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1 Introduction

The problem of establishing stability properties of nonlinear interconnected systems has been inves-
tigated extensively for decades. However, control practice still demands a great deal of development.
It is reasonable that the diversity of nonlinearities has been defying the treatment in the way of linear
systems theory where universality and effectiveness often come together automatically. For nonlin-
ear systems, it is fundamental to be aware of the total difference between universal applicability and
effectiveness. Indeed, we experience conflicts between the two issues in many cases. This is a rea-
son why there are two directions of the research. One direction pursues problem-specific techniques
focusing on particularity of individual nonlinearities. People in other field sometimes consider them
too heuristic and impractical even when the specialized tricks are effective. The other direction seeks
general techniques that are applicable to many cases in a unified way. The generality sometimes not
only excludes some strong nonlinearities of great importance, but also renders the essential effective-
ness obscure so that the applicability is only formal. It is typical of general ‘nonlinear’ problems
to have no guarantee of the existence of solutions. We often do not know how to solve them even
if solutions exist. Naturally, this situation has brought out a quest for a successful fusion of the
two directions. From this viewpoint, it is remarkable that the ISS small-gain theorem (also referred
to as the nonlinear small-gain theorem) proposed in [1, 2] achieves a balance between the universal
applicability and the effectiveness partially[3, 4, 5].

The first part[6] of this two-part paper has presented a unified way to formulate problems of
analyzing stability and dissipative properties of nonlinear interconnected systems via state-dependent
scaling. Systems to which the state-dependent scaling framework is applicable are not limited to
classical systems in standard textbooks, such as finite L2-gain systems, passive systems and sector
nonlinearities. The state-dependent scaling not only enables us to assess stability, but also gives us
Lyapunov functions establishing the stability properties of interconnected systems explicitly. Classical
stability criteria for systems with mild nonlinearities such as finite Lp-gain systems, passive systems
and Lur’e systems can be extracted exactly from the state-dependent scaling characterization as
special cases[6]. More importantly, it can be shown that the coverage includes the ISS small-gain
theorem for interconnected input-to-state stable(ISS) systems. This paper is devoted to further
discussions on the fundamental capability of the state-dependent scaling characterization.

A major advantage of the state-dependent scaling approach over the existing stability criteria is
that it is applicable to nonlinear systems disagreeing with classically standard nonlinearities. The
purposes of this paper are to demonstrate that the effectiveness is much more than formal applica-
bility, and to provide theoretical illustrations for advanced types of nonlinearities. For this end, this
paper concentrates on the interconnected system composed of integral input-to-state stable(iISS) and
ISS systems. The existence of solutions to the corresponding state-dependent scaling problems are
investigated rigorously, and explicit formulas of the solutions are shown. This paper also derive new
theorems of the small-gain-type for them from the state-dependent scaling characterization smoothly.
To the best of author’s knowledge, the result of small-gain-type theorems involving iISS systems is
the first of its kind. The class of ISS systems has been extensively investigated and has been playing
an important role in the recent literature of nonlinear control theory[7, 8, 3]. For instance, the fact
that cascades of ISS systems are ISS is widely used in stabilization. The ISS small-gain theorem is
also a popular tool to establish stability of feedback interconnection of ISS systems. In contrast, the
concept of iISS has not yet been fully exploited in analysis and design although the property of iISS
by itself has been investigated deeply[9]. The iISS property covers nonlinearities much broader than
the ISS property. Indeed, the iISS captures important characteristics essentially nonlinear systems
often have[9], and there are many practical systems which are iISS, but not ISS. There are still few
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tools of making full use of the iISS property in systems analysis and design. For instance, stability
criteria similar to the ISS small-gain theorem have not been developed for interconnection involving
iISS systems so far. Extension of the ISS small-gain condition to more general systems has been
anticipated.

This paper is organized as follows. Section 2 contains a brief review of the general idea presented
in [6]. We begin with the introduction of the state-dependent scaling problems to which this paper
concentrates on deriving explicit solutions. The section presents a general configuration of nonlinear
interconnected systems. It is explained that stability properties of the interconnected system can
be established if solutions to the state-dependent scaling problems are found. The main body of
this paper begins in Section 3, which is devoted to the issues of when the solutions exist and how
they can be found. This paper focuses on the interconnected system consisting of iISS systems and
ISS systems. The settings are considered as some special cases of the general settings covered by
the state-dependent scaling formulation proposed in [6]. In Section 3, it is demonstrated that we are
actually able to obtain solutions to the state-dependent scaling problems, and the solutions are shown
explicitly for establishing iISS and ISS properties of the interconnected system. For the feedback
interconnection, we derive small-gain-like conditions which are sufficient conditions for the existence
of the solutions. It is proved that the conditions become identical to the ISS small-gain theorem in
the case of interconnected ISS systems. The solution to the corresponding state-dependent scaling
problem provides us with a Lyapunov function for the feedback loop explicitly. More importantly,
Section 3 presents results of small-gain-like conditions for the interconnection involving iISS systems.
To the best of the author’s knowledge, it is the first of its kind. The state-dependent scaling approach
allows us to develop the iISS small-gain theorem and the iISS-ISS small-gain theorem in a unified
manner. It is shown that there is a reasonable relationship between them and the ISS small-gain
theorem. Stability theorems for cascade iISS and ISS systems are also derived as solutions to the
state-dependent scaling problems. While Section 3 of this paper deals with supply rates of advanced
types such as ISS and iISS properties, discussions in [6] have been concentrated on supply rates which
are popular in classical stability analysis such as the L2 small-gain theorem, the passivity theorems,
and the circle and Popov criteria. Using the results obtained in [6] and Section 3 in this paper, the
author demonstrates that the classical stability theorems, advanced stability theorems and even new
ones can be extracted as special cases of the state-dependent scaling formulation. Stability conditions
provided by classical, advanced and new stability theorems are viewed as sufficient conditions for
guaranteeing the existence of solutions to the state-dependent scaling problems. In Section 4, the
effectiveness of the approach is illustrated through several examples. Finally, concluding remarks are
given in Section 5.

This paper uses the following notations. The interval [0,∞) in the space of real numbers R is
denoted by R+. Euclidean norm of a vector in Rn of dimension n is denoted by | · |. A function
γ : R+ → R+ is said to be class K and written as γ ∈ K if it is a continuous, strictly increasing
function satisfying γ(0) = 0. A function γ : R+ → R+ is said to be class K∞ and written as γ ∈ K∞
if it is a class K function satisfying limr→∞ γ(r) = ∞. We write γ ∈ P for a function γ : R+ → R+

if it is a continuous function satisfying γ(0) = 0 and γ(s) > 0 for all s ∈ R+ \ {0}.

2 State-dependent scaling formulation

This section presents a mathematical problem which plays a central role in this paper. Another
problem which relaxes the main problem is also presented. This paper refers to those two problems
as the state-dependent scaling problems[6]. This section puts system theoretic interpretations on
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the problems from the viewpoint of stability properties of nonlinear interconnected systems and con-
struction of Lyapunov functions. This section thereby reviews a minimum of necessary preliminaries
described in the previous paper[6].

The following is the main mathematical problem to be considered in this paper.

Problem 1 Given continuously differentiable functions Vi : (t, xi) ∈ R+×Rni → R+ and continuous
functions ρi : (xi, xj , ri) ∈ Rni × Rnj × Rmi → R for i = 1, 2 and j = {1, 2} \ {i}, find continuous
functions λi : s ∈ R+ → R+ satisfying

λi(s) > 0 ∀s ∈ (0,∞) (1)

lim
s→0+

λi(s) < ∞ (2)
∫ ∞

1
λi(s)ds = ∞ (3)

for i = 1, 2 such that

λ1(V1(t, x1))ρ1(x1, x2, r1) + λ2(V2(t, x2))ρ2(x2, x1, r2) ≤ ρe(x1, x2, r1, r2),

∀x1∈Rn1 , x2∈Rn2 , r1∈Rm1 , r2∈Rm2 , t∈R+ (4)

holds for some continuous function ρe : (x1, x2, r1, r2) ∈ Rn1 × Rn2 × Rm1 × Rm2 → R satisfying

ρe(x1, x2, 0, 0) < 0 , ∀(x1, x2) ∈ Rn1 × Rn2 \ {(0, 0)} (5)

A variant of Problem 1 is given by the following which is milder than Problem 1.

Problem 2 Given a continuously differentiable function V2 : (t, x2) ∈ R+×Rn2 → R+ and continu-
ous functions ρ1 : (z1, x2, r1) ∈ Rp1×Rn2×Rm1 → R and ρ2 : (x2, z1, r2) ∈ Rn2×Rp1×Rm2 → R, find
continuous functions λ1 : (t, z1, x2, r1, r2) ∈ R+ ×Rp1 ×Rn2 ×Rm1 ×Rm2 → R+, λ2 : s ∈ R+ → R+,
an increasing continuous function ξ1 : s ∈ [0, N ] → R+ and a continuous function ϕ1 : (z1, x2, r1) ∈
Rp1 × Rn2 × Rm1 → R+ satisfying

λ2(s) > 0 ∀s ∈ (0,∞) (6)

lim
s→0+

λ2(s) < ∞ (7)
∫ ∞

1
λ2(s)ds = ∞ (8)

ξ1(s) ≥ 0 ∀s ∈ [0, N ] (9)

ϕ1(z1, x2, r1) ≥ 0, ∀z1∈Rp1 , x2∈Rn2 , r1∈Rm1 (10)

such that

λ1(t, z1, x2, r1, r2) [−ξ1(ϕ1(z1, x2, r1)) + ξ1(ϕ1(z1, x2, r1) + ρ1(z1, x2, r1))] +

λ2(V2(t, x2))ρ2(x2, z1, r2) ≤ ρe(x2, r1, r2),

∀z1∈Rp1 , x2∈Rn2 , r1∈Rm1 , r2∈Rm2 , t∈R+ (11)

holds for some continuous function ρe : (x2, r1, r2) ∈ Rn2 × Rm1 × Rm2 → R satisfying

ρe(x2, 0, 0) < 0 , ∀x ∈ Rn2 \ {0} (12)

where N ∈ [0,∞] is defined by

N = sup
(z1,x2,r1)∈Rp1×Rn2×Rm1

[ϕ1(z1, x2, r1) + ρ1(z1, x2, r1))] (13)
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The functions λi and ξi are referred to as state-dependent scaling functions in this paper. It may
be worth mentioning that (2) and (7) are redundant mathematically since each λi is supposed to
be continuous on R+ = [0,∞). The explicit statement of (2) and (7) may be helpful to direct the
readers’ attention to it.

The inequalities (4) and (11) are central inequalities that need to be solved. This paper calls a
pair of λ1 and λ2 a solution to Problem 1 if the pair fulfills all requirements stated in Problem 1. In
a similar manner, a quartet of λ1, λ2, ξ1 and ϕ1 fulfilling all requirements in Problem 2 is called a
solution to Problem 2. When the function ξ1(s) is affine in s, the inequality (11) becomes

λ1(t, z1, x2, r1, r2)ξ1 (ρ1(z1, x2, r1)) + λ2(V2(t, x2))ρ2(x2, z1, r2) ≤ ρe(x2, r1, r2),

∀z1∈Rp1 , x2∈Rn2 , r1∈Rm1 , r2∈Rm2 , t∈R+ (14)

Thus, the function ϕ1 disappears from (11). In the case of affine ξ1(s), a solution to Problem 2
becomes the triplet of λ1, λ2 and ξ1. According to Lemma 1 in [6], Problem 1 has a solution only if
so does Problem 2 in reasonable settings.

Next, consider the nonlinear interconnected system Σ shown in Fig.1. Suppose that subsystems
Σ1 and Σ2 are described by

Σ1 : ẋ1 = f1(t, x1, u1, r1) (15)

Σ2 : ẋ2 = f2(t, x2, u2, r2) (16)

These two dynamic systems are connected each other through u1 = x2 and u2 = x1. If Σ1 is static,
we suppose that Σ1 is described by

Σ1 : z1 = h1(t, u1, r1) (17)

Then, u2 = x1 is replaced by u2 = z1. Assume that f1(t, 0, 0, 0) = 0, f2(t, 0, 0, 0) = 0 and
h1(t, 0, 0, 0) = 0 hold for all t ∈ [t0,∞), t0 ≥ 0. The functions f1, f2 and h1 are supposed to
be piecewise continuous in t, and locally Lipschitz in the other arguments. The exogenous inputs
r1 ∈ Rm1 and r2 ∈ Rm2 are packed into a single vector r = [rT

1 , rT
2 ]T ∈ Rm. The state vector of the

interconnected system Σ is x = [xT
1 , xT

2 ]T ∈ Rn where xi ∈ Rni is the state of Σi.

The following theorem demonstrates that stability properties of the nonlinear interconnected system
are strongly related to the solutions of the state-dependent scaling problems.

Theorem 1 Suppose that Σ1 and Σ2 are dynamic systems fulfilling the following.

(i) The system Σ1 admits the existence of a C1 function V1 : (t, x1) ∈ R+ × Rn1 → R+ such that
it satisfies

α1(|x1|) ≤ V1(t, x1) ≤ ᾱ1(|x1|) (18)
∂V1

∂t
+

∂V1

∂x1
f1(t, x1, u1, r1) ≤ ρ1(x1, u1, r1) (19)

for all x1 ∈ Rn1, u1 ∈ Rn2, r1 ∈ Rm1 and t ∈ R+, where α1 and ᾱ1 are class K∞ functions,
and ρ1 : (x1, u1, r1) ∈ Rn1 ×Rn2 ×Rm1 → R is a continuous function satisfying ρ1(0, 0, 0) = 0.

(ii) The system Σ2 admits the existence of a C1 function V2 : (t, x2) ∈ R+ × Rn2 → R+ such that
it satisfies

α2(|x2|) ≤ V2(t, x2) ≤ ᾱ2(|x2|) (20)
∂V2

∂t
+

∂V2

∂x2
f2(t, x2, u2, r2) ≤ ρ2(x2, u2, r2) (21)

5



for all x2 ∈ Rn2, u2 ∈ Rn1, r2 ∈ Rm2 and t ∈ R+, where α2 and ᾱ2 are class K∞ functions,
and ρ2 : (x2, u2, r2) ∈ Rn2 ×Rn1 ×Rm2 → R is a continuous function satisfying ρ2(0, 0, 0) = 0.

If there is a solution {λ1, λ2} to Problem 1, the equilibrium x = [xT
1 , xT

2 ]T = 0 of the interconnected
system Σ is globally uniformly asymptotically stable for r ≡ 0. Furthermore, there exist a C1 function
Vcl : (t, x) ∈ R+ × Rn → R+ and class K∞ functions αcl, ᾱcl such that

αcl(|x|) ≤ Vcl(t, x) ≤ ᾱcl(|x|), ∀x ∈ Rn, t ∈ R+ (22)

is satisfied and

dVcl

dt
≤ ρe(x, r), ∀x∈Rn, r∈Rm, t∈R+ (23)

holds along the trajectories of the system Σ.

The previous paper[6] has shown that the properties in Theorem 1 are established by a Lyapunov
function in the form of

Vcl(t, x) =
∫ V1(t,x1)

0
λ1(s)ds +

∫ V2(t,x2)

0
λ2(s)ds (24)

Thus, the solutions to the inequality of the sum of scaled supply rates, which is (4), directly lead us
to Lyapunov functions.

If a system Σi in Fig.1 is static, Problem 1 can be replaced by a weaker Problem 2 where one can
employ other flexibilities of functions ξi and ϕi.

Theorem 2 Suppose that Σ1 is a static system, and Σ2 is a dynamic system fulfilling the following.

(i) The system Σ1 satisfies

ρ1(z1, u1, r1) ≥ 0 (25)

for all u1 ∈ Rn2 , r1 ∈ Rm1 and t ∈ R+, where ρ1 : (z1, u1, r1) ∈ Rp1 × Rn1 × Rm1 → R is a
continuous function satisfying ρ1(0, 0, 0)=0.

(ii) The system Σ2 satisfies (ii) of Theorem 1.

If there is a solution {λ1, λ2, ξ1, ϕ1} to Problem 2, the equilibrium x = x2 = 0 of the interconnected
system Σ is globally uniformly asymptotically stable for r ≡ 0. Furthermore, there exist a C1 function
Vcl : (t, x2) ∈ R+ × Rn2 → R+ and class K∞ functions αcl, ᾱcl such that

αcl(|x2|) ≤ Vcl(t, x2) ≤ ᾱcl(|x2|), ∀x2 ∈ Rn2 , t ∈ R+ (26)

is satisfied and

dVcl

dt
≤ ρe(x2, r), ∀x2∈Rn2 , r∈Rm, t∈R+ (27)

holds along the trajectories of the system Σ.

According to [6], a Lyapunov function proving this theorem is given by

Vcl(t, x2) =
∫ V2(t,x2)

0
λ2(s)ds (28)
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Σ1 : ẋ1 =f1(t, x1,u1, r1)

Σ2 : ẋ2 =f2(t, x2,u2, r2)
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Figure 1: Feedback interconnected system Σ

Σ1 : ẋ1 =f1(t, x1,u1, r1)

Σ2 : ẋ2 =f2(t, x2,u2, r2)

¾

-

¾

-
- x2

x1
r1

r2

u1 ≡ 0

u2

Figure 2: Cascade system Σc

In [10, 11, 12], a system Σ1 satisfying (19) is said to be dissipative. Then, the function ρ1 is referred
to as the supply rate. Following the terminology, in the rest of this paper, a system Σi is said to
accept a supply rate ρi if there exists a C1 function Vi(t, xi) and class K∞ functions αi, ᾱi such that

αi(|xi|) ≤ Vi(t, xi) ≤ ᾱi(|xi|) (29)
∂Vi

∂t
+

∂Vi

∂xi
fi(t, xi, ui, ri) ≤ ρi(xi, ui, ri) (30)

hold for all xi, ui, ri and t. If Σi is a static system, we replace the pair of (29) and (30) by the
following single inequality.

ρi(zi, ui, ri) ≥ 0 (31)

For convenience, we call the function ρi for the static system the supply rate although energy is never
stored by any static system.

The central inequalities (4) and (11) of Problem 1 and Problem 2 are not in the form of linear
combinations of supply rates. Functional coefficients λ1, λ2 and ξ1 are introduced into the combi-
nations. The use of the functionals λ1 λ2 and ξ1 is contrasted with the early works on Lyapunov
stability criteria for interconnected dissipative systems such as [10, 11, 12] where linear combinations
of supply rates were employed[6], i.e., constants λ1, λ2 and an identity function ξ1(s) = s. The pair
of Problem 1 and Problem 2 can be regarded as a general formulation of the state-dependent scaling
technique [13, 14, 15].

Cascade systems are special cases of the materials in this section. In other words, the solutions to
the state-dependent scaling problems establish stability properties of cascade connection of systems.
Indeed, if one of feedback paths u1 = x2 and u2 = x1 is disconnected in Fig.1, the interconnected sys-
tem becomes a cascade connection. When the path of ui is disconnected, the supply rate ρi(xi, ui, ri)
simply becomes ρi(xi, ri). By the cascade system Σc, the paper means that the path of u1 = x2 is
cut, i.e., u1(t) ≡ 0, which is depicted in Fig.2.

Problem 1 and Problem 2 are jointly affine in the scaling functions λ1 and λ2. It is expected that
this affine property is helpful in calculating the solutions, which is the main issue investigated in this
paper.
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3 Small-gain theorems for iISS and ISS systems

In the previous section, it is shown that the state-dependent scaling problems are directly related
to construction of Lyapunov functions, and they provide a unified approach to stability properties
of interconnected systems accepting supply rates in a general form. Clearly, solutions to the state-
dependent scaling problems exist only if the interconnected system actually possesses the stability
property required. It, however, has not been mentioned how easy or difficult it is to find the solutions
when the solutions should exist. The purposes of this paper are to address the question of how we
are able to obtain solutions to the state-dependent scaling problems, and to give explicit solutions.
In the first part of this two-part paper[6], the answers have been given for classically standard supply
rates which stability criteria in textbooks of nonlinear systems control deal with. It has been shown
in [6] that those classical stability criteria are some of the easiest cases of Problem 1 and Problem 2.
Thus, this paper considers several advanced types of supply rate, and seeks explicit solutions for the
supply rates.

This section focuses on interconnection of iISS and ISS systems as essential nonlinearities beyond
classical ones addressed in [11, 16]. iISS systems and ISS systems are classes of dissipative systems
introduced by Sontag[7, 9]. In this section, solutions to the state-dependent scaling problems are
derived explicitly for the iISS and the ISS types of supply rate, and the solutions are related to ISS
and iISS properties of the feedback loop shown in Fig.1. Small-gain rules are obtained as conditions
guaranteeing the existence of the solutions for iISS systems as well as ISS systems. It is the first
formulation of its type to address stability of nonlinear interconnections involving iISS systems. For
the interconnection of ISS systems, the formulated problem reduces to the ISS small-gain condition
which has become popular recently in the area of nonlinear systems control. The formulation of
the state-dependent scaling problems enables us to treat iISS systems and ISS systems in a unified
manner.

Consider the interconnected system illustrated by Fig.1. It is assumed that each system Σi accepts
the supply rate in the form of

ρi(xi, ui, ri) = −αi(|xi|) + σi(|ui|) + σri(|ri|) (32)

More precisely, we assume that, for each Σi, i = 1, 2, there exists a C1 function Vi : R+ ×Rni → R+

such that

αi(|xi|) ≤ Vi(t, xi) ≤ ᾱi(|xi|), ∀xi ∈ Rni , t ∈ R+ (33)
∂Vi

∂t
+

∂Vi

∂xi
fi(t, xi, ui, ri)≤−αi(|xi|) + σi(|ui|) + σri(|ri|)

, ∀xi∈Rni , ui∈Rnui , ri∈Rmi , t∈R+ (34)

are satisfied for some αi, ᾱi ∈ K∞ and some αi, σi, σri : R+ → R+ which are continuous functions
satisfying αi(0) = σi(0) = σri(0) = 0. The system Σi is said to be iISS with respect to input (ui, ri)
and state xi if (34) is satisfied for a positive definite function αi, class K functions σi and σri. In the
single input case, the second input ri is null, and the function σri vanishes. The function Vi(t, xi)
is called a C1 iISS Lyapunov function[9]. If αi is additionally a class K∞ function, the system Σi

is said to be ISS with respect to input (ui, ri) and state xi, and the function Vi(t, xi) is called a
C1 ISS Lyapunov function[17]. The trajectory-based definition of ISS and iISS may be seen more
often than the Lyapunov-based definition this paper adopts. The Lyapunov-based definition is more
suitable for the state-space version of stability analysis. The two types of definition is equivalent
in the sense that the existence of ISS (iISS) Lyapunov functions is necessary and sufficient for ISS
(iISS, respectively)[17, 9]. It is clear from the definition that ISS implies iISS. The converse is not
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true. Therefore, we can expect that stability of interconnection of iISS systems should requires more
restrictive conditions than that of ISS systems.

3.1 Interconnection of iISS systems

We first consider the interconnected system composed of two systems described by supply rates ρi

of the iISS type.

Theorem 3 Assume that functions ρi(xi, ui, ri), i = 1, 2 are in the form of (32) consisting of

α1 ∈ P, σ1 ∈ K, σr1 ∈ K (35)

α2 ∈ P, σ2 ∈ K, σr2 ∈ K (36)

Suppose that there exist ci > 0, i = 1, 2 and q ≥ 1 such that

[σ2(α−1
1 (s))]q ≤ c1α1(ᾱ−1

1 (s)), ∀s ∈ R+ (37)

c2σ1(α−1
2 (s)) ≤ [α2(ᾱ−1

2 (s))]q, ∀s ∈ R+ (38)

c1 < c2 (39)

are satisfied. Then, the following hold.

(i) Problem 1 is solvable with respect to a continuous function ρe(x, r) of the form

ρe(x, r) = −αcl(|x|) + σcl(|r|), αcl∈P, σcl∈K (40)

(ii) In the case of α2 ∈ K, a solution to Problem 1 with respect to (40) is given by

λ1 =
νc1

δ2
, λ2(s) = νq[δα2 ◦ ᾱ−1

2 (s)]q−1 (41)

where ν is any positive constant, and

δ =
(

c1

c2

) 1
q+2

(42)

(iii) In the case of α2 6∈ K, there exists α̂2 ∈ K such that

α̂2(s) ≤ α2(s), cσ1(α−1
2 (s)) ≤ [α̂2(ᾱ−1

2 (s))]q, ∀s∈R+ (43)

hold, and a solution to Problem 1 with respect to (40) is the same as (ii) except that α2 is
replaced by α̂2.

Theorem 1 yields the following directly, which shows that the triplet of (37), (38) and (39) is a
condition that allows us to establish stability of the feedback interconnected system with iISS supply
rates.

Corollary 1 Assume that Σ1 and Σ2 accept supply rates ρ1 and ρ2 in the form of (32), (35) and
(36). Suppose that there exist ci > 0, i = 1, 2 and q > 0 such that (37), (38) and (39) are satisfied.
Then, the interconnected system Σ is iISS with respect to input r and state x

It is worth stressing that Corollary 1 assures the iISS for all q > 0, In the case of q ≥ 1, the claim of
Corollary 1 follows directly from Theorem 1. To obtain the case of 0 < q < 1, we switch Σ1 and Σ2,
and apply Theorem 3 to the systems whose subscripts 1 and 2 are exchanged each other.
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Remark 1 The two conditions in (37) and (38) necessitate lim infs→∞ α1(s) > 0 and lim infs→∞ α2(s) >

0 since σ1 and σ2 are class K functions. Consequently, Theorem 3 implicitly requires Σ1 and Σ2 to
accept positive definite functions α1 and α2 which are class K functions.

Remark 2 It is worth mentioning that the set of (37)-(39) implies at least one system Σi of Σ1 and
Σ2 is required to be ISS with respect to input ui and state xi under ri(t) ≡ 0. In order to understand
this statement precisely. two points should be emphasized. First, that system Σi does not have to be
ISS in the presence of the external input ri. Secondly, the pair of αi and σi of that system Σi does
not necessarily form a supply rate of the ISS type in (37) and (38). In other words, α1 ∈ P \K∞ and
α2 ∈ P \ K∞ are allowed in (37) and (38) simultaneously. To verify the statement in the beginning
of this remark, we consider the supply rate (32) where αi ∈ P and σ1 ∈ K hold. In addition, we
assume αi ∈ K due to Remark 1. Then, the conditions (37) and (38) yield

[
σ2(α−1

1 (s))
α2(ᾱ−1

2 (s))

]q

≤ c1α1(ᾱ−1
1 (s))

c2σ1(α−1
2 (s))

, ∀s ∈ R+ \ {0}

From this inequality and (39), we obtain

lim
s→∞

[
σ2(α−1

1 (s))
α2(ᾱ−1

2 (s))

]q

≤ lim
s→∞

α1(ᾱ−1
1 (s))

σ1(α−1
2 (s))

(44)

Suppose that α1 ∈ K \K∞ and α2 ∈ K \K∞ hold. Then, limiting values of σ1 and σ2 toward ∞ are
guaranteed to be finite by (44) and q > 0 since σ1 and σ2 are class K functions. From (44) and q > 0
it also follows that

α2(∞) < σ2(∞) ⇒ α1(∞) ≥ σ1(∞) (45)

α1(∞) < σ1(∞) ⇒ α2(∞) ≥ σ2(∞) (46)

It can be verified that the system Σi is ISS if αi(∞) ≥ σi(∞) holds[17]. In other words, the inequality
αi(∞) ≥ σi(∞) guarantees the existence of a C1 ISS Lyapunov function for a supply rate composed
of another pair of αi ∈ K∞ and σ1 ∈ K. Therefore, the property of (45) and (46) implies that the set
of (37)-(39) requires at least one of Σ1 and Σ2 to be ISS with respect to input ui and state xi under
ri(t) ≡ 0. The requirement of (45) and (46) is natural in view of the ‘small gain’ for the stability of
the interconnection, and it can be intuitively explained as follows. Suppose that neither of the iISS
systems Σ1 and Σ2 is ISS for ri(t) ≡ 0. Then, there are no iISS Lyapunov functions whose supply
rates satisfy αi(∞) ≥ σi(∞). Thus, in the absence of ri, iISS Lyapunov functions V1(x1) and V2(x2)
given ‘arbitrarily’ satisfy

dV1(x1)
dt

≤ −α1(ᾱ−1
1 (V1(x1)) + σ1(α−1

2 (V2(x2)) (47)

dV2(x2)
dt

≤ −α2(ᾱ−1
2 (V2(x2)) + σ2(α−1

1 (V1(x1)) (48)

along the trajectories of Σi, and

α1(∞) < σ1(∞), α2(∞) < σ2(∞) (49)

Due to (49), there exist sufficient large l1, l2 > 0 such that α1(∞) < σ1(α−1
2 (l2)) and α2(∞) <

σ2(α−1
1 (l1)) hold. We have dVi(xi)/dt ≥ 0 for xi ∈ Ui(li) = {xi ∈ Rni : Vi(xi) ≥ li} if we can assume

that the pair {αi, σi} are selected such that the gap in the inequality (47) or (48) is sufficiently small
in Ui(li). Hence, the simultaneous property (49) contradicts the global asymptotic stability of x = 0.
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Problem 1 also enables us to establish the stability of the cascade connection of iISS systems. The
following is obtained by letting σ1 = 0.

Corollary 2 Assume that Σ1 and Σ2 accept supply rates ρ1 and ρ2 in the form of (32), (35) and
(36). Suppose that there exist c1 > 0 and q > 0 such that (37) is satisfied. Then, the cascade system
Σc is iISS with respect to input r and state x.

3.2 Interconnection of ISS and iISS systems

In this subsection, we consider the interconnection of an iISS system and an ISS system.

Theorem 4 Assume that functions ρi(xi, ui, ri), i = 1, 2 are in the form of (32) consisting of

α1 ∈ K∞, σ1 ∈ K, σr1 ∈ K (50)

α2 ∈ P, σ2 ∈ K, σr2 ∈ K (51)

Suppose that there exist ci > 1, i = 1, 2 and k > 0 such that

max
w∈[0,s]

[c2σ2 ◦ α−1
1 ◦ ᾱ1 ◦ α−1

1 ◦ c1σ1(w)]k

c1σ1(w)
≤ [α2 ◦ ᾱ−1

2 ◦ α−1
2 (s)]k

c1σ1(s)
, ∀s∈R+ (52)

c2σ2 ◦ α−1
1 ◦ ᾱ1 ◦ α−1

1 ◦ c1σ1(s) ≤ α2 ◦ ᾱ−1
2 ◦ α2(s), ∀s ∈ R+ (53)

are satisfied. Then, the following hold.

(i) Problem 1 is solvable with respect to a continuous function ρe(x, r) of the form

ρe(x, r) = −αcl(|x|) + σcl(|r|), αcl∈K, σcl∈K (54)

(ii) In the case of α2 ∈ K, a solution to Problem 1 with respect to (54) is given by

λ1(s) = max
w∈[0,s]

νc1c
q
2δ

q
q+1

[σ2 ◦ α−1
1 (w)]q

α1 ◦ ᾱ−1
1 (w)

(55)

λ2(s) = νq[δ
1

q+1 α2 ◦ ᾱ−1
2 (s)]q−1 (56)

where ν, δ and q are any constants satisfying

ν > 0, 1 > δ > 0 (57)

cq
2 > [δ(c1 − 1)]−1, q ≥ k, q > 1 (58)

(iii) In the case of α2 6∈ K, there exists α̂2 ∈ K such that

α̂2(s) ≤ α2(s) (59)

max
w∈[0,s]

[c2σ2 ◦ α−1
1 ◦ ᾱ1 ◦ α−1

1 ◦ c1σ1(w)]k

c1σ1(w)
≤ [α̂2 ◦ ᾱ−1

2 ◦ α−1
2 (s)]k

c1σ1(s)
, ∀s∈R+ (60)

c2σ2 ◦ α−1
1 ◦ ᾱ1 ◦ α−1

1 ◦ c1σ1(s) ≤ α̂2 ◦ ᾱ−1
2 ◦ α2(s), ∀s ∈ R+ (61)

hold, and a solution to Problem 1 with respect to (54) is the same as (ii) except that α2 is
replaced by α̂2.
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Furthermore, the statements (i), (ii) and (iii) are true even in the case of α1 ∈ K fulfilling

lim
s→∞α1(s) = η̄ lim

s→∞ {σ1(s) + σr1(s)} (62)

for some η̄ > 1 if the constants c1, δ and q satisfy

(1− δ
1

q+1 )η̄(ν̄ + 1)

(1− δ
1

q+1 )η̄(ν̄ + 1)− ν̄
< c1 (63)

ν̄

ν̄ + 1
< (1− δ

1
q+1 )η̄ (64)

where ν̄ ≥ 0 is given by

ν̄ lim
s→∞σ1(s) = lim

s→∞σr1(s) (65)

It is stressed that there always exist ν, δ and q fulfilling (57) and (58). The function λ1(s) given in
(55) fulfills lims→0+ λ1(s) < ∞, which is guaranteed by (52). In fact, the left hand side of (52) is a
non-decreasing continuous function due to the maximization. The right hand side of (52) takes finite
positive value at all s ∈ (0,∞). In this situation, the inequality of (52) implies

lim
s→0+

[σ2 ◦ α−1
1 (s)]k

α1 ◦ ᾱ−1
1 (s)

< ∞ (66)

Hence, the function λ1(s) given in (55) is a non-decreasing continuous function and lims→0+ λ1(s) <

∞ is satisfied.

Remark 3 The readers may be confused with the claim regarding α1 ∈ K in Theorem 4 since
V1(t, x1) seems to be only an iISS Lyapunov function at a glance. The claim is, however, reasonable.
We should be aware that the existence of η̄ > 1 satisfying (62) implies that the system Σ1 is ISS with
respect to input (u1, r1) and state x1 [17]. It is also verified that there is another function Ṽ1(t, x1)
qualified as a C1 ISS Lyapunov function with α̃1 ∈ K∞. Furthermore, it is worth mentioning that if
the exogenous signal r1 is absent, the two cases of α1 ∈ K and α1 ∈ K∞ can be treated exactly in
the same way. Indeed, the inequalities (63) and (64) are automatically satisfied when ν̄ = 0 holds.

The following is a direct corollary of Theorem 4, which establishes the iISS property of the mixed
interconnection of iISS and ISS systems.

Corollary 3 Assume that Σ1 and Σ2 accept supply rates ρ1 and ρ2 in the form of (32), (50) and
(51). Suppose that there exist ci > 0, i = 1, 2 and k > 0 such that (52) and (53) are satisfied. Then,
the interconnected system Σ is iISS with respect to input r and state x.

Remark 4 The assumption (52) can be replaced by a simpler assumption that there exists a constant
k > 0 achieving at least one of

[σ2 ◦ α−1
1 (s)]k

α1 ◦ ᾱ−1
1 (s)

is non-decreasing (67)

[α2 ◦ ᾱ−1
2 (s)]k

σ1 ◦ α−1
2 (s)

is non-decreasing (68)

It is easily verified that each of (67) and (68) implies (52) under the assumption (53).

Stability of the cascade system can be also obtained from Theorem 4. Since the expression (52) is
not ready for the case of σ1 = 0, an alternative expression is used.
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Corollary 4 Assume that Σ1 and Σ2 accept supply rates ρ1 and ρ2 in the form of (32), (50) and
(51). Suppose that there exists k > 0 such that

lim
s→0+

[σ2 ◦ α−1
1 (s)]k

α1 ◦ ᾱ−1
1 (s)

< ∞ (69)

holds, Then, the cascade system Σc is iISS with respect to input r and state x.

It is known that the cascade of ISS systems are ISS. Corollary 4 shows that the stability of the
cascade connection is ensured even if one system driven by the other system is only iISS under an
additional condition (69). The following corollary deals with the situation where an iISS is driving
an ISS system.

Corollary 5 Assume that Σ1 and Σ2 accept supply rates ρ1 and ρ2 in the form of (32) and

α1 ∈ P, σ1 ∈ K, σr1 ∈ K (70)

α2 ∈ K∞, σ2 ∈ K, σr2 ∈ K (71)

Then, the cascade system Σc is iISS with respect to input r and state x.

This corollary is obtained easily from application of Theorem 4 to the systems whose scripts 1 and 2
are permuted. Corollary 5 which does not pose any additional conditions is a natural extension of a
known fact that the cascade of an ISS system and a globally asymptotically stable system is globally
asymptotically stable.

3.3 Interconnection of ISS systems

This subsection deals with the interconnection consisting of ISS systems. We are able to obtain a
solution to the state-dependent scaling problem for ISS supply rates as follows.

Theorem 5 Assume that functions ρi(xi, ui, ri), i = 1, 2 are in the form of (32) consisting of

α1 ∈ K∞, σ1 ∈ K, σr1 ∈ K (72)

α2 ∈ K∞, σ2 ∈ K, σr2 ∈ K (73)

Suppose that there exist ci > 1, i = 1, 2 such that

α−1
1 ◦ ᾱ1 ◦ α−1

1 ◦ c1σ1 ◦ α−1
2 ◦ ᾱ2 ◦ α−1

2 ◦ c2σ2(s) ≤ s, ∀s ∈ R+ (74)

is satisfied. Then, the following hold.

(i) Problem 1 is solvable with respect to a continuous function ρe(x, r) of the form

ρe(x, r) = −αcl(|x|) + σcl(|r|), αcl∈K∞, σcl∈K (75)

(ii) In the case of σ1 ∈ K∞, a solution to Problem 1 with respect to (75) is given by

λ1(s) =
[
ν1 ◦ 1

τ1
α1 ◦ ᾱ−1

1 (s)
] [

α2 ◦ σ−1
1 ◦ 1

τ1
α1 ◦ ᾱ−1

1 (s)
] [

1
τ1

α1 ◦ ᾱ−1
1 (s)

]m

(76)

λ2(s) =
c2

δ(c2−1)
[
ν1 ◦ σ1◦ α−1

2 (s)
][

σ1◦ α−1
2 (s)

]m+1 (77)

where ν1 : s ∈ R+ → R+ is any non-decreasing continuous function satisfying

ν1(s) > 0, ∀s ∈ (0,∞) (78)
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and δ, τ1 and m are any real numbers satisfying

0 ≤ m, 0 < δ < 1, 1 < τ1 ≤ c1 (79)
τ1

[δ2(τ1−1)(c2−1)]
1

m+1

≤ c1 (80)

(iii) In the case of σ1 6∈ K∞, there exists σ̂1 ∈ K∞ such that

σ1(s) ≤ σ̂1(s), ∀s ∈ R+ (81)

α−1
1 ◦ ᾱ1 ◦ α−1

1 ◦ c1σ̂1 ◦ α−1
2 ◦ ᾱ2 ◦ α−1

2 ◦ c2σ2(s)≤s, ∀s ∈ R+ (82)

hold, and a solution to Problem 1 with respect to (75) is the same as (ii) except that σ1 is
replaced by σ̂1.

It is worth noting that there always exist m, δ, τ1 such that (79) and (80) hold.

Remark 5 Solutions to Problem 1 are not unique. This point can be seen clearly by looking at one
of the easiest cases. Suppose that νσ1(s) = α2(s) holds for some ν > 0. Pick

λ1(s) = δν, δ = max{1/c1, 1/c2} (83)

λ2(s) = 1 (84)

which are not in the form of (76) and (77). The inequality (4) is satisfied with (75) and

αcl(s)= min
s=|x|

{(1− δ)δνα1(|x1|) + (1− δ)α2(|x2|)}
σcl(s)=max

s=|r|
{δνσr1(|r1|) + σr2(|r2|)}

if

σ2(s) ≤ δ2να1(s), δνσ1(s) ≤ δα2(s), ∀s ∈ R+

hold. Due to νσ1(s) = α2(s), the above two inequalities are satisfied if

α−1
1 ◦ 1

δ
σ1 ◦ α−1

2 ◦ 1
δ
σ2(s) ≤ s, ∀s ∈ R+

holds. This is guaranteed when c1 > 1 and c2 > 1 satisfy (74). Thus, the pair of (83) and (84) which
are different from (76) and (77) solves Problem 1.

The following corollary is obtained directly from Theorem 5.

Corollary 6 Assume that Σ1 and Σ2 accept supply rates ρ1 and ρ2 in the form of (32), (72) and
(73). If there exist ci > 1, i = 1, 2 such that (74) is satisfied, the interconnected system Σ is ISS with
respect to input r and state x.

The statement of Corollary 6 by itself is essentially the same as the ISS small-gain theorem presented
in [1, 2], This paper, however, proposes a new approach to the ISS small-gain theorem through
Theorem 5. The combination of Corollary 6 and Theorem 5 forms a state-dependent scaling version
of the ISS small-gain theorem. The proof derived from the state-dependent scaling problem gives
explicit information about how to construct a Lyapunov function to establish the ISS property
of the feedback interconnected system. In fact, the Lyapunov function is given explicitly by (24)
where λ1 and λ2 are given by (76) and (77). It contrasts sharply with the original ISS small-gain
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iISS small-gain
theorem ⇒ iISS-ISS small-gain

theorem ⇒ ISS small-gain
theorem

(a) fulfillment of conditions

interconnection of
iISS and iISS

systems
⇐

interconnection of
iISS and ISS

systems
⇐

interconnection of
ISS and ISS

systems

(b) system properties

Figure 3: Relationships between small-gain theorems

theorem[1, 2, 3] which are stated and proved by using trajectories of systems. In this sense, the state-
dependent scaling approach is constructive in view of Lyapunov functions. The Lyapunov function
which leads us to the ISS small-gain theorem is not necessarily unique. Indeed, There is another
type proof of the ISS small-gain theorem based on the existence of a different Lyapunov function.
In [18], the existence of a smooth Lyapunov function is proved by presenting non-smooth functions
which determine a Lyapunov function in an implicit manner. In contrast, this paper demonstrates
that the equation (24) defined with state-dependent scaling functions {λ1, λ2} given by Theorem 5
provides us with an explicit formula for the Lyapunov function. Another desirable feature of the
state-dependent scaling approach is that it allows a smooth transition to stability criteria for more
general systems. For instance, this paper explains the ISS small-gain theorem as a special case of
the state-dependent scaling problems.

Theorem 5 also covers stability of the cascade connection. Switching Σ1 and Σ2 and letting σ2 = 0
in Theorem 5, we obtain the following.

Corollary 7 Assume that Σ1 and Σ2 accept supply rates ρ1 and ρ2 in the form of (32), (72) and
(73). Then, the cascade system Σc is ISS with respect to input r and state x.

It is known that the cascade connection of ISS systems is ISS, and another Lyapunov-type proof of
this fact can be found in [3]. In ISS analysis of open-loop systems and cascade systems, Lyapunov
functions have been used successfully by [7, 17, 19, 3]. This paper extends their techniques to feedback
systems naturally, and this section has demonstrated that a similar type of Lyapunov function can
be tailored for proving the ISS small-gain theorem for feedback interconnected systems. Regardless
of the difference between feedback and cascade, the construction of the Lyapunov function falls with
in the same single framework of state-dependent scaling problems which can be solved explicitly.

3.4 Relation between existence conditions

The inequality (74) guaranteeing the existence of solutions to Problem 1 for ISS supply rates is
identical to a condition derived by [1, 2]. It is called the ISS small-gain condition since it guarantees
that the feedback interconnection of ISS systems is ISS. The fact is widely referred to as the ISS
small-gain theorem in the literature. Theorem 5 describes the ISS small-gain theorem as a special case
of the existence of state-dependent scaling functions solving Problem 1. Corollary 3 demonstrates
that the ISS small-gain condition can lead us to stability of the feedback interconnection even if
one of the systems is only iISS under an additional condition (52). Corollary 1 deals with the
interconnection of systems individually described by iISS supply rates, and the conditions for the
existence of a solution are given in terms of gain-like functions. The author calls Corollary 3 the
iISS-ISS small-gain theorem. In a similar manner, the author refers to Corollary 1 as the iISS small-
gain theorem. There are reasonable relationships between the iISS small-gain theorem, the iISS-ISS
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small-gain theorem and the ISS small-gain theorem(Corollary 6) as described by the following.

Theorem 6 Suppose that σ1 and σ2 are class K functions.

(i) Assume that α1 ∈ K∞ and α2 ∈ P hold. If there exist a pair of c1 > 0, c2 > 0 and q ≥ 1 such
that (37)-(39) are satisfied, there exist another pair of c1 > 1, c2 > 1 and k > 0 such that (52)
and (53) hold.

(ii) Assume that α1 ∈ K∞ and α2 ∈ K∞ hold. If there exist a pair of c1 > 1, c2 > 1 and k > 0
such that (52) and (53) hold, the inequality (74) is satisfied.

An interpretation is illustrated in Fig.3. The broader the class of systems covered by a theorem is,
the more restrictive the condition for the existence is.

Naturally, solutions to state-dependent scaling problems are not unique. For example, the pair {λ1,
λ2} given in Theorem 3 is a solution to the problem for supply rates considered in Theorem 4 and
Theorem 5. In the same manner, the pair {λ1, λ2} given in Theorem 4 is also a solution to Theorem
5. Given particular functions of supply rates, we are sometimes able to find an ad hoc solution. An
important benefit from Theorem 3, Theorem 4 and Theorem 5 is that we can predict the existence
of solutions before solving the problem. The theorems also provide us with analytical solutions in
the closed form for iISS and ISS supply rates.

Remark 6 Theorem 3-5 and Corollary 1-7 are valid even when either or both of Σ1 and Σ2 do not
have the exogenous signals r1 and r2. For example, the function ρe becomes

ρe(x, r) = −αcl(|x|) (85)

when both of the exogenous signals are absent. If ri is absent in Σi, all terms containing σri, µr, τr,
τri or θri in the proofs disappear.

3.5 Interconnection of iISS and static systems

In this section, we consider interconnection of static and dynamic systems. When a system Σi is
static, it is supposed that Σi accepts a supply rate in the form of

ρi(zi, ui, ri) = −αi(|zi|) + σi(|ui|) + σri(|ri|) (86)

More precisely, we assume that

−αi(|zi|) + σi(|ui|) + σri(|ri|) ≥ 0, ∀ui∈Rnui , ri∈Rmi , t∈R+ (87)

holds for some continuous functions αi, σi, σri : R+ → R+ which satisfy αi(0) = σi(0) = σri(0) = 0.
In addition, we assume

lim inf
s→∞ αi(s) ≥ lim inf

s→∞ {σi(s) + σri(s)} (88)

without loss of generality for static systems. To see this, suppose that the system Σi does not admit
αi, σi and σri satisfying (88). Due to lim infs→∞ αi(s) < lim infs→∞ {σi(s) + σri(s)} and (87), the
boundedness of the inputs ui(t) and ri(t) does not guarantee the boundedness of the output zi(t).
The size of ui(t) and ri(t) needs to be sufficiently small to obtain bounded zi(t). This fact contradicts
the assumption that hi(t, ui, ri) is locally Lipschitz with respect to ui on Rnui and ri on Rmi .

Consider the interconnected system shown in Fig.1. Suppose that Σ1 is a static system described
by (17), while Σ2 is a dynamic system described by (16). The following theorem provides a solution
to the state-dependent scaling problem for such an interconnected system.
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Theorem 7 Assume that functions ρ1(z1, u1, r1) and ρ2(x2, u2, r2) are in the form of (86) and (32),
respectively, and consist of

α1 ∈ K∞, σ1 ∈ K, σr1 ∈ K (89)

α2 ∈ P, σ2 ∈ K, σr2 ∈ K (90)

Suppose that there exist ci > 1, i = 1, 2 such that

c2σ2 ◦ α−1
1 ◦ c1σ1(s) ≤ α2(s), ∀s ∈ R+ (91)

is satisfied. Then, the following hold.

(i) Problem 2 is solvable with respect to a continuous function ρe(x, r) of the form

ρe(x2, r) = −αcl(|x2|) + σcl(|r|)), αcl∈P, σcl∈K (92)

(ii) A solution to Problem 2 with respect to (92) is given by

λ1 = λ2 = ν (93)

ξ1(s) = σ2 ◦ α−1
1 (s) (94)

ϕ1(s) = α1(s) (95)

where ν is any positive constant.

Furthermore, the statements (i) and (ii) are true even in the case of α1 ∈ K if the constant c1 satisfies

η̄(ν̄ + 1)
η̄(ν̄ + 1)− ν̄

≤ c1 (96)

where η̄ ≥ 1 and ν̄ ≥ 0 denote constants which fulfill

lim
s→∞α1(s) = η̄ lim

s→∞ {σ1(s) + σr1(s)} (97)

ν̄ lim
s→∞σ1(s) = lim

s→∞σr1(s) (98)

Theorem 7 yields the following due to Theorem 2.

Corollary 8 Assume that Σ1 is a static system accepting a supply rate ρ1 in the form of (86) and
(89), and Σ2 is a dynamic system accepting a supply rate ρ2 in the form of (32) and (90). If there
exist ci > 1, i = 1, 2 such that (91) is satisfied, the interconnected system Σ is iISS with respect
to input r and state x2. Furthermore, if α2 is additionally assumed to be a class K∞ function, the
interconnected system Σ is ISS with respect to input r and state x2.

We come at a similar consequence by using Theorem 4 instead of Theorem 7. It is due to the inclusive
relation between Problem 1 and Problem 2. In other words, we can prove the iISS property of the
closed loop by using λ1 and λ2 given by (55), (56) and ξ1(s) = s. Note that α1(|z1|) = V1(z1) =
ᾱ1(|z1|) is used for the static system Σ1 in Problem 1. We should be aware that, compared with
(91), the pair of (52) and (53) is conservative. In the case of α2 ∈ K∞, i.e., when Σ2 is ISS, we can
also invoke Theorem 5 to obtain the ISS property in Corollary 8.

An important point of Corollary 8 derived from Theorem 7 is that the system Σ2 is not required to
be ISS. The small-gain condition (91) without any additional constraints is sufficient for the stability
even when the dynamic system Σ2 is only iISS. It contrasts with the case where the interconnected
system consists of only dynamic systems.
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Remark 7 Theorem 7 and Corollary 8 are valid even when either or both of Σ1 and Σ2 do not have
the exogenous signal ri. When r1 is absent, the constant c1 is required to satisfy only c1 ≥ 1 in both
the cases of α2 ∈ K∞ and α2 ∈ K of Corollary 8. Indeed, it is verified with ν̄ = 0 in (96) and (98).

Remark 8 When a static system Σi satisfies (87) for some σi ∈ K and σri ∈ K, we can assume
αi ∈ K∞ without loss of generality. In fact, it can be verified that the inequality (88) guarantees the
existence of class K functions σ̂i and σ̂ri satisfying

−α̂i(|zi|) + σ̂i(|ui|) + σ̂ri(|ri|) ≥ 0, ∀ui∈Rnui , ri∈Rmi , t∈R+

for arbitrarily given α̂i ∈ K∞ if (87) holds. Therefore, the assumption (87) given with σi ∈ K and
σri ∈ K, implies that the magnitude of output zi is nonlinearly bounded by the magnitude of the
inputs ui and ri.

Consider the cascade system Σc shown in Fig.2. Suppose that the system Σ1 is static, and and the
system Σ2 is dynamic. The following corollary is obtained from Corollary 8 by letting σ1 = 0.

Corollary 9 Assume that Σ1 is a static system accepting a supply rate ρ1 in the form of (86) and
(89), and Σ2 is a dynamic system accepting a supply rate ρ2 in the form of (32) and (90). Then,
the cascade system Σc is iISS with respect to input r and state x2. Furthermore, if α2 is additionally
assumed to be a class K∞ function, the cascade system Σc is ISS with respect to input r and state
x2.

This fact is natural since the static system is nonlinearly bounded.

4 Examples

This section illustrates the effectiveness and versatility of the state-dependent scaling characterization
through several simple examples. It is shown how scaling functions are obtained successfully, and how
the state-dependent scaling approach enables us to discover Lyapunov functions establishing stability
properties for various classes of nonlinearities. Systems employed in this section are the same as
those employed in [6]. The examples are numbered in the same order. This section, however, takes a
different approach. In [6], the state-dependent scaling problems are tackled directly without having
any guarantees of the existence of solutions a priori. By contrast, this section uses the results of small-
gain theorems presented in Section 3 to check if solutions to the state-dependent scaling problems
exist in advance. The results of the small-gain theorems enable one to assess stability properties of
the interconnection without calculating the solutions. In addition, if one uses the formulas for the
solutions derived in Section 3, Lyapunov functions are obtained automatically.

Example 1 The first example of Fig.1 is the interconnected system defined for x = [x1, x2]T ∈ R2
+

and r2 ∈ R+ by

Σ1 : ẋ1 = −
(

x1

x1 + 1

)2

+ 3
(

x2

x2 + 1

)2

, x1(0) ∈ R+ (99)

Σ2 : ẋ2 = − 4x2

x2 + 1
+

2x1

x1 + 1
+ 6r2, x1(0) ∈ R+ (100)

Clearly, these two subsystems are iISS with respect to input (ui, ri) and state xi, where u1 = x2 and
u2 = x1 hold, and r1 is null. It is verified that neither Σ1 nor Σ2 is ISS with respect to input (ui, ri)
and state xi. Since x(0) ∈ R2

+ and r2(t) ∈ R+, ∀t ∈ R+ imply x(t) ∈ R2
+,∀t ∈ R+, the simplest
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choices of iISS Lyapunov functions for individual Σ1 and Σ2 are V1(x1) = x1 and V2(x2) = x2. In
fact, we obtain

dV1

dt
=ρ1(x1, x2)=−α1(x1) + σ1(x2),

α1(s)=
(

s

s + 1

)2

, σ1(s)=3
(

s

s + 1

)2

(101)

dV2

dt
=ρ2(x2, x1, r2)=−α2(x2) + σ2(x1) + σr2(r2),

α2(s)=
4s

s + 1
, σ2(s)=

2s

s + 1
, σr2(s)=6s (102)

For these functions of supply rates, the inequalities (37) and (38) are obtained as

2q

(
s

s + 1

)q

≤ c1

(
s

s + 1

)2

, ∀s ∈ R+ (103)

3c2

(
s

s + 1

)2

≤ 4q

(
s

s + 1

)q

, ∀s ∈ R+ (104)

These two inequalities and 0 < c1 < c2 are achieved by q = 2, c1 = 4 and c2 ∈ (4, 16/3]. Thus, the
iISS property of the interconnected system given by (99) and (100) follows directly from Corollary 1.
It is worth mentioning that the inequalities (103) and (104) are never achieved for q 6= 2. Theorem 3
automatically provides us with a subset of solutions to Problem 1. Using the formula (41), we obtain

λ1(s) = 1, λ2(s) = bs/(s + 1), b ∈ [1.6119, 2) (105)

An iISS Lyapunov function of the interconnected system is calculated directly from (24) as

Vcl(x1, x2) = x1 + b(x2 − log(x2 + 1)), b ∈ [1.6119, 2)

The value of λ1ρ1 + λ2ρ2 with (105) and b = 1.7 is plotted on the state space in Fig. 4. For visual
simplicity, the surface is drawn for r2 = 0. It is observed that the surface of λ1ρ1 + λ2ρ2 is below
the horizontal plane of zero. This confirms that Problem 1 is solved by the choice (105) of state-
dependent scaling functions, which is consistent with Theorem 3. It is easily verified that Problem 1
cannot be solved by any constant λ1, λ2 > 0. This is an example that demonstrates the effectiveness
of state-dependence of scaling functions for supply rates describing essential nonlinearities. The
state-dependence enables us to establish the stability property of the nonlinear system which has not
been covered by previously existing stability criteria.

Example 2 Next, consider

Σ1 : ẋ1 = − 2x1

x1 + 1
+

x2

(x1 + 1)(x2 + 1)
, x1(0) ∈ R+ (106)

Σ2 : ẋ2 = − 4x2

x2 + 1
+ x1, x2(0) ∈ R+ (107)

Note that x = [x1, x2]T ∈ R2
+ holds for all t ∈ R+. One system Σ1 is ISS, and the other system Σ2

is only iISS. Indeed, the choice V1(x1) = x1 yields

dV1(x1)
dt

= ρ1(x1, x2) ≤ −α1(x1) + σ1(x2)

α1(s) =
2s

s + 1
, σ1(s) =

s

s + 1
(108)
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Thus, the system Σ1 is ISS since (62) is satisfied for η̄ > 1 [17]. The system Σ2 is not ISS since we
have x2 →∞ as t →∞ for x1(t) ≡ 5. The system Σ2 is iISS since the choice V2(x2) = x2 yields

dV2(x2)
dt

= ρ2(x2, x1) = −α2(x2) + σ2(x1)

α2(s) =
4s

s + 1
, σ2(s) = s (109)

It is easily seen that if λ1 and λ2 are restricted to constants, Problem 1 is not solvable. We need to
find appropriate functions for λ1 and λ2. From

c2σ2 ◦ α−1
1 ◦ c1σ1(s) =

c1c2s

(2− c1)s + 2

it follows that the condition (53) is identical with

8− c1c2 − 4c1 ≥ 0

There exist such c1, c2 > 1. Thus, the small-gain condition (53) is fulfilled. Since Σ2 is not ISS, we
cannot invoke the ISS small-gain theorem. We, however, have

σ2(s)
α1(s)

=
s + 1

2
,

α2(s)
σ1(s)

= 4

which fulfill (67) and (68) for k = 1. The inequalities (63) and (64) are satisfied for ν̄ = 0. Hence,
Corollary 3 concludes that the origin x = 0 is globally asymptotically stable. Using c1 = 1.2, c2 = 2.5,
q = 2, ν = 2c−1

1 c
−2/3
2 and δ = 0.9044, we obtain scaling functions from the formulas (55) and (56) in

Theorem 4 as

λ1(x1) = x1(x1 + 1), λ2(x2) =
7x2

x2 + 1
(110)

An iISS Lyapunov function of the interconnected system is obtained as

Vcl(x1, x2) =
x3

1

3
+

x2
1

2
+ 7(x2 − log(x2 + 1))

The surface plot of λ1ρ1 + λ2ρ2 with (110) is shown in Fig. 5. It is observed that the choice (110)
solves Problem 1.

Example 3 Finally, we consider the interconnected system described by

Σ1 :
dx1

dt
= −2x1 + x2 (111)

Σ2 :
dx2

dt
= −2x5

2 + x3
2x

2
1 (112)

The state vector is x = [x1, x2]T ∈ R2. Both the two systems Σi are ISS. It is easily verified with
V1(x1) = x2

1 and V2(x2) = x2
2. In fact, their time-derivatives along trajectories of the individual

systems lead to the following supply rates of the ISS type.

dV1

dt
= ρ1(x1, x2) ≤ −α1(x1) + σ1(|x2|)

α1(s) = 3s2, σ1(s) = s2 (113)
dV2

dt
= ρ2(x2, x1) ≤ −α2(x2) + σ2(|x1|)

α2(s) =
8
3
s6, σ2(s) =

2
3
s6 (114)

20



0
1

2
3

4

0

1

2

3

4

−3

−2

−1

0

1

x
1x

2

S
u
m
 
o
f
 
s
c
a
l
e
d
 
s
u
p
p
l
y
 
r
a
t
e
s

Figure 4: Example 1: State-dependently scaled combination of supply rates with functions λ1 and
λ2 calculated from the iISS small-gain theorem.

Global asymptotic stability of x = 0 is proved if there exist solutions to Problem 1. The ISS small-gain
condition (74) is calculated as

(c1

3

)3 (c2

4

)
≤ 1

Obviously, there exist c1, c2 > 1 fulfilling this condition, so that Theorem 5 guarantees the existence
of solutions to Problem 1. Thus, Corollary 6 proves the global asymptotic stability of x = 0. The
formulas (76) and (77) automatically give us a solution as follows:

λ1(s) = s3, λ2(s) = s (115)

Here, c1 = 3, c2 = 2, ν1 = 3/8, m = 0, δ = 3/4 and τ1 = c1 are used. Figure 6 shows that the state-
dependent scaling functions given in (115) actually solve Problem 1. Note that Problem 1 cannot be
solved by any constant λ1, λ2 > 0. An ISS Lyapunov function of the overall system is calculated as

Vcl(x1, x2) =
x8

1

4
+

x4
2

2

The examples presented in this section reveal that the state-dependence of scaling functions, in
other words ‘nonlinear combination of individual supply rates’ or ‘nonlinear combination of individual
storage functions’, is vital for dealing with strong nonlinearities which are not covered by popular
classical stability criteria.

5 Conclusions

This paper has discussed the effectiveness of the state-dependent scaling approach to stability analysis
of interconnected dissipative systems. The iISS and ISS properties are the focuses of this paper. The
idea of the state-dependent scaling problems is formed by an inequality representing the sum of
nonlinearly scaled supply rates of dissipative systems. Solving the equality for parameters called
scaling functions, we are able to obtain Lyapunov functions of feedback and cascade connected
systems explicitly. The effectiveness of the state-dependent scaling approach is not limited to the
settings of popular classical stability criteria and the ISS small-gain theorem. Explicit formulas of
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Figure 5: Example 2: State-dependently scaled combination of supply rates with functions λ1 and
λ2 calculated from the iISS-ISS small-gain theorem.

−2

0

2

−3
−2

−1
0

1
2

3

−200

−150

−100

−50

0

x
1x

2

S
u
m
 
o
f
 
s
c
a
l
e
d
 
s
u
p
p
l
y
 
r
a
t
e
s

Figure 6: Example 3: State-dependently scaled combination of supply rates with functions λ1 and
λ2 calculated from the ISS small-gain theorem.

solutions to the state-dependent scaling problems can be obtained for supply rates which are more
general than the classical supply rates and the ISS supply rates. In fact, this paper has succeeded in
deriving solutions to the problem involving iISS supply rates. Sufficient conditions for the existence of
the solutions are obtained as small-gain-like theorems for feedback interconnected systems involving
iISS systems. This paper has developed the iISS small-gain theorem and the iISS-ISS small-gain
theorem which generalize the ISS small-gain theorem smoothly. It is an interesting direction of
future research to seek analytical formulas of solutions to the state-dependent scaling problems for
supply rates which are more general than the iISS property.
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Appendix

A Calculating scaling functions

A.1 Proof of Theorem 3

In the case of q = 1, the function λ2 given in (41) becomes λ2 = ν > 0. Using (37) and (38), we
obtain

λ1ρ1 + λ2ρ2 ≤ −(λ1 − λ2c1)α1(s)− (λ2 − λ1/c2)α2(s)
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Let ρe(x, r) be chosen as

ρe(x, r) = −(1− δ) [λ1α1(|x1|) + λ2α2(|x2|)] + λ1σr1(|r1|) + λ2σr2(|r2|)

Then, the inequality (4) is achieved with (41) if

c1 ≥ δc1, δ3c2 ≥ c1 (116)

hold. Due to (39) and (42), we have 0 < δ < 1 and δ3c2 = c1. Thus, both the inequalities in (116)
are guaranteed. This proves (i), (ii) and (iii) in the case of q = 1. Next, we assume that q > 1 and
α2 ∈ K hold. Let µ and µ̃ be any positive constants satisfying

(
µ̃

µ

)q

= δ (117)

Define p > 1 by

1
p

+
1
q

= 1 (118)

Since (39) and (42) implies 0 < δ < 1, we have 0 < µ̃ < µ which ensures the existence of µr > 0
satisfying

1
µ̃p

≥ 1
µp

+
1
µp

r
(119)

Using Young’s inequality

xy ≤ 1
p

∣∣∣x
a

∣∣∣
p
+

1
q
|ay|q ,∀x, y ∈ R

which holds for any a 6= 0, we obtain

λ2(V2(t, x2)) {−α2(|x2|) + σ2(|x1|) + σr2(|r2|)}
≤ −λ2(V2(t, x2))α2(|x2|) +

νq

µ̃q

[
1
p

(
µ̃q

νqµ
λ2(V2(t, x2))

)p

+

µq

q
σ2(|x1|)q +

1
p

(
µ̃q

νqµr
λ2(V2(t, x2))

)p

+
µq

r

q
σr2(|r2|)q

]
(120)

Define ρe(x, r) by

ρe(x, r) = −(1− δ) [λ1α1(|x1|) + λ2(α2(|x2|))α2(|x2|)] + λ1σr1(|r1|) + ν

(
µr

µ̃

)q

σr2(|r2|)q

Since 0 < δ < 1 holds, the function ρe(x, r) with λ1 > 0 and λ2 ∈ K given in (41) satisfies (40).
Define λ1 as in (41). A sufficient condition for (4) is obtained as

−νc1

δ2
δα1(|x1|) + ν

(
µ

µ̃

)q

σ2(|x1|)q ≤ 0, ∀x1 ∈ Rn1 (121)

(
1
νq

) 1
q−1 q−1

q
λ2(V2(t, x2))

q
q−1 − δλ2(V2(t, x2))α2(|x2|) +

νc1

δ2
σ1(|x2|) ≤ 0, ∀x2∈Rn2, ∀t∈R+ (122)

Due to (117), the inequality (121) is identical to

[σ2(s)]q ≤ c1α1(s), ∀s ∈ R+
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which is ensured by (37). Since α2 ∈ K is non-decreasing, the inequality (122) holds if

(
1
νq

) 1
q−1 q − 1

q
λ2(s)

q
q−1 − δλ2(s)α2(ᾱ−1

2 (s)) +
νc1

δ2
σ1(α−1

2 (s)) ≤ 0, ∀s∈R+ (123)

is satisfied. When λ2 ∈ K is given by (41), the inequality (123) is equivalent to

νc1

δ2
σ1(α−1

2 (s)) ≤ νδq[α2(ᾱ−1
2 (s))]q ∀s ∈ R+

Due to (42), this inequality is identical to (38). Thus, the part of (ii) has been proved for q > 1. In
the case of (iii), the inequality (38) guarantees the existence of a class K function α̂2 which satisfies
(43). Due to α̂2(s) ≤ α2(s), the inequality (4) holds with α2 if it holds with α̂2. The rest of the proof
is the same as (ii). The claim (i) follows directly from (ii) and (iii).

Proof of Theorem 4

Define δ and choose δ̄ as

δ = δ
1

q+1 , δ < δ̄ < 1 (124)

The inequality (58) and c2 > 1 ensure the existence of µ and µ̃ satisfying 0 < µ̃ < µ and
(

c2µ̃

µ

)q

≥ 1
δ(c1 − 1)

(125)

Suppose τ > 1. Then, there exists τr > 1 such that

1− 1
τ
− 1

τr
≥ δ̄

(
1− 1

τ

)
(126)

is satisfied. Using these τ and τr, define the following class K functions.

θ1(s) = ᾱ1 ◦ α−1
1 ◦ τσ1(s), θr1(s) = ᾱ1 ◦ α−1

1 ◦ τrσr1(s)

Combining calculations in individual cases separated by α1(|x1|) ≥ τσ1(|x2|), α1(|x1|) < τσ1(|x2|),
α1(|x1|) ≥ τrσr1(|r1|) and α1(|x1|) < τrσr1(|r1|), we obtain

λ1(V1(t, x1)) {−α1(|x1|) + σ1(|x2|) + σr1(|r1|)}
≤ δ̄

(
−1 +

1
τ

)
λ1(V1(t, x1))α1(|x1|) + λ1(θ1(|x2|))σ1(|x2|) + λ1(θr1(|r1|))σr1(|r1|)

on the assumption that λ1 : R+ → R+ is non-decreasing. Define p > 1 by (118), and pick µr > 0
satisfying (119). Using Young’s inequality, we obtain (120). Define ρe(x, r) as

ρe(x, r) = −(δ̄ − δ)
τ−1

τ
λ1(α1(|x1|))α1(|x1|)− (1− δ)λ2(α2(|x2|))α2(|x2|)

+λ1(θr1(|r1|))σr1(|r1|) + ν

(
µr

µ̃

)q

σr2(|r2|)q

The inequality (4) is achieved if the pair of λ1 and λ2 solves

−δ
τ−1

τ
λ1(s)α1(ᾱ−1

1 (s)) + ν

(
µ

µ̃

)q

[σ2(α−1
1 (s))]q≤0, ∀s∈R+ (127)

1
p

(
1
νq

)p−1

λ2(s)p − δλ2(s)α2(ᾱ−1
2 (s)) + λ1(θ1(α−1

2 (s)))σ1(α−1
2 (s)) ≤ 0, ∀s ∈ R+ (128)
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and if λ1 : R+ → R+ is non-decreasing. Here, we assumed α2 ∈ K in obtaining (128). The inequality
(127) holds if and only if

νµqτ [σ2(α−1
1 (s))]q

µ̃qδ(τ−1)α1(ᾱ−1
1 (s))

≤ λ1(s), ∀s ∈ R+ (129)

is achieved by λ1. Substitute λ2 chosen as (56) into (128), we obtain

λ1(θ1(s))σ1(s) ≤ ν[δα2(ᾱ−1
2 (α2(s)))]

q ∀s ∈ R+ (130)

Hence, the pair of (127) and (128) holds if the non-decreasing function λ1 given by (55) satisfies (129)
and (130). The choice of λ1 satisfies (129) with τ = c1 since

(
µ

µ̃

)q 1
δ(c1−1)

≤ cq
2δ

q
q+1

is implied by (124) and (125). The function λ1 given in (55) satisfies (130) with τ = c1 if

max
w∈[0,θ1(s)]

δ
q

q+1
[c2σ2(α−1

1 (w))]q

α1(ᾱ−1
1 (w))

≤ [δα2(ᾱ−1
2 (α2(s)))]q

c1σ1(s)
∀s ∈ R+

holds. Due to (124), this is equivalent to

max
w∈[0,s]

[c2σ2(α−1
1 (θ1(w)))]q

α1(ᾱ−1
1 (θ1(w)))

≤ [α2(ᾱ−1
2 (α2(s)))]q

c1σ1(s)
∀s∈R+ (131)

Note that

max
w∈[0,s]

c2σ2 ◦ α−1
1 ◦ ᾱ1 ◦ α−1

1 ◦ c1σ1(w) ≤ α2 ◦ ᾱ−1
2 ◦ α2(s)

is guaranteed by (53). The inequality (52) implies that (52) still holds even if k is replaced by q > k.
Therefore, the pair of (52) and (53) ensures (131). Hence, the non-decreasing functions λ1 and λ2

given in (55) and (56), respectively, achieve (127) and (128) for τ = c1. Due to the non-decreasing
property of λ1, we arrive at (4). This completes the part of (ii). When α2 is not class K, it is clear
that there always exists a class K function α̂2 fulfilling (59), (60) and (61) due to (52) and (53). The
inequality α̂2(s) ≤ α2(s) implies that (4) holds with α2 if it holds with α̂2. Hence, the poof for the
part (iii) is the same as (ii). The claim (i) follows directly from (ii) and (iii).
In the case of α1 ∈ K, for any constant τ satisfying

(1− δ
1

q+1 )η̄(ν̄ + 1)

(1− δ
1

q+1 )η̄(ν̄ + 1)− ν̄
< τ ≤ η̄ (ν̄ + 1)

we have

lim
s→∞α1(s) ≥ τ lim

s→∞σ1(s)

and there exist τr > 1 and δ̄ ∈ (δ, 1) such that (126) and

lim
s→∞α1(s) ≥ τr lim

s→∞σr1(s)

are satisfied under the assumption (64). Using these τr and δ̄, we can repeat the proofs of (i), (ii)
and (iii) with τ = min{c1, η̄ (ν̄ + 1)}.
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Proof of Corollary 4

The proof is the same as the proof of Theorem 4 up to (129) and (130). In the case of σ1 = 0,
the inequality (130) derived for the choice λ2 in (56) is satisfied automatically. The condition (69)
guarantees the existence of a non-decreasing function λ1 given by (55), and the choice λ1 solves (129).

Proof of Theorem 5

Assume that σ1, σ2 ∈ K∞. Let δ̄ be a real number satisfying 0 < δ < δ̄ < 1, and set τ2 = c2. Since
τ1 > 1 and τ2 > 1 hold, there exist τr1 > 1 and τr2 > 1 such that

1− 1
τi
− 1

τri
≥ δ̄

(
1− 1

τi

)
, i = 1, 2

are satisfied. Define the following class K functions for i = 1, 2.

θi(s) = ᾱi ◦ α−1
i ◦ τiσi(s), θri(s) = ᾱi ◦ α−1

i ◦ τriσri(s)

Since the functions λi : R+ → R+ i = 1, 2 given in (76) and (77) are non-decreasing, we obtain

λ1(V1(t, x1)){−α1(|x1|) + σ1(|x2|) + σr1(|r1|)}
≤ δ̄

(
−1+

1
τ1

)
λ1(α1(|x1|))α1(|x1|) + λ1(θ1(|x2|))σ1(|x2|) + λ1(θr1(|r1|))σr1(|r1|) (132)

λ1(V2(t, x2)){−α2(|x2|) + σ2(|x1|) + σr2(|r2|)}
≤ δ̄

(
−1+

1
τ2

)
λ2(α2(|x2|))α2(|x2|) + λ2(θ2(|x1|))σ2(|x1|) + λ2(θr2(|r2|))σr2(|r2|) (133)

by combining calculations in individual cases separated by αi(|xi|) ≥ τiσi(|xj |), αi(|xi|) < τiσi(|xj |),
αi(|xi|) ≥ τriσri(|ri|) and αi(|xi|) < τriσri(|ri|). Thus, the inequality (4) is achieved if

λ1(θ1(s))σ1(s) ≤ δ
τ2 − 1

τ2
λ2(α2(s))α2(s), ∀s ∈ R+ (134)

λ2(θ2(s))σ2(s) ≤ δ
τ1 − 1

τ1
λ1(α1(s))α1(s), ∀s ∈ R+ (135)

are satisfied. In fact, αcl ∈ K∞ and σcl ∈ K in (75) are given by

αcl(s)= min
s=|x|

{
(δ̄ − δ)

τ1 − 1
τ1

λ1(α1(|x1|))α1(|x1|) + (δ̄ − δ)
τ2 − 1

τ2
λ2(α2(|x2|))α2(|x2|)

}

σcl(s)=max
s=|r|

{λ1(θr1(|r1|))σr1(|r1|)+λ2(θr2(|r2|))σr2(|r2|)}

Hence, verification of (134) and (135) suffices to prove (i) and (ii). It is easily seen that (134) and
(135) are fulfilled if λ1 and λ2 achieve

σ2(s)σ1(α−1
2 (θ2(s)))λ1(θ1(α−1

2 (θ2(s)))) ≤ δ2(τ1 − 1)(τ2 − 1)
τ1τ2

α2(α−1
2 (θ2(s)))α1(s)λ1(α1(s)) (136)

λ1(θ1(α−1
2 (s)))σ1(α−1

2 (s)) ≤ δ
τ2 − 1

τ2
λ2(s)α2(α−1

2 (s)) (137)

for all s ∈ R+. From s ≤ α−1
2 ◦ ᾱ2(s) it follows that

τ2σ2(s) ≤ α2 ◦ α−1
2 ◦ ᾱ2 ◦ α−1

2 ◦ τ2σ2(s) = α2(α−1
2 (θ2(s)))
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Thus, (136) is implied by

σ1(α−1
2 (θ2(s)))λ1(θ1(α−1

2 (θ2(s)))) ≤ δ2(τ1 − 1)(τ2 − 1)
τ1

α1(s)λ1(α1(s)) (138)

Using (76) we have

λ1 ◦ θ1 ◦ α−1
2 ◦ θ2(s) =

[
ν1 ◦ σ1 ◦ α−1

2 ◦ θ2(s)
] [

α2 ◦ α−1
2 ◦ θ2(s)

] [
σ1 ◦ α−1

2 ◦ θ2(s)
]m

Thus, inserting (76) we obtain the left hand side of (138) as

[
ν1 ◦ σ1 ◦ α−1

2 ◦ θ2(s)
] [

α2 ◦ α−1
2 ◦ θ2(s)

] [
σ1 ◦ α−1

2 ◦ θ2(s)
]m+1

Since ᾱ−1
1 ◦ α1(s) ≤ s and

λ1 ◦ α1(s) =
[
ν1 ◦ 1

τ1
α1 ◦ ᾱ−1

1 ◦ α1(s)
] [

α2 ◦ σ−1
1 ◦ 1

τ1
α1 ◦ ᾱ−1

1 ◦ α1(s)
] [

1
τ1

α1 ◦ ᾱ−1
1 ◦ α1(s)

]m

hold, the right hand side of (138) is larger than or equal to

δ2(τ1 − 1)(τ2 − 1)
[
ν1 ◦ 1

τ1
α1 ◦ ᾱ−1

1 ◦ α1(s)
] [

α2 ◦ σ−1
1 ◦ 1

τ1
α1 ◦ ᾱ−1

1 ◦ α1(s)
] [

1
τ1

α1 ◦ ᾱ−1
1 ◦ α1(s)

]m+1

Remember that ν1 and α2 are non-decreasing. The inequality (138) holds if

τ1σ1 ◦ α−1
2 ◦ θ2(s) ≤ α1 ◦ ᾱ−1

1 ◦ α1(s) (139)
τ1

[δ2(τ1−1)(τ2−1)]
1

m+1

σ1◦ α−1
2 ◦ θ2(s) ≤ α1◦ ᾱ−1

1 ◦ α1(s) (140)

are satisfied for s ∈ R+. Since τ1 ≤ c1 and τ2 ≤ c2 are satisfied. the inequality (74) guarantees (139).
Due to (80), the inequality (74) also implies (140). On the other hand, using

λ1 ◦ ᾱ1 ◦ α−1
1 (τ1s) = ν1(s)

[
α2 ◦ σ−1

1 (s)
]
sm

θ1 ◦ α−1
2 (s) = ᾱ1 ◦ α−1

1 ◦ τ1σ1 ◦ α−1
2 (s)

we obtain

λ1(θ1(α−1
2 (s)))σ1(α−1

2 (s))
α2(α−1

2 (s))
=

[
ν1 ◦ σ1 ◦ α−1

2 (s)
] [

σ1 ◦ α−1
2 (s)

]m+1

Hence, λ2(s) given in (77) solves (137). Therefore, the inequality (4) is achieved by λ1 and λ2 given
in (76) and (77). If σi is not class K∞, it is obvious that there are functions σ̂i ∈ K∞ which fulfill

σi(s) ≤ σ̂i(s), ∀s ∈ R+, i = 1, 2 (141)

α−1
1 ◦ ᾱ1 ◦ α−1

1 ◦ c1σ̂1 ◦ α−1
2 ◦ ᾱ2 ◦ α−1

2 ◦ c2σ̂2(s) ≤ s, ∀s ∈ R+ (142)

Then, we can follow the above argument by replacing σi ∈ K with σ̂i ∈ K∞. Note that, due to (141),
the characteristic inequality (4) is guaranteed to be achieved with σi if it is achieved with σ̂i. Hence,
all claims of (i), (ii) and (iii) have been proved.
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B Relating small-gain theorems

B.1 Proof of Theorem 6

(i) Suppose that (37)-(39) holds for some c1 > 0, c2 > 0 and q ≥ 1. The inequality (37) implies

[σ2 ◦ α−1
1 ◦ ᾱ1 ◦ α−1

1 ◦ c̃1σ1(s)]q ≤ c1c̃1σ1(s)

for arbitrary c̃1 > 0. Combining this inequality with the inequality (38), we obtain

c2[σ2 ◦ α−1
1 ◦ ᾱ1 ◦ α−1

1 ◦ c̃1σ1(s)]q ≤ c1c̃1[α2 ◦ ᾱ−1
2 ◦ α2(s)]

q

which is identical to

c̃2σ2 ◦ α−1
1 ◦ ᾱ1 ◦ α−1

1 ◦ c̃1σ1(s) ≤ α2 ◦ ᾱ−1
2 ◦ α2(s)

c̃2 =
(

c2

c1c̃1

)1/q

Under the assumption (39), there exists c̃1 > 1 such that c̃2 > 1 holds. Thus, we arrive at (53). From
(37) and (38) it follows that, for arbitrary ĉ1, ĉ2 > 0,

max
w∈[0,s]

[ĉ2σ2 ◦ α−1
1 ◦ ᾱ1 ◦ α−1

1 ◦ ĉ1σ1(w)]q

ĉ1σ1(w)
≤ ĉq

2c1, ∀s∈R+

c2

ĉ1
≤ [α2 ◦ ᾱ−1

2 ◦ α−1
2 (s)]q

ĉ1σ1(s)
, ∀s∈R+

hold. Taking ĉ1 = c̃1 and ĉ2 = c̃2, we obtain (52).
(ii) It is obvious since (53) is identical to (74).

C Calculating scaling functions for static systems

C.1 Proof of Theorem 7

For ζ > 0, we obtain

σ2(|u2|) ≤ σ2 ◦ α−1
1 (σ1(|x2|) + σr1(|r1|))

≤ σ2 ◦ α−1
1 ◦ (1+1/ζ)σ1(|x2|) + σ2 ◦ α−1

1 ◦ (ζ+1)σr1(|r1|) (143)

from σ2 ∈ K, (86) and (89). Define

ρe(x2, r) = −ν(1−δ)α2(|x2|) + νσ2 ◦ α−1
1 ◦ (ζ+1)σr1(|r1|) + νσr2(|r2|)

for 0 < δ < 1. For the choice of (93), (94) and (95) with ν > 0, the inequality (11) becomes

σ2 ◦ α−1
1 ◦ (1+1/ζ)σ1(|x2|) ≤ δα2(|x2|), x2 ∈ Rn2 (144)

Hence, there exist constants 0 < δ < 1 and ζ > 0 such that (11) is achieved if (91) holds for some
c1 > 1 and c2 > 1. In the case of α1 ∈ K, if the constant ζ in (144) belongs to

1
η̄(ν̄ + 1)− 1

≤ ζ ≤ η̄

(
1 +

1
ν̄

)
− 1 (145)
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then the following inequalities hold.

lim
s→∞α1(s)≥

(
1+

1
ζ

)
lim

s→∞σ1(s), lim
s→∞α1(s)≥(1+ζ) lim

s→∞σr1(s)

These properties guarantee that (143) valid even for α1 ∈ K. Note that the assumption (88) ensures
the existence of η̄ ≥ 1 satisfying (97). The inequality (145) is equivalent to

η̄(ν̄ + 1)
η̄(ν̄ + 1)− ν̄

≤ 1 +
1
η
≤ η̄ (ν̄ + 1) ,

There exist constants 0 < δ < 1 and ζ > 0 such that (144) and (145) are satisfied if (91) holds for
some c1 and c2 satisfying (96) and and c2 > 1.
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