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1 Introduction

The problem of establishing stability of interconnected systems has attracted a lot of attention in
the field of nonlinear systems control for many decades. For a nonlinear system whose behavior
cannot be analyzed directly, decomposition into simpler subsystems sometimes permit verification
of the overall system property. In the framework of dissipative theory(see [22]), one can derive
dissipative properties of interconnected systems from dissipativity of individual subsystems (see,
e.g., [6]). One of useful dissipative properties is input-to-state stability(ISS) proposed in [17]. Its
storage functions serve as ISS Lyapunov functions. The ISS small-gain theorem proposed by [14]
and [21] deals with the feedback interconnection of ISS systems and establishes its stability based
on the notion of nonlinear gain when the nonlinear loop gain is less than identity.

The nonlinear gain is computed from dissipation inequalities of the individual subsystems. The
inequalities are sometimes referred to as Lyapunov inequalities or Hamilton-Jacobi inequalities.
There are two ways to look at the inequalities.

• Given a supply rate, solve the dissipation inequality for the storage function.

• Given a storage function, modify the dissipation inequality maintaining eligible dissipation
a system can have.

The former view is essentially the direct approach to the optimal control. The latter fits the idea of
Lyapunov redesign and also conforms to the inverse optimal approach[5]. In both situations, when
one applies the ISS small-gain theorem, obtaining a successful Lyapunov inequality conforming to
a small-gain condition is not a straightforward task. If a large gain is computed from a Lyapunov
inequality, it does not satisfy the small-gain condition. If a restrictive supply rate is associated
with the satisfaction of the small-gain condition, the system does not accept the supply rate. This
fact motivated the author to develop his own idea of flexible Lyapunov inequalities, which provides
many Lyapunov inequalities with which a single small-gain-type condition can establish stability
of an interconnection of ISS systems (see [8, 9]). The technique introduces a degree of flexibility
in choosing supply rates, which is a nonlinear extension of the idea of scaling technique utilized
widely in H∞-type linear robust control[3, 4, 16]. For a scaled H∞-type formulation in dissipative
inequalities, see [7].

This paper is the upgrade of flexible Lyapunov inequalities [8, 9] in the following three points:

• Introduction of flexibility into both the systems connected with each other

• Covering integral input-to-state stability(iISS) property in the technique of flexible Lyapunov
inequalities

• Unification of the flexibility technique for iISS and ISS systems

The previous studies in [8, 9] only allow the flexibility to be included in one of the mutually con-
nected systems. The class of iISS is broader than ISS. An ISS system is always iISS. The converse
does not hold. The class of iISS systems encompasses more systems of practical importance than
the ISS (see [1]).

In this paper, the interval [0,∞) in the space of real numbers R is denoted by R+. The Euclidean
norm of a vector in Rn of dimension n is denoted by | · |. A function γ : R+ → R+ is said to be of
class K and written as γ ∈ K if it is a continuous, strictly increasing function satisfying γ(0) = 0.
A function γ : R+ → R+ is said to be of class K∞ and written as γ ∈ K∞ if it is a class K function
satisfying limr→∞ γ(r) = ∞.
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2 Interconnected system

Consider the nonlinear interconnected system Σ consisting of two subsystems described by

Σ0 : ẋ0 = f0(t, x0, u0, r0) (1)

Σ1 : ẋ1 = f1(t, x1, u1, r1) (2)

These two systems are connected with each other through

u0 = x1, u1 = x0 (3)

Assume that f0(t, 0, 0, 0) = 0 and f1(t, 0, 0, 0) = 0 hold for all t ∈ [t0,∞), t0 ≥ 0. We also assume
that the functions f0 and f1 are piecewise continuous in t, and locally Lipschitz in the other
arguments uniformly in t. The state vector of the interconnected system Σ is x = [xT

0 , xT
1 ]T ∈ Rn

where xi ∈ Rni , i = 1, 2. The exogenous signals r0 ∈ Rb0 and r1 ∈ Rb1 form a vector r =
[rT

0 , rT
1 ]T ∈ Rb. We will exploit dissipative property of each system instead of using fi directly.

When we investigate global asymptotic stability of the interconnected system, we suppose that
ri(t) ≡ 0, i = 1, 2.

3 Bilateral flexibility

The purpose of this paper is to propose a tool to establish the stability of the interconnected system
Σ by making use of admissible flexibility in Lyapunov inequalities of the individual subsystems
Σi. The following theorem is the main result which identifies a form of flexibility in the Lyapunov
inequalities which can be associated with a fixed small-gain-type inequality leading to the stability
of the interconnected system Σ.

Theorem 1 For i=0, 1, consider the following functions:

αi, σi, σri ∈ K (4)

λ̂i, λ̂ri : R+ → R+, C0 (5)

λ̂i(s) > 0, ∀s ∈ (0,∞) (6)

Vi : R+ × Rni → R, C1 (7)

αi(|xi|) ≤ Vi(t, xi) ≤ αi(|xi|), ∀xi ∈ Rni , t ∈ R+ (8)

αi, ᾱi ∈ K∞ (9)

where λ̂i(s) is supposed to be absolutely continuous on any finite interval in (0,∞). For each
i = 0, 1, assume that

dVi

dt
≤ λ̂i(Vi(t, xi)) [−αi(|xi|) + σi(|x1−i|)] + λ̂ri(Vi(t, xi))σri(|ri|) (10)

holds along the trajectories of the system Σi for all x ∈ Rn, ri ∈ Rbi and t ∈ R+. Suppose that
there exist real numbers c0 > 1 and c1 > 1 such that

c1σ1◦ α−1
0 ◦ α0 ◦ α−1

0 ◦ c0σ0(s) ≤ α1◦α−1
1 ◦α1(s), ∀s∈R+ (11)

is satisfied, then the following properties hold:
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(a) If

lim
s→∞

α1(s) < ∞ ⇒ lim sup
s→∞

λ̂1(s) < ∞ (12)

holds, the equilibrium x = 0 of Σ is uniformly globally asymptotically stable (UGAS).

(b) If (12),

lim
s→∞

α0(s) < ∞
lim

s→∞
α1(s) < ∞

}
⇒ lim sup

s→∞
λ̂0(s) < ∞ (13)

lim sup
s→∞

λ̂ri(s)

λ̂i(s)
< ∞ (14)

and one of

(H1) lim
s→∞

α0(s) = ∞ and lim
s→∞

σ0(s) < ∞

(H2) lim
s→∞

σ1(s) < ∞ and lim
s→∞

σ0(s) < ∞

are satisfied, the interconnected system Σ is iISS with respect to input r and state x.

(c) If (14) and

(H3) lim
s→∞

α0(s) = ∞ and lim
s→∞

α1(s) = ∞

are satisfied, the interconnected system Σ is ISS with respect to input r and state x.

Note that (11) implicitly requires

lim
s→∞

α0(s) = ∞ or ∞> lim
s→∞

α0(s)> lim
s→∞

σ0(s) (15)

The inverse of α0 in (11) is not necessarily well defined for the entire R+. Instead, the condition
(11) only needs α−1

0 ◦ c0σ0 ∈ K for c0 > 1 which exists if and only if (15) holds. When we take
λ̂i = λ̂ri = 1, i = 0, 1, i.e., no flexibilities, Theorem 1 can be viewed as a nonlinear small-gain
theorem. The dissipation inequality (10) with λ̂i = λ̂ri =1 implies that each Σi is iISS with respect
to input (x1−i, ri) and state xi. Hence, Theorem 1 includes the result of [10] as the special case
when λ̂i = λ̂ri =1, i = 0, 1. In the case of (H3), the dissipation inequality (10) with λ̂i = λ̂ri implies
that Σi is ISS (see [20, 9]). Therefore, the claim (c) in Theorem 1 with λ̂i = λ̂ri =1, i = 0, 1 reduces
to the ISS small-gain theorem in [14] and [21]. Indeed, the condition (11) associated with (10) for
λ̂0 = λ̂1 =1 is a nonlinear small-gain condition. It is worth noting that (10) does not restrict Σi to
being ISS, even under λ̂i = λ̂ri =1, if lims→∞ αi(s) < ∞ (see [18, 1]).

The Lyapunov inequalities of the from (10) in connection with the small-gain condition (11) were
primarily inspired by the scaled H∞-type linear robust control[3, 4, 16]. The flexible parameters
{λ̂i, λ̂ri} correspond to the scaling factors, which are now allowed to be nonlinear for nonlinear
systems with not necessarily quadratic supply rates. One may argue that we can often remove λ̂i

and λ̂ri from (10) by redefining αi, σi and σri. Qualitatively, the two Lyapunov inequalities with
and without λ̂i and λ̂ri should be the same. However, each individual technique to remove λ̂i and
λ̂ri results in a quantitatively different gain of Σi. Some may satisfy the small-gain condition (11),
while others may not. The formulation of flexible inequalities absorbs this quantitative variation
of the small-gain restriction. Theorem 1 tells that, as far as λ̂i and λ̂ri appear in the form of (10),
the functions used in the small-gain-type condition (11) remain unchanged, while we can choose
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λ̂i and λ̂ri from a large variety of functions. Note that this quantitative issue does not arise from
cascade interconnection of systems. The primitive idea of the flexible Lyapunov inequalities first
appeared in [8] for ISS systems in a restrictive setting. It was extended to a general case of ISS
systems by [9]. The result in [9] was not only for ISS systems, but also unilateral, i.e., it was the
(c) case with λ̂1 = 1 in Theorem 1.

Remark 1 The above theorem cannot be explained by individual Lyapunov functions in the form
of V̂i =

∫ Vi

0 1/λ̂i(s)ds since they are not guaranteed to be integrable and radially unbounded. It is
also mentioned that the technique of changing supply functions proposed in [19] is not applicable
to iISS systems.

Remark 2 When

lim
s→∞

α1(s) = ∞ or ∞> lim
s→∞

α1(s)> lim
s→∞

σ1(s) (16)

holds, we have α−1
1 ◦ c1σ1 ∈ K for sufficiently small c1 > 1. Then, we obtain

c1σ1

(
α−1

0 ◦α0◦α−1
0 ◦c0σ0◦ α−1

1 ◦ α1 ◦ α−1
1 ◦ c1σ1(s)

)
≤ c1σ1(s), ∀s∈R+

from (11). The property c1σ1 ∈ K in the above inequality implies

α−1
0 ◦α0◦α−1

0 ◦c0σ0◦ α−1
1 ◦ α1 ◦ α−1

1 ◦ c1σ1(s) ≤ s, ∀s∈R+

Applying α0◦α−1
0 ◦α0 ∈ K to both sides from left, we arrive at

c0σ0◦ α−1
1 ◦ α1 ◦ α−1

1 ◦ c1σ1(s) ≤ α0◦α−1
0 ◦α0(s), ∀s∈R+ (17)

Thus, in the case of (16), the existence of a pair of c0, c1 > 1 satisfying (17) is implied by the
existence of another pair of c0, c1 > 1 achieving (11). Therefore, when (15) and (16) hold, the
inequalities (11) and (17) are equivalent in the sense of the existence of c0, c1 > 1.

Remark 3 Arcak et al.[2] considers a time-invariant cascade interconnection in which an iISS
system is driven by a globally asymptotically stable (GAS) system. Instead of constructing Lya-
punov functions, they take a trajectory-based approach to prove GAS of the cascade under the
assumption of trade-off between the convergence rate of the driving subsystem and the growth
rate of iISS gain of the driven subsystem. This paper continues pursuing the stability problem
of interconnections involving iISS subsystems in order to tackle feedback interconnections defined
with α1, α2 ∈ K. However, the focus is not simply on the extention of their philosophy, but rather
on the introduction of flexibilities λ̂i and λ̂ri and the construction of Lyapunov functions for the
whole system in the presence of external signals.

4 Relaxation for static components

This section shows that the stability criterion can be relaxed when one of the subsystems in Σ is
static. Suppose that Σ0 is static. Replace (1) by

Σ0 : v0 = h0(t, u0, r0) (18)

which is connected with Σ1 through u0 = x1 ∈Rn1 and u1 = v0 ∈Rn0 . Assume that h0(t, 0, 0) = 0
holds for all t∈ [t0,∞), t0≥0. Piecewise continuity in t and locally Lipschitzness in (u0, r0) which
is uniform in t are also assumed for h0. The state vector of the interconnected system Σ becomes
x=x1∈Rn, where n=n1. The following theorem demonstrates that (11) can be relaxed.
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Theorem 2 Consider the following functions:

αi, σi, σri ∈ K, i = 0, 1 (19)

λ̂0, λ̂r0 : Rn0 → R+, C0 (20)

λ̂0(v0) > 0, ∀v0 ∈ Rn0 \ {0} (21)

λ̂1, λ̂r1 : R+ → R+, C0 (22)

λ̂1(s) > 0, ∀s ∈ (0,∞) (23)

V1 : R+ × Rn1 → R, C1 (24)

α1(|x1|)≤V1(t, x1)≤α1(|x1|), ∀x1∈Rn1 , t∈R+ (25)

α1, ᾱ1 ∈ K∞ (26)

where λ̂1(s) is supposed to be absolutely continuous on any finite interval in (0,∞). Assume that
the system Σ0 satisfies

0 ≤ λ̂0(v0) [−α0(|v0|) + σ0(|x1|)] + λ̂r0(v0)σr0(|r0|) (27)

for all x1 ∈ Rn1, r0 ∈ Rb0 and t ∈ R+, and that

dV1

dt
≤ λ̂1(V1(t, x1)) [−α1(|x1|) + σ1(|u1|)] + λ̂r1(V1(t, x1))σr1(|r1|) (28)

holds along the trajectories of the system Σ1 for all x1 ∈ Rn1, u1 ∈ Rn0, r1 ∈ Rb1 and t ∈ R+.
Suppose that there exist real numbers c0 > 1 and c1 > 1 such that

c1σ1 ◦ α−1
0 ◦ c0σ0(s) ≤ α1◦α−1

1 ◦α1(s), ∀s∈R+ (29)

is satisfied, then the following properties hold:

(a) If (12) holds, the equilibrium x = 0 of Σ is UGAS.

(b) If (12), (13),

lim
s→∞

sup
s≤|v0|

λ̂r0(v0)

λ̂0(v0)
< ∞ (30)

lim sup
s→∞

λ̂r1(s)

λ̂1(s)
< ∞ (31)

and one of (H1) and (H2) are satisfied, the interconnected system Σ is iISS with respect to
input r and state x1.

(c) If (30), (31) and (H3) are satisfied, the interconnected system Σ is ISS with respect to input
r and state x1.

The right-hand side of (27) plays the role of a supply rate of Σ0 although energy is never stored in
static systems. Note that (29) again requires (15). It is worth noting that the property (15) for the
pair {α0, σ0} in (27) is not restrictive for the system Σ0 satisfying the local Lipschitzness when v0

is not disconnected from r0 in the sense that λ̂r0(v0)/λ̂0(v0) > 0 holds uniformly in v0 ∈ Rn0 \ {0}.
To see this, assume that (15) is violated. Then, for each |r0| ≠ 0, there exists a constant U > 0
such that lims→∞ α0(s) ≤ σ0(U) + λ̂r0(v0)σr0(|r0|)/λ̂0(v0) is satisfied. Hence, the inequality (27)
allows v0 to be arbitrarily large for u0 and r0 selected independently of v0. This fact contradicts
the local Lipschitzness.

The following shows that the stability condition for the interconnected system can be simplified
further when the external signal r0 affecting the static system is absent.
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Theorem 3 Consider functions satisfying

α0, σ0, α1, σ1, σr1 ∈ K (32)

λ̂0 : Rn0 → R+, C0 (33)

λ̂0(v0) > 0, ∀v0 ∈ Rn0\{0} (34)

λ̂1, λ̂r1 : R+×Rn1 → R+, C0 (35)

inf
t∈R+

λ̂1(t, x1) > 0, ∀x1 ∈ Rn1\{0} (36)

and (24), (25) and (26). Assume that Σ0 satisfies

0 ≤ λ̂0(v0) [−α0(|v0|) + σ0|x1|)] (37)

for all x1 ∈ Rn1 and t ∈ R+, and that

dV1

dt
≤ λ̂1(t, x1) [−α1(|x1|) + σ1(|u1|)] + λ̂r1(t, x1)σr1(|r1|) (38)

holds along the trajectories of the system Σ1 for all x1 ∈ Rn1, u1 ∈ Rn0, r1 ∈ Rb1 and t ∈ R+.
Suppose that there exist real numbers c0 > 1 and c1 > 1 such that

c1σ1 ◦ α−1
0 ◦ c0σ0(s) ≤ α1(s), ∀s∈R+ (39)

is satisfied, then the following properties hold:

(a) The equilibrium x = 0 of Σ is UGAS.

(b) If there exists k ∈ (−∞, 1] such that

lim
s→∞

sup
s≤|x1|,t∈R+

λ̂r1(t, x1)
[α1(|x1|)]k

< ∞ (40)

is satisfied, the interconnected system Σ is iISS with respect to input r1 and state x1.

(c) If there exists k ∈ (−∞, 1] such that (40) and

lim
s→∞

inf
s≤|x1|,t∈R+

λ̂1(t, x1)α1(|x1|)
[ᾱ1(|x1|)]k

= ∞ (41)

are satisfied, the interconnected system Σ is ISS with respect to input r1 and state x1.

It is worth mentioning that the flexibility in the inequality (37) of the static system Σ0, has no
effect, i.e, (37) implies 0 ≤ −α0(|v0|) + σ0(|x1|).

5 C1 Lyapunov functions

5.1 Proof of Theorem 1

First, suppose that lim infs→∞ λ̂i(s) = 0 and define

Ai(s) =
{

λ̂i(T ), s ∈ [0, T )
λ̂i(s), s ∈ [T,∞)

Bi(s) =
∫ s

0

1
Ai(t)

dt, Wi(t, xi) = Bi ◦ Vi(t, xi)

β
i
(s) = Bi ◦ αi(s), βi(s) = Bi ◦ αi(s)
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for some T > 0. Then, we have

Bi, βi
, βi ∈ K∞, lim inf

s→∞

λ̂i(s)
Ai(s)

= 1

β−1
i

◦ βi(s) = α−1
i ◦ αi(s), ∀s ∈ R+

∂Wi

∂t
+

∂Wi

∂xi
fi =

1
Ai(Vi)

(
∂Vi

∂t
+

∂Vi

∂xi
fi

)
Thus, we can transform the lim infs→∞ λ̂i(s) = 0 case into

lim inf
s→∞

λ̂i(s) > 0, i = 0, 1 (42)

via the following substitution.

Vi → Wi, αi → β
i
, αi → βi

λ̂i(s) →
λ̂i◦B−1

i (s)
Ai◦B−1

i (s)
, λ̂ri(s) →

λ̂ri◦B−1
i (s)

Ai◦B−1
i (s)

Note that (14) remains the same under this operation. The rest assumes (42).

Suppose that

lim
s→∞

α0(s)= lim
s→∞

σ0(s)=∞ and ∞> lim
s→∞

α1(s)> lim
s→∞

σ1(s) (43)

does not hold. In the case of

lim
s→∞

α0(s) = ∞ and lim
s→∞

α1(s) = ∞ (44)

and the case of

∞= lim
s→∞

α0(s)> lim
s→∞

σ0(s) and lim
s→∞

α1(s)> lim
s→∞

σ1(s) , (45)

there exist σ̂1 ∈ K and ĉ0, ĉ1 > 1 such that

ĉ1σ̂1◦α−1
0 ◦ ᾱ0 ◦α−1

0 ◦ ĉ0◦ σ0(s) ≤ α̂1◦ᾱ−1
1 ◦ α1(s), ∀s∈R+ (46)

σ1(s) ≤ σ̂1(s), ∀s ∈ R+ (47)

α̂1(s) ≤ α1(s), ∀s ∈ R+ (48)

lim
s→∞

σ̂1(s) ≥ lim
s→∞

α̂1(s) (49)

are satisfied with

α̂1 = α1 (50)

under the assumption that (11) is achieved with some c1, c2 > 1. In fact, lims→∞ α0(s) >

lims→∞ σ0(s) guarantees X := lims→∞α−1
0 ◦ ᾱ0 ◦α−1

0 ◦ ĉ0◦ σ0(s) < ∞ for sufficiently small ĉ0 > 1,
which renders (46) and (49) simultaneously achievable since (46) does not impose any constraint
on σ̂1(s) for s > X. Also note that (49) is achieved by choosing σ̂1 ∈ K∞ if lims→∞ α1(s) = ∞.
In the case of

lim
s→∞

α0(s) < ∞ , (51)
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there exist α̂1 ∈ K and ĉ0, ĉ1 > 1 such that (46), (47), (48) and (49) are satisfied with

σ̂1 = σ1 (52)

since lims→∞ α−1
0 ◦ ĉ0◦ σ0(s) < ∞ is guaranteed for sufficiently small ĉ0 > 1. If none of (44), (45)

and (51) holds, the inequalities (46), (47), (48) and (49) are fulfilled with

α̂1 = α1, σ̂1 = σ1, ĉi = ci, i = 0, 1 . (53)

Pick real numbers τ1, ϕ ≥ 0 satisfying

1 < τ1 < ĉ1,

(
τ1

ĉ1

)ϕ

≤ (τ1 − 1)(ĉ0 − 1) (54)

Define ζ̂0, ζ̂1 ∈ K as

ζ̂0(s)=
ĉ0

(ĉ0−1)

√
ĉ1

τ1

[
σ̂1◦ α−1

0 (s)
]ϕ+1 (55)

ζ̂1(s)=
[
α0◦ ᾱ−1

0 ◦ α0◦σ̂−1
1 ◦ 1

τ1
α̂1◦α−1

1 (s)
][

1
τ1

α̂1◦α−1
1 (s)

]ϕ

(56)

We can always select a continuous function Fi : s ∈ R+ → R+ such that

Fi(s) > 0, ∀s ∈ (0,∞)

Fi(s)λ̂i(s) : non-decreasing on R+ (57)

Fi(s)ζ̂i(s) : non-decreasing on R+

lim
s→∞

α̂1(s) < ∞ ⇒ lim
s→∞

Fi(s) < ∞ (58)

hold for each i = 0, 1. Here, (42) is used for achieving (58) under (57). Let Ui, i = 0, 1, denote

U0(s)=
[
F0◦α0◦σ̂−1

1 (s)
][

λ̂0◦α0◦σ̂−1
1 (s)

]
, s∈ [0, σ̂1(∞))

U1(s)=


[
F1 ◦ α1 ◦ α̂−1

1 (τ1s)
] [

λ̂1 ◦ α1 ◦ α̂−1
1 (τ1s)

]
, s ∈ [0, 1

τ1
α̂1(∞))

F1(∞)λ̂1(∞) , s ∈ [ 1
τ1

α̂1(∞), σ̂1(∞))

The properties (12) and (58) for i = 1 together with (48), (50) and (53) make sure that U1 is well-
defined. Note that σ̂1(∞) ≥ (1/τ1)α̂1(∞) holds since (49). Define a non-decreasing continuous
function ν : [0, σ̂1(∞)) → R+ as

ν(s) = U0(s)U1(s)

Let λ0, λ1, λM ∈ K be given by

λ0(s) =
ĉ0

(ĉ0−1)

√
ĉ1

τ1

[
ν ◦ σ̂1◦ α−1

0 (s)
] [

σ̂1◦ α−1
0 (s)

]ϕ+1 (59)

λ1(s) =
[
α0◦ ᾱ−1

0 ◦ α0◦σ̂−1
1 ◦ 1

τ1
α̂1◦α−1

1 (s)
]

·
[
ν◦ 1

τ1
α̂1◦α−1

1 (s)
] [

1
τ1

α̂1◦α−1
1 (s)

]ϕ

(60)

λM.0(s) =F0(s)ζ̂0(s)
[
U1◦σ̂1◦α−1

0 (s)
]

λM.1(s) =F1(s)ζ̂1(s)
[
U0◦

1
τ1

α̂1◦α−1
1 (s)

]
9



The pair of (46) and (54) yields[
σ̂1 ◦ α−1

0 ◦ ᾱ0 ◦ α−1
0 ◦ ĉ0σ0(s)

]ϕ+1

≤ 1

ĉ1τ
ϕ
1

(τ1 − 1)(ĉ0 − 1)
[
α̂1◦ ᾱ−1

1 ◦ α1(s)
]ϕ+1 (61)

If (13) holds, it follows from (48), (49), (50), (53), (58) and (12) that

α0(∞)<∞ and σ̂1(∞)<∞ ⇒ λ0(∞)<∞ and λ1(∞)<∞ (62)

By virtue of (14), we can pick Ci > 0 so that Ci < lim infs→∞ λ̂i(s)/λ̂ri(s) holds. Defining
λ̃ri, σ̃ri : R+ → R+ by λ̃ri = Ciλ̂ri and σ̃ri = σri/Ci, we have

λM.i(s)λ̂i(s) + Di ≥ λM.i(s)λ̃ri(s), ∀s ∈ R+ (63)

for some Ri > 0, where Di = maxs∈[0,Ri] λM.i(s)λ̃ri(s). Note that (62) and (63) are not used in
the UGAS case of (a) since σr1 and σr2 vanish. Thus, (13) and (14) are not necessary for (a). It
can be verified that the inequalities (46) and (61) guarantee the existence of αcl∈K satisfying

λM.0(V0(t, x0))λ̂0(V0(t, x0)) [−α0(|x0|)+σ0(|x1|)]
+λM.1(V1(t, x1))λ̂1(V1(t, x1)) [−α̂1(|x1|) + σ̂1(|x0|)]

≤ −αcl(|x|) (64)

Using the additional property (62) for (b) and (c), we can also obtain

λM.0(V0(t, x0))λ̂0(V0(t, x0)) [−α0(|x0|)+σ0(|x1|) + σ̃r0(|r0|)]
+λM.1(V1(t, x1))λ̂1(V1(t, x1)) [−α̂1(|x1|) + σ̂1(|x0|) +σ̃r1(|r1|)]

≤ −αcl(|x|)+σcl(|r|) (65)

for some αcl, σcl ∈K if one of (H1), (H2) and (H3) holds. In the case of (H3), we can verify that
αcl in (65) is of class K∞. Now, define

Vcl(t, x) =
∫ V0(t,x0)

0
λM.0(s)ds +

∫ V1(t,x1)

0
λM.1(s)ds (66)

The property (8) and λM.0, λM.1 ∈ K imply that there exist αcl, αcl ∈ K∞ such that αcl(|x|) ≤
Vcl(t, x) ≤ αcl(|x|) holds. Due to (10), (63) and (65) with (47) and (48), the property

dVcl

dt
≤−αcl(|x|)+σcl(|r|)+

1∑
i=0

Diσ̃ri(|ri|) (67)

holds along Σ for all x∈Rn, r∈Rm and t∈R+. In the (a) case, the pair of (10) and (64) with (47)
and (48) yields (67) for ri(t) ≡ 0, i = 1, 2.

Next, we deal with the situation where (43) holds. Then, there exist σ̂1 ∈ K and ĉ0, ĉ1 > 1 such
that (46), (47), (48) and lims→∞ ĉ1σ̂1(s) = lims→∞ α̂1(s) are satisfied with (50). Define

L = lim
s→∞

σ̂1(s) (68)

τ1(s) = (τ1 +
ĉ1 − τ1

L
s)s, 1 < τ1 < ĉ1 (69)

Q(t) =
1

τ−1
1 (ĉ1t) − t

max
{(

ĉ1

τ1(τ1 − 1)(ĉ0 − 1)
− 1

)
,

(
ĉ1

τ1

− 1
)}

(70)

ψ(s) = eG(s), G(s) =
∫ s

L/2
Q(t)dt, s ∈ [0, L) (71)
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The function ψ is continuous, increasing and bounded on [0, L). It is verified that ψ satisfies[
ψ ◦ σ̂1 ◦ α−1

0 ◦ ᾱ0 ◦ α−1
0 ◦ ĉ0σ0(s)

]
≤ τ1(τ1 − 1)(ĉ0 − 1)

ĉ1

[
ψ◦ τ−1

1 ◦ α̂1◦ ᾱ−1
1 ◦ α1(s)

]
(72)

Replace (55), (56), (59) and (60) by

ζ̂0(s)=
ĉ0

(ĉ0−1)

√
ĉ1

τ1

[
σ̂1◦ α−1

0 (s)
] [

ψ◦σ̂1◦ α−1
0 (s)

]
(73)

ζ̂1(s)=
[
α0◦ ᾱ−1

0 ◦ α0◦σ̂−1
1 ◦τ−1

1 ◦ α̂1◦α−1
1 (s)

][
ψ◦τ−1

1 ◦ α̂1◦α−1
1 (s)

]
(74)

λ0(s)=
ĉ0

(ĉ0−1)

√
ĉ1

τ1

[
σ̂1◦ α−1

0 (s)
] [

ν ◦ σ̂1◦ α−1
0 (s)

] [
ψ◦σ̂1◦ α−1

0 (s)
]

(75)

λ1(s) =
[
α0◦ ᾱ−1

0 ◦ α0◦σ̂−1
1 ◦τ−1

1 ◦α̂1◦α−1
1 (s)

]
·
[
ν◦τ−1

1 ◦α̂1◦α−1
1 (s)

] [
ψ◦τ−1

1 ◦α̂1◦α−1
1 (s)

]
(76)

respectively. Redefine U1 and λM.1 by replacing τ1 and 1/τ1 with τ1◦ and τ−1
1 ◦, respectively. Then,

using (46) and (72), we obtain (64) for some αcl ∈K. Therefore, we arrive at (67) for ri(t) ≡ 0,
i = 1, 2, in the case of (a). For (b) and (c), it is directly verified that (43) does not hold if one of
(H1), (H2) and (H3) holds.

Finally, one of the easiest choices of Fi(s) fulfilling the requirement is shown explicitly. Given an
interval Uk ∈ R+, where λ̂i(s) for s ∈ Uk is locally minimum, let the non-negative number pk denote
the left endpoint of Uk. Let {pk} be the monotonically increasing sequence of such endpoints. In
the same manner, let {bk} be the monotonically increasing sequence of the left endpoints of the
intervals where λ̂i(s) is locally maximum. Suppose that the sequence {pk} has no accumulation
points. Pick d ∈ (0,∞) and set Fi(d) = 1. Using pk < bk < pk+1 < bk+1, we can determine Fi(s)
from s = d to ∞ by using

Fi(s) =


Fi(pk) s ∈ (pk, bk]
λ̂i(bk)Fi(bk)

λ̂i(s)
s ∈ (bk, pk+1]

(77)

and Fi(s) from s = d to 0 by using

Fi(s) =


Fi(bl) s ∈ [pl, bl)
λ̂i(pl)Fi(pl)

λ̂i(s)
s ∈ [bl−1, pl)

(78)

Then, Fi(s) becomes non-decreasing. If {pk} has accumulation points, the function Fi(s) can
be constructed in a piecewise manner by means of (77) and (78) for limk→∞ pk+1 − pk = 0 and
liml→−∞ pl − pl−1 = 0, respectively. Since the local absolute continuity of λ̂i(s) on (0,∞) and
(6) guarantees that 1/λ̂i(s) is absolutely continuous on any finite interval in (0,∞), we have
0 < Fi(s) < ∞ for s ∈ (0,∞). The property (58) is ensured by (42).

5.2 Proof of Theorem 2

Using (21) we can decompose λ̂0 as

λ̂0(v0) = λ̂A0(|v0|)λ̂B0(v0), λ̂B0(v0) > 0, ∀v0 ∈ Rn0

lim sup
s→∞

λ̂A0(s) < ∞

11



By virtue of (30), the inequality (27) ensures that

0 ≤ λ̂A0(|v0|) [−α0(|v0|) + σ0(|x1|)] + λ̂Ar0(|v0|)σr0(|r0|)

holds for some C0 function λ̂Ar0 : R+ → R+ satisfying lim sups→∞ λ̂Ar0(s)/λ̂A0(s) < ∞. The rest
is the same as the proof of Theorem 1. The iISS and ISS Lyapunov functions are given by

Vcl(t, x)=
∫ V1(t,x1)

0
λM.1(s)ds (79)

5.3 Proof of Theorem 3

From (21), (37) and (39) we obtain

−α1(|x1|) + σ1(|v0|) ≤ −δ1α1(|x1|)

where δ1 = (1 − 1/c1) > 0. Let λM.1 : R+ → R+ be any function fulfilling

λM.1(s) > 0, ∀s∈(0,∞), 0 < lim inf
s→∞

skλM.1(s) < ∞

The assumptions (40) and (41) guarantee

lim
s→∞

sup
s≤|x1|,t∈R+

λM.1(V1(t, x1))λ̂r1(t, x1) < ∞

lim
s→∞

inf
s≤|x1|,t∈R+

λM.1(V1(t, x1))λ̂1(t, x1)α1(|x1|) = ∞

respectively. It is verified that (79) is a Lyapunov function proving UGAS, iISS and ISS.

6 Examples

Consider the following:

Σ0 : ẋ0 = 12x2
0

(
x1

x1 + 1

)2

+ x0v0 + r0, x0(0)∈R+ (80)

Σ1 : ẋ1 = − 3x1

x1 + 1
+ x0 + r2

1, x1(0)∈R+ (81)

The state x = [x0, x1]T evolves on R2
+ for the disturbance r = [r0, r1]T ∈ R2

+. In other words,
R2

+ is invariant. For the purpose of illustrating the small-gain-type criterion developed in this
paper, we now design a scalar input v0(t) in the form of local feedback v0(x0) to make the whole
interconnected system iISS with respect to input r to state x. Since Σ1 is not ISS, the control
v0(t) should render Σ0 stable strongly enough to compensate the shortage of stability. Let

V1 = x1, α1(s) =
3s

s + 1
, σ1(s) = s, σr1(s) = s2

λ̂1(s) = 1, λ̂r1(s) = 1

For the choice of V0 = x0, we obtain

V̇0 =
4x2

0

3

{
3v0

4x0
+

(
3x1

x1 + 1

)2
}

+ r0

12



Define

α0(s) =
3v0(s)

4s
, σ0(s)=

(
3s

s + 1

)2

, σr2(s) = s

λ̂0(s) =
4
3
s2, λ̂r0(s) = 1

where α0 ∈ K∞ has yet to be determined. These functions satisfy (4)-(7), (12), (13), (14) and
(15), (H1). Using ᾱi = αi = s, i = 1, 2, we obtain (11) as

α−1
0

(
c0

(
3s

s + 1

)2
)

≤ 3s

c1(s + 1)
, ∀s ∈ R+

This inequality holds for some c0, c1 >1 if and only if α0(s)>s2 is satisfied for all s∈(0,∞). Hence,
Theorem 1 guarantees that v0(x0)=−kx3

0 with any k>4/3 renders the interconnected system iISS.
An important feature of this paper is that we obtain an iISS Lyapunov function explicitly as Vcl(x)
in (66), where

λM.0(s)=
k+3
k−1

√
ĉ1

τ1
sϕ+1, λM.1(s)=

4k

3

(
3s

τ1(s+1)

)ϕ+4

ĉ1 = 2

√
k

k + 3
, τ1 = 2

√
k

2(k + 3)
+

1
8

L =

√
1
2

+
1
8

√
k + 3

k
, ϕ = max

{
log (τ1−1)(k−1)

4

log L
, 0

}
The techniques in [13, 14, 21, 8, 9, 10, 11] do not lead to the stability and the Lyapunov function
of this example. It is mentioned that the small-gain-type evaluation is not the only approach to
the stabilization of (80)-(81). For instance, a cancellation approach can yield a full-state feedback
easily.

We next shall show a simple practical example. Consider the following bioreactor model with
the monod kinetics [15, 12]:

Ẋ = −bX + µ
S

K + S
X + D(Xin − X), X(0) ≥ 0 (82)

Ṡ = −c
S

K + S
X + D(Sin − S), S(0) ≥ 0 (83)

where X(t) and S(t) denote the concentration of biomass and organic substrate, respectively,
which are non-negative real numbers. The kinetic parameters µ, c, K, b and the dilution rate
D are positive constants and satisfy c ≥ µ. The symbols Xin and Sin indicate the biomass and
the organic substrate concentrations in the inflow, which are non-negative. It is verified that
the set R2

+ in which the bioreactor evolves is positively invariant for the solution (X(t), S(t))
of (82)-(83). Suppose that Xin = 0 and Sin is constant (stationary inflow containing no useful
bacteria). Then, the system (82)-(83) has an equilibrium at (X,S) = (0, Sin). For the state
variables (X(t), S(t) − Sin) ∈ R+ × [−Sin,∞), take the simplest choice

VX(X) = X, VS(S − Sin) =
1
2
(S − Sin)2

Then, we obtain V̇X = Ẋ and

V̇S = −D(S − Sin)2 − c(S − Sin)
S

K + S
X

13



along the trajectories of (82)-(83). Rewrite these equations as follows:

V̇X ≤ (K + X)
(
−(D + B)

X

K + X
+ µ

|S − Sin|
K + |S − Sin|

)
(84)

V̇S ≤ |S − Sin| (−D|S − Sin| + cX) (85)

B = b − µ sup
S∈R+

(
S

K + S
− |S − Sin|

K + |S − Sin|

)
Assume that D + B > 0. Let

λ̂0(s) = K + s, α0(s) =
(D + B)s

K+s
, σ0(s) =

µs

K+s

λ̂1(s) =
√

2s, α1(s) = Ds, σ1(s) = cs

ᾱ1(s) = α1(s) = s, ᾱ2(s) = α2(s) =
1
2
s2,

The tool proposed in [9] cannot be applied to the pair (84)-(85). This paper, however, enables us
to apply (11) to the pair and we obtain the condition

c1cc0µKs

(D + B − c0µ)s + (D + B)K
≤ Ds, ∀s ∈ R+

There exist c1, c0 > 1 such that this inequality holds if and only if µ < D+B and cµ < D(D + B).
Hence, Theorem 1 establishes the global asymptotic stability of (X, S) = (0, Sin) for µmax{1, c

D} <

D + B. A Lyapunov function Vcl(x) of the system (82)-(83) is computed as in (66). For example,
we obtain

λM.0(s) =
4
√

6c4s4

3D
, λM.1(s) =

27(D + B)D3s
√

2s

32

for c0 = c1 = 2. It is mentioned that, for merely dealing with (82)-(83), there are other ways.
Although this brief example does not illustrate all features of the proposed approach, it shows
compactly how well the formulation of the flexible inequality fits to a practical system in invoking
a small-gain type argument and constructing a Lyapunov function.

7 Concluding remarks

In this paper, a flexible Lyapunov formulation has been introduced into the small-gain methodology
for stability analysis of interconnected systems. Namely, the technique of bilateral flexibility in
Lyapunov inequalities is proposed, which can be considered as a thoroughly nonlinear counterpart
of the popular scaling technique in linear robust control[3, 4]. The bilaterality and treating iISS
and ISS systems equally are new in the literature. Examples have shown that the flexibility is
useful in exploiting and coping with nonlinearity in stability analysis and feedback design. The
Lyapunov function of the interconnected system is expressed explicitly in terms of a C1 nonlinear
combination of given Lyapunov functions of the individual subsystems. This paper has focused on
the construction a continuously differentiable Lyapunov function since such a Lyapunov function
is directly amenable to a large variety of techniques for further analysis and design of control
systems. This contrasts with the max-type construction leading only to a Lipschitz continuous
function, which requires methods of non-smooth analysis or additional mathematical process of
smoothing(see [13]). Finally, it is worth mentioning that ciσi in (11), (29) and (39) can be replaced
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by (Id+ρi)◦σi where ρi is of class K∞ in the ISS case. It can be relaxed further when iISS or UGAS
is targeted. This paper employs the simplest choice s + ρi(s) = cis for brevity of the presentation
of Lyapunov functions. For the generalization, we can combine the result in this paper with [11]
devoted to the iISS small-gain theorem without flexible parameters {λ̂i, λ̂ri}.

Appendix

A Derivation of Eq. (65) and Eq. (64)

Since (49) ensures lims→∞ σ̂1(s) ≥ lims→∞(1/τ1)α̂1(s) or lims→∞ σ̂1(s) = ∞, the functions λ0 and
λ1 defined in (59) and (60) are of class K and satisfy

λi(s) = λM.i(s)λ̂i(s), s ∈ R+, i = 0, 1 (86)

Case (c): Pick a constant δ satisfying
√

τ1/ĉ1 < δ < 1. Let τr0, τr1 > 1 be defined with

(1 − δ)
(

1 − 1
τi

)
=

1
τri

, i = 0, 1

where τ0 = ĉ0. Define

θ0(s) = α0 ◦ α−1
0 ◦ τ0σ0(s), θ1(s) = α1 ◦ α̂−1

1 ◦ τ1σ̂1(s)

θr0(s) = α0 ◦ α−1
0 ◦ τr0σ̃r0(s), θr1(s) = α1 ◦ α̂−1

1 ◦ τr1σ̃r1(s)

λθi(s) = λi ◦ θi(s), i = 0, 1 (87)

By the hypothesis (H3), we have θi, θri ∈ K. Combining the individual cases separated by
α0(|x0|) ≥ τ0σ0(|x1|), α0(|x0|) < τ0σ0(|x1|), α0(|x0|) ≥ τr0σ̃r0(|r0|) and α0(|x0|) < τr0σ̃r0(|r0|), we
obtain

λ0(V0(t, x0)){−α0(|x0|) + σ0(|x1|) + σ̃r0(|r0|)}

≤ δ

(
−1+

1
τ0

)
λ0(α0(|x0|))α0(|x0|)

+λθ0(|x1|)σ0(|x1|)+λ0(θr0(|r0|))σ̃r0(|r0|) (88)

We also obtain a similar upper bound of λ1(V1){−α̂1(|x1|)+ σ̂1(|x0|)+ σ̃r1(|r1|)}. Thus, the desired
inequality (65) is fulfilled with

αcl(s)= min
s=|x|

{(
δ−

√
τ1

ĉ1

)
τ1−1

τ1
λ1(α1(|x1|))α̂1(|x1|)

+
(

δ−
√

τ1

ĉ1

)
τ0 − 1

τ0
λ0(α0(|x0|))α0(|x0|)

}
σcl(s)=max

s=|r|
{λ1(θr1(|r1|))σ̃r1(|r1|) + λ0(θr0(|r0|))σ̃r0(|r0|)}

if λ1 and λ0 satisfy

λθ1(s)σ̂1(s) ≤
√

τ1

ĉ1
· τ0−1

τ0
λ0(α0(s))α0(s) (89)

λθ0(s)σ0(s) ≤
√

τ1

ĉ1
· τ1−1

τ1
λ1(α1(s))α̂1(s) (90)
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for all s ∈ R+. The function σcl is of class K, while αcl ∈ K∞ since (H3). By virtue of α−1
i ◦αi(s) ≤

s, θ0 ∈ K and ĉ0σ0(s) = α0(α−1
0 (θ0(s))), we have (89) and (90) if

σ̂1(α−1
0 (θ0(s)))λθ1(α−1

0 (θ0(s)))

≤ (τ1 − 1)(ĉ0 − 1)
ĉ1

α̂1(α−1
1 (α1(s)))λ1(α1(s)) (91)

λθ1(s)σ̂1(s) =
√

τ1

ĉ1
· ĉ0 − 1

ĉ0
λ0(α0(s))α0(α−1

0 (α0(s))) (92)

hold for all s ∈ R+. The property (92) is directly verified from (59) and (60). By the non-decreasing
property of ν and (46), we have

[ĉ0σ0(s)]
[
ν ◦ σ̂1 ◦ α−1

0 ◦ θ0(s)
]
≤[

α0 ◦ α−1
0 ◦ α0 ◦ θ−1

1 ◦ α1(s)
] [

ν ◦ 1
τ1

α̂1 ◦ α−1
1 ◦ α1(s)

]
Combining the above inequality with (61) yields

[ĉ0σ0(s)]
[
ν ◦ σ̂1 ◦ α−1

0 ◦ θ0(s)
] [

σ̂1 ◦ α−1
0 ◦ ᾱ0 ◦ α−1

0 ◦ ĉ0σ0(s)
]ϕ+1

≤ 1

ĉ1τ
ϕ
1

(τ1 − 1)(ĉ0 − 1)
[
α0 ◦ α−1

0 ◦ α0 ◦ θ−1
1 ◦ α1(s)

]
·
[
ν ◦ 1

τ1
α̂1 ◦ α−1

1 ◦ α1(s)
] [

α̂1◦ ᾱ−1
1 ◦ α1(s)

]ϕ+1

Then, the property (91) follows from (60).

Case (b): The claim (c) proves (65) for αcl ∈ K∞ ⊂ K and σcl ∈ K in the case of (H3). Thus,
suppose that (H3) is not satisfied. The logical sum of (H1) and (H2) implies that one of

lim
s→∞

α0(s) < ∞ and lim
s→∞

σ̂1(s) < ∞ (93)

and

lim
s→∞

α0(s) = ∞ and lim
s→∞

α̂1(s) < ∞ (94)

holds true. First, we consider the case of (93). Using (62), we have

λi(Vi(t, xi))σ̃ri(|ri|) ≤ Eiσ̃ri(|ri|), ∀xi ∈ Rni , ri ∈ Rbi , t ∈ R+ (95)

with Ei = lims→∞ λi(s) < ∞ for i = 0, 1, so that we can use Ei instead of λi(θri(|ri|)) for
i = 0, 1. The property lims→∞ α0(s)≥τ0 lims→∞ σ0(s) implied by (46) guarantees that λθ0 in (87)
is well-defined on R+. Redefine λθ1 as

λθ1(s) =
{

λ1 ◦ θ1(s) , s ∈ [0, Y1)
lims→∞ λ1(s) , s ∈ [Y1,∞) (96)

Y1 = lim
s→∞

σ̂−1
1 ◦ τ−1

1 α̂1(s) < ∞ (97)

Here, Y1 < ∞ is due to τ1 > 1 and (49). Replace (92) required on s ∈ R+ by

λθ1(s)σ̂1(s) =
√

τ1

ĉ1
· ĉ0 − 1

ĉ0
λ0(α0(s))α0(α−1

0 (α0(s)), s ∈ [0, Y1) (98)

λθ1(s)σ̂1(s) ≤
√

τ1

ĉ1
· ĉ0 − 1

ĉ0
λ0(α0(s))α0(α−1

0 (α0(s)), s ∈ [Y1,∞) (99)
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Since (46) assures α−1
0 ◦ θ0(s) ≤ Y1, the inequality (65) is satisfied for some αcl, σcl ∈ K if (91),

(98) and (99) are fulfilled. The property (99) is immediate from (96), (59) and the non-decreasing
property of ν. Using the arguments employed in (c), we can verify (91) and (98). We next consider
the case of (94). Due to (12) and (58), ν is bounded on [0, σ̂1(∞)). The property (49) ensures (95)
for i = 1. We do not need (95) for i = 0 since lims→∞ α0(s) = ∞ allows us to use θr0. Define λθ1

as in (96). The rest is the same as the proof in the (93) case.

Case (a): Recall that ri = 0 for i = 0, 1. Suppose that (43) is violated. Deleting σ̃r0 and
σ̃r1, the arguments used in (b) yield (64) with some αcl ∈ K. Note that the (a) case does not
need the technique of (95). The properties (12) and (58) guarantees that U1 is bounded on
[0, σ̂1(∞)). Next consider the case where (43) holds. The choice of τ1 given in (69) implies
lims→∞ τ1 ◦ σ̂1(s) = lims→∞ α̂1(s), and the property Id − τ−1

1 ∈ K∞ follows from τ1 ∈ K∞ and
(Id − τ−1

1 ) ◦ τ1(s) = τ1 − s ∈ K∞. The function U1 is guaranteed to be bounded on [0, σ̂1(∞)).
Defining θ1 ∈ K∞ by

θ1(s) = α1 ◦ α̂−1
1 ◦ τ1 ◦ σ̂1(s)

we obtain

λ1(V1(t, x1)){−α̂1(|x1|) + σ̂1(|x0|)}
≤ −λ1(α1(|x1|))[

(
Id−τ−1

1

)
◦ α̂1(|x1|)] + λθ1(|x0|)σ̂1(|x0|) (100)

Using τ1s ≤ τ1(s) and arguments similar to the (c) case, we can verify that (64) holds with the
class K function

αcl(s)= min
s=|x|

{(
1−

√
τ1

ĉ1

)
λ1(α1(|x1|))[

(
Id−τ−1

1

)
◦ α̂1(|x1|)]

+
(

1 −
√

τ1

ĉ1

)
τ0 − 1

τ0
λ0(α0(|x0|))α0(|x0|)

}
(101)

if

σ̂1(α−1
0 (θ0(s)))λθ1(α−1

0 (θ0(s)))

≤ (τ1 − 1)(ĉ0 − 1)
ĉ1

α̂1(α−1
1 (α1(s)))λ1(α1(s)) (102)

λθ1(s)σ̂1(s) =
√

τ1

ĉ1
· ĉ0 − 1

ĉ0
λ0(α0(s))α0(α−1

0 (α0(s))) (103)

are satisfied for all s ∈ R+. The property (103) is immediate from (75) and (76). From (46), (69),
the non-decreasing property of ν and lims→∞ c1σ̂1(s) = lims→∞ α̂1(s), we obtain

[ĉ0σ0(s)]
[
ν ◦ σ̂1 ◦ α−1

0 ◦ θ0(s)
]

≤
[
α0 ◦ α−1

0 ◦ α0 ◦ θ−1
1 ◦ α1(s)

] [
ν ◦ τ−1

1 ◦ α̂1 ◦ α−1
1 ◦ α1(s)

]
Combining this inequality with (72), we obtain

[ĉ0σ0(s)]
[
ν ◦ σ̂1 ◦ α−1

0 ◦ θ0(s)
] [

ψ ◦ σ̂1 ◦ α−1
0 ◦ ᾱ0 ◦ α−1

0 ◦ ĉ0σ0(s)
]

≤ τ1

ĉ1
(τ1 − 1)(ĉ0 − 1)

[
α0 ◦ α−1

0 ◦ α0 ◦ θ−1
1 ◦ α1(s)

]
·
[
ν ◦ τ−1

1 ◦ α̂1 ◦ α−1
1 ◦ α1(s)

] [
ψ ◦ τ−1

1 ◦ α̂1◦ ᾱ−1
1 ◦ α1(s)

]
Using (76), (46) and 1 < τ1 < ĉ1 in both sides of the above inequality, we arrive at (102). Therefore,
the property (64) has been verified.
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B Derivation of Eq. (72)

Recall that (43) is assumed for (72). By definition, we can verify

d

ds
ψ(s) = ψ(s)Q(s) (104)

d2

ds2
ψ(s) = ψ(s)

(
Q(s)2 +

d

ds
Q(s)

)
(105)

ψ(s) ≥ 0 (106)

Q(s)2 +
d

ds
Q(s) ≥ 0 (107)

for s ∈ (0, L). Here, the property (107) is derived from

Q(s)2 +
d

ds
Q(s) =

k

p(s)2w(s)

(
2(k+1)(ĉ1−τ1)τ

−1
1 (ĉ1s)

L
+ kτ1+τ1−ĉ1

)
where

k = max
{(

ĉ1

τ1(τ1−1)(ĉ0 − 1)
− 1

)
,

(
ĉ1

τ1

−1
)}

> 0

p(s) = τ−1
1 (ĉ1s) − s > 0, ∀s ∈ (0, L)

w(s) = τ1 +
2(ĉ1 − τ1)τ

−1
1 (ĉ1s)

L
> 0, ∀s ∈ (0, L)

From (104) and (70) we obtain

ψ(s) ≤ τ1(τ1 − 1)(ĉ0 − 1)
ĉ1

(
ψ(s) + (τ−1

1 (ĉ1s) − s)
d

ds
ψ(s)

)
for s ∈ (0, L). Then, the non-decreasing property of dψ/ds ensured by (105), (106) and (107)
implies

ψ(s)≤ τ1(τ1−1)(ĉ0−1)
ĉ1

ψ(τ−1
1 (ĉ1s)), ∀s∈(0, L) (108)

Hence, the property (72) follows from (46).
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