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RECURSIVE NONLINEAR IMAGE ENHANCEMENT

—VECTOR PROCESSING

(Received May 30, 1980)

by Hiroshi KONDO and Hircaki TAKAJO

SYNOPSIS
An approach to design of a recursive image enhancer is introduced. A vector nonlinear
dynamical model is derived to represent the statistics of the processor output when several lines

of the picture are processed simultaneously.

Based on the vector model, a kalman filter is

designed and utilized to recursively enhance the image.
The application of a kalman f{ilter to image enhancement is first proposed by Nahi. His
method, however, has many practical problems such as a decision of a parameter on the corre-

lation of the image.

In this paper, it is showed that these problems are solved by assuming a nonstationary mean
of the image and hence the application of a Kalman filter to a nonlinear image enhancement

becomes more practical.

1. INTRODUCTION

The image enhancement describes the classical
problem of statistical estimation and filtering,
where one basically attempts to filter out the
noise from an observation. The most general
and computationally efficient procedures availa-
ble at present to perform this filtering operation
are the recursive estimation methods of kalman
filtering and thier nonlinear extensions!’ How-
ever, here it is necessary that the observation be
a function of one independent variable, such as
time, in contrasl to an image which is defined on
a plane.

The converting the planer statistical informa-
tion of the image and the naoise into a form suit-
able for application of recursive estimation pro-
cedures is sucessfully made by Nahi® under the
condition that the statistical natures of the image
and the noise are known. In general, however,
there are few cases that the statistical natures
such as the autocorrelation of the image are
completely known especially in the case that the
observation includes a nonliner function.

The purpose of this paper is to derive aulocor-

relation of the image approximately from the
blured image and to apply Kalman filter to non-
linear image enhancement. The effectiveness

and computational simplicity of this method for
image enhancement will be clearly demonstrated.

2. KALMAN FILTERING FOR NONLINEAR
IMAGE ENHANCEMENT

The image is scanned M lines at a time where
M>1. Let £(f) be a M dimensional vector
random variable which represents an ideal image
with an enseble average denoted dy f, where £
is not assumed uniform. Thus the random pro-
cess £ (¢} is nonstationary. The covariance func-
tion is given by

E[f’k(’l)_)?h(!l)][f[(’z)"f[(f:)]
:]{C—#nlr:—nl.c(()_k)l (1}
where f, and f, are kth and £th clement of
vector £ respectively. E[ -] is an expectational
operator. u, is a positive constant and ¢ (£ &)
is an arbitrary function of (£—4&).

Defining z ({) as

() = FHY -, (2)
Eq.(1) becomes
Ez. (1) z.(t:) = Ke "™l g (L—k). {3

The state-space model for the scanner output,
an A/ dimensional vector denoted by x(/), is
given by



X() = Ax (1) +Bu (i) {4)
z{t) = Cx (1)
A= — LUa
B = \/?J-‘—h
CC'=H

Eu(Hlu' (i+17) = K18 (1)
Ex(0)x"(0) =1
{ I : identity matrix)

where A and B are scalars and H is an M XM

matrix with 7, jth element, /i, given by

hy=80G-1) (5)
and ¢ is given by Eq.(1})V. C’is a transpose ma-
trix of C.

If the observation is linear function of 7, then
this is all. The desired estimator can be design-
ed straightforwardly. But if the observation is a
nonlinear function of f (¢} such that

glt)y =S +ovid) {6)
then it is needed to modify the estimator,

where g and » are M dimensional vectors and
S(-) is a nonlinear operator. p(/) is a obser-
vation noise with zero mean and covatiance given
by

EU“:)U'([:) =L6(t‘z“h), (7)
where L is an M XM matrix.

Expanding the first term of the right hand side
of Eq.(6) in the vicinity of £*(¢) called a nominal
solution which is in the neighborhood of the true
value £({) and dropping the nonlinear terms (i.
e., terms of higher order than the first) yeilds

S(FD)Y=S(FWY+8e(FL)=F(1)), (8)
where

g, = a%fr”
aS (f1) .
=735 |lh=r ¢
’ "85 (far) 1@
Ofu | fu= SR
From Eq.(2) and Eq.{4),
f—Ff=z(t) = Cx(1) {10
hence
SUFU) =S (D) +Ss{(Cx)+ FL)
=fr0). ul

Substituting Eq.() into Eq.(6), we obtain

g =S(F )+ 8(Cx{t)+F)—F (1))
+u(). U9

Here, if we define new variable y (¢) as
(O =gO)=S(F ) —Sa(FOH—F (1)),
13
then Eq.(1?) becomes
{1} =8SsCx()+v (1) 14
Finally from Eq.4) and Eq.(l4 we get desired
result ;
{x(l)=Ax(z‘)+Bu(f) 05
YUY =8 Cx()+v ).
We want a discrete version of Eq.(5 suitable
for digital computer processing.
It is easily obtained' and given by
x(k+1) = Aix(k)+ Biu (k)
yik) =8p Cix (k) +v (&),
where
A= gt = g™
By = /1— =24 (*see Appendix 1.
Ss =
as (/1)
af, | frw=riw

{16

i

85 (fa)
Afu | /uy= 30,

®

CG=C=TA"T
where /' is a diagonal matrix whose entries
are the square roots of the eigen valuesof H. T
is the orthogonal matrix whose colums are the
eigen vectros of H®. x, y, u and p are M
dimensional vectors and 4,, B, are scalars, C,
and Sy are M x M matrices.

The covariance of u (%) and v () are

Eubu'(£) = K- I-4(6—F)
Ev(kv' (&) = L-A(£—k)

The estimate of x is obtained directly by using
Kalman filter*. Sp is a function of % and hence
system is time variant;

X(k+1) = [Ad—F(B)S:CIE (B +F My (k)

Fb)=APMCSLSCPRHCISe+ L)

P+1)=[A I-F RS CIP(B[A,- T

—F (B SaC))+KBi I+ F (BYLF' (&),

an

a8

If we decide to choose £* (&) = F (&),
then from Eq.0), 7 (k+1) is gotten directly;

Fle+1) = F+D+ A F Y =F (k)
+ O F (k) (g—S (Fgy) % see Appendix 2
(19

.P(0) and £(0) are given as an initial condition.



3. DERIVATION OF THE AUTOCOVA.
RIANCE OF AN IDEAL IMAGE

In general the parameter g, of the autocova-
riance in Eq.(1) is considered different for each
image, hence it is necessary to find it out by some
way.

It seems easy to get the parameter g, when the
observation is a linear function of an ideal
image'®®.  But in the nonlinear case the same
method as a linear one can not be utilized.

In this section we consider the method of find-
ing out the parameter g, in the nonlinear case.

Since the autocovariance of an ideal image is
generally supposed to be separable, each para-
meter for a horizontal or a vertical direction
can be derived independently. In the following
we suppose that the form of a autocovariance
for a vertical direction is also exponential like
a horizontal one.

The autocovariance of an ideal image for a
horizontal direction is given by

ElFelt) = 1)) (2) — Fu (£2))
= R/,(Z‘)ru—:;. . (20)

where f.(t) is a scalar scanner output of kth
line at time /. f.(f) is an ensemble average of
Sa(t).

The autocovariance of S (f({)) is not a func-
tion of r(= f,—¢,) but of ¢ and f. generally.
However as long as S is not an extremely non-
linear function, it will be supposed that the auto-
covariance of S{/fx(#)) is a function of ¢ ap-
proximately. Hence we introduce Rs(7)rees-c,
as the autocovariance of S{f.({)). Thatis

Rs()ratymt, = E[S(fk(/]))_g(fk(f:))]

(S(Falt2)) = SCAUD), QD

where
S = ES(fuD))
= f: S(AOY»PUAUNANL. @

Expanding S (f«(#)) in the vicinity of £ ()
{(nonstationary mean) and dropping off the high-
er order than second term, we get

S(/)) = S(AUN+SUFUN Sl =Fal)),
)

where

.= _ 3S( /(1))
S'(falt))= _a)?k(.%‘ Sl = [l
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Substituting Eq.(3) into Eq.(23), we obtain

S = [TISG)+S W)

“(Sall) = SO PUALD Yt
= S(AN), (2]
because the second term of the integrand is zero
after integration from the definition of 7,(¢).
Substituting this into Eq.{2]) and using Eq.(3),
R (0) rmtsme, = E(S{fult)) )~ S fulty) )]
[S(fa(fz))_S(fk(fz))]
= SUAUNS(filt))
Efult) = H(t)) falta) = falta)). (@3)

From Eq.(0),

Rs(0) = STAUNS (Felt)) Rl | eerymry.

(26)
Hence,

Reln) =[S (A1) S alt)) ™ Rel). @)
Since by definition R,, (r) is a function of r, the
term S fe(41))-S'( fi(t2)) must also be a func-
tion of z. It is reasonable to think so because
S /(D)) is a deterministic value and a first
derivative of S(f(#)) and S is supposed not to
be an extremely nonlinear function. Hence we
introduce a time average for these products and
denote it Ry (7).

Ro(2)eats-e,= S'(filt))- S’(fk(l’Q)); (28
where

Tr ]
Rs()— _|§f NZS}'J«?))

‘S fulti+ 1)) dk. @9
T is a traveling time of scanner spot for hori-
zontal direction.
Consequently Eq.i?7) becomes
Ro(r) = RS () -Rs(7) @0
Now we consider the relation between R.(r)
and Rg(z) which is defined as
Relr) = E[gk(’l)'“S—(fh(tl))][gk(".‘) = S(fl)).
{30
Since
g:(1) = S{ A+ v,
We have

Rs(f) = E[S(fk(ft))_S—(fk(fl))"l‘lfk(fl)]
(SUE))~ S fale))+ oa(t2))
= E[S(fk(’l))_g(j‘k(!l)))
[Salt)) = SUalt))) + Evad ) valta)
= Rs(f)+L5(T) | LT PRI



134

because p.{#) is a white noise with zero mean
and the autocovariance L& (r), where L is a sca-
lar constant.
Hence for 7= 0,
Re(r) = Rs(1). @)

Substituting this into Eq.{), we obtain

R lt) = R (1) Rglr) for r= 0. (33
Here it is also natulal that we use a time average
for Re(r).

Re(o) = =2 [T L2 (2,000 = SAdt0)
T—l ‘;'| - Nk:!
Tenlti+ ) = S+ 0))dls . (39
In discrete form, it is written as
Ret®) = =gy B B e b 1)
—S(f ey, BN+ 8, ko)
=SS+ 2, k))e=1,2 N (3)
Similarly Rs-{z) is also written as
Nt N -
m‘f\; 2, S (Fth, kD)
SSUfl+ 4, k). £=0,1,2,N

Rs(f) =

Since it is supposed that
Rolr) = K-g™ 7, @n
we obtain

RA(2) _ \/ Rul2) Rl _ s
R!.(l} Rfk(l).R!i(S) :

Consequently we get the desired result;

- _ R7{2)- Rl4)
an= fﬂ\/ R/A(l)'RJA(B)

and G8)
2[RRI _ [IRA0)-R )
[R(2)] [ R /{4)]

In the above equations, to determine the para-
maters g and K, R..(1), RA(2), R..(3) and R, (4)
are used rather than R,,(1) and R,,(2), because of
a smoothness of this covariance. These values
are obtained through Eq.(33).

The parameter of a vertical direction is also
gotten in similar manner.

4. COMPUTATIONAL PROCEDURE

From the above we can estimate f when an
ensemble mean f is known. Generally there are

few cases that 7 is known apriori when the ob-

servation includes a nonlinear function. Hence
it is needed to derive it by some means. Here

we derive it by the simplest method as follows.

First, the observation g is processed through a
lowpass filter with a gaussian-like impulse res-
ponse characteristic, so as to surpress the obser-
vation noise v.

Tnen the result is operated by a nonlinear
operator H~'+ S, In this case we use a
pseudo-inverse for H ! in order to get a smooth-
ed image.

It will be sufficient that we take this result as
f in practice.

An computational procedure is as follows.

{1) Choose f(e.g. using the above method.)

(2) Make the initial conditions £{0} and P(0)
properly from the observation.

(3} Determine the covariance parameter such as
15 by the method in section 3.

(4} Compute Sa,_,, given by Eq.(9).

(5} Using calculated values A,, B, and C;, F(1)
is estimated along with Eq.s(18) and (19).

{6) Compute Sa,.,y like (4) and repeat (5) with
F(2) instead of f{1). Similarly £(3), fl4) ----
f (k) ----are obtained by repeating (5) and (6).

5. CONCLUSIONS

The merit of using a nonstationary mean for an

image restorotion is as follows.
(1) We see that in a stationary model, all the
variability in the images must be conveyed by the
covariance properties, since the ensemble mean
has been fixed as a constant. This will make a
poor result in modeling a class of images . On
the other hand, if the nonstationary mean is sup-
posed, the covariance properties of the ensemble
would represent the random perturbations about
this structured mean of each individual image in
the ensemble.

This property will make a good result in the
madeling. Consequently the restored image will
be better than that with the stationary mean.

{2) In the nonlinear case, though it is difficult to
find the parameters of the covariance of f, it is
easy to find them out approximately by assuming
a nonstationary mean.

(3) It issufficiently enough to use an exponential
function as a first order approximation for the
shape of the covariance with nonstationary mean.
(4) We can easily derive the nonstationary mean
from the observation.



From the above reason, assuming a model
which consists of a nonstationary mean will be
helpful for an image restoration processing.

Finally we remark that applying kalman-filter
to the restoration problem yeilds a computational
efficiency.

APPENDIX
{1) From the transformation formula‘",
EBR u W BB (W) = [ ei=9. pic
-IB g8 gy,
where B (k) = vZu, and [ is an identity

matrix, :2}{#“_1—/0-1 gmamatia g
=/1=e K- J/T—¢gFr
(A-1)
Hence
B = /T ™™
{Eu(k)u'(f) =K I-A4(6—k). (A-2)
{2) Since

X{kt1) =(AT—F (B8 C)E(R)
+F Ry k), (A-3)
multiplying both sides by matrix ¢, from the
left hand side,
Cix(k+1) = [A G- T — C F (k) Sa 1) X (k)
+F Ry (k)
= (4= O F (k) S5)CrE (k)
+CiF Ry (k).
(A-4)
Since
Fle+1)~Fh+1) = CEk+1) (A-5)

and

&) = glk)=S(F* (R))—Sa(Flk)—F (&),
(A-6)

Eq.(A-4) becomes

Fle+1)—F(r+1)

= (A= CF RS F k)= F (&)
+CFMW gk —S(F* (2))—Sa( FR)
—F"(£)))

= ALF U ~F ()= CF B)SslF (k) — F (1))
+ CiF(B)Se{F* (kY= F (k)
+CFB(gh) =S (F (8)). (A-7)

If we choose £*(k) = f (%), then we get the
final result;

Fle+1D) = Fe+1D + A(FR) = FB))
+CF B gy —S(F (). (A-8)
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