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SOME NOTES ON THE CLASS OF CONTRACTIONS
WITH RESPECT TO 7z-DISTANCE

Tomonari SUZUKI

Abstract

We discuss the class of contractions with respect to r-distance. One of purposes of this paper is to
understand the concept of r-distance more deeply.

1. Introduction and preliminaries

Throughout this paper, we denote by N, Z and R the sets of positive integers,
integers and real numbers, respectively.

Let (X,d) be a metric space. Then a mapping T on X is a Picard operator if T
has a unique fixed point z and {7"x} converges to z for every xe X. See [6, 9,
15]. We denote by P(X) the set of all Picard operators on X. Contractions and
Kannan mappings are typical examples of Picard operator.

THEOREM | (Banach [1] and Caccioppoli [2]). Let (X,d) be a complete metric space
and let T be a contraction on X, that is, there exists r€[0,1) such that

d(Tx, Ty) <rd(x,y)
for all x,ye X. Then T € P(X).

THEOREM 2 (Kannan [5]). Let (X,d) be a complete metric space. Let T be a
Kannan mapping on X, that is, there exists o €[0,1/2) such that

d(Tx,Ty) < a(d(x, Tx)+d(y, Ty))
for all x,ye X. Then T € P(X).

We denote by C(X) and K(X) the set of all contractions and all Kannan mappings
on X, respectively. Theorems 1 and 2 tell C(X) < P(X) and K(X) < P(X) provided X
is complete. In general, C(X) ¢ K(X) and K(X) ¢ C(X) hold.

In 2001, Suzuki introduced the concept of z-distance in order to improve results in
Tataru [18], Zhong [19, 20] and others. See also [7].
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DErFINITION 3 ([10]).  Let (X, d) be a metric space. Then a function p from X x X
into [0, 00) is called a t-distance on X if there exists a function # from X x [0, c0) into
[0,00) and the following are satisfied:

(r1) p(x,z) < p(x,y) + p(p,z) for all x,y,zeX.

(72) n(x,0) =0 and #5(x,7) > ¢ for all xe X and ¢ € [0, ), and # is concave and

continuous in its second variable.
(z3) lim, x, =x and lim, sup{n(z,, p(zy, Xn)) im=n} =0 imply p(w,x) <
liminf, p(w, x,) for all we X.

(r4) lim, sup{p(xy, ym) :m=>n} =0 and lim, 5(x,,2,) =0 imply lim, #(y,,?,)
= 0.

(z5) lim, #(zy, p(z4, x,)) = 0 and lim, #(z,, p(z,, y»)) = 0 imply lim, d(x,, y,) = 0.

The metric d is a 7-distance on X. Many useful examples and propositions are
stated in [4, 10-14, 16] and references therein.
We denote by TC(X) the set of all mappings 7" on a metric space X such that there
exist a r-distance p on X and re[0,1) satisfying
p(Tx,Ty) < rp(x, y)
for all x,y e X. We also denote by TK(X) the set of all mappings 7 on X such that
there exist a 7-distance p and « € [0,1/2) satisfying either of the following holds:
p(Tx, Ty) < a(p(Tx, x) + p(Ty,y))
for all x,ye X, or
p(Tx, Ty) < a(p(Tx,x) + p(y, Ty))

for all x,y e X. We have proven TC(X) < P(X) and TK(X) = P(X) provided X is
complete; see [10, 11]. Since the metric d is a rt-distance, C(X) < TC(X) and
K(X) < TK(X) hold. Also we proved TC(X) = TK(X) in [12]. Thus

C(X)UK(X) = TC(X) = TK(X) = P(X)

holds. In [17], we showed that there exists a complete metric space X such that
TC(X) ¢ P(X).

In this paper, motivated by the above facts, we continue to study TC(X). One of
purposes of this paper is to understand the concept of z-distance more deeply.

2. Main results
We first give the proof of the following lemma because we did not in [17].

LemmA 4 ([17])). Let T be a mapping on a set X. Let Ay be a subset of X such
that T(Ay) = Ao. Define a sequence {A,} of subsets of X by

Al =T " (4)\do  and A, =T '(4,).
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Then the following hold:
(i) For every neN and xe X, xe€ A, if and only if T/x¢ Ay for j=
0,1,...,n—1 and T"x e Ay, where T is the identity mapping on X.
(i) A4,NA, = for mne NU{0} with m # n.
(i) T(Apy1) = Ay for every neN.

Proor. We first show (i) by induction. It is obvious that x € 4; if and only if
x¢ Ay and Tx € Ay. So the conclusion is true when n = 1. We assume the conclusion
is true for some neN. Let xeA4,;. Then Txe A, holds. So T/Tx¢ Ay for
j=0,1,....,n—1 and T"Txe Ayp. We note x¢ Ay because T(Ay) = Ag. Therefore
we obtain T/x¢ Ay for j=0,1,...,n and T"*'xe A;. Conversely, we assume
T/x¢ Ay for j=0,1,...,n and T""'xe Ay. Then T/Tx¢ Ay for j=0,1,...,.n—1
and T"Txe Ay. So Txe A,, which implies x € A,,1. We have shown that the
conclusion is true when n:=n+ 1. By induction, we obtain (i). (ii) follows from
(i); and (iii) is obvious. O

Let (X, d) be a metric space. Then we define a set G(X) as follows: T e G(X) if
and only if T is a mapping on X satisfying the following:
e There exist ze X, a function f from X into [0,c0) and a continuous non-
decreasing function ¢ from [0, o0) into [0, c0) such that f(z) =0, 0 < g(¢) < ¢ for
all 7€ (0,00) and

d(T"x,z) < g"(f(x))
for all xe X and neN.

LemMa 5. Let (X,d) be a metric space and T € G(X). Let z, f and g be as in the
definition of G(X). Then the following hold:

(i) ¢(0)=0.
(it) {g"(¢)} converges to 0 for every te |0, ).
(ili) z is a unique fixed point of T, and {T"x} converges to z for every x € X.

Proor. Since ¢(0) < g(t) <t for every te (0,00), we have (i). We next show

(ii). Since {¢"(r)} is nonincreasing, {g"(¢)} converges to some 7€ [0,00). We have

7= lim ¢"(¢) = q(}ingc gnfl(l)) =9g(7),

which implies 7 = 0. Let us prove (iii). Since
d(Tz,2) < g(f(2)) = 9(0) =0,

z is a fixed point of 7. From (i), we have lim, d(7"x,z) < lim, g"(f(x)) = 0 for every
xe X. So the fixed point z is unique. O
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From Lemma 5, we have G(X) < P(X). Then it is a natural question of which is
smaller, G(X) or TC(X). The following theorem tells that G(X) is smaller.

THEOREM 6. Let (X,d) be a metric space. Then G(X) = TC(X) holds. That is,
for every T e G(X), there exist a t-distance p on X and re[0,1) such that
p(Tx,Ty) <rp(x,y) for all x,ye X.

Proor. Let T e G(X) and let z, f and g be as in the definition of G(X). Fix
re (0,1). We note that there is only one periodic point, which is the unique fixed
point z. Define a strictly decreasing sequence {#,} by #, = g"(1). By Lemma 5, {z,}
converges to 0. We put 7, =0.

We shall define a function /4 from X into ZU {0} satistying

s ix)=w&x=z

e h(Tx)=h(x)+1

. h(x) e NU {OO} = d(x, Z) < Iny)
for all xe X. We put h(z) = oo. It is obvious that #(Tz) = h(z) = oo = h(z) + 1 and
d(z,z) =0 = tj.). Define a sequence {A4,} of subsets of X by

Ao={z}, A =T "4)\dy and A, =T '(4,).

Then by Lemma 4, 4, N A4, = & for myn e NU{0} with m #n. We put i(x) = —n for
x e A, with neN. We have

W(Tx) — o0 if xe 4,
(T =) +1 if xe |7, 4,

and hence h(Tx) > h(x)+1 for xe ||, A,. Put

()

It is obvious that T(Y) <= Y, T-'(Y)=Y and z¢ Y. We note
T"x=T"xem=n

for xe Y and m,ne NU{0}. Define an equivalence relation ~ on Y as follows:
x ~ y if and only if there exist m,n e NU{0} such that T"x = T"y. By Axiom of
Choice, there exists a mapping B on Y such that

Bx ~ x and X~ y<& Bx = By.

Let ue Y with Bu=u. Since lim, g"(f(u)) =0, we can choose veN such that
g"(f(u) <1. We put v=T"u. Then we put A(T"v)=n for ne NU{0}. We
have

d(T"v,z) = d(T"""u,z) < g""(f(w) = g"(¢"(f ())) < ¢"(1) = 1,
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for neN. We also have h(ToT")=n+1=f(T"v) for ne NU{0}. Define a
sequence {D,} of subsets of Y by

Do={v,Tv, T*v,T%v,...}, D =T '(Dy)\Dy and D, =T '(D,).
Then we have D, N D, = for myne NU{0} with m # n; and

{xeY:x~u}= |_| D,.
neNU{0}

We put h(x) = —n for xe D, with ne N. If xe Dy, then A(Tx)>0=h(x)+1. If
x € D, with n > 2, then /(Tx) = —n+ 1 =h(x) + 1. We have defined &. We note that
h(x) e N implies x € Y.

Next, we define a z-distance p on X by

plx, ) = r') 4 A1),
where r* = 0. We shall show that p is a z-distance. For x,y,ze€ X, we have
p(x,2) =" 44O < MO 4 HO) 0D D) = p(x, y) 4 p(y, 2).

These imply (z1). Define a function # from X x [0, o0) into [0, o) by #(x,t) =t. (12)
and (74) obviously hold. In order to show (z3), we assume lim, x, =x and
lim,, sup{#(z,, p(zs, X)) : m = n} =0. We note that the second condition is equivalent
to lim, A(z,) = lim, h(x,) = 0. So we have

lim d(xn,z) < lim Ihix,) = 0,
n— oo n— oo

which implies x = z. Thus,

pOv,x) = p(w,2) = ") = lim p(w,x,)

n— oo

holds for every we X. This implies (¢3). Let us prove (75). We assume
lim, #(z,, p(24,x,)) =0 and lim, 5(z,,p(zy, y»)) =0. Then we have lim, Ai(x,) =
lim, A(y,) = lim, h(z,) = co. Hence

lim d(x,, y,) < lim\(d(x,,,z) +d(yn,2) < lim (Zh(x,,) + th(y”)) =0,

n—oo

which implies (¢5). Therefore we have shown that p is a t-distance on X.
Finally, for x,y € X, we have

p(Tx, Ty) = P 4 1T < phOH1 LT — ().
This complete the proof. O

REMARK. We have proven that for every 7 e G(X) and re (0,1), there exist a
t-distance p satisfying p(Tx,Ty) <rp(x,y) for all x,y e X.
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Next, we will show C(X) < G(X) and K(X) < G(X) provided X is complete.

LemMMA 7. Let T be a mapping on a metric space (X,d). Assume there exist z€ X
and re[0,1) such that d(Tx,z) <rd(x,z) for xe X. Then T € G(X).

Proor. Put 7#:=(147r)/2€(0,1). Define a function f from X into [0,00) and a
continuous nondecreasing function ¢ from [0, o0) into [0, c0) by

f(x)=d(x,z) and g(t) = rt.
It is obvious that f(z) =0, 0 < g(¢) <t for e (0,00) and
d(T"x,z) <r'"d(x,z) <#d(x,z) = g"(f(x))
for xe X and neN. O

THEOREM 8. Let (X,d) be a complete metric space and T e C(X). Then
T e G(X).

Proor. Since T e C(X), there exists r€[0,1) such that d(Tx, Ty) < rd(x,y) for
x,y € X. By Theorem 1, there exists a unique fixed point z of 7. Then it is obvious
that d(Tx,z) <rd(x,z). So by Lemma 7, T € G(X). O

LEMMA 9. Let T be a mapping on a metric space (X,d). Assume there exist z€ X
and r€[0,1) such that

max{d(Tx, T*x),d(Tx,z)} < rd(x, Tx)
for xe X. Then T e G(X).

Proor. We note that z is a fixed point of 7. Put #:= (1 +7r)/2€(0,1). Define a
function f from X into [0,c0) and a continuous nondecreasing function g from [0, c0)
into [0, 00) by

f(x) =d(x, Tx) and g(t) = rt.
It is obvious that f(z) =0, 0 < g(t) <t for te (0,00) and
d(T"x,z) < rd(T"'x, T"x) < r"d(x, Tx)
< #d(x,Tx) = g"(f(x))
for all xe X and neN. O

THEOREM 10. Let (X,d) be a complete metric space and T € K(X). Then
T e G(X).

Proor. Since T € C(X), there exists o € [0,1/2) such that d(Tx, Ty) < a(d(x, Tx)
+d(y,Ty)) for x,ye X. Put r:=a/(1 —a)e[0,1). We have d(Tx, T*x) < rd(x, Tx).
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By Theorem 2, there exists a unique fixed point z of 7. We have
d(Tx,z) = d(Tx,Tz) < a(d(x, Tx) + d(z, Tz))
= ad(x, Tx) < rd(x, Tx).
So by Lemma 9, T € G(X). O
By Theorem 6 and so on, we obtain the following.
CorOLLARY 11. Let (X,d) be a complete metric space. Then
C(X)UK(X) = G(X) = TC(X) = TK(X) = P(X)
holds.
RemarRk. We do not know whether there exists a complete metric space X such
that G(X) ¢ TC(X).
3. Additional results
Very recently, we obtained the following theorems.

THEOREM 12 ([3]). Put 4 and 4; (j=1,...,4) by
A4={(,) 020,220,004+ <1},
wped:a<pBa+pf+a® <1},

(e,
(
(,) ed:a> o+ p+p* <1},
(
(

o) ed:a=p o+ p+p =1}

wfed:a<pBa+pf+a®>1}

{
{
{
{
Define a nonincreasing function \ from A into (1/2,1] by

1 if
1 if
1-p if
(=P =p+0) if

Let T be a mapping on a complete metric space (X,d). Assume that there exists
(o, ) € A such that

lﬁ(%ﬁ) =

(o, B)d(x, Tx) < d(x,y) = d(Tx, Ty) < ad(x, Tx) + pd(y, Ty)
for all x,ye X. Then T € P(X).
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TEOREM 13 ((8]). Put 4 and 4; (j=1,...,6) by

4=10,1)%

A ={(,B)ed:a+a®> <1 or f+p> <1},
dy={(,p)ed:a=p,(V5-1)/2<p<1/V2},

Ay ={(,f) ed:a=p1/V2<p <1},

Ay={(f)ed:a<pf (V5-1)2<a<1/V2,f <o’ —a+1},
As={(,f) ed: (V5-1)2<a<1/V2,0> —a+1<f<1—d/(1+a)},
A ={(,f)ed: (V5-1)2<a<1/V21—a®/(1+0a)<p},

A7 ={(,f)ed:a<p1/V2<a<l},

Ag = AU AT

Define a function ¢ from A into (1/2,1] by

1 lf (Ot,ﬁ)EA]
(L=p)/B> if (%) e
_JYA+B)if (0, B) e ds
() = (1 —a)/a® if (a,p) € 44
(1=B)/e* if (xB) € 4s
V(1 +a) if (of) € de.
Let T be a mapping on a complete metric space (X,d). Assume that there exists

(o, ) € 4 such that
oo, P)d(x, Tx) < d(x,y) = d(Tx, Ty) < max{ad(x, Tx),pd(y, Ty)}
for all x,ye X. Then T € P(X).
The conclusion of both theorems is 7 € P(X). We will prove stronger results.

THEOREM 14. Let T be a mapping on a complete metric space (X,d). Assume that
T satisfies the assumption in Theorem 12. Then T € G(X).

Proor. By Theorem 12, there exists a unique fixed point z of 7. We put
r:=a/(1=p)e[0,1). In [3], we have shown

e d(Tx,T*x) <rd(x,Tx) for xe X

* d(z,Tx) < pd(x,Tx) for xe X\{z}.
Since z is a fixed point of T, d(z, Tx) < fd(x, Tx) holds for all xe X. By Lemma 9, we
obtain 7 € G(X). O



Contraction wrt 7-Distance 17

THEOREM 15. Let T be a mapping on a complete metric space (X,d). Assume that
T satisfies the assumption in Theorem 13. Then T € G(X).

Proor. By Theorem 13, there exists a unique fixed point z of 7. We put
r:=min{o,f} €[0,1). In [8], we have shown

e d(Tx,T*x) <rd(x,Tx) for xe X

* d(z,Tx) < fd(x, Tx) for x e X\{z}.
As in the proof of Theorem 14, we can prove the desired result. O

By Theorem 6, we obtain the following.

COROLLARY 16. Let T be a mapping on a complete metric space (X,d). Assume
that T satisfies the assumption in either Theorem 12 or 13. Then T € TC(X).
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