TUNTRKZHFRE (T%) N74 200243 A 21

An Efficient Queue Management for Adaptive and
Non-adaptive Traffics

(Received November 30, 2001)

by Rabin SHAKYA
Noriyasu YOKOO
Hiroshi KOIDE
Yasuhiro SHIGEMATSU

Abstract

This paper considers the major negative impacts of deploying DropTail FIFO, the traditional queueing algorithm in

almost all routers. The unfairness to the TCP traffics due to the lack of efficient queue management and the unavoided

congestion collapse of the Internet due to unresponsive flows are discussed. To overcome the several defects of the

conventional queueing algorithm, we propose an algorithm, which is fair to the different traffics even in the presence of

heterogeneous traffics. The proposed algorithm classifies the incoming packets into a particular traffic type and an

appropriate queueing algorithm is deployed to each traffic type, contradict to DropTail FIFO, which has a single

queueing algorithm for any kinds of traffics. Our method does not require any time consuming schedulers. Our

simulations show the TCP sharing a small portion of the bandwidth even in the time of congestion. We conclude with

a comparison of the proposed algorithm to some of the conventional algorithms.

1. Introduction

Recently, there has been a tremendous increase of traffics
in the Internet. The multimedia traffics, the real time
applications, on-demand video and telephony services have
been dominating the Internet and these traffics are predicted
to be more increased in the coming years. These traffics, if
classified accordingly to ISO/OSI (International Standard
Organization/Open System Interconnection) are non-adaptive
traffics like UDP (user datagram protocol) in the transport
layer. The wide spread use of UDP is due to its simplicity and
the transfer rate, better than other protocols like TCP
(Transport Control Protocol). On the other hand, UDP
traffics has a great influence on other adaptive traffics like
TCP. When the adaptive and non-adaptive traffics compete
for the bandwidth, it is always the non-adaptive which
dominates the adaptive traffics®?. Consiquently, the adaptive
traffics either become scarce in the bandwidth or do not get
even a small portion of the bandwidth in the worst cases.
During the time of congestion, the Internet behaves as it is
dedicated to non-adaptive traffics only delivering the non-
adaptive pre-dominantly and dropping the adaptive ones. The
Internet, which so often called the best-effort, must not be

fair to UDP only, unless there is some sophisticated pricing

system or some other means to give the priorities to the
certain traffics. The stereotype that TCP is reliable is not
always true. Like in the cases above TCP does not get the
share of the bandwidth till the UDP stops and the transfer of
the packets can never be guranteed.

One of reason for the above mentioned problem is in the
protocols of TCP and UDP. TCP supports flow control where
UDP does not, thus TCP slows its transfer rate on the
detection of packet drop or the congestion, while UDP never
decreases its transfer rate. Thus, there is always bandwitdth
available for UDP, in comparision to TCP. On the other hand,
the use of the end-to-end congestion mechanisms of TCP has
been a major factor in the robustness of the Internet today.
However, the Internet today, is no longer a small and closely
knit user community, and it is no longer possible to rely on
all end-nodes to use end-to-end congestion control. The
intermediate nodes, whose architecture has been so simple,
should also play an essential role in the congestion
mechanisms. Moreover, the most effective detection of
congestion can occur in the gateway itself. The gateway can
reliably distinguish between propagation delay and persistent
queuveing delay. Gateway is shared by many active
connections with a wide range of roundtrip times, tolerances

22 Rabin SHAKYA, Noriyasu YOKOO, Hiroshi KOIDE, Yasuhiro SHIGEMATSU

of delay, throughput requirements, etc, decisions about the
duration and magnitude of transient congestion to be allowed

at the gateway are best made by the gateway itself."!

The second reason is the router, where the queucing
algorithm is still the conventional Drop Tail FIFO (First In
First Out) algorithm, which is being the standard Internet
gateway queueing algorithm. Drop Tail has been deployed for
its simplicity. It drops the incoming packets after the buffer is
exhausted. The traditional technique for managing router
queue lengths is to set a maximum length in terms of packets
for each queue, accept packets for the queue until the
maximum length is reached. Then, drops the subsequent
incoming packets until the queue decreases because a packet
from the queue has been transmitted. However, its drawbacks
like Lock Out, Global Synchronization and Full Queues can
result in severe service degradation or Internet meltdown .

Some of the drawbacks are discussed below:

LockOut

In most of the cases of DropTail allows a single connection
or a few flows to monopolize the queue, thus other
connections do not get a share of the queue. The packets from
the faster connections have the least probability to be
dropped. This causes the unfairness of the whole network.

Full Queues

The DropTail allows queues to maintain a full queue state
for a long period of time and signals congestion only when
the queue has become full. Thus, the feedback of the
congestion is not sent to the sender at the appropriate time. If
the queue is full or alomost full, an arriving burst will cause
multiple packets to be dropped.

Global Synchronization

When the TCP packets are dropped the sender throttles
down its speed. In some cases when the TCP packets are
dropped, the window size in every TCP are decreased at the
same time and when there is excess bandwidth, the window
size is increased at the same time resulting a phenomenon of
global synchronization, a cause of Internet bandwidth

degredation.

The Danger of Congestion Collapse

The congestion collapse of the network occurs when it is at
the full or near full utilization but little useful work is being is
accomplished. In 1980, Nagle!™ was the first person to report
the congestion collapse due to the unnecessary retransmission
of the packets of TCP that were either in transit or had

already been received at the receiver. Another kind of
congestion collapse occurs when the bandwidth is wasted by
delivering packets through the network that are dropped
before reaching their ultimate destination.

Morever, DropTail algorithm does not decode the
incoming packets except the port number and the IP address.
While dropping the packets, the DropTail drops all the
incoming packets, no matter whether the packets are
important or not. The rejection of important packets like
ACK (acknoledgement), ICMP (Internet Control Message

Protocol) packets results severe service degradation.

2. Typical Queueing Algorithms

When the network gets congested, the excess packets are
kept in a queue. Queueing algorithm is the mechanism to
control the packets in the queue. There are two aspects of
scheduling mechanisms; namely fairness and providing
incentives for end-to end congestion control, the aspects that
DropTail does not support. DropTail is well known for its
simplicity, but the Internet now is being more complicated;
the number of the packets flowing and their characteristics
has been dramatically changed. Several algorithms have been
implemented to overcome the defects of the Drop Tail FIFO.
Some algorithms are discussed below:

Drop Front Algorithm

Drop Front algorithm!'¥, a simple algorithm, which drops
the packets from the front when the queue is full and a packet
arrives. The algorithm is very simple and the sender is
allowed to detect the packet drop earlier and the time to
retransmit can be decided at the earliest. But the time
required to drop the front packets is large, it has to walk O
(N) to drop a packet and dropping the front packets do not
always solve the above problems. Moreover, some
reasearchers argue that dropping packets that has been in the
queue for the longer period is the waste of bandwidth and the
time-out may occurs before the dropping the packets that has

been moved from the tail to head,

Random Drop Algorithm

Random Drop algorithm, which drops the packets
randomly from the -queue to overcome the global
synchronization and the full-queue problem, so that end
nodes can respond to congestion before buffers overflow. By
dropping packets before the queue limit, active queue
management allows routers to control when and how many

packets to drop. But the certain studies show that in Random

An Efficient Queue Management for Adaptive and Non-adaptive Traffics 23

Drop gateways, if the queue length exceeds a certain drop
level, then the gateway drops each packet arriving at the

gateway with a fixed drop probability®.

Random Early Detection, well-known as RED which is
discussed later on this paper, also works well in comparision
to DropTail but is not effective in the presence of
heterogeneous traffics. And several other algorithms like
BRED (Balanced RED)™, Fair Queueing etc. have been
proposed but neither has been the substitutional attempt to
the Drop Tail. Thus, the above-mentioned drawbacks have
never been solved. In most of the algorithms, all the traffics,
no matter whether it is adaptive or non-adaptive, are treated
with the same queue management algorithm as in DropHead
and Random Drop. Thus the algorithm may be fair to a
particular traffice but does not support heterogeneous traffics
Fig.-3.

Weighted Round Robin

In some algorithms like Weighted Round Robin, a
scheduler like Round Robin is used for delevering the packets
from the queue after giving them an appropriate weight or
priority. This algorithm provides a certain gurantee of the
bandwidth and latency in some special cases but consumes a
longer time to decide when to deliver packets and the
algorithm itself is complicated to deploy. In such kinds of
algorithms, either a number of queues have to be maintained
or the scheduler has to process all the packets, which is time
consuming process. Other similar kinds of algorithms are
discussed in {1] and [10].

The traffic in the Internet has different characteristics; thus,
each type of traffic should be queued in different queues to
avoid the influence of other traffics and should be treated
with the appropriate queue algorithms or schedulers. The
quality of service (QoS) required by the data traffics like mail
or Web and the real time datas like voice or videos are not the
same. The former one is not sensitive on the latency of few
seconds or the jitter but in the second one, the quality of
voice and the image is affected. Here an algorithm that treats
the traffic accordingly to their types is proposed.

3. Proposed Algorithm

In the Internet, congestion control is achieved mainly
through end-host algorithms. However, starting with Nagle!”,
many researchers observed that such end-to-end congestion
control solutions are greatly improved when routers have
mechanisms that allocate bandwidth in a fair manner. Fair

bandwidth allocation protects well-behaved flows from ill-
behaved ones, and allows a diverse set of end-to-end
congestion control policies to co-exist in the network. In the
presence of adaptive flows and non-adaptive flows, it is
always non-adaptive flows, which get the higher portion of
the bandwidth, and the adaptive flows suddenly get scarce of
bandwidth. In most of the cases, every adaptive packet is
dropped, before they enter the gateway, consiquently the
sender stops sending packets. To overcome these drawbacks,
here both of the flows are buffered in a separate queue
virtually i.e. to every packets there is a threshold after which
the packets are discarded, thus the influence of greedy non-
adaptive flows do not affect the adaptive flows. It consists
only one FIFO queue that has a maximum limit of queue with
several thresholds to different traffics. As the packets are
queued virtually accordingly to their traffic types, the
proposed algorithm does not need any time consuming
schedulers like Round Robin. The prompt delivery of the
important packets is done to increase the efficiciency of
transfer of the packets, so the important packets whose drop
affects the efficiency of the connections and the small packets
have the highest priority. Here, the traffics are classified
according to their traffic types based on their characteristics.
The proposed algorithm consists of two parts namely:
Classifier and Queue Management.

3.1 Classifier

The classifier behaves as the initial point for each and
every incoming packet. The grouping of the packets that has
similar characteristics are done by the classifier. The
classifier classifies the incoming traffics into adaptive, non-
adaptive, small packets and others. For grouping of the
traffics with similar kind in Transport level is done by the IP
header. The protocol field of each incoming packet header is
decoded and is classified.

In Fig-1, an IPV4 header is shown. The 8 bit protocol field
in the IPV4 header identifies the next upper level protocol i.e.
transport control protocol or others. Most of the recent
algorithms are studying to utilize the 8-bit TOS (Type Of
Service) field, which has not been used to classify the packets
or to provide priorities. Several studies and workgroups are
discussing the details of the TOS field, which may needs
more time to discuss for its standard definition. But here, our
effort is done to classify the packets by using the existing IP
header. The protocol field with clear grouping of packets
already exists; thus new definitions are not required. Some of
the assigned Internet Protocol numbers in the Protocol field

are listed below:

4-bit | 4-bit 8-bit 16-bit total
Version | header | type of | length in
length service | bytes

(TOS)

16-bit 3-bit 13-bit fragment

identifi | flags offset

cation

8-bit 8-bit 16-bit header

time to | proto— checksum

live col

(TTL)

32-bit source IP address

32-bit destination IP address

Option Headers Padding

DATA

Fig-1 IPV4 Header.

Table 1. Internet Protocol numbers.

Decima | Keyword Protocol
1
1 ICMP Internet
Control
Message
2 IGMP Internet Group
Management
4 P IP in IP
(encapsulation)
6 TCP Tramsmission
Control
8 EGP Exterior
Gateway
Protocol
9 1GP Interior
Gateway
17 UDP User Datagram
92 MTP Multicast
Transport
Protocol

From the Table-1 above the incoming packets can be
classified easily from the protocol field. Some of the
protocols listed in the above table may have further sub-
groups like in TCP; the packets may be ACK, FIN or etc,
which is not possible to identify from the table only. At the
present the classifier classifies the various packets as follows:

Non-adaptive
Traffics, like UDP take as much bandwidth as they require
and do not slow down under congestion. Applications like

Rabin SHAKYA, Noriyasu YOKOO, Hiroshi KOIDE, Yasuhiro SHIGEMATSU

audio, video and telephony, which require faster transmission
and the drop of few packets do not effect on the quality, are
non-adaptive type. The sender should always keep in mind
that some packets may be dropped while transmission and the
dropped packets are never retransmitted. These types of
traffics do not support flow control thus, congestion
avoidance algorithms do not exist. If no action is taken, such
unresponsive flows could lead to a new congestion collapse.
These kinds of traffics have a particular sending rate and try
to get the share of the bandwidth proportional to the seding
rate, while these traffics do not increase the sending rate even
in the abundant avability of the bandwidth and the full
utilization of the bandwidth is not done. These kinds of
traffics are with very simple header and are fast in
transmission but non-reliable, the delivery of the packets is
never guranteed. The protocol number for UDP in the IPV4
header is given 17.

Adaptive

These connections slow down when they detect the
congestion or packet dropped and sends more packets if
allowed as long as no packets are lost. As the network
becomes congested and the buffer at the gateways fills up
packet loss occurs. In response to that adaptive traffics
decrease the sending rate. Thus the sending rate of these
applications is changed according to the level of congestion
perceived in the network. Packet marking or packet dropping
serves the congestion indicator of the network. Adaptive
traffics are window-based congestion control; the window
size is the number of packets that can be transmitted at a
time. The window-size decreases in the detection of packet
drop and increases in the avability of bandwidth. The
dropped or lost packets are always retransmitted; therefore
these traffics are very reliable. TCP is an adaptive traffic the
sending rate of the packets is proportional to the RTT (Round
Trip Time), MSS (Maximum Segment Size and MTU
(Maximum Transfer Unit) which varies in the time of
congestion or packet drop. Thus adaptive traffics share the
available bandwidth with each other and the full utilization of
the available bandwith is done. The major transport protocol
in use over the Internet is the TCP that provides end-to-end
congestion control. These kinds of traffics are reliable and
fast in transmission in the availability of excessive
bandwidth. Applications like FTP and Web that are not
latency conscious but require reliability use' adaptive
protocols. The protocol number for TCP in the IPV4 header

is given 6.

An Efficient Queue Management for Adaptive and Non-adaptive Traffics 25

Small Packets

Some packets that are very small in size but play very
important roles in the Internet. Packets like ACK, ICMP
packets and Telnet packets, which are very small in size but
their loss or the drop of these packets slow down the Internet.
The small packets, can be adaptive or non-adaptive. From the
above list the small packets may be ICMP, IGMP, EGP or
IGP. The small packets can be differentiated into two types.
The first one is the one that has its protocol number in the
protcol field of IPV4 header, which plays a vital role in the
Internet and their drop or the retransmission affects the
efficiency of the Internet. The second ones are those that are
not listed in the protocol field. These packets are small only
because of their size. The telnet packets can be considered as
small packets, most of the time the telnet packets are very
small in size. For e.g. when we send a | byte data through
telnet, first the TCP or UDP headers of 20 bytes are added
then the IP header of 20 bytes and ethernet header of 14 bytes
are added. Thus the maximum overhead occurs in the above
cases to transfer 1 byte data; a packet at least not less than 67

bytes has to be transferred.

Generally, here the incoming packets are classified on the
basis of ISO/OSI transport layer i.e. TCP or UDP. The small
packets do not have direct connection with the transport
layer; thus measuring the packet size is the only way of
identification of these packets. The method of identification
of the important packets like ACK, FIN packet, which can be
verified by the Transport Level only, is yet to be done.

4. Proposed Queue Management

Queueing management is the core of network that is
responsible for the packet forwarding and packet discarding.
Therefore, an efficient queue management must be deployed
to supress latency and should be fair to every incoming
packets but with a very few processing time. Here, the
incoming packets after the protocol has been decoded are
kept in a single queue. The queue works as a FIFO until the
detection of the congestion, the FIFO works well in the

Table-2 Deployed Algorithms.

Traffic Type Deployed Algorithm

Adaptive Traffic Random Early
Detection (RED)

Non-adaptive DropTail

Traffic
Small Traffic

Priority Queueing

Others DropTail

absence of congestion. Obviously, the queue has a maximum
queue limit and the packets arrived after the maximum limit
is dropped. When the packets in the queue cross the
threshold, the proposed algorithm is activated and the
incoming packets after they are classified by the classifier.
Then they are treated with an appropriate queueing
algorithm. Here, each classes is treated with different
algorithm as follows shown in the Table-2.

The characteristics of the three various traffics types are
very different from each other, thus they should be treated
with an appriopriate algorithms. The non-adaptive traffics
tend to get the share of the bandwidth proportional to the
sending rate; thus the maximum effort should be given to
fulfil the demand of these traffics. The adaptive traffics share
the bandwidth with each other, thus even in the case of scarce
bandwidth, each connections gets the fair share of the
bandwidth. The small packets as mentioned above are the
most important packets and should be given the highest
priority. The adaptive traffics that send feed back to the
sender in the time of congestion are treated with RED as it is
originally developed for adaptive traffics. RED has been
strongly recommended by [2] as the next generation queueing
algorithm. But the disability of RED to support non-adaptive
has been pointed out in several researches’®*!'?), RED solves
the global synchronization of the adaptive packets and drops
the packets from the queue earlier before the queue becomes
full. The feedback of the congestion and the packet drops are
sended to the sender for the retransmission or the decrement
of the sending rate. RED works very well with adaptive
traffics, hence in this algorithm for adaptive traffics, it is
deployed. The adaptive traffics support flow control, whereas
other traffics do not support it. The adaptive traffics
correspondly respond to the packet drop and traffic like TCP
is non-speed oriented, rather it provides the gurantee of the
packets transmission only. On the other hand, other traffics
do not respond to the packet drop, thus deployement of RED
with other traffics is meaningless. As in the case of deploying
RED with UDP traffics, RED drops several packets randomly
for the early notification of the congestion, but as UDP do not
support retransmission, the feedback is of no use. Thus RED
should be deployed only in the homogenous traffics of
adaptive traffic only.

As non-adaptive traffics do not slow down even in the
detection of congestion and packet drop. Hence here, the
conventional DropTail FIFO is deployed for the non-adaptive
traffics, thus the connections with higher speed gets more
bandwidth than the slower ones. The DropTail FIFO delivers

26 Rabin SHAKYA, Noriyasu YOKOO, Hiroshi KOIDE, Yasuhiro SHIGEMATSU

packets from the queue depending on the arrival of the
packets. Consiquently the faster connections get more
bandwidth. The non-adaptive traffics do not alter their
transfer rate and the retransmission of the packets are not
done, thus the need of random drop or the earlier drop of the
packets is needless for non-adaptive traffics. Here, the
question of the connection with the lower speeds does not get
the share of the bandwidth may arise. The transfer rate of the
connection is proportional to the charge payed, thus the
higher connections get more bandwidth than the others do.
The non-adaptive traffics like UDP are speed-oriented traffics
and the DropTail FIFO algorithm works well with it.

Small packets play a vital role in the Internet. There is a lot
of ovehead in the transmission of small packets, when the
retransmission of these small packets has to be done due to
their drop, the efficiency of the traffic decreases. The
maximum effort is done here to avoid the retransmission of
the small packets and other important packets like ACK, FIN
and others. The incoming small packets are alwayes buffered
and are never dropped. The small packets are also treated
with Drop Tail, but the highest priority goes to the small
packets as the discardment of these packets can cause
degradation in the throughput. The packets that do not lie on
the above mentioned traffic types are treated with the
DropTail FIFO algorithm.

4.1 Dropping Behaviour

In conventional queueing algorithms like DropTail FIFO,
the packets are dropped after a certain limit of the queue. In
RED, there are two thresholds, after which the packets are
dropped with a probability. Here, each traffic types have
different thresholds, after which the packets are dropped with
a probability. For UDP there is only one threshold and the
packets are dropped after crossing the limit. With TCP, the
dropping behaviour is the same to RED, where the packets
are dropped with a certain probability if the queue length lies
between the minimum and the maximum threshold. Here, the
calculation of the size of average queue length (avg) is also
done as in RED using a low-pass filter. Thus, the short-term
increases in the queue size that result from bursty traffic or
from transient congestion do not result in a significant
increase in the average queue size. Bursty traffic may be from
FTP connection with a long delay-bandwidth product with a
small window; a window of traffic will be sent and then there
will be a delay until the ack packets return and another
window of data can be sent. Variable-bit-rate video traffic and
some interactive traffic are bursty traffics. The low-pass filter

is an exponential weighted moving average (EWMA)

avg = (1-w) avg + w*q

The weight (w) determines the time constant of the low-
pass filter and q is the queue length at that instance. The size
and duration of bursts in queue size that are allowed at the
gateway determine the queue weight. The use of the average
queue size is essential in RED to give a tolerance for transient
congestion so that a packet is not dropped from a transient
queue caused by a TCP slow-start to eliminate global
synchronization, and to eliminate biases against bursty traffic.
Here, weight is kept 0.002 as suggested by RED.

For the small packets the maximum queue length is the
threshold to drop. Here, for easiness the maximum threshold
of TCP and small packets or the maximum queue length is
set equal. Another difference of the dropping behaviour is the
packet recognition, in the conventional algorithms, while
dropping packets the router never know what kind of packets
it dropped, neglecting the importance and the effect of
dropping such packets. Here, each packet are decoded and the
importance of the packets is studied and are dropped, thus the
dropping mechanism of the proposed algorithm is serving a
better and efficient method to increase the efficiency of the
Internet. Thus the proposed algorithm is equipped with
various threshold to drop the packets and may also be used as

an admission control.

4.2 Random Early Detection (RED)

RED is an active queue management for congestion
avoidance in packet-switched networks that has been
recommended by IETF (Internet Engineering Task Force) as
the next generation queueing algorithm. RED use
randomization to ensure that all connections encounters the
same loss rate. It also prevents congestion rather than just
reacting to it, by dropping packets before the gateway's
buffers are completely full or by marking the packets. RED
does not require per-flow state and thus easy to add to the
existing IP gateway and have little impact on packet
forwarding efficiency.

The RED algorithm consists of two main parts: estimation
of the average queue size and the decision of whether or not
to drop an incoming packet. The packets are dropped with a
certain probability when the average queue size lies in
between the minimum threshold and the maximum threshold
and all the packets are dropped after the average queue size
cross the maximum threshold.

RED is well-known for its several advantages. Deploying it

An Efficient Queue Management for Adaptive and Non-adaptive Traffics 27

the global synchronization is prevented and the feedback of
the congestion of the queue is sended to the sender. The early
drop of the packets before it gets full, solves the problem of
lock-out and the sender can know the congestion before-
hand.

4.3 Algorithm
A very simplified form of the proposed algorithm is shown

below:

/*************************************
KEHEAIEAAK A K HKIAKIAKRAAAKIAAARKRRARAARN AR AR Rkok

Max = Max packets allowed in the queue
Max Udp = Max UDP packets allowed
Max Tcp = Max Tcp packets allowed

Min Tep = Min Tep packets allowed

khkhkkkkhhkhkhhkkhkhkhkrkkhhkhkhkhhkhhhhdddhdhhhhhhx

*************************************/

If flow > Max
drop;

else switch "flow"
case "UDP" :
if queue length > Max Udp
drop;
else enqueue;

case "TCP": /* RED algorithm */
if queue length > Max Tecp
drop;
else if Min Tcp < queue length <
Max Tcp
Drop random;
else enqueue;

case "Small Packet" :
enqueue;

default : FIFO algorithm;

Fig-2 A Simplified form of the algorithm.

The queue has a maximum queue limit (Max), after which
every incoming packet is dropped. The queue length is
calculated after a packet is enqueued or dequeued. For every
traffic types, after the packets are classified, a particular
queue limit is setted, after which the packets are dropped. In
the case of UDP, it holds only one threshold (Max Udp) but

for TCP there are two thresholds as RED algorithm
recommendation. RED serves byte mode and packets mode,
here packet mode is deployed. The packets that enter the
queue after the initial threshold are dropped by a certain
probability. The maximum threshold of TCP is set equal to
the maximum queue length. The value of the thresholds used
here differs from the values recommended by RED. The
values of the thresholds in the original RED is used and
studied for the heterogeneous traffics, here RED is used for
the homogeneous of adaptive traffics only, thus the values
used here are deployed after experiments and studies. But the
small packets do not have any threshold, so they are always
enqueued if the queue length is less than the maximum limit.
If the classifier is not able to classify the packet then the
default FIFO algorithm is deployed

5. Simulation

Several simulations, with different parameters and
conditions were done with the proposed algorithm, the
DropTail FIFO algorithm and RED algorithm. For all of the
simulations presented, the NS[!'! simulator, which has been
the major simualtor for the research of Internet and
Networkings, is used. However, here the small packets are

not classified for the easiness of the simulation.

Fig-3 shows one of the simulations with sources consisting

TRAFFIC
SOURCES

TN
uDP1 TCP1
/\

ROUTER
1.5Mbps

SINK

10Mbps

Fig-3 A simple network with a bottle-

neck gateway.

28 Rabin SHAKYA, Noriyasu YOKOO, Hiroshi KOIDE, Yasuhiro SHIGEMATSU

of a TCP and three UDP with the connection of 10Mbps to a

router.

In the above simulation, the maximum size of queue is set
to 15 packets, after which the incoming packets are dropped
The packets from the sources are sended to the sink. The sink
is set up with the connection of 1.5 Mbps for a bottle necked
gateway. The packet size of TCP is 1000 bytes and UDP with
the size of 300, 400, 500 bytes and the transmission transfer
rate of UDP is .006, .005, and .004 secs respectively. The
transfer rate of the TCP varies and is dependent on the state
of traffic, thus is not shown in the figure. The above
simulation is constructed to analyze the behaviour of the
traffics with multiple UDPs and limited number of TCP
showing the present Internet dominating by UDP. In every
simulations, the soureces are sended to the sink, the sender
trensmits another packets after receiving the ack packets for
the adaptive traffics. The simulations were continued for 5

seconds and the result is analyzed.

5.1 Result

The result of the above simulation is shown in the Fig-4,
Fig-5 and Fig-6. It is the bandwidth governed by the TCP and
UDP sources in Mbps and time in secs.

14 Tepi W
\ ar
12 Udpe' -

1

08

Bandwidth (¥bps)

04

02

|

|

06 I
|
|
[

4]

Q 1 3 4 5

2
Time (secs)

Fig-4 Simulations with DropTail

In Fig-4, TCP starts from 0.5 secs and risese gradually, and
then it gets the whole share of bandwidth in the absence of
other traffics in the first second. The bandwidth shared to
TCP goes on decreasing as the greedy traffics like UDP enter
from the first second, which clearily shows that UDP steals
the bandwidth and hinders the throughput of TCP. The sender
decreases its transfer rate to send packets and the packets
sended also are dropped, resulting the shortage of bandwidth.
The UDP traffics that start from the first second get their
desired bandwidth and continue the fixed share of the
bandwidth. There is no flow control in UDP, thus even in the

congestion period also; the sender keeps on sending the
packets. After three seconds, the maximum bandwidth is
shared to UDP only and consiquently TCP is blocked. The
next TCP is delivered only after UDP stops, if UDP is sent
continuously for a longer period as in video traffics, the TCP
has to wait for the same longer period, thus the Drop Tail
algorithm does not distribute the bandwidth to TCP in the
time of congestion. This shows the unfairness of DropTail
algorithm to TCP and UDP packets act as they are given the
higher priorities.

14

TR A —
\ "UpP1 Y ——
12 4 — i
\ "UpP3 N ——
> 1
2 [\
% 08
£ [\ —
3 [Y X
04 e U I— \
g I %X‘_h-—"- ------- ’.{\/\
02
’.” \ \\'
0 4 . A
Time (secs)

Fig-5 Simulations with RED

In Fig-5, with RED algorithm, the result is more or less the
same to Fig-4; the problems are not solved as with the
DropTail. In RED the packets are randomly dropped after the
queue cross the threshold. Dropping TCP sends incentives to
the sender that responds by decreasing the speed but
dropping UDP does not send any feed-back to the sender.
Thus some of the UDP packets or TCP packets may be
dropped consiquently some of the TCP packets get a very
tiny share of the bandwidth (3secs). But the incoming UDP
packets, which do not resppond in packet drop enter the
queue, the TCP again becomes scarce in the bandwidth.

In Fig-6, TCP packets get a small portion of bandwidth‘
even in the time of congestion. In the previous results, TCP
did not get a single share of bandwidth after 3 secs but here
TCP stops at 3 secs but soon it gets a small share of
bandwidth. In the proposed algorithm the influence of UDP
over TCP packets is deminished. As the influence of UDP
packets to TCP packets is decreased. The TCP packets get a
very small portion of the bandwidth even in the time of
congestion. Comparing with the above figures Fig-4 and Fig-
5, the bandwidth of UDP are almost the same. Thus,
deploying the proposed algorithm, the fairness of the gateway

can be maintained even in the presence of heteregenous

An Efficient Queue Management for Adaptive and Non-adaptive Traffics 29

Tept” '
\ “Udp1®
"Udpo"

\ ez .

(Mbps)
w

.............

Bandwidth
<
N b

2
(S

b4
(-]
——
‘M“
S —
B o

Time (secs)

Fig-6 Simulations with the proposed

algorithm
traffics.

Several other simulations were done to show that the
proposed algorithm works well with not only the above
simulation but with different environments and the result was
found satisfactory. In the above simulation, there is only one
TCP with multiple UDPs, another simulation with a UDP and
multiple TCP were performed. A similar kind of result was
obtained, TCP sharing the bandwidth and not constraining
the UDP. Therefore, the proposed algorithm can be applied in
any kind of traffics and environments and can be the
substitutional algorithm to the DropTail.

5.2 Evaluation and Conclusion

Here an algorithm is proposed that classifies and treats the
traffic accordingly to their types and the efficiency of the
Internet is increased by setting the highest priority to the
small packets. The proposed algorithm does not require any

schedulers as separate queues are deployed virtually.

The major advantage of the proposed algorithm is the
influence of the greedy traffics over the other traffics is
minimized. The unfairness of the adaptive traffics due to the
monopoly of the non-adaptive traffics is diminished. By
in particular traffic types,
sophisticated functions can be supported. Like in the case of
ECN (Explicit Congestion Notification), which notifies the
next routers about the congestion. When ECN is used in
heterogeneous traffics, the ECN bit flag in the UDP is of no

classifying the packets

use, where as the TCP respondes to the congestion. The

defects of DropTail are solved using the proposed algorithm.

The proposed algorithm is very simple to implement and

can be easily subsitute the exsiting algorithms. The

classification of the packets is very simple and can be
implemented easily from the existing Protocol field of P
header. It is a parameter sensitive algorithm; the threshold of
the traffics can be changed accordingly to personal needs for
the better results.

The classifier used here may have some influences from
the DiffServ (Differentiated Services). In DiffServ the packets
are classified by identifying the TOS field, an 8-bit field in
the IP header which has not been used for a longer period.
DiffServ use the 6bit of the TOS field and has three classes
namely AF (Assured Forwarding), EF (Expedited Forward-
ing) and BE (Best-Effort Forwarding). These classes are
further sub divided but the details are yet to be defined. Here
the 8-bit Protocol field which is used for grouping the
traffics. The advantage of classifier used here over DiffServ is
that the Protocol field has been defined clearily and is already
exist in the IP header, that allow us for the prompt
deployment of the algorithm.

6. Future Research

In the proposed algorithms the small packets are not used,
the simulations must be done with these small packets for the
efficient queue management of the heterogeneous traffics.
The proposed algorithm is a parameter sensitive; thus the
simulations with a wvarities of parameters in different
environments should be done. Contradiction to the real
practice, the size of the packets in the simulation is kept fixed
for the easiness. The simulation with variable packet size and
the bursty packets should be performed. As the traffics are
classified accordingly to their traffic type, the proposed
algorithm may be used in the DiffServ. The algorithm at
present behaves merely as the best-effort, but the priorities
given in the DiffServ can be further classified to the traffic
types explained here, and may be used for the precise
gurantee of the bandwidth and latency. Moreover, the
experiments should be done based on the above simulations

to study the real characteristics of the algorithm.

The defects of the proposed algorithm can be the time
consuming while identifying each incoming packet and the
definition of the small packets is yet to be done. Further
studies must be done on small packets for the more
effecitveness of the algorithm or the algorithm may be

extended to byte mode.

30 Rabin SHAKYA, Noriyasu YOKOO, Hiroshi KOIDE, Yasuhiro SHIGEMATSU

References:

[1] Archan Misra (Doctor dissertation), “Dynamics of TCP congestion
avoidance with Random Drop and Random marking queues’,
University of Maryland, College Park, p.194, 2000.

[2] B.raden, D.Clark, et al., “‘Recommendations on Queue Management
and Congestion Avoidance in the Internet”, RFC 2309, April 1998.

[31 Dong Lin, Robert Mortis, “Dynamics of Random Early Detection”,
Proceedings of SIGCOMM 97, 1997.

[4] Farooq M.Anjum, Leandros Tassiulas, “Balanced=RED: An
algorithm to Achieve Fairness in the Internet”, Center for Satellite
and Hybrid communication Networks, p.29, March 1999.

[5] Floyd, S., Jacobson “Random Early Detection gateways for
Congestion Avoidance”, IEEE/ACM Transactions on Networking,
Vol.1, No.4, pp.397-413, Aug. 1993.

[6] Mikkel Christiansen, Kevin Jeffay, David Ott, F.Donelson Smith
“Tuning RED for Web Traffic”’, ACM Digital Library, pp.246-249,
Sep. 2001.
http://www.cs.unc.edu/Research/dirt

[7] Nagle, J. “Congestion Control in IP/TCP”, RFC 896, Jan. 1984.

(8] Rabin Shakya, Noriyasu Yokoo, Yasuhiro Shigematsu, “An
Efficient Queue Management for Adaptive and Non-adaptive
Traffics”, Record of 2001 Joint Conference of Electrical and
Electronics Engineers in Kyushu, pp.465-465, 2001.

[9] Sally Floyd, Kevin Fall, “Router Mechanisms to Support End-to-
End Congestion Control”, Network Research Group, Lawrence
Berkeley National Laboratory, Berkeley CA, p.19, Feb. 1997.

[10] Sally Floyd, V.Jacobson, “Link-sharing and Resource management
Models for Packet Networks”, IEEE/ACM Transactions on
Networking Vol.3, No.4, pp.365-386, 1995.

[11] S.Keshav “REAL network simulator”, May 1990.
http://www.mash.cs.berkeley.edu/ns/ns.html

[12] Stefaan De Cnodder, Omar Elloumi, Kenny Pauwels, “Effect of
different packet sizes on RED performance”, Traffic and Routing
Technologies project, Alcatel Corporate Research Center, Belgium,
p.9, 2000.

[13] T.V. Lakshman, Amie Neidhardt, Teunis Ott, “The Drop From
Front Strategy in TCP over ATM and its Interworking with other
control Features” , Infocom 96 MA28.1, 1996.

