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SYNOPSIS

This paper presents a method of combining an estimation and a suboptimal control for
nonlinear systems. This method is divided into three parts of estimation, judgement and control.
At the first part, all states of the system are estimated under free control by such nonlinear
observer as an extended linear observer. In the next part, the estimated values are judged by a
judging function whether they are close enough to the true state values. Using the estimated
values as the approximated values of state, in the last part, the nonlinear system is controlled by
the suboptimal control policy, The policy is derived by applying a formal linearization theory

on the function space and a linear contro! theory.

The remainder of the paper is devoted to the digital simulations of simple example, whose
system is a nonlinear control system of one synchronous machine with an infinite bus.

L. INTRODUCTION

Optimal nonlinear combined estimation and
control is a major unsolved problem in control
theory. We propose to divide this problem into
three parts. Those are the estimation part, the
judging part and the control part. The esti-
mated vaiues obtained at the estimation part are
checked by the judging function, which is stated
in the companion paper [1] ,

The judging part, in which the judging function
is involved, judges whether the differences bet-
ween the estimated values and the true values are
neglegibly small. After this judgement, the con-
trol policy is applied by regarding these estimates
obtained last as the initial values of the system to
be controlled. If the system were to be con-
trolled before the accurate estimates had been
obtained, the system would be forced into the un-
expected state.

The nonlinear control policy discussed in this
paper is based on the augmented linearization
method [2] . The original nonlinear system is
transformed into the linearized system over the

functional space spanned by the polynomials.
That is, the nonlinear system equation is ex-
panded into the Taylor's series about the steady
state and the augmenied linearized system is
constructed by regarding cach higher order term
of the series as a new state variable. Then the
linear optimal control theory is applied to the re-
sulting linearized system to get the suboptimal
control policy for the nonlinear system.

2. PROBLEM FORMULATION

Let us consider the nonlinear system described
by the following differential equation
X{6)=Ff(x, u, t) (1)
where x represents the n-dimensional state vec-
tor, u is the m-dimensional control vector,
The measurement equation of the system is
given as
»{) =h(x) {2)
where y is the r-dimensional vector of measure-
ments, £ and k are both nonlinear vector valued
functions with respective dimensions,
We wish to find the control which minimizes
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the cost function

J= [T Qe+ uTRu) di 3
where
x{te) = Xo, {4)

@ is an n X n nonnegative definite matrix and
R is an m x m positive definite matrix.

‘We consider the combined estimation and con-
trol problem by dividing it into the following
three parts.

[Estimation Part]

The first thing we must do is to synthesize an
estimator such as an observer which estimates
the free system, that is 1 = 0 at Eq.(1).

[Judging Part]

The estimated values obtained by the observer
are checked by the judging function (Companion
Paper [1]) whether these values are close enough
to the true values of the system. When we have
got the accurate estimates ¥(f,) at time f, we
proceed to the next part.

[Control Part]

If we lat x(f) = £{¢{;) at Eq.(4), we can con-
stitute the suboptimal control u(¢) (¢ 2 ). The
way of constitution is discussed in the next sec-
tion (see [2]).

3. SUBOPTIMAL CONTROL

Consider the nonlinear differential system where

the control enters in a linear fashion
200 = F)+G(xdul) ()
with the cost function (3).

We assume that £(0) =0 and G(0) 0. And
the initial state of the system is assumed to be
known, i. e. x (/o) = Xo-

At first, we define the following set W, as

W= (xbxdxbrlh+ bt + =1}

x() ={x () x() = x (D)7
where /; and 7 are nonnegative integers.

If we let p(n, 1) be the number of elements of
W: we may observe that

pln, i) = (i+1) (i+2)- (i+n—=1} (n—1) 1,
We then introduce the vector S-(¢)
Se(t) = [C‘)r(]) wr(z) """ Q)r(p("v "))}T (6)

where w,(j) € W,, whose elements are arranged
properly and the following vector

Zr(t):[SIU)TSz(l)T """ Sr(f)r]r (7)

is also introduced. )
It is convenient for us to rewrite Eq.{7) in terms
of each element asg

Z(8) = (22 (1) zZ200) oo 2o (D)7,
j):)f;}l oln, 7)

where z; (1} €W, (j=1~7r).

On the assumption that the control is restrict-
ed to a linear combination of z; (¢), the goal is
to find the optimal control of the form

u=KZ. (8)

for the control problem described by Eqs.(3), (3}
and (4).

Without loss of generality, we consider the
problem of scalar control for simplicity, that is,
the control is given as

u= _‘é kiz: (1),

We can easily extend it to the problem when u
is m-dimensional.
From Eq.(6) we see that

x (1) =85,
If we substitute this equation into Eq.{5), we get
Si1()=F(S)+ G (8)uls). t)

‘We should note that
fi(S)+a: (S u=[fi (S)+{g: (5)—gi (0} }u)

+g:0)u (i =1~n)
where
f= [}rl Faooeeeee fn]T
G=(g g - gn)7

Therefore Eq.{9) is described by the form

£1(S0 + (g (S0 — g1 (0)]}::1 kezi

S1(f) = : 5
fn (Sn)+[gn(S|)—gn (0)]::2:1 kiZi
£:(0)
+ Dol
gn(ﬂ)

If £is the element of W, {g> 1), that is, £ S,

we may observe that
/ d
“é—i."f:z,}-:cf‘x:‘""xﬁ" (bt bt+-—+lh=q)

= é‘,l Lxdvexb e xdn [ fi(x) +gi{x) ul.

From the Taylor expansion theory, we obtain



file) +gilx)u

B VPP,
= : o
e R e L T N P oxitgein| = T
x=0 x=0
. n Ié-;m
mel l"ﬂ! .

So we see that %5 is described by the linear

combination of the elements in Sy {gs g’ < o).
If we put our attentions only on the elements in
Si to Sr, that is, if we truncate at Z,, we obtain
after some arrangements

gi1(0
_ AR ALK z
ZAD) = | ek | ZUD 4| g2 (0) [2e(0)
0 ALK e
= Ar(K) ZAD+ Brut) (o

where

Let’s call Eq.l0) the approximated equation at
»*" order. Naturally the cost function for Eq.{0)
must be rewritten as

J = f:[z,TQ,z,+ " R dt a

where

Qo
Q'_[o o]‘

The optimal control law for a constant linear
system with a quadratic performance index,
which is expressed by Eqgs{ll) and (1)), is well
known and given as

«=—R'BIP.Z- (12
where P, is the solution of the following Riccati
equation

—PA,—A,P,+P,B.R'B,/P.—Q:=0.
13

Though A, is not constant, let us use Egs.(12)
and (I3} as our suboptimal control law [2].

From Eqs.(8) and (12), we see that

KZ.=—-R'B/P.Z,
to obtain
= _R_lBrTPr.

P. is solved as a solutton of Eq.ll), because
Eq.13 is reduced to the quadratic equation with
respect to P, only. Applying the resulting con-
trol law to the given nonlinear problem of Eqs.
(5 (3) and (4), the solution of the suboptimal con-
trol problem has been completed.
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In a similar fashion which was used to obtain
Eq.(0), the dynamic equatiqn for Z,, is given as

. oA B,
Zen(8) = erl(!)":‘ w(t)
0 A 0
=ArZra (D FBeayu ()
where
A7 = A,
and we have
_Pré-lA)'%!_AIélPr%)+Pr+lBr+1R-leT—:~lPr+l
“‘Qr-H =0. (i
By substituting 4,.;, By,
ot P
P, = and

ra17 re1
12 2z

[Qr 0}
Qr?l =
00 (@=Q)

into Eq.l4 and giving attention to P{{', we
obtain

— P A— ATP' - P B-R'BIP!

- Qr =0. (15)

By comparing Eq.(l8 with Eq.(3), we shall see

that
=P .

That is, PJ7' which is the sub-matrix of Pr.,
is the same as P, already calculated. This means
that we have only to calculate P[?' and P!
to raise the degree of approximation from r*
to »+1™.

It is remarkable that the rate of increase of
calculation is not sudden but proportional.

4. EXAMPLE

Let us consider the nonlinear optimal control
problem for one synchronous machine with an
infinite bus. The dynamics are described by the
equation

ME+ D&+ K (1+u)sing = Pin
where
& : load angle, M: moment of inertia,
D; damping coeflicient, K; maximum output,
Pia; mechanical input.

Assume that we can observe the speed devia-
tion 8. The problem is to be reduced to the
form of Eq.(5} as follows.

x is 2-dimensional state vector and u is I-
dimensional control vector,
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Ji=2Xz

__ K. L _D  Pn

fo= F75i0 21+ 8w) =722+ 7
and :

&=0, g2=_%5in(xl‘:_6w)
where

x;=6—6m, .‘(:=(§,
5w =sin"?{Pin/ K) is the load angle in the steady
state.
We wish to find the control which minimizes

the cost function
J= J: (xl+xi+uf) dr,

that is, @ = I. (unit matrix) and R =1, where
/o means the start time of control.
System constants used here are

M=0.0265, D=0.005, K=1.0, Pn=0.8

in per unit.

We synthesize the extended linear observer,
being considered up to the second order in dis-
cretization, [1], [4] with the parameters

T=1/60 (sec) (measurement period)
Cio = 0.1, Vi= 107° for all 2.
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Fig. 1 Control characteristics of x in
Hunting Region.
17(0.30)=0.928x107¢ at A\,
J7(0.10) =0.28<107* at Pi.

We have applied the judging function 77{¢} des-
cribed by Eq.{5 in the companion paper f1] under
quite the same conditions.

The degree of the approximation for control
is 2nd order, that is, » =2 for Z.. The Riccati
equation {3 was easily solved by the Newton’s
method.

Two cases are investigated when the machine
remains in the hunting region or in the step-out
region.

{Hunting Region]

The initial values of the states are

0= —0.327, x(0)=0.2.

Control characteristics with two different
I'(ts)’s are shown in Fig.l. The one is the case
when we have controlled the system after good
estimates have been obtained, that is, the time
{» at which the control starts is settled when
I'(#) has become less than the threshold value
& =10-°[1]. This start point is shown as P in
Fig.l. Another point P. has been taken before
I’{!) becomes less than &

[Step-Out Region]

The initial values of the states are

X1(0)= '—0722, 32(0)=0205
S /
- ',

PI,PZ : control atarting ,'

$P 1 ateady point
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Fig. 2 Control characteristics of x in
Step—Out Region
1'(0,.317)=0,9x10""* at Py,
77(0.10) =0.59%x10~* at P;.



Control characteristics with different 7'(z,)’s are
shown in Fig.2. The way of settling {, is the same
as in the case of Hunting Region.

5. CONCLUSION

"In general, up to now, the estimation problem
and the control problem have been investigated
separately. The important feature of this paper
is that the estimation problem is changed to the
control one at the time t, which is decided with
the aid of the judging function. Needless to say,
the time t, must be chosen carefully.

As for the nonlinear control policy proposed in
this paper, we have obtained the promising re-
sults by the computer simulation, although the
power system example demonstrated here is
considered to have relatively high nonlinearities.
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