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1 Introduction

The use of the small gain theorem is one of popular theoretical tools for assessing stability of inter-
connected systems. Indeed, the small gain technique forms the basis of most popular linear robust
control methods such as [2, 6, 31, 3] and references therein. Roughly speaking, if an appropriate
composition of the size of two systems is smaller than unit, the feedback interconnection of the
two systems is guaranteed to be stable. Scaled Lp-gain has been found reasonable and popular
in measuring the size of linear systems. However, it has been widely known that boundedness of
such linear gains is far too strong a requirement for a nonlinear system. Thus, different points
of view such as notions of nonlinear gain [27, 17, 30] have been needed to deal with essential
nonlinearities.

Recently, an idea of ‘nonlinear scaling’ has been introduced into the L2-gain of nonlinear systems
by [10, 11]. These papers employ scaling factors which are functions of state variables so that
the gain is not a linear gain any more. The notion of state-dependent scaling allows one system
of a feedback interconnection comprising two systems to have infinite L2-gain. The other system
in the loop is still required to be L2-gain bounded in primitive results presented in the previous
papers [10, 11]. In spite of this limitation, the setting has fitted robust control of uncertain
nonlinear systems successfully[11, 12]. Indeed, the L2-gain ball is one of popular models to describe
uncertainties. The L2-gain is the ratio between the average power of output and input of a system,
which is the direct extension of the peak magnitude of the bode frequency plot to nonlinear
systems. However, if we have more knowledge on the uncertainty such as nonlinear gain other
than linear gain, the result based on [10, 11] might be too conservative. The previous papers
[10, 11] could employ state-dependent scaling only for static uncertainties so that its capability of
global stabilization is limited in the presence of dynamic uncertainties. The problem of disturbance
attenuation was not addressed either.

In the last decade, global stabilization of nonlinear systems with unknown parameters and un-
certain static nonlinearities has been extensively studied in the literature of nonlinear control.
For instance, backstepping with parameter uncertainty in strict-feedback systems has been con-
sidered in [25, 23, 20, 5] and references therein. Unknown unmodeled dynamics has attracted
less attention than static uncertainties. The effect of unmodeled dynamics is essentially different
from static uncertainty in that inadequate high gain domination leads to the loss of robustness to
unmodeled dynamics[26], and dynamic uncertainties often cause drastic shrinking of the region
of attraction[21]. At the present time of writing, there are several tools concentrating on such
troublesome uncertainties. A gain margin for a fixed linear unmodeled dynamics at control in-
put was investigated in [21] and dynamic nonlinear damping was introduced. Linear unmodeled
dynamics was also considered in [16]. These results have been extended to nonlinear unmodeled
dynamics by [24]. Optimal control posses a certain margin of stability in the sense of [26]. In-
verse optimal control is, however, not sufficient to secure global robustness to general classes of
dynamic uncertainties although it may establish robustness to static uncertainties. The concept of
robust control Lyapunov functions defined in [5] is not applicable to dynamic uncertainties either.
Usually, redesign of control Lyapunov functions are required to robustify control against dynamic
uncertainties[19, 7, 13, 1]. One has yet to develop a tool which unifies treatment of static and
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dynamic uncertainties in global nonlinear stabilization.

In this paper, the concept of state-dependent(SD) scaling is extensively developed further in a
fruitful from to deal with global control of nonlinear systems described by interconnection of
nonlinear-gain bounded dynamic systems. Advanced state-dependent scaling factors are proposed
for the first time to achieve this goal. Thereby, the use of linear small gain and nonlinear small
gain is unified successfully within a single framework which locally falls in with popular linear
robust control. Thus, the SD scaling approach becomes a natural extension of popular scaling
techniques in linear H∞ control to nonlinear systems. The SD scaling concept of this paper not
only allows nonlinear gains, but also brings in a unique way of constructing non-quadratic (control)
Lyapunov functions directly. The development is considered as a global robustification of the
previous results[5, 11] against dynamic uncertainties and an extension of them to L2 disturbance
attenuation problems. This paper allows scaling factors to depend on state variables even in the
presence of dynamic uncertainties and exogenous disturbances. Dynamic and static uncertainties
are treated in a unified way so that design formulas for the two types of uncertainties are identical.
A difference only appears in classes from which scaling factors are chosen. This paper does not
limit dynamic uncertainties to input unmodeled dynamics either. They are allowed to enter a
system in a general manner.

The main purpose of this paper is largely to present a unique solution to a new problem for
interconnected uncertain nonlinear dynamic systems. In brief, the primary goal is to design non-
linear controllers which achieve three control objectives simultaneously. One is global asymptotic
stabilization and another is disturbance attenuation in a L2-gain sense. These two properties are
required to be robust against all admissible uncertainties. The other one is to secure desirable
local properties of the nonlinear control in the way that nonlinear controllers are identical with
robust linear H∞ control at the equilibrium. The SD scaling characterization developed in this
paper leads to an explicit construction of partial-state nonlinear feedback laws which are natural
extensions of linear robust H∞ controllers. This point is quite unique and useful in practice.
For a class of interconnected systems, the control laws are systematically generated by selecting
SD scaling factors and parameters of the coordinate change recursively. The design equations
are obtained as affine algebraic inequalities with respect to the design parameters, so that the
SD scaling approach is advantageous to systematic numerical computation as well as analytical
computation. This feature contrasts with the past literature in constructive nonlinear control.
The layout of interconnected uncertain systems for which this paper guarantees the existence of
solutions is broader than setups considered in previous papers [8, 22, 29, 9] which deal with L2

disturbance attenuation. Thanks to SD scaling and non-quadratic Lyapunov functions generated
by the scaling, this paper allows uncertainties to be dynamic and linearly unbounded as well. For
much more general systems, nonlinear weighting in the level of L2 disturbance attenuation and
a nonlinear gain margin are addressed in this paper. This paper also introduce a new class of
nonlinear uncertainties including systems which are not input-to-state stable.

This paper is organized as follows. Section 2 starts with a general description of nonlinear systems
subject to dynamic and static structured nonlinear uncertainties. In Section 3, a new class of non-
linearly bounded uncertainties is defined. Section 4 develops a novel concept of state-dependent
scaling for dynamic and static uncertainties. Global stability and the level of L2 disturbance
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Figure 1: Interconnected nonlinear system Σ

attenuation of the uncertain nonlinear systems are recasted as a state-dependent scaling prob-
lem, which forms the basis of this paper. After Section 3, the topic is shifted to a partial-state
feedback controller design problem which is formulated in Section 5. The design goal consists of
global stabilization, L2 disturbance attenuation and local matching with scaled H∞ linear con-
trollers. Section 6 introduces a new class of uncertain systems, which is called the generalized
robust strict-feedback form. For this wide class of systems, the existence of controllers is demon-
strated in Section 7. The section also proposes a recursive procedure to construct partial-state
feedback controllers. In addition, a result of nonlinear gain margin and nonlinear weighting in L2

disturbance attenuation is presented. An example is provided to illustrate the proposed methodol-
ogy. Section 8 gathers some important modifications. Another set of new state-dependent scaling
which guarantees solutions to another class of systems is also presented briefly. Some conclusions
are drawn in Section 9. Proofs can be found in Appendix.

2 General layout of interconnected system

Consider the nonlinear uncertain system Σ comprising a time-invariant system ΣM and a time-
varying uncertain system Σ∆ shown in Fig.1. The lower part ΣM is described by

ΣM :
{

ẋ = A(x)x + B(x)w̄
z̄ = C(x)x + D(x)w̄ ,

x(t) ∈ Rn

w̄(t), z̄(t) ∈ Rp+q (1)

w=

 w1
w2

wm

 , z=

 z1
z2

zm

 ,

wi(t), zi(t) ∈ Rpi

pi ≥ 0
p =

∑m
i=1 pi

r=

 r1
r2

rm

 , e=

 e1
e2

em

 ,

ri(t), ei(t) ∈ Rqi

qi ≥ 0
q =

∑m
i=1 qi

w̄i =
[
wi
ri

]
, z̄i =

[
zi
ei

]
∈Rpi+qi , w̄=

 w̄1
w̄2

w̄m

 , z̄=

 z̄1
z̄2

z̄m


The matrices A, B, C, and D are assumed to be C0 functions of x. The part Σ∆ which is a
nonlinear mapping from z to w consists of the following mappings.

∆i : zi =
[
zis
zid

]
7→ wi =

[
wis
wid

]
, wi =

[
∆is 0
0 ∆id

]
zi . (2)

Here, ∆is and ∆id represent a time-varying static system and a time-varying dynamic system,
respectively. It is unnecessary for ∆i to have the both types. The static part ∆is and the dynamic
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part ∆id are defined by

∆is : wis = h∆is(zis, t) (3)

∆id :
{

ẋ∆i = f∆id
(x∆i , zid, t)

wid = h∆id
(x∆i , t)

, (4)

We assume f∆id
(0, 0, t) = 0, h∆id

(0, t) = 0 and h∆is(0, t) = 0 for all t ≥ 0. Functions f∆id
, h∆i∗

(∗ stands for s or d) are locally Lipschitz in (x∆i , zi∗) on Rn∆i × Rpi∗ , uniformly in t ∈ R. In
order to assure the well-posedness of the interconnection (ΣM , Σ∆), the static mapping between
w̄ and z seen as a part of the direct-feedthrough matrix D(x) is assumed to be zero. The system
Σ∆ represents uncertainty arising from the system Σ so that knowledge of the functions f∆id

,
h∆id

and h∆is is unnecessary. We only assume that information about nonlinear or linear gain
is available in a sense described in Section 3. The state of the whole interconnected system Σ
is xcl = [xT , xT

∆]T = [xT , xT
∆1

, xT
∆2

, · · · , xT
∆m

]T ∈ Rn+n∆ . The system Σ is said to be globally
uniformly asymptotically stable if the equilibrium xcl = 0 is globally uniformly asymptotically
stable. In this paper, the system Σ is said to have L2-gain less than or equal to τ if there exists a
storage function V (xcl) which is positive definite and radially unbounded in xcl such that for all
initial states xcl(0) ∈ Rn+n∆ , and all r ∈ L2[0, T ], the inequality

V (xcl(T )) ≤ V (xcl(0)) +
∫ T

0
(τ2∥r∥2 − ∥e∥2)dt

holds for all T ≥ 0.

3 Nonlinearly bounded uncertainty

This section defines a class of nonlinearly bounded systems for describing the uncertainty Σ∆. It
will be shown that input-to-state stable systems fall into that class under a mild assumption.

In this paper, the uncertainty Σ∆ is supposed to belong to the following class of nonlinearly
bounded systems.

Assumption 1 The uncertain system Σ∆ satisfies (i) and (ii) for each i = 1, 2, . . . , m.

(i) There exists a C0 function ψis : [0,∞) → [0,∞) such that

∥wis∥2 ≤ ψis(∥zis∥)∥zis∥2 (5)

holds for all t ∈ [0,∞).

(ii) There exists a C0 function ψid : [0,∞) → [0,∞) and a C1 function W∆i : [0,∞)×Rn∆i → R
such that

β
i
(∥x∆i∥) ≤ W∆i(t, x∆i) ≤ β̄i(∥x∆i∥) (6)

∂W∆i

∂t
+

∂W∆i

∂x∆i

f∆id
≤−βi(x∆i)−∥wid∥2+ψid(∥zid∥)∥zid∥2

(7)

hold for all (t, x∆i , zid) ∈ [0,∞)×Rn∆i ×Rpid, where β
i
and β̄i are class K∞ functions, and

βi is a positive definite C0 function of x∆i.
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A system Σ∆ is said to be admissible if Assumption 1 is true. The assumption does not require
uncertain systems to have finite L2-gain. Instead, they are supposed to have finite nonlinear-gain.
When ∆is (∆id) exhibits finite L2-gain, the parameter ψis (ψid, respectively) in Assumption 1
reduces to a positive constant. In such a case, we obtain ψis = γ2

is and ψid = γ2
id, where γis

and γid are L2-gain. The new class of uncertain systems is broad and it includes input-to-state
stable(ISS) systems in the following sense.

Lemma 1 (i) Suppose that a static system ∆is admits class K∞ functions αi and σi such that

αi(∥wis∥) ≤ σi(∥zis∥) (8)

holds for all t ∈ [0,∞) and

lim
s→0+

σi(s)
αi(s)

< +∞ (9)

holds. Then, there exists a C0 function ψis such that (5) holds for all t ∈ [0,∞).

(ii) Suppose that a dynamic system ∆id admits a C1 function V∆i : [0,∞)×Rn∆i → R such that

αi(∥x∆i∥) ≤ V∆i(t, x∆i) ≤ ᾱi(∥x∆i∥) (10)
∂V∆i

∂t
+

∂V∆i

∂x∆i

f∆id
≤ −αi(∥x∆i∥) + σi(∥zid∥) (11)

are satisfied for all (t, x∆i , zid) ∈ [0,∞) × Rn∆i × Rpid where αi, ᾱi and αi are class K∞

functions and σi is a class K function and they satisfy

lim
∥x∆i

∥→0

∥wid∥2

αi(∥x∆i∥)
<+∞, lim

∥zid∥→0

σi(∥zid∥)
∥zid∥2

<+∞ (12)

uniformly in t. Then, there exists a C0 function ψid, a C1 function W∆i, class K∞ functions
β

i
and β̄i and a positive definite C0 function βi such that (6) and (7) hold for all (t, x∆i , zid) ∈

[0,∞) ×Rn∆i ×Rpid.

The proof exploits a technique introduced in [28] and appropriate modifications. According to the
proof, a function ψis can be obtained from

(α−1
i ◦ σi(s))2 ≤ ψis(s)s2 ∀s ∈ [0,∞)

A choice of ψid is a function satisfying[
q ◦ ᾱi ◦ α−1

i ◦ πiσi(s)
]
σi(s) ≤ ψid(s)s2

for some τi > 1 and πi > τi/(τi − 1). Here, q : [0,∞) → [0,∞) is a non-decreasing C0 function
such that q(s) > 0,∀s > 0 and

q ◦ αi(∥x∆i∥) ≥
τi∥wid∥2

αi(∥x∆i∥)
, ∀(t, x∆i) ∈ R×Rn∆i

Then, βi is obtained as

βi(x∆i) =
(

1 − 1
πi

− 1
τi

)
[q ◦ αi(∥x∆i∥)]αi(∥x∆i∥)
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Note that βi(x∆i) can be always chosen as a class K∞ function of ∥x∆i∥ for ISS systems defined
in Lemma 1(ii). The existence of all functions appearing in the above are guaranteed by Lemma
1. It is emphasized that Assumption 1 admits systems which are not ISS. To bring out a better
interpretation of Lemma 1, we define

ẑis = υis(zis) = ψ
1/2
is (∥zis∥)zis

ẑid = υid(zid) = ψ
1/2
id (∥zid∥)zid

Lemma 1 demonstrates that the mappings ∆is and ∆id can be decomposed into ∆is = ∆̂is◦υis(zis)
and ∆id = ∆̂id ◦ υid(zid). Here, new mappings ∆̂is : ẑis 7→ wis and ∆̂id : ẑid 7→ wid are globally
L2-gain bounded due to (5) and (7), respectively. An example of nonlinearly bounded static
mappings which violate (9) is wis = h∆is(zis) =

√
∥zis∥ which is not Lipschitz at zis = 0. Indeed,

if h∆is(zis, t) is Lipschitz at zis = 0 uniformly in t as assumed in Section 2, there always exists a
class K∞ pair of {α(s), σ(s)} satisfying (9) and (8). Therefore, a static nonlinear mapping ∆is :
zis 7→ wis can be always decomposed in such a way. A dynamic nonlinear mapping ∆id : zid 7→ wid

is guaranteed to be decomposable under the condition (12). The condition together with (11) is
common in asymptotic analysis based on the nonlinear small-gain technique[14, 15, 17]. It is
known that (12) is always satisfied for appropriate functions αi ∈ K∞ and σi ∈ K if the Jacobian
linearization of ∆id at x∆i = 0 is uniformly asymptotically stable(e.g. see [18]).

4 SD scaling characterization

This section derives a characterization of global robustness properties of the interconnected system
Σ via a generalized concept of state-dependent (SD) scaling which incorporates the nonlinear gain.

In order to characterize the robustness of the interconnected system Σ, this paper introduces
several new classes of SD scaling factors associated with uncertain components. First, a set of
scaling factors associated with dynamic components ∆id is defined as

Φid =
{

Φid(x) = ϕd(V0(x))
[

ϕ̌idI 0
0 I

]
:

ϕd(·) ∈ C0, ϕd(s) > 0, ∀s ∈ [0,∞), ϕ̌id > 0

∃µϕ(·) ∈ K s.t.
s

ϕd(s)
≥ µϕ(s), ∀s ∈ [0,∞)

 (13)

for i = 1, 2, . . . , m. Here, the block partition of Φid is compatible in size with that of [zT
id, e

T
i ]T .

All sets Φid, i = 1, 2, . . . , m are defined with a common function ϕd(·). The parameters ϕ̌id for
i = 1, 2, . . . ,m are constant. The function V0(·) is a C0 function Rn → [0,∞) of the state x, which
has yet to be defined. For static components ∆is, a set of scaling factors is defined by

Φis = {Φis(x)=ϕis(x)I : ϕis(·)∈C0, ϕis(x)>0 ∀x∈Rn} (14)

The identity matrix I is compatible in size with zis. The definition of Φis is similar to state-
dependent scaling factors employed in [11, 10]. The new scaling factor Φid is different from those
SD scaling factors in that the growth rate of the state dependence is constrained. Note that
constant scaling factors are members of the set Φid, i.e., a matrix Φid with a positive constant ϕd
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belongs to Φid. The following lemma will play an important role in constructing non-quadratic
Lyapunov functions with the new SD scaling.

Lemma 2 Suppose that η(x) is a C1 function of x ∈ Rn which is positive definite and radially
unbounded. Let ϕ(·) be a C0 function which fulfills the following properties.

ϕ(s) > 0, ∀s ∈ [0,∞)

∃µ(·) ∈ K s.t.
s

ϕ(s)
≥ µ(s), ∀s ∈ [0,∞)

Then, the function

ζ(x) =
∫ η(x)

0

1
ϕ(s)

ds

is C1, positive definite and radially unbounded.

For i = 1, 2, . . . , m, define Φi(x) as

Φi =
{

Φi(x)=
[

Φis(x) 0
0 Φid(x)

]
: Φis ∈ Φis

Φid ∈ Φid

}
(15)

Using C0 functions ψid, ψis : [0,∞) → [0,∞) in Assumption 1, define Ψ̄(x) as

Ψ̄(x) =
m

block-diag
i=1

Ψ̄i(x) (16)

Ψ̄i(x) =

 ψis(∥zis∥)1/2I 0 0
0 ψid(∥zid∥)1/2I 0
0 0 τ−1I

 (17)

The block diagonal structure of Ψ̄i is conformable in size to the partition z̄i = [zT
is, z

T
id, e

T
i ]T . The

scalar τ is a positive number to describe the level of disturbance attenuation. We are now ready
to define three sets of SD scaling matrices by

Φ =
{

Φ(x) =
m

block-diag
i=1

Φi(x), Φi ∈ Φi

}
(18)

Θ =
{
Θ(x) : Rn → R(p+q)×(p+q), Θ(·)∈C0, Θ(x) > 0 ∀x ∈ Rn

}
(19)

Ψ =
{
Ψ(x) : Rn → R(p+q)×(p+q), Ψ(·)∈C0, Ψ(x) ≥ 0 ∀x ∈ Rn

}
(20)

All scaling matrices Φ, Θ and Ψ are ‘state-dependent’.

Based on the triplet of new scaling matrices defined in the above, we shall characterize stability
and L2 disturbance attenuation of Σ shown in Fig.1. Consider a diffeomorphism between x ∈ Rn

and χ ∈ Rn as follows:

χ = S(x)x . (21)

The time-derivative of χ is obtained as

χ̇ =
[

∂S

∂x1
x,

∂S

∂x2
x, · · · , ∂S

∂xn
x

]
ẋ + S(x)ẋ = T (x)ẋ .

Let χ[κ] and χ⟨κ⟩ denote

χ[κ] = [χ1, χ2, · · · , χκ]T , χ⟨κ+1⟩ = [χκ+1, χκ+2, · · · , χn]T

respectively. Note that χ = χ[n] = χ⟨1⟩. The following is the main result of this section.
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Theorem 1 Suppose that there exist an integer κ ∈ [0, n], constant symmetric matrices P[κ] ∈
Rκ×κ, P⟨κ+1⟩ ∈ R(n−κ)×(n−κ), and SD scaling matrices Φ ∈ Φ, Θ ∈ Θ, Ψ ∈ Ψ such that S−T AT T T Ξ+ΞTAS−1 ΞTB S−T CT ΨΦ

BT T T Ξ −Θ DT ΨΦ
ΦΨCS−1 ΦΨD −Φ

<0 (22)

P =
[

P[κ] 0
0 P⟨κ+1⟩

]
> 0 (23)

Θ ≤ Φ (24)

Ψ̄ ≤ Ψ (25)

are satisfied for all x ∈ Rn with

V0(x) =
{

χT
[κ]P[κ]χ[κ] , κ ≥ 1

0 , κ = 0
(26)

Ξ(x) =
[

Iκ 0
0 ϕd(V0(x))In−κ

]
P (27)

Then, the system Σ is globally uniformly asymptotically stable, and it has L2-gain less than or
equal to τ .

In the case of κ = 0, scaling factors Φid, i = 1, 2, . . . , n defined in (13) become constant matrices.
For systems ΣM with q = 0 (equivalently, w̄ = w and z̄ = z), Theorem 1 only addresses stability.
Note that Ξ = P holds if κ = n or if κ = 0 and ϕd(0) = 1. In the case of {q = 0, κ = 0, ϕd = 1,
Θ = Φ, Ψ = I}, Theorem 1 reduces to the primitive result of [11]. In Section 7, it will become
clear that the choice κ = 0 is not sufficient for ensuring the global properties if the system Σ
involves dynamic components in Σ∆ or signals for L2 disturbance attenuation.

The Lyapunov function employed in the above theorem is

V (t, xcl) =
∫ V0[κ](χ[κ])

0

1
ϕd(s)

ds + χT
⟨κ+1⟩P⟨κ+1⟩χ⟨κ+1⟩ +

m∑
i=1

ϕ̌idW∆i(t, x∆i) (28)

The first term of the Lyapunov function is in a form which is similar to recent Lyapunov tech-
niques(e.g. [27, 17, 19, 26]). It, however, rises from different purposes and its role and mechanism
are distinct from them. In this paper, the integrand 1/ϕd(s) in (28) is given a character of scaling
and the function is determined directly by the matrix inequality (22). Theorem 1 demonstrates
how to construct the integrand for guaranteeing stability and disturbance attenuation with respect
to the uncertain dynamics Σ∆ explicitly. An explicit procedure for selecting ϕd(s) for a wide class
of nonlinear systems will be also explained in this paper.

It is worth mentioning that the SD scaling characterization presented in Theorem 1 does not
require the system to fit in some geometric structure, such as strict-feedback form, which is
necessary in backstepping and nested controller designs[20, 5, 29, 15].

In the cases of κ = 0 and κ = n, the inequality (22) implies that the ‘scaled’ system

ẋ = A(x)x + B(x)Θ−1/2w̄

z̄ = Φ1/2ΨC(x)x + Φ1/2ΨD(x)Θ−1/2w̄

9
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Figure 2: Interconnected plant ΣP

has L2-gain less than one with a storage function xT ST PSx. Here, Θ−1/2 is scaling at the distur-
bance input, and Φ1/2Ψ is scaling at the regulated output. The original system (1) unnecessarily
has L2-gain less than one since Φ, Θ and Ψ are functions of the state x. Indeed, it is unnecessary
for the original system (1) to have finite L2-gain. In addition, the uncertain system Σ∆ is allowed
to be linearly unbounded. In this sense, Theorem 1 is much more general and less conservative
than the classical input-output small-gain theorem.

5 Design problem setup

From this section, we consider feedback controller design for the nonlinear plant ΣP shown in
Fig.2. Let x denote the state variable of Σ0. Several control objectives are posed to the feedback
design at the same time. The design goal is to find a partial-state feedback controller of the form

ΣK : u = K(x)x (29)

which

• globally uniformly asymptotically stabilizes ΣP

• makes the mapping between r and e have L2-gain less than or equal to τ

• is identical to a scaled H∞ linear controller given arbitrarily at the equilibrium point.

The state x∆ of the uncertain system Σ∆ is not measured for the feedback. We assume that Σ0

in Fig.2 is described by

Σ0 :
{

ẋ = A(x)x + B(x)w̄ + G(x)u
z̄ = C(x)x + D(x)w̄ + H(x)u,

x(t)∈Rn, u(t)∈Rρ

w̄(t), z̄(t)∈Rp+q (30)

We also assume that the uncertain system Σ∆ is admissible as defined in Section 3.

The feedback connection consisting of Σ0 and ΣK corresponds to ΣM in Fig.1, and the whole
system comprising Σ0, ΣK and Σ∆ is regarded as Σ. According to Theorem 1, the system ΣP is
globally uniformly asymptotically stabilized by a partial-state feedback controller ΣK and achieves
L2-gain less than or equal to τ if there exist P > 0, Φ ∈ Φ, Θ ∈ Θ such that (23) and

M =

 ŜT ÂT T T Ξ+ΞTÂŜ ΞTB ŜT ĈT ΨΦ
BT T T Ξ −Θ DT ΨΦ
ΦΨĈŜ ΦΨD −Φ

<0 (31)

Θ ≤ Φ (32)

10



are satisfied for all x ∈ Rn with (26-27) and a given matrix Ψ ∈ Ψ meeting the constraint (25),
where Â and Ŝ are given by

Ŝ =
[

S−1

KS−1

]
, Â = [ A G ] , Ĉ = [ C H ]

In addition to the above global properties, this paper takes into account local properties of the
feedback system. Define constant matrices A, B, G, C, D and H as

A =
∂f(x, w̄, u)

∂x

∣∣∣∣ x=0
w̄=0
u=0

= A(0), B =
∂f(x, w̄, u)

∂w̄

∣∣∣∣ x=0
w̄=0
u=0

= B(0)

G =
∂f(x, w̄, u)

∂u

∣∣∣∣ x=0
w̄=0
u=0

= G(0), C =
∂h(x, w̄, u)

∂x

∣∣∣∣ x=0
w̄=0
u=0

= C(0)

D =
∂h(x, w̄, u)

∂w̄

∣∣∣∣ x=0
w̄=0
u=0

= D(0), H =
∂h(x, w̄, u)

∂u

∣∣∣∣ x=0
w̄=0
u=0

= H(0)

f(x, w̄, u) = A(x)x + B(x)w̄ + G(x)u

h(x, w̄, u) = C(x)x + D(x)w̄ + H(x)u

which define a Jacobian linearized system of Σ0. The control law u = Kx with a constant gain
matrix K is said to be a scaled H∞ linear controller if there exist a constant matrix X > 0 and
constant scalars ϕ

js
> 0 and ϕ

jd
> 0, j = 1, 2, . . . , m such that

M =

 (A + GK)T X + X(A + GK) XB (C + HK)T Ψ̄(0)Φ
BT X −Φ DT Ψ̄(0)Φ

ΦΨ̄(0)(C + HK) ΦΨ̄(0)D −Φ

 < 0 (33)

Φ =
m

block-diag
j=1

ϕ
js

I 0 0
0 ϕ

jd
I 0

0 0 I

 (34)

are satisfied. Here, the block-diagonal partition of Φ in (34) is compatible with the partition of
z̄. According to linear robust control theory(e.g.[6, 3]), such parameters X, ϕ

js
and ϕ

jd
exist

if and only if the linear control gain K achieves robust stability and robust H∞ performance of
the disturbance attenuation level τ of the linear system (A, B, G, C, D, H) for all time-varying
mappings ∆i whose constituents have L2-gain less than or equal to diagonal elements of Ψ̄(0).
Recall that ψis(0)1/2 and ψid(0)1/2 represent local L2-gain of each uncertain components. Thus, it
is practically desirable that the nonlinear controller ΣK agrees locally with the scaled H∞ linear
controller, i.e.

K = K(0) =
∂K(x)x

∂x

∣∣∣∣
x=0

In this way, this paper seeks a nonlinear controller which is a natural extension of a linear con-
troller.

6 A class of uncertain systems

This section defines a new class of uncertain nonlinear plants ΣP shown in Fig.2. For that class,
this paper will give control laws solving the partial-state feedback problem formulated in Section

11



5. Consider the system Σ0 described by (30) with a scalar input ρ = 1. Let m = 2n. Signals are
partitioned as follows:

w̄i =
[

wi
ri

]
, z̄i =

[
zi
ei

]
,

wi(t), zi(t)∈Rpi , u(t)∈R
ri(t), ei(t)∈Rqi (35)

w̄=


w̄1
w̄2

w̄2n−1
w̄2n

 , z̄=


z̄1
z̄2

z̄2n−1
z̄2n

 ,
pi≥0, qi≥0

p =
∑2n

i=1 pi, q =
∑2n

i=1 qi

w=


w1
w2

w2n−1
w2n

 , z=


z1
z2

z2n−1
z2n

 , r=


r1
r2

r2n−1
r2n

 , e=


e1
e2

e2n−1
e2n


Then, the uncertain system Σ∆ is a mapping in the block-diagonal form of

w=∆z=

[
2n

block-diag
j=1

∆j

]
z (36)

where each component is represented by

wi =
[
wis
wid

]
=

[
∆is 0
0 ∆id

][
zis
zid

]
= ∆izi (37)

Here, ∆is and ∆id are mappings of a static system and a dynamic system, respectively, which
are defined in (3-4). Dimension of each vector wis, wid, zis, zid can be zero. Mappings ∆i with
even i represent uncertain components situated at virtual and actual inputs, which will be seen
clearly from the structure of matrices B and C defined below(See also [11]). Suppose that all ∆i,
i = 1, 2, . . . , 2n fulfill Assumption 1. We assume that Σ0 has the following structure.

A(x)=


a11 a12 0 0
a21 a22 a23 0 0

0
an−1,1 an−1,2 an−1,n
an1 an2 ann

 , G(x)=

 0

0
an,n+1

 (38)

aij(x) = aij(x1, x2, , xi), 1 ≤ i ≤ n, 1 ≤ j ≤ i + 1 (39)

B(x) =

 B11 UL1 0 0 0 0
B21 U21 B22 UL2

0 0
Bn1 Un1 Bn2 Un2 Bnn ULn

 , H(x)=

 0

0
URn

 (40)

D(x)=



D1 0 0 0 0 0
0 0 0 0 0 0
0 0 D2 0 0
0 0 0 0 0

0 0 0 0 Dn 0
0 0 0 0 0 0

 , Di(x)=

[0 0 0
0 0 0
0 0 DR,i

]
(41)

C(x)=



C11 0 0 0 0
0 UR1 0 0 0

C21 C22 0 0 0
0 0 UR2 0 0

Cn−1,1 Cn−1,2 Cn−1,n−1 0
0 0 0 UR,n−1

Cn1 Cn2 Cn,n−1 Cnn
0 0 0 0


, (42)
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where Bij ∈ R1×(p2i−1+q2i−1), Cij ∈ R(p2i−1+q2i−1)×1, Di ∈ R(p2i−1+q2i−1)×(p2i−1+q2i−1), UL,i ∈
R1×(p2i+q2i), UR,i ∈ R(p2i+q2i)×1 and Uli ∈ R1×(p2i+q2i) are consistent with

Bij(x)=Bij(x1, x2, , xi), Cij(x)=Cij(x1, x2, , xi), Di(x)=Di(x1, x2, , xi) (43)

ULi(x)=ULi(x1, x2, , xi), URi(x)=URi(x1, x2, , xi) (44)

Uli(x)=Uli(x1, x2, , xl), i + 1 ≤ l ≤ n (45)

for 1 ≤ i ≤ n and 1 ≤ j ≤ i. The block partition of Di is consistent with that of [zT
2i−1,s, z

T
2i−1,d, e

T
2i−1,]

T .
We also assume

I − τ−2DR,iD
T
R,i > 0 if q2i−1 ̸= 0 (46)

ai,i+1 ̸= 0 if p2i + q2i = 0 (47)

for all x ∈ Rn and i = 1, 2, . . . , n. Finally, it is assumed that there exist positive numbers ϕ̂js and
ϕ̂jd such that

a2
i,i+1 > UT

RiΨ̄
2
2iΦ̂2iURiULiΦ̂−1

2i UT
Li if p2i + q2i ̸= 0 (48)

holds for all x ∈ Rn and i = 1, 2, . . . , n, where Φ̂j is defined by

Φ̂j =

ϕ̂jsI 0 0
0 ϕ̂jdI 0
0 0 I

 > 0 j = 1, 2, . . . , 2n (49)

The block partition of Φ̂j is compatible in size with that of [zT
js, z

T
jd, e

T
j ]T . The inequalities (47)

and (48) prevent coefficients of virtual and actual inputs from being zero[5]. These conditions
are for simplification of solution formulas(see Subsection 8.1). In either case of URi(x) ≡ 0 and
ULi(x) ≡ 0, the condition ai,i+1(x) ̸= 0 is sufficient for (48). The inequality (46) is necessary
for achieving the prescribed level τ of L2-gain between r and e. When we consider Σ0 with
q = 0 (namely, w̄ = w and z̄ = z), our concern is only stabilization. In this paper, a system ΣP

consisting of Σ0 and Σ∆ satisfying (35-48) and Assumption 1 is said to be in the generalized robust
strict-feedback form. This class of ΣP extends several types of strict-feedback forms [20, 5, 11] to
general interconnected systems with uncertain static and dynamic systems which are nonlinearly
bounded, and involving signals to define disturbance attenuation. The uncertain components,
disturbances and regulated outputs are allowed to be situated at any locations in the system
equations of the plant.

7 Recursive design

This section shows how to solve the two characteristic inequalities (31) and (33) simultaneously.
Solutions are shown to exist for systems in the generalized robust strict-feedback form.
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7.1 Recursive parameterization

Let x[k] denote x[k] = [x1, x2, · · · , xk]
T . Consider parameterization of the nonsingular matrix S(x),

the partial-state feedback and the constant matrix P as follows:

S(x) =


1 0 0 0 0

s1(x) 1 0 0 0
d21 s2(x) 1 0 0
d31 d32 s3(x) 1 0

dn−1,1 dn−1,n−2 sn−1(x) 1


−1

(50)

u = [ dn,1 dn,n−1 sn(x) ] χ (51)

P = diag[P1, P2, · · · , Pn] (52)

where s1(x[1]), s2(x[2]), · · ·, sn(x[n]) are smooth functions, and parameters dij , 2 ≤ i ≤ n, 1 ≤ j ≤
i − 1, are real constants. The scalars Pi, i = 1, . . . , n are positive real constants. Candidates of
state-dependent scaling matrices are also parameterized as follows:

Φ=
2n

block-diag
j=1

Φj , Φj =

{
ϕj(x[(j+1)/2])Φ̂j for odd j

ϕj(x[j/2])Φ̂j for even j
(53)

Θ=
2n

block-diag
j=1

Θj , Θj =

{
θj(x[(j+1)/2])Φ̂j for odd j

θj(x[j/2])Φ̂j for even j
(54)

ϕj(x)>0, θj(x)>0, ∀x∈Rn

Scalar functions ϕj(x) and θj(x) have yet to be determined. The block partition of Φ and Θ is
compatible in size with that of z̄. Pick a SD scaling matrix Ψ ∈ Ψ so that (25) and

Ψ(x)=
2n

block-diag
j=1

Ψj(x) (55)

Ψj(x) =
{

Ψj(x[(j+1)/2]) for odd j
Ψj(x[j/2]) for even j (56)

Ψ̄(0) = Ψ(0) (57)

I − Ψ2i−1DiD
T
i Ψ2i−1 > 0, ∀i ∈ [1, n] \ {q2i−1 = 0} (58)

a2
i,i+1 > UT

RiΨ
2
2iΦ̂2iURiULiΦ̂−1

2i UT
Li, ∀i ∈ [1, n] \ {p2i + q2i = 0} (59)

are fulfilled. Such a SD scaling matrix Ψ exists due to the structure of [C, H] and D, and (46)
and (48). A simple choice is Ψ̄ = Ψ. The matrix Ξ in (31) is given by

Ξ(x) =
[

Iκ 0
0 ϕd(χT

[κ]P[κ]χ[κ])In−κ

]
P (60)

with an integer k ∈ [0, n] and a C0 function ϕd(·) to be selected. Let M[k](xk) be defined as

M[k] =


{

ŜT
[k]Â

T
[k]T

T
[k]Ξ[k]+

Ξ[k]T[k]Â[k]Ŝ[k]

}
Ξ[k]T[k]B[k] ŜT

[k]Ĉ
T
[k]Ψ[k]Φ[k]

BT
[k]T

T
[k]Ξ[k] −Θ[k] DT

[k]Ψ[k]Φ[k]

Φ[k]Ψ[k]Ĉ[k]Ŝ[k] Φ[k]Ψ[k]D[k] −Φ[k]


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for k = 1, 2, . . . , n, where individual matrices are given by

Â[k] =


a11 a12 0 0
a21 a22 a23 0 0

ak−1,1 ak−1,2 ak−1,k 0
ak1 ak2 akk ak,k+1


B[k] =

 B11 UL1 0 0 0 0
B21 U21 B22 UL2

0 0
Bk1 Uk1 Bk2 Uk2 Bkk ULk



Ĉ[k] =



C11 0 0 0 0
0 UR1 0 0 0

C21 C22 0 0 0
0 0 UR2 0 0

Ck,1 Ck,2 Ck,k 0
0 0 0 UR,k

 , D[k] =



D1 0 0 0 0 0
0 0 0 0 0 0
0 0 D2 0 0
0 0 0 0 0

0 0 0 0 Dk 0
0 0 0 0 0 0



Ŝ[k] =


1 0 0 0
s1 1 0 0
d21 s2 1 0

sk−1 1
dk,1 dk,k−1 sk


Ξ[k] =

k
diag
j=1

Ξj , Φ[k] =
2k

block-diag
j=1

Φj Θ[k] =
2k

block-diag
j=1

Θj , Ψ[k] =
2k

block-diag
j=1

Ψj

In a similar manner, T[k] is the k × k upper left part of T . Then, the next properties follow
immediately.

Proposition 1 For k = 1, 2 . . . , n, M[k] satisfies the following.

(i) M[k] is independent of {xk+1, xk+2, · · · , xn}.

(ii) M[k] does not include {sk+1, · · · , sn−1, sn}, {ϕ2k+1, ϕ2k+2, · · · , ϕ2n} and {θ2k+1, θ2k+2, · · · , θ2n}.

(iii) M[k](x[k]) < 0 implies M[k−1](x[k−1]) < 0.

(iv) M[n](x[n]) = M(x)

The following lemma is verified from S(0) = T (0), Ψ̄(0) = Ψ(0) and comparison between (31) and
(33).

Proposition 2 Suppose that K is the constant feedback gain of a scaled H∞ linear controller
given arbitrarily. Let X > 0 and Φ be matrices satisfying (33). If the set of parameters {Pi, si,
dik, ϕj, θj, Φ̂j, ϕd}, i = 1, 2, . . . , n, j = 1, 2, . . . , 2n, k = 1, 2, . . . , i − 1, solving (31) fulfills

X = S(0)T PS(0) (61)

K = [ dn,1 dn,n−1 sn(0) ] S(0) (62)

1 = ϕj(0) = θj(0), j = 1, 2, . . . , 2n (63)

Φ =
2n

block-diag
j=1

Φ̂j (64)

1 = ϕd(0) (65)

then, the nonlinear controller ΣK agrees locally with the scaled H∞ linear controller.
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Let X > 0 and Φ be matrices satisfying (33). Using the Cholesky factorization[4], the matrix
X > 0 is decomposed into

X = L−T ΛL−1

Λ = [ λ1 λ2 λn ] > 0

L =


1 0 0 0
l11 1 0
l21 l22 1

0
ln−1,1 ln−1,n−2 ln−1,n−1 1


Define scalars {ln,1, . . . , ln,n} by

KL = [ ln,1 ln,n−1 ln,n ]

On the basis of Proposition 1 and 2, a new recursive method of solving the SD scaling problem
posed by (31-32) and (33) is now proposed as follows.

Recursive procedure with local matching: Pick dk,j, Pk, ϕ̂2k−1,s, ϕ̂2k−1,d ϕ̂2k,s and ϕ̂2k,d

as

dk,j = lk,j , 1 ≤ j ≤ k − 1 (66)

Pk = λk (67)

ϕ̂2k−1,s = ϕ
2k−1,s

, ϕ̂2k−1,d = ϕ
2k−1,d

, ϕ̂2k,s = ϕ
2k,s

, ϕ̂2k,d = ϕ
2k,d

(68)

and solve M[k](x[k]) < 0 for {sk(x[k]), ϕ2k−1(x[k]), ϕ2k(x[k]), θ2k−1(x[k]), θ2k(x[k])} subject to

sk(0) = lk,k (69)

ϕ2k−1(0) = θ2k−1(0) = 1 (70)

ϕ2k(0) = θ2k(0) = 1 (71)

from k = 1 through k = n.

Requirements of (61), (62) and (64) for local matching properties are implied by (69), (66), (67)
and (68). Parameters {Pi, si, dik, ϕj , θj , Φ̂j} are free from the local matching conditions (69),
(66), (67) (70), (71) and (68) as long as we do not care about local properties of the controller.

Recursive procedure without local matching: Solve M[k](x[k]) < 0 for {sk(x[k]), ϕ2k−1(x[k]),
ϕ2k(x[k]), θ2k−1(x[k]), θ2k(x[k])} from k = 1 through k = n.

The latter procedure does not force nonlinear controllers to agree with scaled H∞ linear con-
trollers.

7.2 Existence of solution

Consider a nonsingular matrix

Qk =



Ik−1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 Iρa 0 0 0 0 0 0
0 0 0 0 Iρb

0 0 0
0 0 0 0 0 0 Iρc 0
0 0 Iρa 0 0 0 0 0
0 0 0 0 0 Iρb

0 0
0 0 0 0 0 0 0 Iρc


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where Ik denotes a k × k identity matrix and, ρa =
∑2(k−1)

i=1 (pi + qi), ρb = p2k−1 + q2k−1 and
ρc = p2k + q2k are used. Then, we have

QT
k M[k](x[k])Qk =

[
M[k−1](x[k−1]) M[k−1]k(x[k])
MT

[k−1]k(x[k]) Mkk(x[k])

]
(72)

The right hand side of (72) becomes M11(x[1]) in the case of k = 1. Let Jk ∈ R, Ek ∈ R1×2(ρb+ρc)

and Fk ∈ R2(ρb+ρc)×2(ρb+ρc) be defined with

Mkk − MT
[k−1]kM

−1
[k−1]M[k−1]k =

[
Jk Ek

ET
k Fk

]
(73)

The left hand side of (73) is M11 in the case of k = 1. Since Fk is in the form of

Fk =
[

Fak 0
0 Fbk

]
we arrive at the following properties by applying Schur complements formula to M[k] < 0.

Proposition 3 Assume that M[k−1](x[k−1]) < 0 is satisfied for all x[k−1] ∈ Rk−1 unless k = 1.
Then, M[k](x[k]) < 0 holds for all x[k] ∈ Rk if and only if the following is satisfied for all x[k] ∈ Rk.

(i) p2k−1 + q2k−1 ̸= 0 & p2k + q2k ̸= 0 Case: Fak < 0, Fbk < 0, Jk − EkF
−1
k ET

k < 0

(ii) p2k−1 + q2k−1 ̸= 0 & p2k + q2k = 0 Case: Fak < 0, Jk − EkF
−1
k ET

k < 0

(iii) p2k−1 + q2k−1 = 0 & p2k + q2k ̸= 0 Case: Fbk < 0, Jk − EkF
−1
k ET

k < 0

(iv) p2k−1 + q2k−1 = 0 & p2k + q2k = 0 Case: Jk < 0

The following two lemmas establish the existence of decision variables solving the set of global
inequalities and local equations posed in each step of the recursive procedure.

Lemma 3 Assume p2k−1 + q2k−1 ̸= 0 and that M[k−1](x[k−1]) < 0 holds for all x[k−1] ∈ Rk−1

unless k = 1. Then, the following are true.

(i) There exists a C0 function ν2k−1(x[k]) such that each C0 function ϕ2k−1(x[k]) satisfying

ν2k−1(x[k]) ≥ ϕ2k−1(x[k]) > 0, ∀x[k] ∈ Rk (74)

admits the existence of a C0 function θ2k−1(x[k]) achieving

ϕ2k−1(x[k]) ≥ θ2k−1(x[k]) > 0, Fak(x[k]) < 0, ∀x[k] ∈ Rk (75)

In the case of k = 1, any positive constant ν2k−1 fulfills the property.

(ii) For any constant ϕ̄2k−1 > 0, there exists a C0 function ν̄2k−1(χT
[k]P[k]χ[k]) such that each C0

function ϕ2k−1(x[k]) satisfying

ϕ̄2k−1 ≥ ν̄2k−1(χT
[k]P[k]χ[k]) ≥ ϕ2k−1(x[k]) > 0, ∀x[k] ∈ Rk (76)

admits the existence of a C0 function θ2k−1(x[k]) achieving (75).
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(iii) The properties (i) and (ii) are true even if ϕ2k−1 ≥ θ2k−1 in (75) is replaced by ϕ2k−1 = θ2k−1.

(iv) Suppose that M < 0 and

di,j = li,j , 1 ≤ j ≤ i − 1 (77)

Pi = λi (78)

ϕ̂2i−1,s = ϕ
2i−1,s

, ϕ̂2i−1,d = ϕ
2i−1,d

, ϕ̂2i,s = ϕ
2i,s

, ϕ̂2i,d = ϕ
2i,d

(79)

hold for all i = 1, 2, . . . , k, and ϕd in (60) satisfies ϕd(0) = 1. If

si(0) = li,i (80)

ϕ2i−1(0) = θ2i−1(0) = 1 (81)

ϕ2i(0) = θ2i(0) = 1 (82)

are satisfied for all i = 1, 2, . . . , k − 1, there exist C0 functions ν2k−1(·) and ν̄2k−1(·) which
fulfill ν2k−1(0) = ν̄2k−1(0) = 1 in addition to properties of (i), (ii) and (iii).

Lemma 4 Assume that M[k−1](x[k−1]) < 0 holds for all x[k−1] ∈ Rk−1 unless k = 1.

(i) p2k + q2k ̸= 0 Case: There exist a C0 function ν2k(x[k]) such that each C0 function ϕ2k(x[k])
satisfying

ν2k(x[k]) ≥ ϕ2k(x[k]) > 0, x[k] ∈ Rk (83)

admits the existence of a C0 function θ2k(x[k]) and a smooth function sk(x[k]) for which

ϕ2k(x[k]) ≥ θ2k(x[k]) > 0, Fbk(x[k]) < 0 (84)

Jk(x[k]) − Ek(x[k])F
−1
k (x[k])E

T
k (x[k]) < 0 (85)

hold for all x[k] ∈ Rk. Furthermore, there exist a C0 function ν̄2k(χT
[k]P[k]χ[k]) and a finite

constant ϕ̄2k such that each C0 function ϕ2k(x[k]) satisfying

ϕ̄2k ≥ ν̄2k(χT
[k]P[k]χ[k]) ≥ ϕ2k(x[k]) > 0, x[k] ∈ Rk (86)

admits the existence of a C0 function θ2k(x[k]) and a smooth function sk(x[k]) for which
(84-85) hold for all x[k] ∈ Rk. In addition, ϕ2k ≥ θ2k in (84) can be replaced by ϕ2k = θ2k.

(ii) p2k + q2k = 0 Case: There exists a smooth function sk(x[k]) such that

Jk(x[k]) − Ek(x[k])F
−1
k (x[k])E

T
k (x[k]) < 0 if p2k−1 + q2k−1 ̸= 0 (87)

Jk(x[k]) < 0 if p2k−1 + q2k−1 = 0 (88)

is satisfied for all x[k] ∈ Rk.

(iii) Suppose M < 0 holds and (77), (78), (79) and (81) hold for all i = 1, 2, . . . , k, and ϕd in
(60) satisfies ϕd(0) = 1. If (80) and (82) are satisfied for all i = 1, 2, . . . , k − 1, there exist
C0 functions ν2k(·), ν̄2k(·) and a smooth function sk(·) which fulfill ν2k(0) = ν̄2k(0) = 1 and
sk(0) = lk,k in addition to properties of (i) or (ii).
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We are now in position to state the main results of this section. First, the next lemma guarantees
that local controllers exist for generalized robust strict-feedback systems.

Lemma 5 If the system ΣP is in the generalized robust strict-feedback form with r = rj for an
integer j ∈ [1, 2n] or q = 0, then there exist scaled H∞ linear controllers.

The existence of solutions to the partial-state feedback nonlinear design problem is addressed by
the following theorem. The constructive proof demonstrates how to obtain a desired solution.

Theorem 2 Suppose that the system ΣP is in the generalized robust strict-feedback form and
satisfies either:

(i) dynamic components are not involved in Σ∆, and there are no exogenous disturbances(i.e.,
q = 0).

(ii) dynamic components in Σ∆ are situated only at ∆j, and the exogenous disturbance is r = rj

for an integer j ∈ [1, 2n].

(iii) dynamic components in Σ∆ are situated only at {∆i : i = 1, 2, . . . , 2ρ}, the exogenous dis-
turbance is r = rj, and Â[ρ], B[ρ], Ĉ[ρ] and D[ρ] are independent of x for integers ρ ∈ [1, n]
and j ∈ [1, 2ρ].

Then,

(a) the system ΣP can be globally uniformly asymptotically stabilized, and the L2-gain from r to e

can be rendered less than or equal to τ by the smooth partial-state feedback control law (51).

Furthermore,

(b) the control law (51) can be made to agree localy with any scaled H∞ linear controller.

Desired solutions {sk(x[k]), ϕ2k−1(x[k]), ϕ2k(x[k]), θ2k−1(x[k]), θ2k(x[k])} can be constructed sequen-
tially from k = 1 through k = n. In each step of the recursive procedure given in Subsection 7.1,
existence of the solutions is guaranteed by Lemma 3 and Lemma 4, and proofs of those lemmas
have described a way to obtain the solutions. Computation proceeds in the k-th step as follows:

(1) If p2k−1 + q2k−1 ̸= 0, solve

ν2k−1 > 0, −ν2k−1λmin

(
F−1

dk Φ̂1/2
2k−1FckΦ̂

1/2
2k−1F

−1
dk

)
< 1 (89)

for ν2k−1(x[k]). If 2k−1 = j, calculate ν̄2k−1(χT
[k]P[k]χ[k]) satisfying 0 < ν̄2k−1 ≤ min{ν2k−1, ϕ̄2k−1}

for some finite constant ϕ̄2k−1 > 0.

(2) If p2k + q2k ̸= 0, solve

ν2k > 0, αUT
RkΨ

2
2kΦ̂2kURkν2k < a2

k,k+1 − UT
RkΨ

2
2kΦ̂2kURkULkΦ̂−1

2k UT
Lk (90)

for ν2k(x[k]). If 2k = j, calculate ν̄2k(χT
[k]P[k]χ[k]) satisfying 0 < ν̄2k ≤ min{ν2k, ϕ̄2k} for

some finite constant ϕ̄2k > 0.
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(3) Solve

UT
RkΨ

2
2kΦ̂2kURkϕ2ks

2
k + 2Ξkak,k+1sk + ULkΦ̂−1

2k UT
LkΞ

2
kθ

−1
2k + Ξ2

kα < 0 (91)

when p2k + q2k ̸= 0

2Ξkak,k+1sk + Ξ2
kα < 0 (92)

when p2k + q2k = 0

for sk(x[k]).

Here, λmin(·) denotes the minimum eigenvalue of a matrix, and Fdk(x[k]) is defined as

F 2
dk =

[
I 0
0 I − τ−2DR,kD

T
R,k

]
The functions Fck(x[k]) and α(x[k]) are given in the proof of Lemma 3 and Lemma 4, respectively.
A simpler choice of {θ∗, ϕ∗} is ν∗ = θ∗ = ϕ∗. In the cases of 2k − 1 = j and 2k = j, it is replaced
with ν̄∗ = θ∗ = ϕ∗. In the case of (iii) of Theorem 2, parameters {ν2k−1, ν2k, ϕ2k−1, ϕ2k, θ2k−1,
θ2k} are chosen as constants for all k = 1, 2, . . . , ρ. The parameters κ and ϕd in (60) are selected
as follows:

Case (i) κ = 0; ϕd = 1.

Case (ii) κ = j/2 for even j, and κ = (j + 1)/2 for odd j; ϕd(χT
[κ]P[κ]χ[κ]) = ϕj .

Case (iii) κ = 0; ϕd = ϕj .

Then, Φ ∈ Φ and Θ ∈ Θ are fulfilled. Accoding to Proposition 1 and Proposition 3, the parameters
obtained achieve 0 < Θ(x) ≤ Φ(x) and M(x) < 0 for all x ∈ Rn. Thus, Theorem 1 proves that
the control law (51) globally uniformly asymptotically stabilizes ΣP and achieves L2-gain less
than or equal to τ . This completes the proof of the part (a). To achieve the property of the part
(b), pick dk,∗, Pk, ϕ̂2k−1,s, ϕ̂2k−1,d ϕ̂2k,s and ϕ̂2k,d as (66), (67) and (68) from k = 1 and k = n.
Then, Lemma 3 and 4 imply that parameters {sk, ϕ2k−1, ϕ2k, θ2k−1, θ2k} of each k-th step can be
constructed so that the additional conditions of local matching (69), (70) and (71) are satisfied.
According to Proposition 2, the nonlinear control law (51) with such parameters agrees with a
given scaled H∞ linear controller. Thereby, the proof of Theorem 2 has been completed.

All scalar inequalities (89), (90) and (92) are affine in decision variables. The inequality (91)
which is quadratic in sk also reduces to a pair of affine inequalities since (90) guarantees it. All
inequalities are functions of x[k]. Coefficients appearing in the inequalities are obtained easily
both analytically and numerically by application of (73) to appropriate minors of M . Solutions
to the affine inequalities are also calculated easily both analytically and numerically. It should be
noted that instead of the set of inequalities (89), (90), (92) and (91), we can solve an equivalent
single matrix inequality M[k] < 0 directly for decision variables. The computation is amenable to
numerical calculation since M[k] is jointly affine in {sk, ϕ2k−1, θ2k−1}, and jointly affine in {ϕ2k−1,
ϕ2k, θ2k−1, θ2k}.

Although Theorem 2 addresses L2-gain disturbance attenuation of a fixed level τ , the partial-state
feedback law can be designed for arbitrarily small τ unless (46) and (48) are violated. Thus, the
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almost L2 disturbance decoupling with the local matching can be solved by the smooth partial-
state feedback (51).

The new class of SD scaling (13) employed in this paper enables us to solve the global stabilization
in the presence of dynamic components in Σ∆ and L2-gain disturbance attenuation. Indeed,
constant scaling employed in [11] could only guarantee solutions to the global stabilization problem
only for j = 1 in (ii) of Theorem 2.

When Σ0 is linear, no restriction of locations of dynamic uncertain components is necessary,
according to Theorem 2(iii). Indeed, linear systems in the generalized robust strict-feedback form
are stabilizable for all admissible dynamic nonlinear uncertainties by a linear control law. However,
in the case of nonlinear Σ0, Theorem 2 does not allow dynamic components to be involved in all
∆i, i = 1, 2, . . . , 2n simultaneously. A benefit from this restriction is that the designed controller
achieves robust L2 disturbance attenuation globally in addition to robust asymptotic stability.
The disturbance r can enter the system Σ0 at any single location j as r = rj . Furthermore, the
nonlinear control can be made identical to robust H∞ linear control, thanks to the concept of SD
scaling design. These are unique features of this paper.

When dynamic components are allowed to be included in all ∆i, i = 1, 2, . . . , 2n simultaneously, it
is possible to obtain a nonlinear stability margin. The disturbance attenuation is also achievable
if one admits nonlinear weighting in the level of attenuation, similar to [14], instead of requiring
the standard L2-gain.

Theorem 3 Suppose that the pair of Σ0 and Σ∆ defines an uncertain system ΣP in the generalized
robust strict-feedback form. Then, there exist uniformly bounded C0 diagonal matrices W̄ (x) and
Ŵ (x) satisfying

W̄ (0) = I, W̄ (x) > 0, Ŵ (x) > 0, ∀x ∈ Rn

such that the system Σ̂P shown in Fig.3 can be globally uniformly asymptotically stabilized, and
the L2-gain from r̂ to ê can be rendered less than or equal to τ by the smooth partial-state feedback
control law (51) for all diagonal matrices W (x) satisfying 0 < W (x) ≤ W̄ (x) for all x ∈ Rn.
Furthermore, if there exist a scaled H∞ linear controller associated with the original system ΣP

consisting of Σ0 and Σ∆, the control law (51) can be made to agree locally with the linear controller,
and Ŵ (x) satisfies Ŵ (0) = I .

Since Ŵ (x) ≤ α holds with a finite constant α for all x, it is possible to replace Ŵ (x) and Ŵ−1(x)
in Fig.3 with αŴ (x) and I, respectively.

7.3 An example

This subsection presents an example briefly just to illustrate an achievement in Subsection 7.2.
Consider the system Σ0 given by

ẋ1 = x2 + x2
1w1

ẋ2 = u + x1w3 + r3

z1 = x1 , z3 = x2 , e3 =
[

x1
x2

]
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Figure 3: Nonlinearly weighted plant Σ̂P

and the uncertain system Σ∆ between z∗ and w∗ in the form of

w1 = h∆1s(z1, t)

ẋ∆3 = f∆3d
(x∆3 , z3, t), w3 = h∆3d

(x∆3 , t)

These uncertain components are supposed to be admissible in the sense of Assumption 1 with

ψ1s = 1, ψ3d = 2.2z2
3

Note that the dynamic system between z3 and w3 has zero L2-gain locally although it is globally
bounded only in nonlinear gain. The objective is to find a partial-state feedback controller which
globally uniformly asymptotically stabilizes ΣP shown in Fig.2 and achieves the level τ = 0.5
of disturbance attenuation between r3 and e3. A feedback gain of scaled H∞ linear controllers
associated with this design problem is computed as

K = [ −14.980 −11.411 ] (93)

which solves (33) with

X =
[

21.995 9.806
9.806 8.082

]

ϕ =


ϕ

1s
0 0 0

0 ϕ
3d

0 0
0 0 1 0
0 0 0 1

 =

 0.7764 0 0 0
0 0.7810 0 0
0 0 1 0
0 0 0 1


One of simple solutions we can obtain using formulas of the recursive procedure in Subsection 7.2
is

u = [ −1.1352 s2 ]χ = K(x)x (94)

where calculated parameters are

P =
[

10.097 0
0 8.0821

]
ϕ1 = θ1 = x2

1 + 1, s1 = −7x2
1 − 1.2133

ϕ3 = θ3 =
1

(χT Pχ)2 + 1
, s2 = −4(χT Pχ + 0.4)3 − 0.43) − 11.411
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This nonlinear controller satisfies K(0) = K. One of admissible uncertain components z3 7→ w3 is{
ẋ∆3 = −x∆3(1 − z4

3)
w3 = sat(x∆3)

(95)

It satisfies (7) for ψ3d = 2.2z2
3 and

W∆3 =
∫ x2

∆3

0

1.1
s

ds, β3 =
x2

∆3

5(x2
∆3

+ 1)

Note that the system (95) is not input-to-state stable although it is globally asymptotically stable
when z3 ≡ 0. Figure 4 shows state transition of Σ0 in the presence of (95), w1 = 0.8z1 and the
disturbance

r3(t) =
{

1 , 1 ≤ t < 2
0 , otherwise

for the initial condition x(0) = [1.1, 1.2]T and x∆3(0) = 1. The solid lines are x1 and x2 in the case
of the nonlinear control (94). The dashed lines are of the linear control (93). The state response of
the linear control approaches infinity before the disturbance comes in the system. The nonlinear
case converges to zero and the effect of the disturbance is attenuated substantially. Figure 5 shows
phase trajectories around the origin for r3 ≡ 0. The behavior of the nonlinear control(solid lines)
near the equilibrium is almost the same as that of the linear control(dashed lines).
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 ,
 x
2

Time t

Figure 4: State transition of feedback control systems.

8 Further results

8.1 Some useful modifications

The strict inequalities (22) and (31) require ΣP to be locally exponentially stabilizable. Systems
which are only asymptotically stabilizable can be dealt with in the same manner by replacing the
strict inequalities with non-strict ones. For instance, Theorem 1 can be modified as follows.
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Figure 5: Phase portraits of feedback control systems.

Corollary 1 Suppose that there exist κ ∈ [0, n], P[κ] ∈ Rκ×κ, P⟨κ+1⟩ ∈ R(n−κ)×(n−κ), Φ ∈ Φ,
Θ ∈ Θ, Ψ ∈ Ψ and a positive definite function υ(x) such that S−T AT T T Ξ+ΞTAS−1Ξ+Υ ΞTB S−T CT ΨΦ

BT T T Ξ −Θ DT ΨΦ
ΦΨCS−1 ΦΨD −Φ

≤0 (96)

and (23), (24), (25) are satisfied for all x ∈ Rn and a C0 function Υ(x) with υ(x) = χT Υχ and
(26) and (27). Then, the system Σ is globally uniformly asymptotically stable, and it has L2-gain
less than or equal to τ .

The existence of parameters in the above corollary is mathematically equivalent to the existence
of parameters which satisfies the strict inequality version of (96) for almost all x ∈ Rn. This fact
may be useful in numerical computation. Note that there are no scaled H∞ linear controllers for
systems which are not locally exponentially stabilizable. In such a case, as a matter of course, a
nonlinear controller obtained in Section 7 is not able to agree locally with any linear controller.

Regarding the inequalities (47) and (48) in the definition of generalized robust strict-feedback form,
they are often unnecessary assumptions. The condition (47) can be removed when M[i](x[i]) < 0
(or M[i](x[i]) ≤ 0 for Corollary 1) holds with si = 0 at all points of x[i] where (47) is violated.
The condition (48) can be also removed when M[i](x[i]) < 0 (or ≤ 0) holds for some ϕ2i(x[i]) and
θ2i(x[i]) with si = 0 at x[i] where (48) are violated. The existence of ϕ2i−1(x[i]) and θ2i−1(x[i]) is
independent of (47) and (48).

8.2 Another class of scaling

This subsection presents another control Lyapunov function based on another set of scaling func-
tions. That new class of scaling allows dynamic uncertain components to enter all channels w̄i

simultaneously under some assumption. Let the definition of Φid in (13) be replaced by the
following.

Φ̃id =

Φ̃id(x) =
[

ϕ̌idI 0
0 I

] k∏
j=1

ϕj(ηj(x)) : k = (i + 1)/2 for odd i
k = i/2 for even i
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ϕj(·) ∈ C0, ϕj(s) > 0, ∀s ∈ [0,∞), ϕ̌id > 0
ϕj(s) ≥ ϕj(s + ϵ), ∀ϵ > 0

}
(97)

The C0 function ηj(x) : Rn → [0,∞) will be determined later. Functions ϕj and ηj are common
among all Φ̃id, i = 1, 2, . . . , n. Define the set Φ̃ as (18) by replacing Φid by Φ̃id.

Theorem 4 Suppose that the uncertain system ΣP is in the generalized robust strict-feedback
form. Let the state-feedback control and the matrix S(x) are in the form of (50) and (51). If there
exist a diagonal matrix P and diagonal matrices of SD scaling Φ̃ ∈ Φ̃, Θ ∈ Θ, Ψ ∈ Ψ such that

M =

 ŜT AT T T Ξ+ΞTAŜ ΞTB ŜT CT ΨΦ̃
BT T T Ξ −Θ DT ΨΦ̃
Φ̃ΨCŜ Φ̃ΨD −Φ̃

<0 (98)

P =
n

block-diag
i=1

Pi > 0 (99)

Θ ≤ Φ̃ (100)

Ψ̄ ≤ Ψ (101)

are satisfied for all x ∈ Rn with

ηj(x) = V̂[j−1](χ[j−1]) (102)

Ξ(x) =
n

diag
i=1

ξi(x), ξi(x) = Pi

i∏
j=1

ϕj(ηj(x)) (103)

V̂[0] = 0 (104)

V̂[k](χ[k]) =
∫ V̂[k−1](χ[k−1])

0

1
ϕk(s)

ds + χkPkχk, k = 1, 2, . . . , n (105)

Then, the system Σ is globally uniformly asymptotically stable, and the L2-gain between [rT
2n−1, r

T
2n]T

and [eT
2n−1, e

T
2n]T is less than or equal to τ . Furthermore, there exist a C0 diagonal matrix

W (x, x∆) > 0 for which the L2-gain between the disturbance r and the weighted output W (x, x∆)e
is less than or equal to τ .

This theorem is based on a Lyapunov function V (x) = V[n](t, χ[n], x∆[n]), where

V[0] = 0 (106)

V[k](t, χ[k], x∆[k]) =∫ V[k−1](χ[k−1],x∆[k−1])

0

1
ϕk(s)

ds + χkPkχk + ϕ̌2k−1,dW∆2k−1(t, x∆2k−1) + ϕ̌2k,dW∆2k(t, x∆2k)(107)

In contrast with Theorem 1, it is emphasized that, Theorem 4 is only applicable to the system
ΣP in the generalized robust strict-feedback form. We again apply the recursive procedure in
Subsection 7.1 to the new matrix M defined in (98). It is verified that Fk defined as in (73) is
independent of ξi for (98). Therefore, the following is obtained straightforwardly from Lemma 3
and Lemma 4.

Theorem 5 Suppose that the system ΣP is in the generalized robust strict-feedback form and it
does not have dynamic uncertain components at virtual control inputs, i.e. pi = 0, i = 2, 4, . . . , 2n.
Assume that all components of the matrix Ψ̄[k](x[k])C[k](x[k]) are uniformly bounded in xk for each
k = 2, 3, . . . , n. Then, the system ΣP can be globally uniformly asymptotically stabilized, and
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(i) r = r2n−1 case : the L2-gain from r to e can be rendered less than or equal to τ by the smooth
partial-state feedback control law (51).

(ii) r = [rT
1 , rT

3 , · · · , r2n−1]T case : there exist a C0 diagonal matrix W (x, x∆) > 0 for which the
L2-gain between the disturbance r and the weighted output W (x, x∆)e can be rendered less
than or equal to τ by the smooth partial-state feedback control law (51).

Furthermore, the control law (51) can be made to agree locally with any scaled H∞ linear controller.

9 Conclusion

The state-dependent scaling approach proposed in this paper enables us to deal with a broader
class of nonlinear systems involving uncertain nonlinearities, unmodeled dynamics and linearly-
unbounded systems, and standard L2-gain and nonlinear L2-gain to characterize the disturbance
rejection level. It should be emphasized that a single design procedure provides us with solutions
in such various situations. The state-dependent scaling is not only the first avenue to this ac-
complishment, but also naturally extends popular linear control frameworks such as scaled H∞

control, LPV control and gain scheduling[2, 6] to global control of nonlinear systems with sig-
nificant nonlinearities and nonlinear uncertainties. Thanks to the extension, nonlinear controller
constructed in this paper can be always made identical to such linear controllers at the equilib-
rium. It is also worth mentioning that the SD scaling characterization does not require systems
to fit in some geometric structures. The SD scaling approach has unified treatment of static and
dynamic uncertainties, and provides us with a unique way of constructing new Lyapunov functions
directly securing robustness against static and dynamic uncertainties.
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[4] K. Ezal, Z. Pan and P.V. Kokotović, “Locally optimal and robust backstepping design,” IEEE
Trans. Automat. Control vol. 45, pp.260-271, 2000.
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A Appendix

Proof of Lemma 1:
(i) From αi(∥wis∥) ≤ σi(∥zis∥) it follows that

∥wis∥2 ≤ (α−1
i ◦ σi(∥zis∥))2 = f(∥zis∥), t ∈ [0,∞)

The assumption (9) implies that the class K∞ function f(·) can be decomposed as f(∥zis∥) =
ψis(∥zis∥)∥zis∥2 with a C0 non-negative function ψis.
(ii) Consider a non-decreasing continuous function q : [0,∞) → [0,∞) satisfying q(s) > 0 for all
s > 0. Define a C1 function by

W∆i(t, x∆i) =
∫ V∆i

(t,x∆i
)

0
q(s)ds

Here, W∆i satisfies (6). From (11) we obtain,

dW∆i

dt
≤ q(V∆i(t, x∆i)) {−αi(∥x∆i∥) + σi(∥zid∥)}

Let πi be any scalar satisfying πi > 1. If αi(∥x∆i∥) ≥ πiσi(∥zid∥) holds, we have

dW∆i

dt
≤ −

(
1 − 1

πi

)
q(V∆i(t, x∆i))αi(∥x∆i∥) (108)
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In the case of αi(∥x∆i∥) ≤ πiσi(∥zid∥),

dW∆i

dt
≤ −q(V∆i(t, x∆i))αi(∥x∆i∥) + q(θ(∥zid∥))σi(∥zid∥) (109)

is satisfied, where θ(·) is

θ(∥zid∥) = ᾱi ◦ α−1
i ◦ πiσi(∥zid∥)

Here, note that ᾱi(∥x∆i∥) ≤ θ(∥zid∥). Combining (108) and (109) together, we have

dW∆i

dt
≤ −

(
1 − 1

πi

)
q(V∆i(t, x∆i))αi(∥x∆i∥) + q(θ(∥zid∥))σi(∥zid∥)

The first condition in (12) implies that ∥wid∥2/αi(∥x∆i∥) is bounded for all x∆i ∈ Rn∆i uniformly
in t. Thus, the non-decreasing continuous function q(x) can be chosen such that

q(αi(∥x∆i∥)) ≥
τi∥wid∥2

αi(∥x∆i∥)
≥ 0, ∀(t, x∆i) ∈ R×Rn∆i

for some τi satisfying τi > πi/(πi−1). Using (10) and the non-decreasing property of q, we obtain

dW∆i

dt
≤ −

(
1 − 1

πi
− 1

τi

)
1
4
q(αi(∥x∆i∥))αi(∥x∆i∥) − ∥wid∥2 + q(θ(∥zid∥))σi(∥zid∥) (110)

The second condition in (12) guarantees existence of a C0 function ψid : [0,∞) → [0,∞) satisfying

q(θ(∥zid∥))σi(∥zid∥) ≤ ψid(∥zid∥)∥zid∥2

Finally, substituting this inequality into (110), we arrive at (7) with

βi(x∆i) =
(

1 − 1
πi

− 1
τi

)
[q ◦ αi(∥x∆i∥)]αi(∥x∆i∥)

which is a class K∞ function of ∥x∆i∥.

Proof of Lemma 2:
By definition, the function ζ(x) is C1 and satisfies ζ(x) ≥ 0. It is zero only if η(x) = 0. Positive
definiteness of η(x) implies that ζ(x) is also positive definite. Since µ(·) is a class K function,
there exist finite numbers k, α > 0 such that µ(s) ≥ ks/(s + 1) holds for all s ≥ α. Thus, we
obtain

ζ(x) ≥
∫ α

0

1
ϕ(s)

ds +
∫ η(x)

α

k

s + 1
ds =

∫ α

0

1
ϕ(s)

ds + k log
(

η(x) + 1
α + 1

)
Since η(x) is radially unbounded, so is ζ(x).

Proof of Theorem 1:
Suppose that (22-27) are satisfied for all x ∈ Rn. Let V0[κ](χ[κ]) = V0(x) which is positive definite
radially unbounded C1 function of χ[κ]. Define a function V (t, xcl) as (28). Since (21) defines a
diffeomorphism from x ∈ Rn to χ ∈ Rn, Lemma 2 assures that V (·, ·) is a C1 function, and there
exist class K∞ functions αcl and ᾱcl such that

αcl(∥xcl∥) ≤ V (t, xcl) ≤ ᾱcl(∥xcl∥)
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The time-derivative of V along the trajectory xcl of Σ satisfies

d

dt
V (t, xcl) ≤ 1

ϕd(V0[κ](χ[κ]))

[
d

dt
V0[κ](χ[κ]) + ϕd(V0[κ](χ[κ]))

d

dt
χT
⟨κ+1⟩P⟨κ+1⟩χ⟨κ+1⟩

+ϕd(V0[κ](χ[κ]))
m∑

i=1

ϕ̌id
d

dt
W∆i(t, x∆i)

]

≤ 1
ϕd(V0[κ](χ[κ]))

{
d

dt
V0[κ](χ[κ]) + ϕd(V0[κ](χ[κ]))

d

dt
χT
⟨κ+1⟩P⟨κ+1⟩χ⟨κ+1⟩

+
m∑

i=1

[
wid
zid

]T
[
−ϕd(V0[κ](χ[κ]))ϕ̌idI 0

0 ψidϕd(V0[κ](χ[κ]))ϕ̌idI

] [
wid
zid

]}
−

m∑
i=1

ϕ̌idβi(x∆i)

Making use of (24), (25) and

0 ≤
[

wis
zis

]T [
−Φis 0

0 ψisΦis

] [
wis
zis

]
, ∀x ∈ Rn

we arrive at

d

dt
V (t, xcl) ≤ q(x,w)

ϕd(V0[κ](χ[κ]))
+ rT r − τ−2eT e −

m∑
i=1

ϕ̌idβi(x∆i) (111)

q(x,w) =
[

χ
w

]T [
S−T AT T T Ξ + ΞTAS−1 ΞTB

BT T T Ξ 0

] [
χ
w

]
+

[
w
z

]T [
−Θ 0
0 Ψ2Φ

] [
w
z

]
The function q(x,w) satisfies q(x,w) < 0 for all x ∈ Rn \ {0} if[

S−T AT T T Ξ + ΞTAS−1 ΞTB
BT T T Ξ 0

]
+

[
0 S−T CT Ψ
I DT Ψ

] [
−Θ 0
0 Φ

] [
0 I

ΨCS−1 ΨD

]
< 0 (112)

holds for all x ∈ Rn. According to Schur complements formula, the inequality (22) is equivalent
to a pair of (112) and Φ > 0. Thus, under the condition (22), the global uniform asymptotic
stability of Σ follows from (111) with r ≡ 0. Finally, integrating (111) from t = 0 to t = T > 0,
we obtain

V (t, xcl(T )) − V (t, xcl(0)) ≤
∫ T

0

(
rT r − τ−2eT e

)
dt

This proves that Σ has L2-gain less than or equal to τ .

Proof of Lemma 3:

Proof : For k = 1, 2, . . . , n the matrix Fak is obtained as

Fak =
[

−Θ2k−1 DT
k Ψ2k−1Φ2k−1

Φ2k−1Ψ2k−1Dk −Φ2k−1 − Φ2k−1FckΦ2k−1

]
Fc1 = 0, Fcj =

[
⋆j,j−1

0

]T

M−1
[j−1]

[
⋆j,j−1

0

]
, j = 2, 3, . . . , n

where ⋆i,j denotes any function depending only on x[i], and the functions s1 through sj and their
partial derivatives.
(i) The condition (75) is obtained as

ϕ2k−1 ≥ θ2k−1 > 0,

[
0 0
0 ϕ2k−1τ

−2DR,kD
T
R,k

]
< θ2k−1(I + ϕ2k−1Φ̂

1/2
2k−1FckΦ̂

1/2
2k−1) (113)
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There exists C0 functions ϕ2k−1(x[k]) and θ2k−1(x[k]) satisfying (113) if and only if there exists a
C0 function ν2k−1(x[k]) satisfying

ν2k−1 > 0, −ν2k−1Φ̂
1/2
2k−1FckΦ̂

1/2
2k−1 <

[
I 0
0 I − τ−2DR,kD

T
R,k

]
(114)

for all x[k] ∈ Rk. Note that Fck ≤ 0 follows from M[k−1] < 0. Since Dk and Fck are C0 functions
defined on Rk, the assumption (58) implies that such a C0 function ν2k−1(x[k]) exists. Write θ2k−1

as

θ2k−1 = ϕ2k−1(1 − ϵ)

Then, (113) is satisfied if and only if ϵ satisfies

0 ≤ ϵ < 1,

[
0 0
0 τ−2DR,kD

T
R,k

]
< (1 − ϵ)(I + ϕ2k−1Φ̂

1/2
2k−1FckΦ̂

1/2
2k−1) (115)

For any C0 function ϕ2k−1(x[k]) satisfying (74), there exists a C0 function ϵ(x[k]) satisfying (115)
for all x[k] ∈ Rk since we have ν2k−1Fck ≤ ϕ2k−1Fck and (114). Finally, if k = 1, the assumption
(46) and Fc1 = 0 imply (114) for any constant ν2k−1 > 0.
(ii) Let ν2k−1(x[k]) be a C0 function satisfying (114). There exists a C0 function ν̄2k−1(s) such
that

0 < ν̄2k−1(s) ≤

ϕ̄2k−1, min
x[k]∈{x[k] : s=χT

[k]
P[k]χ[k]}

ν2k−1(x[k])


for all s ∈ [0,∞) since χ[k] = S[k]x[k] is a diffeomorphism and P[k] > 0. The rest of the proof is
the same as (i).
(iii) Choose ϵ = 0 in the proof of (i) and (ii).
(iv) The inequality M < 0 implies M[k−1](0) < 0 with ϕd(0) = 1. The assumptions also guarantee
that M[k](0) < 0 with ϕd(0) = 1 is achievable by ϕ2k−1(0) = θ2k−1(0) = 1. Proposition 3 implies
that Fak(0) < 0 can be also achieved for ϕ2k−1(0) = θ2k−1(0) = 1. Thus, ν2k−1(0) = 1 solves (114)
at x[k] = 0. Finally, ν2k−1(0) = 1 implies

1 = ν̄2k−1(0) = min
x[k]∈{x[k] : 0=χT

[k]
P[k]χ[k]}

ν2k−1(x[k])

Proof of Lemma 4:
(i) For k = 1, 2, . . . , n, the matrix Fbk is obtained as

Fbk =
[
−Θ2k 0

0 −Φ2k

]
The inequality Fbk < 0 is satisfied if and only if ϕ2k > 0 and θ2k > 0 hold. The inequality (85) at
x[k] is obtained as

UT
RkΨ

2
2kΦ̂2kURkϕ2ks

2
k + 2Ξkak,k+1sk + ULkΦ̂−1

2k UT
LkΞ

2
kθ

−1
2k + Ξ2

kα < 0 (116)
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where the function α(x[k]) is defined so that the left hand sides of (116) and (85) are identical.
The function α is independent of sk, ϕ2k and θ2k. Note that α, ak,k+1, URk, ULk, Ξk and Ψ2k are
C0 functions of x[k]. There exists a scalar sk satisfying (116) at x[k] if and only if

αUT
RkΨ

2
2kΦ̂2kURkϕ2k < a2

k,k+1 − UT
RkΨ

2
2kΦ̂2kURkULkΦ̂−1

2k UT
Lkϕ2kθ

−1
2k (117)

holds. There exist ϕ2k and θ2k satisfying (117) and ϕ2k ≥ θ2k at x[k] if and only if there exists a
scalar ν2k satisfying

αUT
RkΨ

2
2kΦ̂2kURkν2k < a2

k,k+1 − UT
RkΨ

2
2kΦ̂2kURkULkΦ̂−1

2k UT
Lk 0 < ν2k (118)

Since we have (59), there exists a C0 function ν2k(x[k]) satisfying (118) for all x[k] ∈ Rk. Write
θ2k as

θ2k =
ϕ2k

1 + ϵ

Then, (117) is satisfied for all x[k] ∈ Rk if and only if ϵ satisfies

αUT
RkΨ

2
2kΦ̂2kURkϕ2k < a2

k,k+1 − UT
RkΨ

2
2kΦ̂2kURkULkΦ̂−1

2k UT
Lk(1 + ϵ) (119)

for all x[k] ∈ Rk. For any C0 function ϕ2k(x[k]) satisfying 0 < ϕ2k(x[k]) ≤ ν2k(x[k]), there exist a
C0 function ϵ(x[k]) satisfying (119) and ϵ(x[k]) ≥ 0 for all x[k] ∈ Rk since we have (118) and (59).
Note that ϵ ≡ 0 is a solution. Furthermore, the function ν2k(x[k]) can be replaced by another C0

function ν̄2k(χT
[k]P[k]χ[k]) obtained from

0 < ν̄2k(s) ≤ min

ϕ̄2k, min
x[k]∈{x[k] : s=χT

[k]
P[k]χ[k]}

ν2k(x[k])


Finally, the inequality (117) implies that the inequality (116) has a smooth solution sk(x[k]) since
URk, ULk, ak,k+1, α, Ξk and Ψ2k are C0 functions of x[k].
(ii) If p2k + q2k = 0, the inequalities (87) and (88) are obtained as

2Ξkak,k+1sk + Ξ2
kα < 0 , (120)

with appropriate C0 functions α which are independent of sk. This affine inequality admits a
smooth solution sk(x[k]).
(iii) Regarding the final statement of the lemma, recall that M < 0 implies M[k−1](0) < 0 if
ϕd(0) = 1 in (60). The assumptions guarantee that M[k](0) < 0 is achievable with ϕ2k(0) =
θ2k(0) = 1 and sk(0) = lk,k. Proposition 3 implies that (116) is solved with ϕ2k(0) = θ2k(0) = 1
and sk(0) = lk,k. Thus, ν2k(0) = 1 satisfies (118) at x[k] = 0. It is also verified that

1 = ν̄2k(0) = min
x[k]∈{x[k] : 0=χT

[k]
P[k]χ[k]}

ν2k(x[k])

Proof of Lemma 5:
The claim is proved using the result (a) of Theorem 2 for linear Σ0 as follows. Suppose that
constant scalars

ϕ̂js > 0, ϕ̂jd > 0, 1 ≤ j ≤ 2n

Pk > 0, 1 ≤ k ≤ n

di,j , 2 ≤ i ≤ n, 1 ≤ j ≤ i − 1
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are given arbitrarily. Choose κ = 0 and ϕd = ϕj . Let A = A, B = B, G = G, C = C,
D = D, H = H and Ψ = Ψ̄(0). Since these matrices are independent of x, M < 0 can be solved
with constant parameters {ϕ2k−1 = θ2k−1 > 0, ϕ2k = θ2k > 0, sk} following the procedure
described in the proof of Theorem 2. This fact implies that M < 0 is solved with X = ST PS,
K = [dn,1, . . . , dn,n−1, sn]S and

ϕ
js

= ϕjϕ̂js > 0, ϕ
jd

= ϕjϕ̂jd > 0, , 1 ≤ j ≤ 2n

Hence, u = Kx is a scaled H∞ linear controller.

Proof of Theorem 3:
Let κ = n. According to Lemma 4, in the n-th step of the recursive procedure, we can choose a
uniformly bounded C0 function ϕ2n(χT Pχ) such that

0 < βiϕ2n(χT Pχ) ≤ ϕi(x[k]), x[k] ∈ Rk

βiϕ2n(0) = ϕi(0)

hold for some βi > 0, i = 1, 2, . . . , 2n − 1. Lemma 3 and 4 also allow

θi(0) = ϕi(0), i = 1, 2, . . . , 2n − 1

Then, the recursive procedure leads us to a controller (51) which satisfies

M =

 ŜT ÂT T T P +PTÂŜ PTB ŜT ĈT ΨΦ
BT T T P −Θ DT ΨΦ
ΦΨĈŜ ΦΨD −Φ

<0

for all x ∈ Rn. Define a matrix-valued C0 function

Φ̃(x) =
2n

block-diag
j=1

βjϕ2nΦ̂j

where β2n = 1. This matrix satisfies

0 < Φ̃(x) ≤ Φ(x), ∀x ∈ Rn (121)

Φ̃(0) = Φ(0) = Θ(0) (122)

The matrix Φ̃ also belongs to Φ in (18). Since

M =

 I 0 0
0 I 0
0 0 ΦΦ̃−1




 ŜT ÂT T T P +PTÂŜ PTB ŜT ĈT Φ̃
BT T T P −Θ DT Φ̃

Φ̃ĈŜ Φ̃D −Φ̃

 +

 0 0 0
0 0 0
0 0 Φ̃ − Φ̃Φ−1Φ̃




 I 0 0
0 I 0
0 0 Φ̃−1Φ


holds, the inequality (121) implies ŜT ÂT T T P +PTÂŜ PTBW̄ ŜT ĈT ΨΦ̃

W̄BT T T P −Φ̃ W̄DT ΨΦ̃
Φ̃ΨĈŜ Φ̃ΨDW̄ −Φ̃

<0 (123)

W̄ = Θ−1/2Φ̃1/2 =
2n

block-diag
j=1

√
θ−1
j βjϕ2nI > 0
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From (122), the matrix W̄ (x) satisfies W̄ (0) = I. If we take ϕ2n so that θ−1
j ϕ2n is uniformly

bounded in x for all j, W̄ (x) becomes a uniformly bounded function. It is verified that (123) holds
for all x ∈ Rn even if W̄ (x) is replaced by any diagonal matrix W (x) satisfying 0 < W (x) ≤ W̄ (x).
Define

Ŵ (x) =
2n

block-diag
j=1

√
βjϕ2nI

Then, Theorem 1 proves that Σ̂P is globally globally uniformly asymptotically stabilized and
achieves L2-gain less than or equal to τ for all admissible dynamic uncertainties. Furthermore,
the control law (51) agrees locally with a scaled H∞ linear controller as shown in Theorem 2 if
we choose ϕi(0) = 1 and βi = 1 for i = 1, 2, . . . , 2n.

Proof of Theorem 4:
Let V[k] be defined as (106) and (107). According to Lemma 2, the function V[k] is radially un-
bounded and positive definite with respect to (χ[k], x∆[k]). Since χ[k] = S[k]x[k] is a diffeomorphism,
there exist class K∞ functions η(·) and η̄(·) such that

η(∥xcl[k]∥) ≤ V[k](t, χ[k], x∆[k]) ≤ η̄(∥xcl[k]∥), ∀xcl[k] =
[

x[k]
x∆[k]

]
∈ Rk+n∆[k] , t ∈ [0,∞) (124)

Note also that V̂[k](χ[k]) = V[k](t, χ[k], 0). From ϕk > 0 and positive definiteness of W∆k, it follows
that

0 ≤ V̂[k](χ[k]) ≤ V[k](t, χ[k], x∆[k]), ∀χ[k] ∈ Rk, x∆[k] ∈ Rn∆[k] , t ∈ [0,∞)

Since ϕk is non-increasing, the above inequality implies

ϕk+1(V̂[k](χ[k])) ≥ ϕk+1(V[k](t, χ[k], x∆[k])) > 0, ∀χ[k] ∈ Rk, x∆[k] ∈ Rn∆[k] , t ∈ [0,∞) (125)

First, consider the case of [rT
1 , · · · , rT

2(n−1)] ≡ 0. Let k be an integer in [1, n]. Suppose that
the time-derivative of V[k−1] along the trajectory (x[k−1](t), x∆[k−1](t)) of the closed-loop system
(ΣP , ΣK) satisfies

d

dt
V[k−1](t, χ[k−1], x∆[k−1]) ≤ 0, ∀χ[k−1] ∈ Rk−1, x∆[k−1] ∈ Rn∆[k−1] , t ∈ [0,∞) (126)

if k ≥ 2. Using (125) and (126), the time-derivative of V[k] along the trajectory (x[k](t), x∆[k](t))
of (ΣP , ΣK) is obtained as

d

dt
V[k] ≤ 1

ϕk(V̂[k−1](χ[k−1]))
d

dt
V[k−1] +

d

dt

(
χkPkχk + ϕ̌2k−1,dW∆2k−1 + ϕ̌2k,dW∆2k

)
≤ 1

ϕ̃k(χ[k−1])
N[k](t, χ[k], x∆[k])

Here, N[l] and ϕ̃l for 1 ≤ l ≤ n are defined by

N[l](t, χ[l], x∆[l]) =
l∑

i=1

ϕ̃i
d

dt

(
χiPiχi + ϕ̌2i−1,dW∆2i−1 + ϕ̌2i,dW∆2i

)

ϕ̃l(χ[l−1]) =
l∏

j=1

ϕj(V̂[j−1](χ[j−1]))
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Due to (100), (101) and the definition of admissible uncertainties, the function N[k] satisfies

N[k] ≤
k∑

i=1

ϕ̃i
d

dt
χiPiχi +

 2i∑
j=2i−1

[
wjd
zjd

]T
[
−ϕ̃iϕ̌jdI 0

0 ψjdϕ̃iϕ̌jdI

] [
wjd
zjd

]
− ϕ̃iϕ̌jdβj


≤

k∑
i=1

{
ϕ̃i

(
d

dt
χiPiχi − ϕ̌2i−1,dβ2i−1 − ϕ̌2i,dβ2i

)}
+

[
w̄[k]
z̄[k]

]T
[
−Θ[k] 0

0 Ψ2
[k]Φ̃[k]

] [
w̄[k]
z̄[k]

]

w̄[k] =


w̄1
w̄2
...

w̄2k

 , z̄[k] =


z̄1
z̄2
...

z̄2k


unless k = n. In the case of k = n, we obtain

N[n] ≤
n∑

i=1

{
ϕ̃i

(
d

dt
χiPiχi − ϕ̌2i−1,dβ2i−1 − ϕ̌2i,dβ2i

)}
+

[
w̄
z̄

]T [ −Θ 0
0 Ψ2Φ̃

] [
w̄
z̄

]

+ϕ̃n

2n∑
j=2n−1

(
rT
j rj − τ−2eT

j ej

)

Owing to the triangular structure of A, B, Ŝ and T , we obtain

N[k] ≤
[

χ[k]
w̄[k]

]T
[

ŜT
[k]A

T
[k]T

T
[k]Ξ[k] + Ξ[k]T[k]A[k]Ŝ[k] Ξ[k]T[k]B[k]

BT
[k]T

T
[k]Ξ[k] 0

] [
χ[k]
w̄[k]

]

+
[

w̄[k]
z̄[k]

]T [ −Θ[k] 0
0 Ψ[k]Φ̃[k]

] [
w̄[k]
z̄[k]

]
−

k∑
i=1

ϕ̃i

(
ϕ̌2i−1,dβ2i−1 + ϕ̌2i,dβ2i

)
N[n] ≤

[
χ
w̄

]T [
ŜT AT T T Ξ + ΞTAŜ ΞTB

BT T T Ξ 0

] [
χ
w̄

]

+
[

w̄
z̄

]T [ −Θ 0
0 ΨΦ̃

] [
w̄
z̄

]
−

n∑
i=1

ϕ̃i

(
ϕ̌2i−1,dβ2i−1 + ϕ̌2i,dβ2i

)
+ ϕ̃n

2n∑
j=2n−1

(
rT
j rj − τ−2eT

j ej

)
Recall that M < 0 in (98) implies M[l] < 0 for any integer l ∈ [1, n]. Based on application of
Schur complements formula to M[k] < 0, the inequality M[k] < 0 implies

N[k](t, χ[k], x∆[k]) ≤ −ρk(χ[k]) −
k∑

i=1

ϕ̃i

(
ϕ̌2i−1,dβ2i−1 + ϕ̌2i,dβ2i

)
, k < n

for a positive definite function ρk(·). Thus, the there exists a positive definite function ρ̄k(·, ·) for
which

d

dt
V[k](t, χ[k], x∆[k]) ≤ −ρ̄k(χ[k], x∆[k]), ∀χ[k] ∈ Rk, x∆[k] ∈ Rn∆[k] , t ∈ [0,∞)

holds under the assumption of (126). By induction from k = 1 to k = n, we obtain

d

dt
V[n](t, χ, x) ≤ −ρ̄n(χ, x∆) +

2n∑
j=2n−1

(
rT
j rj − τ−2eT

j ej

)
, ∀χ ∈ Rn, x∆ ∈ Rn∆ , t ∈ [0,∞)(127)

for a positive definite function ρ̄n(·, ·). Hence, the stability follows from r2n−1 ≡ 0 and r2n ≡ 0.
Integration of the above inequality also proves L2-gain of the level τ between [rT

2n−1, r
T
2n]T and

35



[eT
2n−1, e

T
2n]T . For the proof of the weighted L2-gain in the case of [rT

1 , · · · , rT
2(n−1)] ̸= 0, the

inequality (126) and (127) are replaced by

d

dt
V[k−1] −

k−1∑
i=1

1
ϕi+1(V[i])ϕi+2 · · ·ϕk(V[k−1])

2i∑
j=2i−1

(rT
j rj − τ−2eT

j ej) −
2k∑

j=2k−1

(rT
j rj − τ−2eT

j ej) ≤ 0

d

dt
V[n] ≤ −ρ̄n +

n−1∑
i=1

1
ϕi+1(V[i])ϕi+2 · · ·ϕn(V[n−1])

2i∑
j=2i−1

(rT
j rj − τ−2eT

j ej) +
2n∑

j=2n−1

(
rT
j rj − τ−2eT

j ej

)

respectively. Since V[i] satisfies (124) and ϕi is bounded from above, there exist a C0 function matrix
W (x, x∆) > 0 for which L2 disturbance attenuation of the level τ between r and W (x, x∆)e is
achieved.
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