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A CMOS Spiking Neural Network Circuit with Symmetric/

Asymmetric STDP Function
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SUMMARY In this paper, we propose an analog CMOS circuit which
achieves spiking neural networks with spike-timing dependent synaptic
plasticity (STDP). In particular, we propose a STDP circuit with symmet-
ric function for the first time, and also we demonstrate associative mem-
ory operation in a Hopfield-type feedback network with STDP learning.
In our spiking neuron model, analog information expressing processing
results is given by the relative timing of spike firing events. It is well
known that a biological neuron changes its synaptic weights by STDP,
which provides learning rules depending on relative timing between asyn-
chronous spikes. Therefore, STDP can be used for spiking neural systems
with learning function. The measurement results of fabricated chips us-
ing TSMC 0.25 um CMOS process technology demonstrate that our spik-
ing neuron circuit can construct feedback networks and update synaptic
weights based on relative timing between asynchronous spikes by a sym-
metric or an asymmetric STDP circuits.

key words: spiking neuron model, associative memory, spike-timing de-
pendent synaptic plasticity (STDP), LSI implementation

1. Introduction

A biological neuron receives many electric spike impulses
via synapses, and it fires by generating a spike impulse. Re-
cently, the spiking neuron models, which express analog in-
formation by the timing of neuronal spike firing, attract a lot
of attention with expectation of their higher information pro-
cessing ability [1], [2]. From the theoretical research of neu-
ral network models, it is expected that more advanced neural
systems can be developed using the spiking neuron models.
Since these models operate asynchronously, it is also ex-
pected that spiking neural networks operate faster than the
conventional synchronous models.

From the viewpoint of VLSI implementation, spiking
neurons output binary values in the voltage or current do-
main and represent analog values in the time domain. There-
fore, spiking neural network systems can easily be con-
nected to the existing digital systems than the conventional
analog neural network systems that output analog values in
the voltage or current domain. Additionally, when feedback-
type networks are constructed using spiking neurons, we
have an advantage that unexpected oscillation hardly occurs.
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So far, the spiking neuron models have often been ap-
plied to feedforward networks; for example, image data pro-
cessing using a spiking feedforward network was proposed
[3]. However, there have been only a few reports about spik-
ing feedback networks. In order to express analog values
by spike timing in feedback networks, spikes expressing the
zero values are required. However, a neuron generates no
spike unless its internal potential exceeds the threshold, and
usually the resting (membrane) potential corresponding to
the zero value is below the threshold. Therefore, a simple
information representation scheme by spike timing cannot
be applied to such feedback networks. To solve this prob-
lem we have introduced a global excitatory unit (GEU) or
by modulating the resting potential [4], [5]. It has also been
demonstrated that our spiking neuron model can be applied
to the Hopfield network, which is a typical feedback net-
work model, and that it has a retrieval property as associa-
tive memory [4], [5].

It is known that a biological neuron changes its synap-
tic weights by STDP (Spike-Timing Dependent synaptic
Plasticity). STDP provides learning rules based on relative
timing between asynchronous spikes. Therefore, STDP can
be used effectively for spiking neural systems with learning
function. There are two types of STDP function which are
characterized by symmetric and asymmetric time windows,
as shown in Fig. 1 [6]-[8]. In symmetric STDP, if spikes
pre and post are given simultaneously (7,5 — f,r. = 0), the
synapse increases its weight (AV,,;; > 0). On the other hand,
if spikes are given with a time difference of around ¢,, the
weight decreases. In contrast, asymmetric-STDP synapses
update their weights based on the temporal order of spikes
as well as the absolute time difference.

An asymmetric STDP function was realized by analog
CMOS circuits and applied to spiking neuron models [9],
[10]. In addition, we have proposed a synapse circuit with a
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Fig.1  STDP functions: (a) symmetric and (b) asymmetric.
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symmetric STDP function and a Hopfield-type VLSI neural
network using it [11], [12].

In this paper, we propose an analog CMOS circuit
which achieves spiking neural network with STDP, and
show measurement results of fabricated LSI chips using
TSMC 0.25 um process technology [13]. The measurement
results demonstrate that the circuits we have designed real-
ize the symmetric/asymmetric STDP functions and spiking
feedback network operation with learning by STDP.

2. CMOS Spiking Neural Network Circuit
2.1 Integrate-and-Fire-Type Spiking Neuron

The integrate-and-fire-type (IF) neuron model is shown in
Fig.2, which is a typical spiking neuron model. When
a spike pulse is fed into a neuron via a synapse, a post-
synaptic potential (PSP) is generated. A neuronal internal
potential is determined by the spatiotemporal summation of
PSPs generated by the input spikes. There are two types of
synapses: excitatory and inhibitory, according to the sign of
the synaptic weight w,;.

In the simple IF model, the time courses of PSPs are the
same, which we call here a unit PSP, P(r), as a convolutional
kernel, and a PSP from neuron i to neuron n, PSP,;(t), is
given by the temporal summation of unit PSPs multiplied
by the corresponding synaptic weight w;;:

PSPy(1) = > wuP(t - 1) (1)

Per;
where F; = {tgl), e tg")} is the set of firing times of neuron
i. The type and amplitude of a PSP are determined by the
sign (positive or negative) and the absolute value of synaptic
weight w,;, respectively. Since a PSP is generated by an RC
circuit, the unit PSP is given by

P(t) = Po{(1 — e "MYHOH(t, — 1)

+ (L= e M)e T H(t — 1)} 2)

where Py is a constant, 7 is the time constant for decay, ¢,
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Fig.2  Integrate-and-fire-type neuron model.
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is the time span between the time when the unit PSP starts
to increase and the time when it has the peak value. The
internal potential of neuron n, V,(f), is given by the spatial
summation of PSP,;(¢):

Va(t) = )" PSP,i(1) (3)

iel,

where I, is the set of inputs to neuron n. The effect of a PSP
is temporary, and V,(¢) returns to the resting potential level
after the PSP ceases. When the V,,(¢) exceeds the threshold
th, a neuron n fires and generates a spike. After firing, a re-
fractory period follows. A generated spike is transmitted to
other neurons or the neuron itself with a certain transmission
delay time.

In our spiking neuron model, analog information ex-
pressing processing results is given by the relative timing
of spike firing events. If we use the spike train of a certain
neuron #1 as reference spikes, the analog information xff )
normalized in [0, 1] is expressed by

(W3] -
PERE" AP <1/2)
i T Y aa-ad)) l(f) S
—= (At >T/2)
1
where Atf{) = Itgf) - t(lf)l (i=1,2,3...),and T is the inter-

spike interval at the stable state, as shown in Fig. 3.

Figure 4 shows our CMOS spiking neuron circuit and
its timing diagram. The CMOS spiking neuron circuit con-
sists of a synapse part and a neuron part. If spike pulse i;
is fed into the synapse part from other neurons, a PSP con-
trol signal (psp_cont) is generated by a delay-and-inversion
circuit (D&I ) and a NOR gate. The D&I consists of an
inverter chain, and their delay time is determined by bias
voltages Vp,;. While psp_cont is “High,” transconductance
amplifier (gm-amp) A turns on and charges or discharges
capacitor C in the neuron part. Thus, the terminal voltage of
the capacitor, V,, is changed, and a PSP is generated. The
spatiotemporal summation of PSPs by input spikes is per-
formed at this capacitor. The current from the synapse is
determined by V,,.. The gm-amp A generates a current in
proportion to V. — Vy,r. When V,,, — Vyr > 0, the circuit
operates as excitatory synapse, and vice versa.

In the neuron part, the internal potential represented
by V, returns to resting potential V;,; by leak resistance Ry,
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Fig.3 Information representaion using relative timing of spikes.
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Fig.4  Spiking neuron circuit: (a) synapse part (PSP generation), (b)
neuron part and (c) timing diagram.

connected in parallel with capacitor C, after charged or dis-
charged by the current sources of the synapse parts. A com-
parator (CMP) compares V,, with threshold voltage V,;,. If
V. exceeds Vy,, a spike is generated. At the same time, the
threshold voltage increases to generate a refractory period.
In this circuits, the transmission delay is equal to the refrac-
tory period.

2.2 Spiking Feedback Networks

In the IF neuron model, if V,, does not exceed the thresh-
old as shown in Fig. 5(a), the neuron obviously generates no
spikes. However, in order to apply the spiking neuron model
to feed-back networks with continuous states, spikes have to
be generated pseudo-periodically to express an analog value
by spike timing.

To achieve this, one of the authors proposed negative
thresholding operation and a global excitatory unit (GEU)
[4]. Figure 6 shows a spiking feedback network model with
GEU, where all neurons are connected each other. In this
network, GEU receives spikes from all neurons via excita-
tory synapses, and it is activated by the earliest input spike.
The activated GEU gives a continuous-level stimulus to all
neurons. Therefore, GEU gives the same effect as a de-
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Fig.6  Spiking feedback network with GEU.

crease in the threshold levels of all neurons. If once GEU
is activated, even a neuron at the resting state can fire, and a
neuron with stronger inhibition generates a spike with later
timing as shown in Fig. 5(b).

The neuron and synapse circuits shown in Fig.4 are
also used as the GEU circuit and the synapse circuits be-
tween GEU and neurons, respectively. In order to give a
constant effect from GEU to all neurons, we use a PSP with
a longer pulse width than the whole operation time.

3. CMOS STDP Circuits
3.1 Circuit Principle Generating STDP Functions

A circuit principle that generates STDP functions is shown
in Fig. 7. In our STDP circuits, we use a current sampling
scheme [14]; the first spike is used as a trigger to generate
a nonlinear waveform Vyw(f) corresponding to the STDP
function shape and the second one is used as a sampling
pulse. Because the circuits generate a nonlinear waveform
by themselves, asynchoronous operation is achieved. In
Fig.7, gm-amp A updates synaptic weight V,,; in proportion
t0 Vyw () — Vyr. Current i(?) is given by G,,(Vyw (1) — Vier),
where G, is the transconductance. Thus, AV, is given by

ts+AL
MV, = [ GuViwtd) = Vig)ds )
1,

s
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Fig.8 Symmetric STDP circuit (a) and timing diagram (b).

3.2 Symmetric STDP Circuit

Figure 8 shows our CMOS symmetric STDP circuit and its
timing diagram. The circuit consists of a spike-detection
part SD and a weight-update part WU.

In SD, the state value of the T-FF (toggle flip-flop) is
changed twice by input spikes pre and post. Changes in the
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state value are detected by a D&I and a NOR gate. As a
result, an earlier spike pulse is fed into inl of WU, and the
other is fed into in2. If pre and post are given at the same
time, the state value of the T-FF changes once. In that case,
the T-FF is reset by an AND gate, a D&/ and a NOR gate.
Thus, based on only the absolute time difference between
input spikes pre and post, WU updates the synaptic weight
represented by V,,.. The details of the operation in WU are
as follows.

When the input spike in1 is fed into WU from SD, ramp
signal Vy(r) is generated at the terminal of capacitor C4 by
MOSFET M, and is controlled by bias voltage Vj,_,,. At
the same time, control signal Vg, which is generated by the
D&, turns to “High.” Ramp signal V4(¢) is transformed to a
nonlinear waveform by MOSFET Mj and capacitor Cp, and
the waveform is supplied to the input terminal of gm-amp A
during this period. After Vs turns to “Low,” the terminal
voltage of capacitor Cg, Vp, returns to reference voltage Vs
by resistor R. Thus, Vp(¢), which corresponds to Vyw(¢) in
Fig.7, is expressed as follows:

Visop — & J Iy ()dt’

(t < tw)
ref) CXP( = lm)) + Vref

(t = ty)

Here, if My operates in the saturation region, the current
flowing through this MOSFET is given by

V(1) = (6)

(VB(tsw)

14
Taay () = k- (Va()) = Vi + Vi) (7)

where k, W/L, and V,;, are the capacitive coupling ratio from
the gate to the channel, the aspect ratio and the threshold
voltage of Mp, respectively. If input spike in2 is fed into WU
while Vp(t) # Vyr, A1 charges or discharges capacitor C,,;,
and updates synaptic weight V.. If in2 was given after Vp
returns to Vs, the synaptic weight is not updated. The shape
of the STDP function is determined by the bias voltages.

3.3 Asymmetric STDP Circuit

Figure 9 shows our CMOS asymmetric STDP circuit and
its timing diagram. The circuit updates the synaptic weight
based on the temporal order of spikes as well as the absolute
time difference. In Fig.9(b), V(¢) and V,(¢) which corre-
spond to Vyw(?) in the Fig. 7 are expressed as follows:

Vl (t) = Vb topl exp( = tprf))

+Vref2 + Vth (t = tpre) (8)
Vz(t) — Vh 1op2 exp( —(t— l‘poﬂ))
+Vref2 + Vrh (t = tposr) (9)

where 7| and 7, are time constants if diode-connected tran-
sistors M| and M, are considered as linear resistors, and Vy;,
is the threshold voltage of M and M.

In this circuit, A, increases synaptic weight V,,, . in pro-
portion to Vi(f) — Vi1 In contrast, Ay decreases V,,; in
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Fig.9  Assymetric STDP circuit (a) and timing diagram (b).

proportion to V»(f) = V1. In other words, the former works
for LTP (Long Term Potentiation), the latter works for LTD
(Long Term Depression). If #,0; — tpre > 0 as shown in
Fig.9(b), input spike pre generates a nonlinear waveform
voltage V(¢) and drives A, at the same time. If V, are set
at Vir2 + Vi, Ap cannot update Vy,; because V(1) = Vi1 = 0.
In this case, V,,, is updated only by A;. If 55 = £pe = 0, A
and A, are driven by input spikes at the same time, and the
currents cancel out each other.

4. Simulation of Associative Memory with Symmetric
STDP

We have constructed an associative memory using a
Hopfield-type neural network with our symmetric-STDP
synapse circuit. The network is composed of 36 neurons
with symmetric connections as shown in Fig. 6. In the typi-
cal Hopfield-type associative memory, synaptic weights w;;
are expressed by the sum of autocorrelation matrices of the
stored pattern vectors:

N
w;j = Z(zzf - DQE-1), fori#j (10)
k=1
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where w; = 0, and If is the i-th element of the k-th stored
pattern vector.

In the circuit simulation, we gave spike patterns
(I’l‘ , 1’2‘ ,+++) to the network and made it learn the patterns by
symmetric STDP. In symmetric STDP, simultaneous spikes
increase the synaptic weights, and spikes with a time differ-
ence of #, decrease the weights, as shown in Fig. 1. Thus, the
symmetric STDP function can be used for realizing memo-
rization shown in Eq. (10).

The raster plot of spikes are shown in Fig. 10(a). The
number of patterns to be memorized was five. The patterns
were randomly chosen under the condition that the numbers
of ‘1’ (white pixels) and ‘0’ (black pixels) are equal. We
used spike patterns that expressed the values ‘1’ and ‘0’ with
a timing difference of ¢,, where ¢, was set at 90 ns. After 5
epochs, we stopped the STDP function, and gave gray-level
(5-levels) input patterns that are most similar to pattern #1 to
the network. In the simulation, the time step corresponding
to one level in gray-level patterns was set at 25 ns. There-
fore, the firing timing of input spikes was limited in {0, 25,
50, 75, 100} ns, and the time span for receiving input spikes
was 100 ns. The transmission delay time and refractory pe-
riod were set at 200ns. The duration of the psp_cont was
set at 150ns. The simulations were performed with a fast
SPICE simulator, HSIM.

Figure 10(b) shows synaptic weight changes by the
symmetric STDP. From Eq. (10), the synaptic weights w;; €
{£5,£3,+£1}. In this simulation, the synaptic weights in-
creased or decreased approximately by the ratio of 5:3:1 af-
ter the learning. At 7.5 us after receiving input spikes, the
neuron outputs and the internal potentials converged to pat-
tern #1 as shown in Figs. 10(a), (c). Thus, it has been ver-
ified that the network can learn and associate patterns from
external spike inputs by using STDP.

Figure 11 shows changes in the direction cosine be-
tween stored pattern #1 and the output pattern (or the input
pattern if the calculation step is 0). When the direction co-
sine converges to 1, the network recalls the pattern #1. In
contrast, when the direction cosine converges to 0, the net-
work recalls other patterns. Figure 11 shows that our spiking
Hopfield network has a reasonable association performance.

5. Measurement Results of Fabricated Chips

We have designed and fabricated two test LSI chips for
evaluation of the symmetric and the asymmetric STDP cir-
cuits and a five-neuron feedback network by using TSMC
0.25um (1-Poly, 5-Metal) CMOS technology. Micro-
photographs of the test chips are shown in Fig. 12.

5.1 STDP Circuits

A micrograph of the test chip for symmetric/asymmetric
STDP circuits is shown in Fig. 12(a). The measurement re-
sults of the symmetric and asymmetric STDP circuits are
shown in Figs. 13(a) and (b), respectively. The results show
that our STDP circuits can update synaptic weights based
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on the relative timing of spikes. In addition, the ampli-
tude of each STDP function can be set arbitrarily by ad-
justing the bias voltage. Figure 14 shows an increase or a
decrease in the amplitude of PSPs generated by the symmet-
ric STDP circuit. When the time difference of two spikes is
Ons, the circuit increases synaptic weight V,, as shown in
Fig. 14(a). In contrast, when the time difference is 90 ns,
synaptic weight is decreased as shown in Fig. 14(b).

5.2 Spiking Feedback Network with Symmetric STDP

We evaluated the test LSI chip for spiking feedback network

(55 5 6 e )Mo N

(b)

Fig.12  Micro-photographs of the test chips: (a) symmetric/asymmetric
STDP circuits and (b) spiking feedback network with symmetric STDP.

with symmetric STDP shown in Fig. 12(b). This chip in-
cludes 5 neurons and 10 synapse units. The synapse unit has
2 synapse circuits shown in Fig. 4(a) and a symmetric STDP
circuit. The network has symmetric connections as shown in
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Fig. 6. The power consumptions of the neuron and synapse
units estimated using HSPICE were 280 uW and 250 uW,
respectively at a 3.3V power supply. In the evaluation of
the spiking feedback network chip, we used 4 neurons and
the shape of symmetric STDP function when Vy, = 1.95
as shown in Fig. 13(a). Before network operation, we input
the spike pattern shown in Fig. 15(a) to the network for 45
times, and updated synaptic weights as shown in Fig. 15(b).

After setting the synaptic weights, we stopped STDP
function, and gave some input spikes to the network. Fig-
ure 16 shows measurement results of the spiking feedback
network. In this figure, i, and V,, (n = 1,2,3,4) are out-
put spikes and internal potentials of neurons, respectively.
In both results, after several spike generations, the network
converged at a stable state in which spikes are generated at
a constant period. However, the output pattern at each sta-
ble state depends on the input spike pattern. In Fig. 16(a),
neurons form themselves in two groups each of which gen-
erates synchronous spikes with different timing. On the
other hand, in Fig. 16(b), each neuron generates spikes asyn-
chronously. However, the spike generation sequence and the
period of firing are kept constant.

In Fig. 16, time differences between spikes are almost
equal to the duration of psp_cont shown in Fig.17. Be-
cause spike timing is determined by the interactions between
EPSP and IPSP, our spiking feedback network circuit can
operate with a constant period without global clock.

6. Conclusion

We designed and fabricated LSI chips for evaluation of the
spiking neural network circuit with symmetric and asym-
metric STDP circuits. Measurement results demonstrated
that our circuits realized accurate STDP functions, and suc-
cessfully verified the operation of the spiking feedback net-
work circuit with learning by STDP. At the next step, we
will design and fabricate an LSI chip for larger scale spik-
ing neural networks.
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the University of Tokyo in collaboration with Cadence De-
sign Systems, Inc. Synopsys, Inc. and Mentor Graphics, Inc.
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