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Abstract—The vortex glass-liquid transition in
pinned superconductors is studied theoretically from
the viewpoint of thermal depinning of flux lines. It is
clarified that this depinning phenomenon is a transi-
tion of the second order. This result is consistent with
the fact that the scaling of the current-voltage curves
is well explained by the theoretical model of flux creep
and flow. It is also found that the degree of disorder of
the flux line lattice decreases abruptly with elevating
temperature above the transition temperature. This
agrees qualitatively with the observation of flux lines
using a Lorentz microscope.

I. INTRODUCTION

The vortex glass-liquid transition (hereafter we shall
call G-L transition)[1] was proposed to explain the drastic
change in the current-voltage curve in high-temperature
superconductors in the vicinity of the irreversibility line.
It is assumed in the theory that flux lines are in a glass
state for the temperature below the transition tempera-
ture, T, resulting in an effectively pinned state. Above
T,, on the other hand, flux lines are in a liquid state and
the flux pinning is no longer effective. This change in the
state of flux lines is expected to be a transition of the sec-
ond order. This expectation was proved by the scaling of
current-voltage curves in the vicinity of T}, [2].

On the other hand, the relaxation of the persistent cur-
rent carried by flux pinning in the irreversible regime is
well explained by the flux creep model [3]. This model
also explains the flux dynamics in the resistive state in the
low electric field regime, while the flux creep state shifts
to the flux flow state in the high electric field regime. As
a result, the irreversibility line is successfully explained
by the flux creep-flow model [4],[5]. Hence, this trial to
explain the drastic change in the current-voltage curve in
the vicinity of the irreversibility line has been done.

Not only the scaling of current-voltage curves but also
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other characteristic features such as the transition tem-
perature (T), the static critical index (v) and the dy-
namic critical index (z) are well explained by this theo-
retical model [6]-[9]. That is, when the temperature de-
pendence of the critical current density is expressed as
J. o (Tg — T)¥ (or J. (B — B)Y with B, denot-
ing the transition field), v is given by é'/2. This means
that the important correlation length which determines
the state of flux lines is the pinning correlation length,
| = (Cag/2nBJ.)}/?, where C is the elastic modulus of
flux lines and as is the flux line spacing. z is deeply associ-
ated with the distribution of flux pinning strength [9],[10].
That is, z decreases according to broadening the distri-
bution width. The above speculation is also supported
by the fact that T; depends on the flux pinning strength
similarly to the irreversibility temperature, T; [7],[11],{12].
The above results show that the flux pinning is the more
fundamental mechanism to determine the behavior of flux
lines than the intrinsic property of themselves. In other
words, it is speculated that the glass state is realized when
the flux pinning is superior than the thermal activation
of flux lines. In the above the dimensionality of super-
conductor is reflected on the pinning property through
the flux bundle size [4],[13],[14]. Therefore, it is expected
that the thermal depinning itself is the transition of the
second order.

In this paper the G-L transition is investigated using a
statistical theory of flux pinning. The disorder of the flux
line lattice is also argued. Although the inhomogeneous
distribution of pinning strength is not considered for sim-
plicity in the theory, its effect on the current-voltage curve
is discussed later.

II. THEORY

Although it is known that the Larkin-Ovchinnikov the-
ory [15] describes the pinning phenomena generally, it
contains quantitative problems. On the other hand, the
coherent potential approximation theory [16], which is a
kind of statistical theory, explains quantitatively well the
linear summation of elementary pinning forces for strong
pinning centers such as normal precipitates. In addition,
this theory is suitable for a statistical average. Hence, this
theory is used in this paper.

It is assumed in this theory that long-range order does
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not exist in the practical flux line lattice. This is a quite
important point by Larkin and Ovchinnikov. However,
such long-range order was assumed in the Labusch theory
(17) and this assumption resulted in a disagreement in
the threshold level of the pinning strength [18]. We watch
one flux line located at = which interacts with a pinning
center. The flux line lattice is distorted locally around
this pinning center, while it is in addition distorted on
a much longer scale of the order of correlation length.
The latter semi-macroscopic distortion comes from the
flux pinning interactions by surrounding pinning centers.
It is important to note that these interactions break the
long-range order in the flux line lattice. Elastic restoring
forces work corresponding to these distortions. For sim-
plicity, we assume that the distortion is small enough that
linear summations hold for the distortion and the elastic
force. Then, if we virtually “switch off” the pinning in-
teraction on the watched flux line, it would move to some
position, z’. It was predicted by the Labusch theory that
the long-range order was attained by this virtual treat-
ment. However, this is not correct and brings about the
serious problem on the pinning threshold.

It may be allowed to assume that, if we virtually switch
off all other pinning interactions, the long-range order ap-
pears in the flux line lattice. The position of the watched
flux line in this case is represented by A. Then, the
simplified one-dimensional force balance equation on the
watched flux line is formally described as [16]

ke(A —z) + f(z) =0, (1)

where the first and second terms are the elastic force and
the pinning force on the flux line, respectively. In the
above kj is the effective spring constant for the displace-
ment of the flux line from the equilibrium position, A, to
z. This situation is schematically illustrated in Fig. 1.
As a result, the effective spring constant is given by

T — (2)
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Fig. 1. Schematic illustration of the deformation of a flux line lattice.
Restoring forces due to local and semimacroscopic deformations are
represented using spring constants, k; and K, respectively.

where k; = G~1(0) is the spring constant for a local defor-
mation of the flux line lattice derived by Labusch [17] and
K is a spring constant for a semi-macroscopic displace-
ment of flux lines representing the reaction from surround-
ing pinning centers. K is proportional to the Labusch pa-
rameter, ey, which is used as a parameter representing
the strength of the coherent pinning potential. In usual
situations k¢ is much larger than K, and hence, k{ is dom-
inantly determined by K. Since the threshold level, fy, is
proportional to k{, it is approximately proportional to the
elementary pinning force, f,, through ay. In the creep-
free case f is always smaller than f, and the threshold
problem does not arise [16].

To consider the effect of thermal activation, we should
treat the Langevin equation considering hopping flux mo-
tions under the thermal activation. However, since this
is not easy, we will use an elegant method employed by
Yamafuji et al. [19] that the effect of thermal activation
can be approximately introduced by making the pinning
potential shallow.

It rarely happens that, just at the instance when
the watched flux line is thermally agitated, surrounding
pinned flux lines are agitated simultaneously. This means
that the watched flux line experiences the interactions
from surrounding pins represented by K whenever it at-
tempts to hop. Thus, f is not influenced by the thermal
activation. As a result, the effective elementary pinning
force, fp, decreases much faster than f,; with increasing
temperature. The flux pinning becomes ineffective at all
at the transition temperature, T,. Hence, it can be ex-
pected that f; is reduced to fp at T = T;. Thus, it is
reasonable to assume as

Jo—foexTyg—T (3)

in the vicinity of 7. In fact the scaling of current-voltage
curves predicted by the vortex glass-liquid transition the-
ory can be achieved also by the percolation flux flow model
[20] which is based on the theoretical approach of [19].
Here we assume the periodic pinning force versus the
position of flux line [21] shown in Fig. 2. This is described
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Fig. 2. Pinning model by Campbell [21].
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Fig. 3. Statistical distribution of flux lines for f, < fpt. The slope
of the chained line in the upper figure gives k}

as
fz) = %(z-}-a—;); —%(x(—%,
= ~fl%; —%<x<%£, (4)
= %(I—%’); %<$<%.

The threshold value, f, is determined by the condition,
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max|d f(z)/0z| = k¢, and we have

kia
for =5 (5)
It is considered that the local position of flux lines in the
virtual flux line lattice with the long-range order, which
is obtained by switching off all the pinning forces, has no
correlation with the position of randomly distributed pin-
ning centers. Hence, if we take a statistical average, the
probability to find such a flux line, the position of which
is represented by A, around a pinning center is uniform.
On the other hand, if the probability to find a flux line
at z is denoted by p(z), this is no longer uniform due to
interactions between pinning centers and flux lines. This
statistical distribution for f, < fu, ie. for T > T, is
shown in Fig. 3. The distribution is symmetrical and this
situation is unchanged even if the flux lines are displaced
along the z-axis. Hence, it results in zero pinning force
density. This can be derived also from the statistical aver-
age with respect to A. Under the present situation where
the pinning force changes periodically with the period, a,
the statistical average of an arbitrary function, g, is given
by

| o
(9 =+ [ gdA. 6)

On the other hand, the statistical distribution has a va-
cant region for f, > fu,i.e. for T < Tj. In this region flux
lines are unstable to stay. This instability brings about
the hysteretic nature of the pinning loss for a large dis-
placement of flux lines and the reversible behavior with-
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Fig. 4. Statistical distribution of flux lines for f; > fu: (a) under no driving force and (b) in the critical state.
The slope of the chained lines in the upper figures gives k;.
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out loss for a small displacement inside pinning potentials.
Figure 4(a) shows the statistical distribution of flux lines
when the driving force is not applied and the distribution
is symmetrical. When the driving force is applied, the flux
lines are displaced. Figure 4(b) shows the distribution in
the critical state under the driving force directed to the
positive z-axis. The distribution is no longer symmetrical
and a nonzero pinning force density is derived:

fpt 7
oy (7)

where Ny, is the concentration of pinning centers.
Here we shall calculate the free energy. The free energy
per pinning center is described as

F=U.+U}, (8)

F,=N, fp %

where U] is the effective pinning energy under the in-
fluence of thermal activation of flux lines. It should be
noted that the elastic energy, U,, due to distortions of the
flux line lattice contains a part which contributes to the
Lorentz force, since the Lorentz force can be expressed as
the elastic force using the uniaxially compressional modu-
lus (C1, ) and the tilt modulus (Cy4) of the flux line lattice.
The equilibrium condition, 8F/8z = 0, leads to the force
balance equation, (1).
Hence, U, and U], are calculated from

1
Ue = KA -2)) (9)
U= f f(z)dz (10)
After a simple but tedious calculation we have
Fo= —gpflfot 3l fo<fo
asg fp(—3f2 i lzfptfp pt.
24fpt fp + fpt. :

fo > for (11)

From the relationship of (3) in the vicinity of the tran-
sition temperature, it is seen that the derivative with re-
spect to T is proportional to the derivative with respect
to f, with an inversed sign. It is easy to show that the
first derivative of F with respect to f, is continuous at
fo = fot(T = Tg). On the other hand, the second deriva-

tive is

32F . ag .
a—fg- = —].2fpt’ fP<fPt’
ar —3f3 = fou S5 — ufo + 13f§t)_
12fpe (fo + for)? ’
o > for- (12)

This value goes to ag/12fp, in the limit of f, — f,. for
fo > for. Thus, the second derivative is discontinuous at
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Fig. 5. Degree of disorder of flux line lattice vs temperature.

the transition temperature, and it can be concluded that
thermal depinning is a transition of the second order.

Next we shall estimate the degree of disorder in the flux
line lattice. Since z — A is the deviation from the virtual
lattice point in the flux line lattice with the long-range
order, it seems to be reasonable to define the degree of
disorder by

4\2
S= (—) {(z — A)?). (13)
ag
After a simple calculation we obtain
Y AY
S - 3 (fpt) fp<fpts
i i 3
= —F___|3-F _6=E 47
B(fp + .fpt)2 f,ft fpt
fp = fpt- (14)
If we write AT =T — Tg, (3) leads to
o _ = —cAT (15)

with ¢ denoting a constant. Hence, in the vicinity of the
transition point where AT is sufficiently small, (14) is
reduced to

§ = %(I—CAT)z; AT > 0,
(1 — cAT)?(4 + 3¢°AT?) .
3(2 = cAT)? . AT <0. (16)

Hence, when |cAT| < 1, we have S =~ (1 — 2¢AT)/3 for
AT >0 and S ~ (1 — cAT)/3 for AT < 0. This result is’
shown in Fig. 5. 3

1
III. REsuLTS AND DISCUSSION -‘

The present theoretical result shows that thermal de-
pinning of flux lines is a second-order transition. It is

|



concluded, therefore, that the speculation described in I
is correct. This result also explains the reason for the
fact that E-J curves calculated using the flux creep-flow
model are scaled similarly to experiments.

This agreement shows that the irreversibility line and
the G-L transition line are similar characteristics deter-
mined by the mechanism of thermal depinning. The dif-
ference between them comes only from the difference of
definition. That is, the irreversibility temperature is de-
fined in an engineering sense by the temperature at which
the critical current density obtained using a certain cri-
terion reduces to a given threshold, while the transition
temperature is defined in a more physical sense using scal-
ing. Thus, it is concluded that the glass-liquid transition
and the thermal depinning are equivalent.

It should be noted, however, that what determines the
state of flux lines is not their intrinsic nature but the
flux pinning. This can be most clearly seen in the fact
that the transition temperature can be obtained only by
the mechanism of thermal depinning. The static and dy-
namic critical indices are not universal but are strongly
influenced by the flux pinning property. That is, if the cor-
relation length which determines the state of flux lines is
the pinning correlation length, v is speculated to be given
by 6'/2 using the parameter, §', describing the tempera-
ture or magnetic field dependence of the critical current
density. The relationship between v and é'/2 for vari-
ous high-temperature superconductors is shown in Fig. 6
(8],[22]. The coincidence of these quantities proves that
the above speculation is valid.

The dynamic critical index, z, depends largely on the
distribution of the flux pinning strength. A recent obser-

& 2

Fig. 6. Comparison between v and é'/2 for Bi-2223 tapes (open
circles), Bi-2212 tapes (solid triangles) and Y-123 thin films (open
squares) (8],[22].
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vation [12] showed that the introduction of strong colum-
nar defects into Y-123 thin films brings about the en-
hancement of the transition temperature normalized by
T. and simultaneously the enhancement of z. From the
latter fact it can be understood that strong pins with a
sharp distribution determine the thermal depinning.

Thus, the present result is consistent with such exper-
imental results which show that the scaling of current-
voltage curves is not universal but depends on the flux
pinning property.

Recently it was found [23] that the scaling of current-
voltage curves is quite sensitive to the range of the electric
field. That is, when the range of the electric field is low-
ered, T; and v decrease and z increases. This result also
shows that the transition is not determined by the in-
trinsic property of flux lines. It is considered that such
changes come from the difference of the diverging manner
of the pinning correlation length, i.e. the difference of the
temperature dependence of the critical current density, at
a given level of the electric field.

In this paper it is assumed for simplicity that the pin-
ning strength is uniform. However, the pinning strength
is not uniform and this distribution influences largely the
scaling parameters as mentioned above. In particular the
distribution is very wide in practical high-temperature
superconductors. That is, flux flow does not start glob-
ally but starts locally through percolating paths of weakly
pinned regions. Hence, the scaling parameters are deter-
mined by the manner of development of percolating paths
of flux lines with increasing temperature. Nevertheless,
the present theoretical result that the thermal depinning
is a second-order transition will not change essentially.
That is, flux lines flow locally in weakly pinned regions
to avoid an enhancement of the elastic energy, which con-
tributes to the reduction in the total energy.

The present theory is based on the concept that the
phase diagram of flux lines is determined by the elastic
energy of flux lines, the thermal energy and the pinning
energy. As a result, various transitions are explained to
take place as argued in [24]. One of the important predic-
tions from this theoretical result is that the irreversibil-
ity line below the melting transition observed for very
weakly pinned specimens should also be a transition of
the second order. Hence, it is expected that the scaling
of current-voltage curves can be observed in this region
also, although the critical indices may be different from
the ones above the critical point.

The present theory shows that the degree of disorder in
the flux line lattice in Fig. 5 decreases significantly and
the order recovers with increasing temperature above T,
while it is large below T,. This result seems to be natural,
since the pinning effect which distorts the flux line lattice
becomes weak with increasing temperature. In fact this
prediction agrees well with the observation of flux lines
with a Lorentz microscope [25]. That is, flux lines do not
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form a perfect lattice and many dislocations are included
at low temperatures, but a beautiful flux line lattice is
formed near T,. This agreement suggests that the present
theoretical result is reasonable.

IV. SUMMARY

Thermal depinning is investigated using the coherent
potential approximation theory in which the effect of ther-
mal activation is approximately introduced by making the
pinning potential shallow. The following results are ob-
tained.

(1)

(2)

(1]

(2]

3]

(4]

[5

(6]

It is shown that the thermal depinning of flux lines
which occurs on the irreversibility line is a transition
of the second order.

The hypothesis that the vortex glass-liquid transi-
tion is identical with thermal depinning is supported
by the effects of flux pinning on observed experimen-
tal results such as critical indices and by successful
explanation of the scaling of current-voltage curves
using the flux creep-flow model. Since the vortex
glass-liquid transition is originally expected to be a
second-order transition, the present theoretical result
is reasonable.

The degree of disorder of the flux line lattice de-
creases with increasing temperature and the order is
recovered quickly above the transition temperature.
This agrees qualitatively with observations using a
Lorentz microscope.
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