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SOME NOTES ON THE CLASS OF CONTRACTIONS

WITH RESPECT TO t-DISTANCE

Tomonari Suzuki

Abstract

We discuss the class of contractions with respect to t-distance. One of purposes of this paper is to

understand the concept of t-distance more deeply.

1. Introduction and preliminaries

Throughout this paper, we denote by N, Z and R the sets of positive integers,

integers and real numbers, respectively.

Let ðX ; dÞ be a metric space. Then a mapping T on X is a Picard operator if T

has a unique fixed point z and fT nxg converges to z for every x A X . See [6, 9,

15]. We denote by PðXÞ the set of all Picard operators on X . Contractions and

Kannan mappings are typical examples of Picard operator.

Theorem 1 (Banach [1] and Caccioppoli [2]). Let ðX ; dÞ be a complete metric space

and let T be a contraction on X, that is, there exists r A ½0; 1Þ such that

dðTx;TyÞa rdðx; yÞ

for all x; y A X. Then T A PðXÞ.

Theorem 2 (Kannan [5]). Let ðX ; dÞ be a complete metric space. Let T be a

Kannan mapping on X, that is, there exists a A ½0; 1=2Þ such that

dðTx;T yÞa aðdðx;TxÞ þ dðy;TyÞÞ

for all x; y A X. Then T A PðXÞ.

We denote by CðX Þ and KðXÞ the set of all contractions and all Kannan mappings

on X , respectively. Theorems 1 and 2 tell CðXÞHPðXÞ and KðX ÞHPðX Þ provided X

is complete. In general, CðXÞQKðXÞ and KðXÞQCðX Þ hold.

In 2001, Suzuki introduced the concept of t-distance in order to improve results in

Tataru [18], Zhong [19, 20] and others. See also [7].
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Definition 3 ([10]). Let ðX ; dÞ be a metric space. Then a function p from X � X

into ½0;yÞ is called a t-distance on X if there exists a function h from X � ½0;yÞ into

½0;yÞ and the following are satisfied:

(t1) pðx; zÞa pðx; yÞ þ pðy; zÞ for all x; y; z A X .

(t2) hðx; 0Þ ¼ 0 and hðx; tÞb t for all x A X and t A ½0;yÞ, and h is concave and

continuous in its second variable.

(t3) limn xn ¼ x and limn supfhðzn; pðzn; xmÞÞ : mb ng ¼ 0 imply pðw; xÞa
lim infn pðw; xnÞ for all w A X .

(t4) limn supfpðxn; ymÞ : mb ng ¼ 0 and limn hðxn; tnÞ ¼ 0 imply limn hðyn; tnÞ
¼ 0.

(t5) limn hðzn; pðzn; xnÞÞ ¼ 0 and limn hðzn; pðzn; ynÞÞ ¼ 0 imply limn dðxn; ynÞ ¼ 0.

The metric d is a t-distance on X . Many useful examples and propositions are

stated in [4, 10–14, 16] and references therein.

We denote by TCðXÞ the set of all mappings T on a metric space X such that there

exist a t-distance p on X and r A ½0; 1Þ satisfying

pðTx;TyÞa rpðx; yÞ

for all x; y A X . We also denote by TKðXÞ the set of all mappings T on X such that

there exist a t-distance p and a A ½0; 1=2Þ satisfying either of the following holds:

pðTx;TyÞa aðpðTx; xÞ þ pðTy; yÞÞ

for all x; y A X , or

pðTx;TyÞa aðpðTx; xÞ þ pðy;TyÞÞ

for all x; y A X . We have proven TCðXÞHPðXÞ and TKðX ÞHPðX Þ provided X is

complete; see [10, 11]. Since the metric d is a t-distance, CðXÞHTCðX Þ and

KðXÞHTKðXÞ hold. Also we proved TCðX Þ ¼ TKðXÞ in [12]. Thus

CðX ÞUKðX ÞHTCðXÞ ¼ TKðXÞHPðXÞ

holds. In [17], we showed that there exists a complete metric space X such that

TCðXÞYPðXÞ.
In this paper, motivated by the above facts, we continue to study TCðXÞ. One of

purposes of this paper is to understand the concept of t-distance more deeply.

2. Main results

We first give the proof of the following lemma because we did not in [17].

Lemma 4 ([17]). Let T be a mapping on a set X. Let A0 be a subset of X such

that TðA0ÞHA0. Define a sequence fAng of subsets of X by

A1 ¼ T�1ðA0ÞnA0 and Anþ1 ¼ T�1ðAnÞ:
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Then the following hold:

( i ) For every n A N and x A X, x A An if and only if T jx B A0 for j ¼
0; 1; . . . ; n� 1 and T nx A A0, where T 0 is the identity mapping on X.

( ii ) Am VAn ¼ q for m; n A NU f0g with m0 n.

(iii) TðAnþ1Þ ¼ An for every n A N.

Proof. We first show (i) by induction. It is obvious that x A A1 if and only if

x B A0 and Tx A A0. So the conclusion is true when n ¼ 1. We assume the conclusion

is true for some n A N. Let x A Anþ1. Then Tx A An holds. So T jTx B A0 for

j ¼ 0; 1; . . . ; n� 1 and T nTx A A0. We note x B A0 because TðA0ÞHA0. Therefore

we obtain T jx B A0 for j ¼ 0; 1; . . . ; n and T nþ1x A A0. Conversely, we assume

T jx B A0 for j ¼ 0; 1; . . . ; n and T nþ1x A A0. Then T jTx B A0 for j ¼ 0; 1; . . . ; n� 1

and T nTx A A0. So Tx A An, which implies x A Anþ1. We have shown that the

conclusion is true when n :¼ nþ 1. By induction, we obtain (i). (ii) follows from

(i); and (iii) is obvious. r

Let ðX ; dÞ be a metric space. Then we define a set GðXÞ as follows: T A GðX Þ if

and only if T is a mapping on X satisfying the following:
� There exist z A X , a function f from X into ½0;yÞ and a continuous non-

decreasing function g from ½0;yÞ into ½0;yÞ such that f ðzÞ ¼ 0, 0 < gðtÞ < t for

all t A ð0;yÞ and

dðT nx; zÞa gnð f ðxÞÞ

for all x A X and n A N.

Lemma 5. Let ðX ; dÞ be a metric space and T A GðX Þ. Let z, f and g be as in the

definition of GðXÞ. Then the following hold:

( i ) gð0Þ ¼ 0.

( ii ) fgnðtÞg converges to 0 for every t A ½0;yÞ.
(iii) z is a unique fixed point of T; and fT nxg converges to z for every x A X.

Proof. Since gð0Þa gðtÞ < t for every t A ð0;yÞ, we have (i). We next show

(ii). Since fgnðtÞg is nonincreasing, fgnðtÞg converges to some t A ½0;yÞ. We have

t ¼ lim
n!y

gnðtÞ ¼ g lim
n!y

gn�1ðtÞ
� �

¼ gðtÞ;

which implies t ¼ 0. Let us prove (iii). Since

dðTz; zÞa gð f ðzÞÞ ¼ gð0Þ ¼ 0;

z is a fixed point of T . From (ii), we have limn dðT nx; zÞa limn g
nð f ðxÞÞ ¼ 0 for every

x A X . So the fixed point z is unique. r
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From Lemma 5, we have GðXÞHPðXÞ. Then it is a natural question of which is

smaller, GðXÞ or TCðXÞ. The following theorem tells that GðXÞ is smaller.

Theorem 6. Let ðX ; dÞ be a metric space. Then GðX ÞHTCðXÞ holds. That is,

for every T A GðXÞ, there exist a t-distance p on X and r A ½0; 1Þ such that

pðTx;T yÞa rpðx; yÞ for all x; y A X.

Proof. Let T A GðXÞ and let z, f and g be as in the definition of GðXÞ. Fix

r A ð0; 1Þ. We note that there is only one periodic point, which is the unique fixed

point z. Define a strictly decreasing sequence ftng by tn ¼ gnð1Þ. By Lemma 5, ftng
converges to 0. We put ty ¼ 0.

We shall define a function h from X into ZU fyg satisfying
� hðxÞ ¼ y , x ¼ z
� hðTxÞb hðxÞ þ 1
� hðxÞ A NU fyg ) dðx; zÞa thðxÞ

for all x A X . We put hðzÞ ¼ y. It is obvious that hðTzÞ ¼ hðzÞ ¼ y ¼ hðzÞ þ 1 and

dðz; zÞ ¼ 0 ¼ thðzÞ. Define a sequence fAng of subsets of X by

A0 ¼ fzg; A1 ¼ T�1ðA0ÞnA0 and Anþ1 ¼ T�1ðAnÞ:

Then by Lemma 4, Am VAn ¼ q for m; n A NU f0g with m0 n. We put hðxÞ ¼ �n for

x A An with n A N. We have

hðTxÞ ¼
y if x A A1

hðxÞ þ 1 if x A
Fy

n¼2 An

�

and hence hðTxÞb hðxÞ þ 1 for x A
Fy

n¼1 An. Put

Y ¼ X

�� G
n ANUf0g

An

�
:

It is obvious that TðYÞHY , T�1ðYÞ ¼ Y and z B Y . We note

Tmx ¼ T nx , m ¼ n

for x A Y and m; n A NU f0g. Define an equivalence relation @ on Y as follows:

x@ y if and only if there exist m; n A NU f0g such that Tmx ¼ T ny. By Axiom of

Choice, there exists a mapping B on Y such that

Bx@ x and x@ y , Bx ¼ By:

Let u A Y with Bu ¼ u. Since limn g
nð f ðuÞÞ ¼ 0, we can choose n A N such that

gnð f ðuÞÞa 1. We put v ¼ T nu. Then we put hðT nvÞ ¼ n for n A NU f0g. We

have

dðT nv; zÞ ¼ dðT nþnu; zÞa gnþnð f ðuÞÞ ¼ gnðgnð f ðuÞÞÞa gnð1Þ ¼ tn
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for n A N. We also have hðT � T nvÞ ¼ nþ 1 ¼ f ðT nvÞ for n A NU f0g. Define a

sequence fDng of subsets of Y by

D0 ¼ fv;Tv;T 2v;T 3v; . . .g; D1 ¼ T�1ðD0ÞnD0 and Dnþ1 ¼ T�1ðDnÞ:

Then we have Dm VDn ¼ q for m; n A NU f0g with m0 n; and

fx A Y : x@ ug ¼
G

n ANUf0g
Dn:

We put hðxÞ ¼ �n for x A Dn with n A N. If x A D1, then hðTxÞb 0 ¼ hðxÞ þ 1. If

x A Dn with nb 2, then hðTxÞ ¼ �nþ 1 ¼ hðxÞ þ 1. We have defined h. We note that

hðxÞ A N implies x A Y .

Next, we define a t-distance p on X by

pðx; yÞ ¼ rhðxÞ þ rhðyÞ;

where ry ¼ 0. We shall show that p is a t-distance. For x; y; z A X , we have

pðx; zÞ ¼ rhðxÞ þ rhðzÞ a rhðxÞ þ rhðyÞ þ rhðyÞ þ rhðzÞ ¼ pðx; yÞ þ pðy; zÞ:

These imply (t1). Define a function h from X � ½0;yÞ into ½0;yÞ by hðx; tÞ ¼ t. (t2)

and (t4) obviously hold. In order to show (t3), we assume limn xn ¼ x and

limn supfhðzn; pðzn; xmÞÞ : mb ng ¼ 0. We note that the second condition is equivalent

to limn hðznÞ ¼ limn hðxnÞ ¼ y. So we have

lim
n!y

dðxn; zÞa lim
n!y

thðxnÞ ¼ 0;

which implies x ¼ z. Thus,

pðw; xÞ ¼ pðw; zÞ ¼ rhðwÞ ¼ lim
n!y

pðw; xnÞ

holds for every w A X . This implies (t3). Let us prove (t5). We assume

limn hðzn; pðzn; xnÞÞ ¼ 0 and limn hðzn; pðzn; ynÞÞ ¼ 0. Then we have limn hðxnÞ ¼
limn hðynÞ ¼ limn hðznÞ ¼ y. Hence

lim
n!y

dðxn; ynÞa lim
n!y

ðdðxn; zÞ þ dðyn; zÞÞa lim
n!y

ðthðxnÞ þ thðynÞÞ ¼ 0;

which implies (t5). Therefore we have shown that p is a t-distance on X .

Finally, for x; y A X , we have

pðTx;TyÞ ¼ rhðTxÞ þ rhðTyÞ a rhðxÞþ1 þ rhð yÞþ1 ¼ rpðx; yÞ:

This complete the proof. r

Remark. We have proven that for every T A GðX Þ and r A ð0; 1Þ, there exist a

t-distance p satisfying pðTx;T yÞa rpðx; yÞ for all x; y A X .
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Next, we will show CðXÞHGðX Þ and KðXÞHGðX Þ provided X is complete.

Lemma 7. Let T be a mapping on a metric space ðX ; dÞ. Assume there exist z A X

and r A ½0; 1Þ such that dðTx; zÞa rdðx; zÞ for x A X. Then T A GðX Þ.

Proof. Put r̂r :¼ ð1 þ rÞ=2 A ð0; 1Þ. Define a function f from X into ½0;yÞ and a

continuous nondecreasing function g from ½0;yÞ into ½0;yÞ by

f ðxÞ ¼ dðx; zÞ and gðtÞ ¼ r̂rt:

It is obvious that f ðzÞ ¼ 0, 0 < gðtÞ < t for t A ð0;yÞ and

dðT nx; zÞa rndðx; zÞa r̂rndðx; zÞ ¼ gnð f ðxÞÞ

for x A X and n A N. r

Theorem 8. Let ðX ; dÞ be a complete metric space and T A CðX Þ. Then

T A GðXÞ.

Proof. Since T A CðX Þ, there exists r A ½0; 1Þ such that dðTx;TyÞa rdðx; yÞ for

x; y A X . By Theorem 1, there exists a unique fixed point z of T . Then it is obvious

that dðTx; zÞa rdðx; zÞ. So by Lemma 7, T A GðXÞ. r

Lemma 9. Let T be a mapping on a metric space ðX ; dÞ. Assume there exist z A X

and r A ½0; 1Þ such that

maxfdðTx;T 2xÞ; dðTx; zÞga rdðx;TxÞ

for x A X. Then T A GðX Þ.

Proof. We note that z is a fixed point of T . Put r̂r :¼ ð1 þ rÞ=2 A ð0; 1Þ. Define a

function f from X into ½0;yÞ and a continuous nondecreasing function g from ½0;yÞ
into ½0;yÞ by

f ðxÞ ¼ dðx;TxÞ and gðtÞ ¼ r̂rt:

It is obvious that f ðzÞ ¼ 0, 0 < gðtÞ < t for t A ð0;yÞ and

dðT nx; zÞa rdðT n�1x;T nxÞa rndðx;TxÞ

a r̂rndðx;TxÞ ¼ gnð f ðxÞÞ

for all x A X and n A N. r

Theorem 10. Let ðX ; dÞ be a complete metric space and T A KðX Þ. Then

T A GðXÞ.

Proof. Since T A CðX Þ, there exists a A ½0; 1=2Þ such that dðTx;TyÞa aðdðx;TxÞ
þ dðy;TyÞÞ for x; y A X . Put r :¼ a=ð1 � aÞ A ½0; 1Þ. We have dðTx;T 2xÞa rdðx;TxÞ.
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By Theorem 2, there exists a unique fixed point z of T . We have

dðTx; zÞ ¼ dðTx;TzÞa aðdðx;TxÞ þ dðz;TzÞÞ

¼ adðx;TxÞa rdðx;TxÞ:

So by Lemma 9, T A GðX Þ. r

By Theorem 6 and so on, we obtain the following.

Corollary 11. Let ðX ; dÞ be a complete metric space. Then

CðXÞUKðXÞHGðXÞHTCðX Þ ¼ TKðXÞHPðXÞ

holds.

Remark. We do not know whether there exists a complete metric space X such

that GðXÞYTCðX Þ.

3. Additional results

Very recently, we obtained the following theorems.

Theorem 12 ([3]). Put D and Dj ð j ¼ 1; . . . ; 4Þ by

D ¼ fða; bÞ : ab 0; bb 0; aþ b < 1g;

D1 ¼ fða; bÞ A D : aa b; aþ b þ a2 < 1g;

D2 ¼ fða; bÞ A D : ab b; aþ b þ b2 < 1g;

D3 ¼ fða; bÞ A D : ab b; aþ b þ b2
b 1g;

D4 ¼ fða; bÞ A D : aa b; aþ b þ a2
b 1g:

Define a nonincreasing function c from D into ð1=2; 1� by

cða; bÞ ¼

1 if ða; bÞ A D1

1 if ða; bÞ A D2

1 � b if ða; bÞ A D3

ð1 � bÞ=ð1 � b þ aÞ if ða; bÞ A D4:

8>>><
>>>:

Let T be a mapping on a complete metric space ðX ; dÞ. Assume that there exists

ða; bÞ A D such that

cða; bÞdðx;TxÞa dðx; yÞ ) dðTx;TyÞa adðx;TxÞ þ bdðy;TyÞ

for all x; y A X. Then T A PðXÞ.
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Theorem 13 ([8]). Put D and Dj ð j ¼ 1; . . . ; 6Þ by

D ¼ ½0; 1Þ2;

D1 ¼ fða; bÞ A D : aþ a2 < 1 or b þ b2 < 1g;

D2 ¼ fða; bÞ A D : ab b; ð
ffiffiffi
5

p
� 1Þ=2a ba 1=

ffiffiffi
2

p
g;

D3 ¼ fða; bÞ A D : ab b; 1=
ffiffiffi
2

p
a b < 1g;

D4 ¼ fða; bÞ A D : aa b; ð
ffiffiffi
5

p
� 1Þ=2a aa 1=

ffiffiffi
2

p
; ba a2 � aþ 1g;

D5 ¼ fða; bÞ A D : ð
ffiffiffi
5

p
� 1Þ=2a aa 1=

ffiffiffi
2

p
; a2 � aþ 1a ba 1 � a3=ð1 þ aÞg;

D�
6 ¼ fða; bÞ A D : ð

ffiffiffi
5

p
� 1Þ=2a aa 1=

ffiffiffi
2

p
; 1 � a3=ð1 þ aÞa bg;

D��
6 ¼ fða; bÞ A D : aa b; 1=

ffiffiffi
2

p
a a < 1g;

D6 ¼ D�
6 UD��

6 :

Define a function j from D into ð1=2; 1� by

jða; bÞ ¼

1 if ða; bÞ A D1

ð1 � bÞ=b2 if ða; bÞ A D2

1=ð1 þ bÞ if ða; bÞ A D3

ð1 � aÞ=a2 if ða; bÞ A D4

ð1 � bÞ=a3 if ða; bÞ A D5

1=ð1 þ aÞ if ða; bÞ A D6:

8>>>>>>>><
>>>>>>>>:

Let T be a mapping on a complete metric space ðX ; dÞ. Assume that there exists

ða; bÞ A D such that

jða; bÞdðx;TxÞa dðx; yÞ ) dðTx;TyÞamaxfadðx;TxÞ; bdðy;TyÞg

for all x; y A X. Then T A PðXÞ.

The conclusion of both theorems is T A PðX Þ. We will prove stronger results.

Theorem 14. Let T be a mapping on a complete metric space ðX ; dÞ. Assume that

T satisfies the assumption in Theorem 12. Then T A GðX Þ.

Proof. By Theorem 12, there exists a unique fixed point z of T . We put

r :¼ a=ð1 � bÞ A ½0; 1Þ. In [3], we have shown
� dðTx;T 2xÞa rdðx;TxÞ for x A X
� dðz;TxÞa bdðx;TxÞ for x A Xnfzg.

Since z is a fixed point of T , dðz;TxÞa bdðx;TxÞ holds for all x A X . By Lemma 9, we

obtain T A GðX Þ. r
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Theorem 15. Let T be a mapping on a complete metric space ðX ; dÞ. Assume that

T satisfies the assumption in Theorem 13. Then T A GðX Þ.

Proof. By Theorem 13, there exists a unique fixed point z of T . We put

r :¼ minfa; bg A ½0; 1Þ. In [8], we have shown
� dðTx;T 2xÞa rdðx;TxÞ for x A X
� dðz;TxÞa bdðx;TxÞ for x A Xnfzg.

As in the proof of Theorem 14, we can prove the desired result. r

By Theorem 6, we obtain the following.

Corollary 16. Let T be a mapping on a complete metric space ðX ; dÞ. Assume

that T satisfies the assumption in either Theorem 12 or 13. Then T A TCðX Þ.
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