

i′=1

hα
(
d(k, k∗i′), t

) (21)

βl
i, j(t) =

hβ
(
d(l, l∗,∗i, j), t

)
J∑

j′=1

hβ
(
d(l, l∗,∗i, j′), t

) . (22)

Here hα(·) and hβ(·) are the neighborhood function between
SOM modules and the one between reference vectors within
an SOM module respectively. l∗,∗i, j is the index of the win-
ner unit for the xi, j within the winner module of the i-th
episode. Theoretically, SOM2 organizes a higher-order map,
namely, homotopy. Therefore SOM2 can be regarded as a
‘Self-Organizing Homotopy Network’. From another point
of view, a conventional SOM represents a data distribution

by a manifold, whereas an SOM2 represents a set of data
distributions by a fiber bundle [13].

Furukawa showed that an SOM2 generated a map of 3D
objects from a set of 2D projected images, e.g., photographs
[11]. Fig. 3 shows a map of various faces generated by
an SOM2. In this case, every episode consists of a set of
photographs taken from a person. Raw image data without
any preprocessing are used as the data vectors, and no pose
information is given. In this case, each SOM modules (child
SOM) had one-dimensional topology, while the entire mnSOM
(parent SOM) had two dimensional map space. As shown
in Fig. 3, the SOM2 succeeded to make a map of faces, in
which each SOM module represented continuous pose change
of a person, while the entire SOM2 represented a map of
various faces. Furthermore, the reference vectors of SOM
modules with same index represent face images with same
pose. Therefore, it is expected that SOM2s will be applied to
simultaneous estimations of face and pose.

A prominent property of SOM2 is that it is allowed to make
a nested structure like a Russian doll. For example, SOM2

can be a module of a meta-mnSOM. Thus, SOM2-module-

642

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

mnSOM, i.e., SOM3, is also possible. SOM3 represents a
product manifold of SOM×SOM×SOM. In the case of SOM3,
the update algorithm is described as follows.

wl,m,n(t + 1) =
I∑

i=1

J∑
j=1

K∑
k=1

αl
i(t) β

m
i, j(t) γ

n
i, j,k xi, j,k (23)

αl
i(t) =

hα
(
d(l, l∗i), t

)
I∑

i′=1

hα
(
d(l, l∗i′), t

) (24)

βm
i, j(t) =

hβ
(
d(m,m∗,∗i, j), t

)
J∑

j′=1

hβ
(
d(m,m∗,∗i, j′), t

) (25)

γn
i, j,k(t) =

hγ
(
d(n, n∗,∗,∗i, j,k), t

)
J∑

k′=1

hγ
(
d(n, n∗,∗,∗i, j,k′), t

) (26)

It is easy to extend the n-th order cases, namely, SOMn as
SOMn−1-module-mnSOM that represents n−1 order homotopy.

E. NG×SOM: NG-module-mnSOM

It is also possible to employ other types of vector quantiza-
tion algorithms such as neural gas (NG) networks. Furukawa
also proposed a NG-module-mnSOM called NG×SOM [11],
[13].

As a variation of an mnSOM, a “modular network NG
(mnNG)” is also possible [11]. In this case, all the refer-
ence vectors of a NG network are replaced by functional
modules of neural networks. If one employs MLPs as the
functional modules, then one obtains a MLP-mnNG. When
the module architecture is SOM or NG, then SOM×NG
and NG2=NG×NG are obtained, which mean “SOM-module-
mnNG” and “NG-module-mnNG”.

F. Other module types

Many other neural architectures are also possible. For
example, radial basis function modules would be a better
substitute for MLP-mnSOM. Stochastic type networks such as
a Boltzmann machine and a Hopfield network make up another
group. These are expected to generate a ‘map of memories’.

The mnSOM includes some variations of SOM that have
been proposed previously. If one employs a linear operator
module (e.g., single layer perceptron), then it becomes an
Operator Map as proposed by Kohonen [14]. When a principle
component analysis (PCA) module is used, then the mnSOM
becomes an adaptive subspace SOM (ASSOM) [15]. If one
employs Hebbian neurons as the functional modules, then the
mnSOM becomes a conventional SOM. Therefore, a mnSOM
is a generalization of a SOM rather than an extension because
it includes the conventional cases.

IV. Conclusion

In this paper, the concept and theory of mnSOMs are
described and some applications introduced. To return to the
issue of how we can develop fundamental architectures to
realize intelligent agents. From this point of view, the mnSOM
has several advantages. (i) It can process much larger tasks
than single neural networks. (ii) It has less interference of
memories because of its modular structure. (iii) The mnSOM
has a manner that reflects both aspects of supervised and unsu-
pervised learning . (iv) Users can produce many variations by
designing the functional modules depending on their purposes.
In addition, the architecture of mnSOM is suitable for parallel
processing, and it would be a solution of computational time
problem.

While the mnSOM can be powerful tool in many fields
as standalone architecture, the mnSOM can also possible to
be a part of a larger architecture of artificial intelligence.
For example, one can add a sequence learning algorithm,
which memorizes the transition of the BMM of an mnSOM.
Considering these points, the mnSOM is expected to be a good
platform for realizing intelligent agents.

Acknowledgments

This work was supported (in part) by the 21th Century Cen-
ter of Excellence Program to Kyushu Institute of Technology
(Center #J19) by the Japanese MEXT. The facial data in this
paper are used by permission of Softopia Japan, Research and
Development Division, HOIP Laboratory.

References

[1] K. Tokunaga and T. Furukawa, “Modular network SOM: Extension of
som to the realm of function space,” in Proceedings of Workshop on
Self-Organizing Maps 2003 (WSOM2003), Kitakyushu, Japan, 2003, pp.
173–178.

[2] K. Tokunaga, T. Furukawa, and S. Yasui, “Modular network SOM: Self-
organizing maps in function space,” Neural Information Processing –
Letters and Reviews, vol. 9, no. 1, pp. 15–22, 2005.

[3] T. Furukawa, K. Tokunaga, K. Morishita, and S. Yasui, “Modular
network SOM (mnSOM): From vector space to function space,” in
Proceedings of International Joint Conference on Neural Networks 2005
(IJCNN2005), Montreal, Canada, 2005, pp. 1581–1586.

[4] K. Tokunaga and T. Furukawa, Modular network SOM: Theory, al-
gorithm and applications, ser. Lecture Notes in Computer Science.
Heidelberg: Springer Berlin, 2006, vol. 4232, pp. 958–967.

[5] T. Minatohara and T. Furukawa, “Self-organizing adaptive controllers:
Application to the inverted pendulum,” in Proceedings of Workshop on
Self-Organizing Maps 2005 (WSOM2005), Paris, France, 2005, pp. 41–
48.

[6] D. M. Wolpert and M. Kawato, “Multiple paired forward and inverse
models for motor control,” Neural Networks, vol. 11, pp. 1317–1329,
1998.

[7] S. Nishida, K. Ishii, and T. Furukawa, An Online Adaptation Control
System Using mnSOM, ser. Lecture Notes in Computer Science. Hei-
delberg: Springer Berlin, 2006, vol. 4232, pp. 935–942.

[8] S. Kaneko, K. Tokunaga, and T. Furukawa, “Modular network som:
The architecture, the algorithm and applications,” in Proceedings of
Workshop on Self-Organizing Maps 2005 (WSOM2005), Paris, France,
2005, pp. 537–544.

[9] M. A. Muslim, M. Ishikawa, and T. Furukawa, “A new approach to
task segmentation in mobile robots by mnSOM,” in Proceedings of
2006 IEEE World Congress on Computational Intelligence (IJCNN2006
Section), Vancouver, Canada, 2006, pp. 6542–6549.

[10] K. Tokunaga and T. Furukawa, “Nonlinear ASSOM constituted of
autoassociative neural modules,” in Proceedings of Workshop on Self-
Organizing Maps 2005 (WSOM2005), Paris, France, 2005, pp. 637–644.

643

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

[11] T. Furukawa, “SOM2 as SOM of SOMs,” in Proceedings of Workshop
on Self-Organizing Maps 2005 (WSOM2005), Paris, France, 2005, pp.
545–552.

[12] ——, SOM of SOMs: Self-organizing map which maps a group of self-
organizing maps, ser. Lecture Notes in Computer Science. Heidelberg:
Springer Berlin, 2005, vol. 3696, pp. 391–396.

[13] ——, SOM of SOMs: An extension of SOM from map to homotopy, ser.
Lecture Notes in Computer Science. Heidelberg: Springer Berlin, 2006,
vol. 4232, pp. 950–957.

[14] T. Kohonen, “Generalizations of the self-organizing map,” in Proceed-
ings of International Joint Conference on Neural Networks (IJCNN),
vol. 1, 1993, pp. 457–462.

[15] T. Kohonen, S. Kaski, and H. Lappalainen, “Self-organization formation
of various invariant-features filters in the adaptive subspace SOM,”
Neural Computation, vol. 9, pp. 1321–1344, 1993.

644

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

