SOME NOTES ON THE CLASS OF CONTRACTIONS WITH RESPECT TO τ-DISTANCE

Tomonari Suzuki

Abstract

We discuss the class of contractions with respect to τ-distance. One of purposes of this paper is to understand the concept of τ-distance more deeply.

1. Introduction and preliminaries

Throughout this paper, we denote by \mathbf{N}, \mathbf{Z} and \mathbf{R} the sets of positive integers, integers and real numbers, respectively.

Let (X, d) be a metric space. Then a mapping T on X is a Picard operator if T has a unique fixed point z and $\left\{T^{n} x\right\}$ converges to z for every $x \in X$. See [6, 9, 15]. We denote by $P(X)$ the set of all Picard operators on X. Contractions and Kannan mappings are typical examples of Picard operator.

Theorem 1 (Banach [1] and Caccioppoli [2]). Let (X, d) be a complete metric space and let T be a contraction on X, that is, there exists $r \in[0,1)$ such that

$$
d(T x, T y) \leq r d(x, y)
$$

for all $x, y \in X$. Then $T \in P(X)$.
Theorem 2 (Kannan [5]). Let (X, d) be a complete metric space. Let T be a Kannan mapping on X, that is, there exists $\alpha \in[0,1 / 2)$ such that

$$
d(T x, T y) \leq \alpha(d(x, T x)+d(y, T y))
$$

for all $x, y \in X$. Then $T \in P(X)$.
We denote by $C(X)$ and $K(X)$ the set of all contractions and all Kannan mappings on X, respectively. Theorems 1 and 2 tell $C(X) \subset P(X)$ and $K(X) \subset P(X)$ provided X is complete. In general, $C(X) \not \subset K(X)$ and $K(X) \not \subset C(X)$ hold.

In 2001, Suzuki introduced the concept of τ-distance in order to improve results in Tataru [18], Zhong [19, 20] and others. See also [7].

[^0]Definition 3 ([10]). Let (X, d) be a metric space. Then a function p from $X \times X$ into $[0, \infty)$ is called a τ-distance on X if there exists a function η from $X \times[0, \infty)$ into $[0, \infty)$ and the following are satisfied:
($\tau 1) \quad p(x, z) \leq p(x, y)+p(y, z)$ for all $x, y, z \in X$.
($\tau 2) \quad \eta(x, 0)=0$ and $\eta(x, t) \geq t$ for all $x \in X$ and $t \in[0, \infty)$, and η is concave and continuous in its second variable.
($\tau 3) \quad \lim _{n} x_{n}=x \quad$ and $\quad \lim _{n} \sup \left\{\eta\left(z_{n}, p\left(z_{n}, x_{m}\right)\right): m \geq n\right\}=0 \quad$ imply $\quad p(w, x) \leq$ $\liminf _{n} p\left(w, x_{n}\right)$ for all $w \in X$.
($\tau 4) \lim _{n} \sup \left\{p\left(x_{n}, y_{m}\right): m \geq n\right\}=0$ and $\lim _{n} \eta\left(x_{n}, t_{n}\right)=0$ imply $\lim _{n} \eta\left(y_{n}, t_{n}\right)$ $=0$.
((5) $\lim _{n} \eta\left(z_{n}, p\left(z_{n}, x_{n}\right)\right)=0$ and $\lim _{n} \eta\left(z_{n}, p\left(z_{n}, y_{n}\right)\right)=0$ imply $\lim _{n} d\left(x_{n}, y_{n}\right)=0$.
The metric d is a τ-distance on X. Many useful examples and propositions are stated in $[4,10-14,16]$ and references therein.

We denote by $T C(X)$ the set of all mappings T on a metric space X such that there exist a τ-distance p on X and $r \in[0,1)$ satisfying

$$
p(T x, T y) \leq r p(x, y)
$$

for all $x, y \in X$. We also denote by $T K(X)$ the set of all mappings T on X such that there exist a τ-distance p and $\alpha \in[0,1 / 2)$ satisfying either of the following holds:

$$
p(T x, T y) \leq \alpha(p(T x, x)+p(T y, y))
$$

for all $x, y \in X$, or

$$
p(T x, T y) \leq \alpha(p(T x, x)+p(y, T y))
$$

for all $x, y \in X$. We have proven $T C(X) \subset P(X)$ and $T K(X) \subset P(X)$ provided X is complete; see $[10,11]$. Since the metric d is a τ-distance, $C(X) \subset T C(X)$ and $K(X) \subset T K(X)$ hold. Also we proved $T C(X)=T K(X)$ in [12]. Thus

$$
C(X) \cup K(X) \subset T C(X)=T K(X) \subset P(X)
$$

holds. In [17], we showed that there exists a complete metric space X such that $T C(X) \varsubsetneqq P(X)$.

In this paper, motivated by the above facts, we continue to study $T C(X)$. One of purposes of this paper is to understand the concept of τ-distance more deeply.

2. Main results

We first give the proof of the following lemma because we did not in [17].
Lemma 4 ([17]). Let T be a mapping on a set X. Let A_{0} be a subset of X such that $T\left(A_{0}\right) \subset A_{0}$. Define a sequence $\left\{A_{n}\right\}$ of subsets of X by

$$
A_{1}=T^{-1}\left(A_{0}\right) \backslash A_{0} \quad \text { and } \quad A_{n+1}=T^{-1}\left(A_{n}\right) .
$$

Then the following hold:
(i) For every $n \in \mathbf{N}$ and $x \in X, x \in A_{n}$ if and only if $T^{j} x \notin A_{0}$ for $j=$ $0,1, \ldots, n-1$ and $T^{n} x \in A_{0}$, where T^{0} is the identity mapping on X.
(ii) $A_{m} \cap A_{n}=\varnothing$ for $m, n \in \mathbf{N} \cup\{0\}$ with $m \neq n$.
(iii) $T\left(A_{n+1}\right)=A_{n}$ for every $n \in \mathbf{N}$.

Proof. We first show (i) by induction. It is obvious that $x \in A_{1}$ if and only if $x \notin A_{0}$ and $T x \in A_{0}$. So the conclusion is true when $n=1$. We assume the conclusion is true for some $n \in \mathbf{N}$. Let $x \in A_{n+1}$. Then $T x \in A_{n}$ holds. So $T^{j} T x \notin A_{0}$ for $j=0,1, \ldots, n-1$ and $T^{n} T x \in A_{0}$. We note $x \notin A_{0}$ because $T\left(A_{0}\right) \subset A_{0}$. Therefore we obtain $T^{j} x \notin A_{0}$ for $j=0,1, \ldots, n$ and $T^{n+1} x \in A_{0}$. Conversely, we assume $T^{j} x \notin A_{0}$ for $j=0,1, \ldots, n$ and $T^{n+1} x \in A_{0}$. Then $T^{j} T x \notin A_{0}$ for $j=0,1, \ldots, n-1$ and $T^{n} T x \in A_{0}$. So $T x \in A_{n}$, which implies $x \in A_{n+1}$. We have shown that the conclusion is true when $n:=n+1$. By induction, we obtain (i). (ii) follows from (i); and (iii) is obvious.

Let (X, d) be a metric space. Then we define a set $G(X)$ as follows: $T \in G(X)$ if and only if T is a mapping on X satisfying the following:

- There exist $z \in X$, a function f from X into $[0, \infty)$ and a continuous nondecreasing function g from $[0, \infty)$ into $[0, \infty)$ such that $f(z)=0,0<g(t)<t$ for all $t \in(0, \infty)$ and

$$
d\left(T^{n} x, z\right) \leq g^{n}(f(x))
$$

for all $x \in X$ and $n \in \mathbf{N}$.
Lemma 5. Let (X, d) be a metric space and $T \in G(X)$. Let z, f and g be as in the definition of $G(X)$. Then the following hold:
(i) $g(0)=0$.
(ii) $\left\{g^{n}(t)\right\}$ converges to 0 for every $t \in[0, \infty)$.
(iii) z is a unique fixed point of T; and $\left\{T^{n} x\right\}$ converges to z for every $x \in X$.

Proof. Since $g(0) \leq g(t)<t$ for every $t \in(0, \infty)$, we have (i). We next show (ii). Since $\left\{g^{n}(t)\right\}$ is nonincreasing, $\left\{g^{n}(t)\right\}$ converges to some $\tau \in[0, \infty)$. We have

$$
\tau=\lim _{n \rightarrow \infty} g^{n}(t)=g\left(\lim _{n \rightarrow \infty} g^{n-1}(t)\right)=g(\tau)
$$

which implies $\tau=0$. Let us prove (iii). Since

$$
d(T z, z) \leq g(f(z))=g(0)=0
$$

z is a fixed point of T. From (ii), we have $\lim _{n} d\left(T^{n} x, z\right) \leq \lim _{n} g^{n}(f(x))=0$ for every $x \in X$. So the fixed point z is unique.

From Lemma 5, we have $G(X) \subset P(X)$. Then it is a natural question of which is smaller, $G(X)$ or $T C(X)$. The following theorem tells that $G(X)$ is smaller.

Theorem 6. Let (X, d) be a metric space. Then $G(X) \subset T C(X)$ holds. That is, for every $T \in G(X)$, there exist a τ-distance p on X and $r \in[0,1)$ such that $p(T x, T y) \leq r p(x, y)$ for all $x, y \in X$.

Proof. Let $T \in G(X)$ and let z, f and g be as in the definition of $G(X)$. Fix $r \in(0,1)$. We note that there is only one periodic point, which is the unique fixed point z. Define a strictly decreasing sequence $\left\{t_{n}\right\}$ by $t_{n}=g^{n}(1)$. By Lemma $5,\left\{t_{n}\right\}$ converges to 0 . We put $t_{\infty}=0$.

We shall define a function h from X into $\mathbf{Z} \cup\{\infty\}$ satisfying

- $h(x)=\infty \Leftrightarrow x=z$
- $h(T x) \geq h(x)+1$
- $h(x) \in \mathbf{N} \cup\{\infty\} \Rightarrow d(x, z) \leq t_{h(x)}$
for all $x \in X$. We put $h(z)=\infty$. It is obvious that $h(T z)=h(z)=\infty=h(z)+1$ and $d(z, z)=0=t_{h(z)}$. Define a sequence $\left\{A_{n}\right\}$ of subsets of X by

$$
A_{0}=\{z\}, \quad A_{1}=T^{-1}\left(A_{0}\right) \backslash A_{0} \quad \text { and } \quad A_{n+1}=T^{-1}\left(A_{n}\right)
$$

Then by Lemma 4, $A_{m} \cap A_{n}=\varnothing$ for $m, n \in \mathbf{N} \cup\{0\}$ with $m \neq n$. We put $h(x)=-n$ for $x \in A_{n}$ with $n \in \mathbf{N}$. We have

$$
h(T x)= \begin{cases}\infty & \text { if } x \in A_{1} \\ h(x)+1 & \text { if } x \in \bigsqcup_{n=2}^{\infty} A_{n}\end{cases}
$$

and hence $h(T x) \geq h(x)+1$ for $x \in \bigsqcup_{n=1}^{\infty} A_{n}$. Put

$$
Y=X \backslash\left(\bigsqcup_{n \in \mathbf{N} \cup\{0\}} A_{n}\right) .
$$

It is obvious that $T(Y) \subset Y, T^{-1}(Y)=Y$ and $z \notin Y$. We note

$$
T^{m} x=T^{n} x \Leftrightarrow m=n
$$

for $x \in Y$ and $m, n \in \mathbf{N} \cup\{0\}$. Define an equivalence relation \sim on Y as follows: $x \sim y$ if and only if there exist $m, n \in \mathbf{N} \cup\{0\}$ such that $T^{m} x=T^{n} y$. By Axiom of Choice, there exists a mapping B on Y such that

$$
B x \sim x \quad \text { and } \quad x \sim y \Leftrightarrow B x=B y .
$$

Let $u \in Y$ with $B u=u$. Since $\lim _{n} g^{n}(f(u))=0$, we can choose $v \in \mathbf{N}$ such that $g^{v}(f(u)) \leq 1$. We put $v=T^{v} u$. Then we put $h\left(T^{n} v\right)=n$ for $n \in \mathbf{N} \cup\{0\}$. We have

$$
d\left(T^{n} v, z\right)=d\left(T^{v+n} u, z\right) \leq g^{v+n}(f(u))=g^{n}\left(g^{v}(f(u))\right) \leq g^{n}(1)=t_{n}
$$

for $n \in \mathbf{N}$. We also have $h\left(T \circ T^{n} v\right)=n+1=f\left(T^{n} v\right)$ for $n \in \mathbf{N} \cup\{0\}$. Define a sequence $\left\{D_{n}\right\}$ of subsets of Y by

$$
D_{0}=\left\{v, T v, T^{2} v, T^{3} v, \ldots\right\}, \quad D_{1}=T^{-1}\left(D_{0}\right) \backslash D_{0} \quad \text { and } \quad D_{n+1}=T^{-1}\left(D_{n}\right)
$$

Then we have $D_{m} \cap D_{n}=\varnothing$ for $m, n \in \mathbf{N} \cup\{0\}$ with $m \neq n$; and

$$
\{x \in Y: x \sim u\}=\bigsqcup_{n \in \mathbb{N} \cup\{0\}} D_{n} .
$$

We put $h(x)=-n$ for $x \in D_{n}$ with $n \in \mathbf{N}$. If $x \in D_{1}$, then $h(T x) \geq 0=h(x)+1$. If $x \in D_{n}$ with $n \geq 2$, then $h(T x)=-n+1=h(x)+1$. We have defined h. We note that $h(x) \in \mathbf{N}$ implies $x \in Y$.

Next, we define a τ-distance p on X by

$$
p(x, y)=r^{h(x)}+r^{h(y)},
$$

where $r^{\infty}=0$. We shall show that p is a τ-distance. For $x, y, z \in X$, we have

$$
p(x, z)=r^{h(x)}+r^{h(z)} \leq r^{h(x)}+r^{h(y)}+r^{h(y)}+r^{h(z)}=p(x, y)+p(y, z) .
$$

These imply $(\tau 1)$. Define a function η from $X \times[0, \infty)$ into $[0, \infty)$ by $\eta(x, t)=t$. ($\tau 2$) and ($\tau 4$) obviously hold. In order to show ($\tau 3$), we assume $\lim _{n} x_{n}=x$ and $\lim _{n} \sup \left\{\eta\left(z_{n}, p\left(z_{n}, x_{m}\right)\right): m \geq n\right\}=0$. We note that the second condition is equivalent to $\lim _{n} h\left(z_{n}\right)=\lim _{n} h\left(x_{n}\right)=\infty$. So we have

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, z\right) \leq \lim _{n \rightarrow \infty} t_{h\left(x_{n}\right)}=0
$$

which implies $x=z$. Thus,

$$
p(w, x)=p(w, z)=r^{h(w)}=\lim _{n \rightarrow \infty} p\left(w, x_{n}\right)
$$

holds for every $w \in X$. This implies ($\tau 3$). Let us prove ($\tau 5$). We assume $\lim _{n} \eta\left(z_{n}, p\left(z_{n}, x_{n}\right)\right)=0$ and $\lim _{n} \eta\left(z_{n}, p\left(z_{n}, y_{n}\right)\right)=0$. Then we have $\lim _{n} h\left(x_{n}\right)=$ $\lim _{n} h\left(y_{n}\right)=\lim _{n} h\left(z_{n}\right)=\infty$. Hence

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right) \leq \lim _{n \rightarrow \infty}\left(d\left(x_{n}, z\right)+d\left(y_{n}, z\right)\right) \leq \lim _{n \rightarrow \infty}\left(t_{h\left(x_{n}\right)}+t_{h\left(y_{n}\right)}\right)=0
$$

which implies $(\tau 5)$. Therefore we have shown that p is a τ-distance on X.
Finally, for $x, y \in X$, we have

$$
p(T x, T y)=r^{h(T x)}+r^{h(T y)} \leq r^{h(x)+1}+r^{h(y)+1}=r p(x, y) .
$$

This complete the proof.
Remark. We have proven that for every $T \in G(X)$ and $r \in(0,1)$, there exist a τ-distance p satisfying $p(T x, T y) \leq r p(x, y)$ for all $x, y \in X$.

Next, we will show $C(X) \subset G(X)$ and $K(X) \subset G(X)$ provided X is complete.
Lemma 7. Let T be a mapping on a metric space (X, d). Assume there exist $z \in X$ and $r \in[0,1)$ such that $d(T x, z) \leq r d(x, z)$ for $x \in X$. Then $T \in G(X)$.

Proof. Put $\hat{r}:=(1+r) / 2 \in(0,1)$. Define a function f from X into $[0, \infty)$ and a continuous nondecreasing function g from $[0, \infty)$ into $[0, \infty)$ by

$$
f(x)=d(x, z) \quad \text { and } \quad g(t)=\hat{r} t .
$$

It is obvious that $f(z)=0,0<g(t)<t$ for $t \in(0, \infty)$ and

$$
d\left(T^{n} x, z\right) \leq r^{n} d(x, z) \leq \hat{r}^{n} d(x, z)=g^{n}(f(x))
$$

for $x \in X$ and $n \in \mathbf{N}$.
Theorem 8. Let (X, d) be a complete metric space and $T \in C(X)$. Then $T \in G(X)$.

Proof. Since $T \in C(X)$, there exists $r \in[0,1)$ such that $d(T x, T y) \leq r d(x, y)$ for $x, y \in X$. By Theorem 1, there exists a unique fixed point z of T. Then it is obvious that $d(T x, z) \leq r d(x, z)$. So by Lemma 7, $T \in G(X)$.

Lemma 9. Let T be a mapping on a metric space (X, d). Assume there exist $z \in X$ and $r \in[0,1)$ such that

$$
\max \left\{d\left(T x, T^{2} x\right), d(T x, z)\right\} \leq r d(x, T x)
$$

for $x \in X$. Then $T \in G(X)$.
Proof. We note that z is a fixed point of T. Put $\hat{r}:=(1+r) / 2 \in(0,1)$. Define a function f from X into $[0, \infty)$ and a continuous nondecreasing function g from $[0, \infty)$ into $[0, \infty)$ by

$$
f(x)=d(x, T x) \quad \text { and } \quad g(t)=\hat{r} t .
$$

It is obvious that $f(z)=0,0<g(t)<t$ for $t \in(0, \infty)$ and

$$
\begin{aligned}
d\left(T^{n} x, z\right) & \leq r d\left(T^{n-1} x, T^{n} x\right) \leq r^{n} d(x, T x) \\
& \leq \hat{r}^{n} d(x, T x)=g^{n}(f(x))
\end{aligned}
$$

for all $x \in X$ and $n \in \mathbf{N}$.
Theorem 10. Let (X, d) be a complete metric space and $T \in K(X)$. Then $T \in G(X)$.

Proof. Since $T \in C(X)$, there exists $\alpha \in[0,1 / 2)$ such that $d(T x, T y) \leq \alpha(d(x, T x)$ $+d(y, T y))$ for $x, y \in X$. Put $r:=\alpha /(1-\alpha) \in[0,1)$. We have $d\left(T x, T^{2} x\right) \leq r d(x, T x)$.

By Theorem 2, there exists a unique fixed point z of T. We have

$$
\begin{aligned}
d(T x, z) & =d(T x, T z) \leq \alpha(d(x, T x)+d(z, T z)) \\
& =\alpha d(x, T x) \leq r d(x, T x) .
\end{aligned}
$$

So by Lemma 9, $T \in G(X)$.
By Theorem 6 and so on, we obtain the following.
Corollary 11. Let (X, d) be a complete metric space. Then

$$
C(X) \cup K(X) \subset G(X) \subset T C(X)=T K(X) \subset P(X)
$$

holds.
Remark. We do not know whether there exists a complete metric space X such that $G(X) \varsubsetneqq T C(X)$.

3. Additional results

Very recently, we obtained the following theorems.
Theorem 12 ([3]). Put Δ and $\Delta_{j}(j=1, \ldots, 4)$ by

$$
\begin{aligned}
\Delta & =\{(\alpha, \beta): \alpha \geq 0, \beta \geq 0, \alpha+\beta<1\}, \\
\Delta_{1} & =\left\{(\alpha, \beta) \in \Delta: \alpha \leq \beta, \alpha+\beta+\alpha^{2}<1\right\}, \\
\Delta_{2} & =\left\{(\alpha, \beta) \in \Delta: \alpha \geq \beta, \alpha+\beta+\beta^{2}<1\right\}, \\
\Delta_{3} & =\left\{(\alpha, \beta) \in \Delta: \alpha \geq \beta, \alpha+\beta+\beta^{2} \geq 1\right\}, \\
\Delta_{4} & =\left\{(\alpha, \beta) \in \Delta: \alpha \leq \beta, \alpha+\beta+\alpha^{2} \geq 1\right\} .
\end{aligned}
$$

Define a nonincreasing function ψ from Δ into $(1 / 2,1]$ by

$$
\psi(\alpha, \beta)= \begin{cases}1 & \text { if }(\alpha, \beta) \in \Delta_{1} \\ 1 & \text { if }(\alpha, \beta) \in \Delta_{2} \\ 1-\beta & \text { if }(\alpha, \beta) \in \Delta_{3} \\ (1-\beta) /(1-\beta+\alpha) & \text { if }(\alpha, \beta) \in \Delta_{4}\end{cases}
$$

Let T be a mapping on a complete metric space (X, d). Assume that there exists $(\alpha, \beta) \in \Delta$ such that

$$
\psi(\alpha, \beta) d(x, T x) \leq d(x, y) \Rightarrow d(T x, T y) \leq \alpha d(x, T x)+\beta d(y, T y)
$$

for all $x, y \in X$. Then $T \in P(X)$.

Theorem 13 ([8]). Put Δ and $\Delta_{j}(j=1, \ldots, 6)$ by

$$
\begin{aligned}
& \Delta=[0,1)^{2}, \\
& \Delta_{1}=\left\{(\alpha, \beta) \in \Delta: \alpha+\alpha^{2}<1 \text { or } \beta+\beta^{2}<1\right\}, \\
& \Delta_{2}=\{(\alpha, \beta) \in \Delta: \alpha \geq \beta,(\sqrt{5}-1) / 2 \leq \beta \leq 1 / \sqrt{2}\}, \\
& \Delta_{3}=\{(\alpha, \beta) \in \Delta: \alpha \geq \beta, 1 / \sqrt{2} \leq \beta<1\}, \\
& \Delta_{4}=\left\{(\alpha, \beta) \in \Delta: \alpha \leq \beta,(\sqrt{5}-1) / 2 \leq \alpha \leq 1 / \sqrt{2}, \beta \leq \alpha^{2}-\alpha+1\right\}, \\
& \Delta_{5}=\left\{(\alpha, \beta) \in \Delta:(\sqrt{5}-1) / 2 \leq \alpha \leq 1 / \sqrt{2}, \alpha^{2}-\alpha+1 \leq \beta \leq 1-\alpha^{3} /(1+\alpha)\right\}, \\
& \Delta_{6}^{*}=\left\{(\alpha, \beta) \in \Delta:(\sqrt{5}-1) / 2 \leq \alpha \leq 1 / \sqrt{2}, 1-\alpha^{3} /(1+\alpha) \leq \beta\right\}, \\
& \Delta_{6}^{* *}=\{(\alpha, \beta) \in \Delta: \alpha \leq \beta, 1 / \sqrt{2} \leq \alpha<1\}, \\
& \Delta_{6}=\Delta_{6}^{*} \cup \Delta_{6}^{* *} .
\end{aligned}
$$

Define a function φ from Δ into $(1 / 2,1]$ by

$$
\varphi(\alpha, \beta)= \begin{cases}1 & \text { if }(\alpha, \beta) \in \Delta_{1} \\ (1-\beta) / \beta^{2} & \text { if }(\alpha, \beta) \in \Delta_{2} \\ 1 /(1+\beta) & \text { if }(\alpha, \beta) \in \Delta_{3} \\ (1-\alpha) / \alpha^{2} & \text { if }(\alpha, \beta) \in \Delta_{4} \\ (1-\beta) / \alpha^{3} & \text { if }(\alpha, \beta) \in \Delta_{5} \\ 1 /(1+\alpha) & \text { if }(\alpha, \beta) \in \Delta_{6} .\end{cases}
$$

Let T be a mapping on a complete metric space (X, d). Assume that there exists $(\alpha, \beta) \in \Delta$ such that

$$
\varphi(\alpha, \beta) d(x, T x) \leq d(x, y) \Rightarrow d(T x, T y) \leq \max \{\alpha d(x, T x), \beta d(y, T y)\}
$$

for all $x, y \in X$. Then $T \in P(X)$.
The conclusion of both theorems is $T \in P(X)$. We will prove stronger results.
Theorem 14. Let T be a mapping on a complete metric space (X, d). Assume that T satisfies the assumption in Theorem 12. Then $T \in G(X)$.

Proof. By Theorem 12, there exists a unique fixed point z of T. We put $r:=\alpha /(1-\beta) \in[0,1)$. In [3], we have shown

- $d\left(T x, T^{2} x\right) \leq r d(x, T x)$ for $x \in X$
- $d(z, T x) \leq \beta d(x, T x)$ for $x \in X \backslash\{z\}$.

Since z is a fixed point of $T, d(z, T x) \leq \beta d(x, T x)$ holds for all $x \in X$. By Lemma 9, we obtain $T \in G(X)$.

Theorem 15. Let T be a mapping on a complete metric space (X, d). Assume that T satisfies the assumption in Theorem 13. Then $T \in G(X)$.

Proof. By Theorem 13, there exists a unique fixed point z of T. We put $r:=\min \{\alpha, \beta\} \in[0,1)$. In [8], we have shown

- $d\left(T x, T^{2} x\right) \leq r d(x, T x)$ for $x \in X$
- $d(z, T x) \leq \beta d(x, T x)$ for $x \in X \backslash\{z\}$.

As in the proof of Theorem 14, we can prove the desired result.
By Theorem 6, we obtain the following.
Corollary 16. Let T be a mapping on a complete metric space (X, d). Assume that T satisfies the assumption in either Theorem 12 or 13. Then $T \in T C(X)$.

References

[1] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133-181.
[2] R. Caccioppoli, Un teorema generale sull'esistenza di elementi uniti in una transformazione funzionale, Rend. Accad. Naz. Lincei, 11 (1930), 794-799.
[3] Y. Enjouji, M. Nakanishi and T. Suzuki, A generalization of Kannan's fixed point theorem, Fixed Point Theory Appl., 2009 (2009), Article ID 192872, 1-10. MR2520264
[4] O. Kada, T. Suzuki and W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japon., 44 (1996), 381-391. MR1416281
[5] R. Kannan, Some results on fixed points-II, Amer. Math. Monthly, 76 (1969), 405-408. MR0257838
[6] S. Leader, Equivalent Cauchy sequences and contractive fixed points in metric spaces, Studia Math., 76 (1983), 63-67. MR0728197
[7] L. J. Lin and W.-S. Du, Ekeland's variational principle, minimax theorems and existence of nonconvex equilibria in complete metric spaces, J. Math. Anal. Appl., 323 (2006), 360-370. MR2262210
[8] M. Nakanishi and T. Suzuki, An observation on Kannan mappings, to appear in Cent. Eur. J. Math.
[9] I. A. Rus, Picard operators and applications, Sci. Math. Jpn., 58 (2003), 191-219. MR1987831
[10] T. Suzuki, Generalized distance and existence theorems in complete metric spaces, J. Math. Anal. Appl., 253 (2001), 440-458. MR1808147
[11] —, Several fixed point theorems concerning τ-distance, Fixed Point Theory Appl., 2004 (2004), 195-209. MR2096951
[12] —— Contractive mappings are Kannan mappings, and Kannan mappings are contractive mappings in some sense, Comment. Math. Prace Mat., 45 (2005), 45-58. MR2199893
[13] -, The strong Ekeland variational principle, J. Math. Anal. Appl., 320 (2006), 787-794. MR2225994
[14] -, On the relation between the weak Palais-Smale condition and coercivity given by Zhong, Nonlinear Anal., 68 (2008), 2471-2478. MR2398665
$[15]$ - A sufficient and necessary condition for the convergence of the sequence of successive approximations to a unique fixed point, Proc. Amer. Math. Soc., 136 (2008), 4089-4093. MR2425751
$[16]-$, Subrahmanyam's fixed point theorem, Nonlinear Anal., 71 (2009), 1678-1683. MR2524381
[17] —, Convergence of the sequence of successive approximations to a fixed point, to appear in Fixed Point Theory Appl.
[18] D. Tataru, Viscosity solutions of Hamilton-Jacobi equations with unbounded nonlinear terms, J. Math. Anal. Appl., 163 (1992), 345-392. MR1145836
[19] C.-K. Zhong, On Ekeland's variational principle and a minimax theorem, J. Math. Anal. Appl., 205 (1997), 239-250. MR1426991
$[20] \quad$, A generalization of Ekeland's variational principle and application to the study of the relation between the weak P.S. condition and coercivity, Nonlinear Anal., 29 (1997), 1421-1431. MR1484914

Department of Basic Sciences
Kyushu Institute of Technology
Tobata, Kitakyushu 804-8550, Japan
E-mail address: suzuki-t@mns.kyutech.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 54E40, Secondary 54H25.
 Key words and phrases. Contraction, Picard operator, τ-distance, fixed point.
 The author is supported in part by Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science.

