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1 Introduction

For about a decade, the input-to-state stability (ISS) property has been accepted as a useful way to
characterize a class of nonlinearities in view of stability[10]. The ISS small-gain theorem provides
a sufficient condition for the stability of a feedback system comprised of ISS subsystems[9, 13, 8].
The theorem makes use of the idea of nonlinear loop gain. There is another important class of
systems which are not necessarily ISS. This is characterized by the integral input-to-state stability
(iISS) property[11, 2]. Those systems have finite nonlinear gain only in a very weak sense. In
contrast to ISS systems, because of the weakness of gain, the cascade of iISS systems are not
always stable[3, 4]. In spite of such a weak gain property, a stability criterion covering iISS
systems in feedback configurations has been developed recently by one of the authors[5], which is
a result of the Lyapunov constructive approach presented in [6]. The criterion gives a sufficient
condition for iISS property of interconnected iISS systems in the form of a small-gain property.
The possibility of establishing stability for the feedback interconnection of iISS systems by means
of gain conditions is followed up by a nullcline approach[1] in the absence of external signals.
Generalizing the proposed result of [1] to the case of external stability with respect to external
signals is by no means easy. As a matter of fact, the relationship between the nullcline approach
and the Lyapunov constructive approach has not been investigated yet.

The purpose of this technical report is to provide detailed proofs of the results presented in [7].
The contribution of [7] is mainly threefold. One is to derive necessary conditions for the stability
of interconnected systems in order to show how reasonable small-gain-type criteria are. Another is
to unify the treatment of iISS and ISS systems by merging the two types of small-gain conditions
derived from the two types of Lyapunov functions dealing with iISS and ISS separately. The third
objective is to provide Lyapunov functions in the situations considered by the nullcline approach
to global asymptotic stability(GAS) in the absence of external signals. An emphasis is placed on
Lyapunov functions to accomplish all the points and the development of a single unified formula
applicable equally to iISS systems and ISS systems. The condition of a small-gain type proposed
in [6] for iISS systems looks more complicated and more restrictive than the small-gain condition
for ISS systems. The result in [7] not only merges the two small-gain-type conditions, but also
removes the assumption of uniform contraction used in [6]. The unification and the generalization
of Lyapunov functions also enable us to come to the point where the necessity of the small-gain
condition holds. Furthermore, in [7], it is shown that at least one of the subsystems in the loop
needs to be ISS with respect to feedback input.

In this report, let the symbols ∨ and ∧ denote logical sum and logical product, respectively.
Negation is ¬. The interval [0,∞) in the space of real numbers R is denoted by R+. The Euclidean
norm of a vector in Rn is denoted by | · |. The identity map on R is denoted by Id. A function
γ : R+ → R+ is said to be of class K and written as γ ∈ K if it is a continuous, strictly increasing
function satisfying γ(0) = 0. A function γ : R+ → R+ is said to be of class K∞ and written
as γ ∈ K∞ if it is a class K function satisfying limr→∞ γ(r) = ∞. We write γ ∈ P0 for a
function γ : R+ → R+ if it is a continuous function satisfying γ(0) = 0. The set of γ ∈ P0

satisfying γ(s) > 0 for all s ∈ R+ \ {0} is denoted by γ ∈ P. For a function h ∈ P, we write
h ∈ O(> L) with a non-negative number L if there exists a positive number K > L such that
lim sups→0+ h(s)/sK < ∞ holds. We write h ∈ O(L) when K = L. As for limiting value of
functions f, g : R+ → R+ , we use the simple notation lim f(s) = lim g(s) to describe {lim f(s) =
∞ ∧ lim g(s) = ∞} ∨ {∞ > lim f(s) = lim g(s)}. In a similar manner, lim f(s) ≥ lim g(s)
denotes {lim f(s) = ∞ ∨ ∞ > lim f(s) ≥ lim g(s)}. A system ẋ = f(x, r) is said to be 0-GAS if
the 0-input system ẋ = f(x, 0) has a unique equilibrium which is globally asymptotically stable.
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Σ1 : ẋ1 =f1(t, x1,u1, r1)

Σ2 : ẋ2 =f2(t, x2,u2, r2)
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Figure 1: Interconnected system Σ

2 System Setup

Consider the interconnected system Σ shown in Fig.1. The subsystems Σ1 and Σ2 are connected
with each other through u1 = x2 and u2 = x1. The state vector of Σ is x = [xT

1 , xT
2 ]T ∈ Rn. The

signals r1 and r2 are packed into r=[rT
1 , rT

2 ]T ∈ Rk. In this report, we consider the following sets
of Σi’s as in [7].

Definition 1 Given αi ∈ P, σi ∈ K and σri ∈ P0 for i = 1, 2, let SV i(ni, αi, σi, σri), i = 1, 2
denote the pair of sets containing systems Σi in the form of

ẋi = fi(t, xi, ui, ri), xi∈Rni , ui∈Rmi , ri∈Rki (1)

fi(t, 0, 0, 0) = 0, t ∈ R+ (2)

fi is locally Lipschitz in (xi, ui, ri) uniformly in t

and piecewise continuous in t (3)

for which there exist C1 functions Vi: R+×Rni → R and αi, ᾱi ∈ K∞ such that

αi(|xi|)≤Vi(t, xi)≤ ᾱi(|xi|) (4)
∂V1

∂t
+

∂V1

∂x1
f1 ≤ −α1(V1(t, x1))+σ1(V2(t, x2))+σr1(|r1|) (5)

∂V2

∂t
+

∂V2

∂x2
f2 ≤ −α2(V2(t, x2))+σ2(V1(t, x1))+σr2(|r2|) (6)

hold for all xi ∈ Rni, ri ∈ Rki and t ∈ R+, i = 1, 2.

The integers mi’s are supposed to satisfy m1 = n2 and m2 = n1 so that the interconnection of
Σ1 and Σ2 makes sense. The Lipschitzness imposed on fi guarantees the existence of a unique
maximal solution of Σ for locally essentially bounded ri(t). If the exogenous signal ri is absent,
the set of systems is denoted by SV i(ni, αi, σi).

The inequalities (5) and (6) are often referred to as “dissipation inequalities”, and their right
hand sides are called supply rates. The individual system Σi fulfilling the above definition is
said to be integral input-to-state stable (iISS)[11]. The function Vi is called a C1 iISS Lyapunov
function[2]. Under a stronger assumption αi ∈ K∞, the system Σi is said to be input-to-state
stable (ISS)[10], and the function Vi is a C1 ISS Lyapunov function[12]. By definition, an ISS
system is always iISS. The converse does not hold. The original notion of iISS and ISS is given in
terms of trajectories and, in the context of time-invariant systems, is equivalent to the existence
of C1 iISS and ISS Lyapunov functions, respectively[2, 12]. As we see on the right hand side of
(5) and (6), the iISS and ISS properties we consider in this report are uniform in time t.

Definition 2 Given αi ∈ P, σi ∈ K, σri ∈ P0 and αi, ᾱi ∈ K∞ for i = 1, 2, let Si(ni, αi, σi, σri, αi, ᾱi)
denote the set of systems Σi of the form (1), (2) and (3) which admit the existence of a C1 function
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Vi: R+×Rni → R satisfying (4) and

∂Vi

∂t
+

∂Vi

∂xi
fi ≤ −αi(|xi|) + σi(|ui|) + σri(|ri|) (7)

for all xi ∈ Rni, ui ∈ Rmi, ri ∈ Rki and t ∈ R+, i = 1, 2.

Definition 3 Let Si(ni, αi, σi, σri) denote the set of Σi for which there exist αi, ᾱi ∈ K∞ such that
Σi ∈ Si(ni, αi, σi, σri, αi, ᾱi) holds.

We write Si(ni, αi, σi) and Si(ni, αi, σi, αi, ᾱi) when we consider ri(t) ≡ 0. Definitions 2 and 3
involve | · | to measure the magnitude of feedback signals in the dissipation inequalities. As we will
see in the sequel, for the set SV i(ni, αi, σi, σri) whose dissipation inequalities do not involve the
Euclidean norm of feedback signals, stability criteria become simpler than those for Si(ni, αi, σi, σri)
and Si(ni, αi, σi, σri, αi, ᾱi). The set Si(ni, αi, σi, σri) in Definition 3 naturally generalizes the
notion of prescribed Lp-gain systems. By comparison, the set Si(ni, αi, σi, σri, αi, ᾱi) in Definition
2 includes the explicit information αi, ᾱi on the discrepancy between |·| and Vi(·), which is essential
to the analysis of 0-GAS of the interconnection.

3 Small-Gain Conditions

This section briefly presents small-gain-type theorems developed in [7]. The following provides a
necessary and sufficient condition for the uniform 0-GAS of a set of interconnected iISS systems
as shown in Fig. 1. By uniform 0-GAS, we mean that the trivial solution of the interconnected
system Σ without external inputs r1 and r2 is uniformly GAS.

Theorem 1 Let ni be a positive integer for each i = 1, 2. Assume that functions αi, σi : R+ → R+

, i = 1, 2 are C1 and satisfy

αi ∈ O(> 1), σi ∈ O(> 0), i = 1, 2 (8)

αi ∈ K, i = 1, 2 (9)

Suppose that there exists some integer j ∈ {1, 2} such that α1, α2, σ1 and σ2 satisfy

lim
s→∞

α3−j(s) ≥ lim
s→∞

σ3−j(s) (10)

and one of the following conditions

(G1) lim
s→∞

α3−j(s) = lim
s→∞

σ3−j(s)

(G2) lim
s→∞

σj◦α−1
3−j◦σ3−j(s)
αj(s)

̸= 1

Then, the interconnected system Σ is uniformly 0-GAS for all pairs Σi ∈ SV i(ni, αi, σi), i = 1, 2 if
and only if

α−1
j ◦ σj ◦ α−1

3−j◦ σ3−j(s) < s, ∀s ∈ (0,∞) (11)

holds for the above j. Furthermore, a Lyapunov function of Σ characterizing the uniform 0-GAS
is given as

Vcl(t, x) =
∫ V1(t,x1)

0
λ1(s)ds +

∫ V2(t,x2)

0
λ2(s)ds (12)
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for some non-decreasing continuous functions λ1, λ2 : R+ → R+ satisfying

λ1(s) > 0, λ2(s) > 0, s ∈ (0,∞) (13)

It is emphasized that j in (11) is the same as in any of (G1)-(G2). The properties (9) and
(10) are assumed beforehand only for simplicity of expressions. Their necessity will be proven
in Theorem 4 and Theorem 5 of Section 4. It is stressed that (G1)-(G2) are not simultaneous
constraints. Only one of them is required. Let the inequality (11) be referred to as a small-gain
condition. It is mentioned here that the uniform 0-GAS in Theorem 1 is derived from

∃αcl∈P s.t. V̇cl(t, x) ≤ −αcl(|x|), ∀x ∈ Rn (14)

satisfied along the trajectories of the interconnected system Σ with ri(t) ≡ 0, i = 1, 2. The “only
if” part of Theorem 1 does not need the assumption (G1) ∨ (G2). In other words, there always
exists a pair of Σi, i = 1, 2 such that their interconnection is not 0-GAS when (11) is violated.

One can obtain iISS of a set of interconnected systems if amplification factors ωi, i = 1, 2, are
introduced to the small-gain condition. A stronger property, ISS, is a special case.

Theorem 2 Assume that functions αi, σi, σri, αi, ᾱi : R+ → R+ , i = 1, 2 satisfy (9). Suppose
that there exists some integer j ∈ {1, 2} such that one of the following conditions

(H1) lim
s→∞

α1(s) = ∞ ∧ lim
s→∞

α2(s) = ∞

(H2) lim
s→∞

α3−j(s) = ∞ ∧ lim
s→∞

σ3−j(s) < ∞

(H3) lim
s→∞

σ1(s) < ∞ ∧ lim
s→∞

σ2(s) < ∞

is satisfied. Then, the interconnected system Σ is iISS with respect to input r and state x for all
pairs Si(ni, αi, σi, σri, αi, ᾱi) with any positive integer ni, i = 1, 2 if there exist ωi ∈ K∞, i = 1, 2
such that

α−1
j ◦ᾱj◦α−1

j ◦(Id + ωj)◦σj◦α−1
3−j◦ᾱ3−j◦α−1

3−j◦ (Id + ω3−j)◦σ3−j(s) ≤ s, ∀s ∈ R+ (15)

holds for the above j. Furthermore, an iISS Lyapunov function of Σ is given as in (12) for some
non-decreasing continuous functions λ1, λ2 : R+ → R+ satisfying (13). In the case of (H1), the
function Vcl is also an ISS Lyapunov function.

Note that the inverses of αj and α3−j in (11) and (15) are not necessarily well defined over R+.
Instead, the fulfillment of (11) and (15) only requires the whole composite function on the left hand
side of the inequality to be finite for finite s. Thus, lims→∞ αj(s)≥ lims→∞ σj(s) is not necessary.
The statement about a Lyapunov function in Theorem 2 claims that

∃αcl∈P, σcl∈P0 s.t.

V̇cl(t, x) ≤ −αcl(|x|) + σcl(|r|), ∀x ∈ Rn, r ∈ Rk (16)

is satisfied along the trajectories of Σ. Since the above theorem only addresses the sufficiency of
a small-gain condition for the stability, neither (8) nor the smoothness of αi and σi is required. It
is stressed that j in (15) is the same as in (H2). It can be verified that

(G1) ∨ (G2) ⇐ (H1) ∨ (H2) ∨ (H3) ⇐ (H1)

holds under the assumption that there exist ω1, ω2 ∈ K∞ satisfying (15).
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Theorem 3 Let ni be a positive integer for each i = 1, 2. Assume that functions αi, σi, σri : R+ →
R+ , i = 1, 2 are C1 and satisfy (8), (9), (H1) and

σri ∈ K∞, i = 1, 2 (17)

Then, the interconnected system Σ is ISS with respect to input r and state x for all pairs SV i(ni, αi, σi, σri),
i = 1, 2 if and only if there exist ωi ∈ K∞, i = 1, 2 such that

α−1
1 ◦ (Id + ω1) ◦ σ1 ◦ α−1

2 ◦ (Id + ω2) ◦ σ2(s) ≤ s, ∀s ∈ R+ (18)

holds. Furthermore, an ISS Lyapunov function of Σ is given as in (12) for some non-decreasing
continuous functions λ1, λ2 : R+ → R+ satisfying (13).

Theorem 3 indicates that there exists αcl∈K∞ achieving (16). In contrast to Theorem 2 stated
with σri ∈ P0, Theorem 3 considers (17) which is narrower than P0. The assumption (17) is only
for obtaining the “only if” part of Theorem 3. If the exogenous signals affect systems through
sufficiently small σri ̸∈ K∞, the condition (18) is not always required, while (11) is necessary. For
sufficiently small σr1 and σr2, none of (H1), (H2) and (H3) is necessary (See Section 5.1).

It is stressed that (15) with j = 1 is not equivalent to (15) with j = 2 in general. The same
remark applies to (11). The j = 1 case in (15) implies the j = 2 case if

lim
s→∞

α1(s) = ∞ ∨ lim
s→∞

α1(s) > lim
s→∞

σ1(s) (19)

Thus, the condition (15) is symmetric in terms of j = 1 and j = 2 when Σ1 and Σ2 are individually
ISS with respect to the interacting inputs. When iISS subsystems are involved, we need to select
j ∈ {1, 2} or interchange Σ1 and Σ2 so that (15) or (11) can be fulfilled. Theorem 4 in Section 4
explains why the condition should be asymmetric.

Combining the materials in Sections 4 and 5 proves the theorems in this section.

4 Necessity

In this section, the necessity of the stability criteria presented in Section 3 is demonstrated. The
issue of the necessity is important from the perspective of estimating stability margins for uncertain
systems as well as the tightness of the stability criteria.

4.1 Destabilizing Perturbation

The following lemma provides a technique to construct destabilizing perturbations, which is the
key to the proof of the necessity in Theorems 1 and 3.

Lemma 1 Suppose that C1 functions α ∈ P, σ ∈ K, real numbers δ ≥ 0, ϵ̄ > 0 and integers
n > 0, m > 0 are given. Assume that α and σ belong to O(> 1) and O(> 0), respectively. Then,
there exist a locally Lipschitz function f : Rn × Rm → R, a C1 function V : Rn → R , class K∞
functions α, ᾱ and a real number ϵ ∈ [0, ϵ̄] such that

f(0, 0) = 0 (20)

α(|x|) = V (x) = ᾱ(|x|) (21)
∂V

∂x
f(x, u) ≤ −α(|x|) + σ(|u|), ∀x ∈ Rn, u ∈ Rm (22)

(1 + δ)α(|x|) < σ(|u|)
ϵ ≤ |u|

}
⇒ ∂V

∂x
f(x, u) > δα(|x|) (23)
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The proof of this lemma given in Subsection 6.1 is constructive.

When (1/N) + (1/J) < 1, α ∈ O(N) and σ ∈ O(J) are satisfied, the claim in Lemma 1 still
holds for ϵ̄ = 0.

The function f(x, u) constructed in the proof of Lemma 1 satisfies

fi(x, u)|xi=0 = 0, i = 1, 2, . . . , n

where f = [f1, f2, ..., fn]T . This implies that each i-th scalar component of the solution vector
x(t) ∈ Rn of the differential equation ẋ = f(x, u) never changes signs, namely, for each i =
1, 2, . . . , n,

xi(0) ≥ 0 ⇒ xi(t) ≥ 0, ∀t ∈ R+

holds. For such a positive system defined for initial conditions in the non-negative orthant, the C1

function V (x) needs to be defined on only Rn
+. Since V (x) = |x| becomes eligible, Lemma 1 allows

α ∈ O(1) when one’s attention is restricted to positive systems. Finally, it can be verified that all
the results presented in [7] hold even for the interconnection of subsystems evolving on Rni

+ .

4.2 Necessary Conditions

Using Lemma 1, we can derive necessary conditions for the stability of the interconnected system
Σ shown in Fig.1. The following addresses the existence of an integer j ∈ {1, 2} satisfying (10).

Theorem 4 Let ni be a positive integer for each i = 1, 2. Assume that functions αi, σi, σri : R+ →
R+ are C1, and satisfy

αi ∈ O(> 1), σi, σri ∈ O(> 0), i = 1, 2 (24)

Then, for the pair

Si = {Σi ∈ Si(ni, αi, σi, σri) :

fi(t, xi, ui, ri) = fi(0, xi, ui, ri), ∀t∈R+} , i = 1, 2 (25)

and the pair

Si = {Σi ∈ SV i(ni, αi, σi, σri) :

fi(t, xi, ui, ri) = fi(0, xi, ui, ri), ∀t∈R+} , i = 1, 2 (26)

the following facts hold.

(i) The interconnected system Σ is 0-GAS for all Σi ∈ Si, i = 1, 2, only if

lim inf
s→∞

αi(s) ≥ lim
s→∞

σi(s) (27)

holds for at least one of i = 1, 2.

(ii) The interconnected system Σ is ISS with respect to input r and state x for all Σi ∈ Si,
i = 1, 2, only if

lim inf
s→∞

αi(s) ≥ lim
s→∞

σi(s) + sup
s∈R+

σri(s) (28)

holds for at least one of i = 1, 2.
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The necessary condition (28) and (17) justify either of the two requirements in (H1) of Theorem
3. The use of the sets (25) and (26) illustrates that the necessity holds for sets of time-invariant
systems which are narrower than Si(ni, αi, σi, σri) and SV i(ni, αi, σi, σri), respectively. Note that
(27) is also necessary for iISS of Σ since iISS implies 0-GAS. The property (28) indicates that Σi

is ISS with respect to input (ui, ri) and state xi if σri ∈ K. The property (27) implies that Σi

is ISS with respect to input ui and state xi. It is worth noting that lim sups→∞ σri(s) < ∞ is
not necessary for the iISS property of the interconnected system Σ even if lim infs→∞ αi(s) < ∞.
This fact can be understood naturally. In fact, a system is iISS if and only if it is 0-GAS and
zero-output smoothly dissipative[2].

We can establish the necessity of the small-gain condition.

Theorem 5 Let ni be a positive integer for each i = 1, 2. Assume that functions αi, σi, σri : R+ →
R+ are C1, and satisfy (24). Suppose

lim inf
s→∞

α2(s) = ∞ ∨

{
lim inf
s→∞

α2(s)≥ lim
s→∞

σ2(s) if 2 ̸∈ D
lim inf
s→∞

α2(s)> lim
s→∞

σ2(s) if 2 ∈ D (29)

holds, where D := {i ∈ {1, 2} : σri ∈ K∞}. Then, the following facts hold for the pairs S1, S2

defined in (25) and (26).

(i) The interconnected system Σ is 0-GAS for all Σi ∈ Si, i = 1, 2 only if there exist α̃i ∈ K,
i = 1, 2, such that

α̃−1
1 ◦ σ1 ◦ α̃−1

2 ◦ σ2(s) < s ∀s ∈ (0,∞) (30)

α̃i(s) ≤ αi(s), ∀s ∈ R+ (31)

(ii) The interconnected system Σ is ISS with respect to input r and state x for all Σi ∈ Si, i = 1, 2
only if there exist

ωi

{ ∈ K∞ if i ∈ D
= 0 if i ̸∈ D (32)

and α̃i ∈ K for i = 1, 2 such that

α̃−1
1 ◦ (Id + ω1) ◦ σ1 ◦ α̃−1

2 ◦ (Id + ω2) ◦ σ2(s) ≤ s, ∀s ∈ R+ (33)

and (31) are satisfied.

Note that we can take α̃i = αi if αi is of class K. Theorem 5 suggests that we can assume αi ∈ K,
i = 1, 2, without loss of generality in the stability analysis. The next lemma indicates that the
assumption of αi ∈ O(> 1) and σi ∈ O(> 0) is reasonable.

Lemma 2 For ni > 0, the following holds.

(i) If ∂Vi/∂xi and ∂Vi/∂t are Hölder continuous of some order a > 0 and b > 1, respectively, in
xi at xi = 0, then Si(ni, αi, σi) ̸= ∅ implies αi ∈ O(> 1).

(ii) For each Σi ∈ Si(ni, αi, σi), there exists σ̂i ∈ K such that σ̂i ∈ O(> 0) and Σi ∈ Si(ni, αi, σ̂i) ⊆
Si(ni, αi, σi) holds.
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5 Sufficiency

In this section, the sufficiency of the stability criteria presented in Section 3 is derived. This section
gives a pair of {λ1, λ2} with which the composite Lyapunov function Vcl in (12) fulfills (14) and
(16).

5.1 A common form of Lyapunov function

Consider the set of the quadruplets (α1, α2, σ1, σ2) satisfying

α1, α2, σ1, σ2 ∈ K, (34)

lim
s→∞

α2(s) ≥ lim
s→∞

σ2(s) (35)

Define the following seven situations for (α1, α2, σ1, σ2):

(M1) lim
s→∞

σ1◦α−1
2 ◦ᾱ2◦α−1

2 ◦σ2(s)
α1 ◦ ᾱ−1

1 ◦α1(s)
≤ 1 ∧ lim

s→∞
α2(s) = lim

s→∞
σ2(s)

(M2) lim
s→∞

σ1◦α−1
2 ◦ᾱ2◦α−1

2 ◦σ2(s)
α1 ◦ ᾱ−1

1 ◦α1(s)
< 1 ∧ lim

s→∞
α2(s) > lim

s→∞
σ2(s)

(M3) lim
s→∞

σ1◦α−1
2 ◦ᾱ2◦α−1

2 ◦σ2(s)
α1 ◦ ᾱ−1

1 ◦α1(s)
= 1 ∧ lim

s→∞
α2(s) > lim

s→∞
σ2(s)

(J1) lim
s→∞

α2(s) = ∞ ∧ lim
s→∞

α1(s) = ∞

(J2) lim
s→∞

α2(s) = ∞ ∧ lim
s→∞

σ2(s) < ∞

(J3) lim
s→∞

σ1(s) < ∞ ∧ lim
s→∞

σ2(s) < ∞

(J4) ∃k ∈ {1, 2} s.t. { lim
s→∞

αk(s) < ∞ ∧ lim
s→∞

σ3−k(s) = ∞}

The pair of {λ1, λ2} for the Lyapunov function Vcl can be constructed from the functions in the
small-gain conditions (11), (15) and (18). The following lemma provides the functions to be used
in {λ1, λ2} directly.

Lemma 3 Assume that

α−1
1 ◦ ᾱ1 ◦ α−1

1 ◦ σ1 ◦ α−1
2 ◦ ᾱ2 ◦ α−1

2 ◦ σ2(s) < s, ∀s ∈ (0,∞) (36)

holds for a pair αi, ᾱi ∈ K∞ and a quadruplet (α1, α2, σ1, σ2) satisfying (34), (35) and (M1)∨(M2).
Then, there exist α̂1, σ̂1 ∈ K, ω̂1, ω̂2 ∈ P0 and τ̂1, τ̂2 ∈ K∞ such that

(Id + ω̂1) ◦ σ̂1 ◦ α−1
2 ◦ ᾱ2 ◦ α−1

2 ◦ (Id + ω̂2) ◦ σ2(s) ≤ α̂1 ◦ ᾱ−1
1 ◦ α1(s), ∀s∈R+ (37)

σ1(s) ≤ σ̂1(s), α̂1(s) ≤ α1(s), ∀s ∈ R+ (38)

lim
s→∞

σ̂1(s) ≥ lim
s→∞

α̂1(s) (39)

lim
s→∞

α2(s) = ∞ ⇒ α̂1 = α1 (40)

lim
s→∞

α2(s) < ∞ ⇒ σ̂1 = σ1 (41)

lim
s→∞

α2(s) > lim
s→∞

σ2(s) ⇒


lims→∞ α2(s) > lims→∞(Id + ω̂2) ◦ σ2(s)
lims→∞ σ̂1(s) > lims→∞ α̂1(s)
ω̂1, ω̂2 ∈ K

(42)
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lim
s→∞

σ2(s) = lim
s→∞

α2(s) ⇒


lims→∞ α2(s) ≥ lims→∞(Id + ω̂2) ◦ σ2(s)
lims→∞(Id + ω̂1) ◦ σ̂1(s) = lims→∞ α̂1(s)
ω̂1 ◦ σ̂1(s) > 0, ω̂2 ◦ σ2(s) > 0, ∀s ∈ (0,∞)

(43)

τ̂i = Id + ω̂i, i = 1, 2 (44)

Furthermore, the claim can be fulfilled by ω̂1, ω̂2 ∈ K∞ if there exist ω1, ω2 ∈ K∞ such that

α−1
1 ◦ ᾱ−1

1 ◦ α1 ◦ (Id + ω1) ◦ σ1 ◦ α−1
2 ◦ ᾱ2 ◦ α−1

2 ◦ (Id + ω2) ◦ σ2(s) ≤ s, ∀s ∈ R+ (45)

is satisfied under the assumption of

lim
s→∞

α2(s) = ∞ ∨ lim
s→∞

α2(s) > lim
s→∞

σ2(s) (46)

Using the functions given in Lemma 3 and L := lims→∞ σ̂1(s), we define continuous functions
λ1, λ2 : R+ → R+ as

λ1(s) :=
[
δ2◦ ω̂2◦ τ̂−1

2 ◦ α2◦ ᾱ−1
2 ◦ α2◦ σ̂−1

1 ◦τ−1
1 ◦ α̂1

◦ᾱ−1
1 (s)

] [
ν◦τ−1

1 ◦α̂1◦ᾱ−1
1 (s)

] [
ψ◦τ−1

1 ◦α̂1◦ᾱ−1
1 (s)

]
(47)

λ2(s) := σ̂1 ◦ α−1
2 (s)

[
ν ◦ σ̂1 ◦ α−1

2 (s)
] [

ψ ◦ σ̂1 ◦ α−1
2 (s)

]
(48)

where δi and τ1 are any class K∞ functions satisfying

Id − δi ∈ K∞, i = 1, 2 (49)

τ1 = Id + kω̂1 (50)

for some k ∈ (0, 1), and ν, ψ : (0, L) → R+ are any continuous functions which satisfy

0 < ν(s) < ∞, 0 < ψ(s) < ∞, ∀s ∈ (0, L) (51)

and fulfill[
δ2◦ω̂2◦τ̂−1

2 ◦α2◦ᾱ−1
2 ◦ α2(s)

]
[ν ◦ σ̂1(s)] [ψ ◦ σ̂1(s)] : non-decreasing (52)

σ̂1(s) [ν◦σ̂1(s)][ψ◦σ̂1(s)] : non-decreasing (53)[
δ2◦ω̂2◦τ̂−1

2 ◦α2◦ ᾱ−1
2 ◦ α2◦ σ̂−1

1 ◦τ−1
1 ◦ α̂1◦ᾱ−1

1 (s)
][

ν◦τ−1
1 ◦ α̂1◦ᾱ−1

1 (s)
]

: non-decreasing (54)[
ψ ◦ σ̂1 ◦ α−1

2 ◦ ᾱ2 ◦ α−1
2 ◦ τ̂2 ◦ σ2(s)

] [
σ̂1 ◦ α−1

2 ◦ ᾱ2 ◦ α−1
2 ◦ τ̂2 ◦ σ2(s)

]
σ2(s)

≤
[
ψ◦ τ−1

1 ◦ α̂1◦ ᾱ−1
1 ◦ α1(s)

]
[δ2 ◦ ω̂2 ◦ σ2(s)]

[
δ1◦ kω̂1◦ τ−1

1 ◦ α̂1◦ ᾱ−1
1 ◦ α1(s)

]
(55)

for all s ∈ R+. Note that τ1 ∈ K∞ holds since s + kω̂1(s) = k(s + ω̂1(s)) + (1 − k)s and τ̂1 ∈ K∞.

The following demonstrates that the pair of {λ1, λ2} in (47) and (48) yields a Lyapunov function
Vcl establishing the 0-GAS, iISS and ISS of the interconnected system Σ under appropriate small-
gain conditions.

Theorem 6 Consider σr1, σr2 ∈ P0, a quadruplet (α1, α2, σ1, σ2) satisfying (34) and (35), and
Vi : (t, xi) ∈ R+ × Rni → R+, i = 1, 2, satisfying (4) for some αi, ᾱi ∈ K∞. Then, we have the
following.

(i) Suppose that σr1(s) ≡ 0, σr2(s) ≡ 0 and (M1) ∨ (M2) hold. If (36) is satisfied, the functions
(47) and (48) satisfy

2∑
i=1

λi(Vi(t, xi)) {−αi(|xi|)+σi(|ui|)+σri(|ri|)} ≤
2∑

i=1

−αcl,i(|xi|) + σcl,i(|ri|),

∀x1∈Rn1, x2∈Rn2, r1∈Rm1, r2∈Rm2, t∈R+ (56)

for some αcl,1, αcl,2∈P and σcl,1(s) = σcl,2(s) ≡ 0.
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(ii) Suppose that (J1) ∨ (J2) ∨ (J3) and

L < ∞ ⇒ lim
s→L

ν(s) < ∞, lim
s→L

ψ(s) < ∞ (57)

hold. If there exist ωi ∈ K∞, i = 1, 2 such that (45) is satisfied, the functions (47) and (48)
with ω̂1, ω̂2 ∈ K∞ satisfy (56) for some αcl,1, αcl,2∈K and some σcl,1, σcl,2∈P0 fulfilling

α1, α2 ∈ K∞ ⇒ αcl,1, αcl,2 ∈ K∞ (58)

σr,i(s) ≡ 0 ⇒ σcl,i(s) ≡ 0 (59)

There always exist functions ν and ψ fulfilling (51), (52), (53), (54), (55) and (57). The existence
and the construction are addressed in Subsection 5.2. The task of finding a pair {λ1, λ2} which
solves (56) is referred to as a state-dependent scaling problem in [6]. In Theorem 6 (ii), the property
(56) resulting in (16) yields the iISS of the interconnected system Σ. Theorem 6 (i) demonstrates
that the amplification factors ω1, ω2 in the small-gain condition (45) can be replaced by a strict
inequality sign as far as 0-GAS is concerned. Note that the existence of ω1, ω2 ∈ K∞ achieving
(45) implies not only (36), but also (M1) ∨ (M2).

In order to understand the idea of the assumption (M1)∨ (M2) for 0-GAS and the assumption
(J1) ∨ (J2) ∨ (J3) for iISS, the following lemma is useful.

Lemma 4 Given αi, ᾱi ∈ K∞, i = 1, 2, the following propositions hold true for each quadruplet
(α1, α2, σ1, σ2) satisfying (34), (35):

{{ (M1) ∨ (M2) } ⇔ ¬(M3) } if (36)

{ (J1) ∨ (J2) ∨ (J3) } ⇔ ¬(J4)

The case of (J4) allows ∞ = lim sups→∞ σrk(s) > lims→∞ αk(s). Notice that ∞ = lim sups→∞ σrk(s)
implies the unbounded influence of rk on Σk. In this situation, (J4) implies that the underdamped
state xk of Σk affects Σ3−k through the unbounded function σ3−k. If the influence of rk is small
enough, we can still obtain iISS of Σ in the case of (J4). In fact, there exists ϵ > 0 for which we can
obtain αcl,1, αcl,2∈K and σcl,1, σcl,2∈P0 if (45) holds with ω1, ω2 ∈ K∞ and lims→∞ σrk(s) ≤ ϵ.

5.2 Construction of ψ

Once a function ψ satisfying (51), (55) and (57), is given, we can always select a function ν required
in Theorem 6 straightforwardly. Such a desired function ψ is constructed as follows: First, define

Q(t) =


1

m(t)−t

(
d̂(t)

b̂(t)
−1

)
, t ∈ (0, S)

1
m(S)−S

(
lim sup

s→S

d̂(s)

b̂(s)
−1

)
, t ∈ [S, R)

(60)

b̂(s) = b ◦ η−1(s), d̂(s) = d ◦ η−1(s) (61)

m(s) = τ−1
1 ◦ α ◦ η−1(s) (62)

S = lim
s→∞

η(s), R = lim
s→∞

τ−1
1 ◦ α(s)

for a real number k ∈ (0, 1), where

α(s) = α̂1 ◦ ᾱ−1
1 ◦ α1(s)
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b(s) =
[
δ1 ◦ kω̂1 ◦ τ−1

1 ◦ α̂1◦ ᾱ−1
1 ◦ α1(s)

]
[δ2◦ω̂2◦σ2(s)]

d(s) =
[
σ̂1 ◦ α−1

2 ◦ ᾱ2 ◦ α−1
2 ◦ τ̂2 ◦ σ2(s)

]
σ2(s)

η(s) = σ̂1 ◦ α−1
2 ◦ ᾱ2 ◦ α−1

2 ◦ τ̂2 ◦ σ2(s)

We can always pick a non-decreasing function Q̄ : (0, R) → R satisfying

Q̄(s) ≥ max{Q(s), 0}, ∀s ∈ (0, R) (63)

In the case of lim sups→0 Q(s) = ∞, let Q̄ be of the form

Q̄(s) =
1∫ s

0 ξ(r)dr
, s ∈ (0, R) (64)

and we can pick a function ξ : (0, R) → R satisfying

ξ(s) ≤ 1, 0 <

∫ s

0
ξ(r)dr ≤ 1

max{Q(s), 0}
, ∀s ∈ (0, R) (65)

Then, for arbitrary C > 0 and T ∈ (0, R), define ψ by

ψ(s) = Ce

∫ s
T Q̄(t)dt, s ∈ (0, R) (66)

ψ(s) = lim
r↗R

ψ(r), s ∈ [R,∞) (67)

Note that (37) implies S ≤ R.

Lemma 5 Assume that (36) holds for a pair αi, ᾱi ∈ K∞ and a quadruplet (α1, α2, σ1, σ2) satis-
fying (34), (35) and (M1) ∨ (M2). Then, the function ψ defined by (66) and (67) is a continuous
mapping from (0, L) to R+ and satisfies

0 < ψ(s) < ∞, ∀s ∈ (0, L) (68)

[ψ◦η(s)] d(s) ≤
[
ψ◦τ−1

1 ◦α(s)
]
b(s), ∀s∈(0,∞) (69)

Moreover, the function ψ is a continuous mapping from (0,∞) to R+ and satisfies

0 < ψ(s) < ∞, ∀s ∈ (0,∞) (70)

if

lim
s→∞

α2(s) > lim
s→∞

σ2(s) (71)

holds additionally.

The inequality (69) corresponds to (55). The property (68) ensures (51) in terms of ψ. As for
(57) in (ii) of Theorem 6, the following lemma assures that (70) guarantees (57) in terms of ψ.

Lemma 6 Suppose that the quadruplet (α1, α2, σ1, σ2) satisfying (34) and (35) fulfills (J1) ∨ (J2)
∨ (J3). If there exist ωi ∈ K∞, i = 1, 2 such that (45) is satisfied, then L < ∞ implies (71)

It is stressed that, when supply rates for Σi, i = 1, 2 are given by

−αi(Vi(t, xi))+σi(V3−i(t, x3−i))+σri(|ri|)

instead of −αi(|xi|)+σi(|ui|)+σri(|ri|), all developments in this Section 5 remain valid by replacing
αi and ᾱi with the identity map, and replacing |xi| with Vi.
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If Q(s) ≤ 0 holds for all s ∈ (0, R), the choice Q̄(s) = 0 fulfills (63), which yields ψ(s) = C > 0.
If there exists K ∈ (−∞, 0) ∪ [1,∞) such that

sup
t∈(0,R)

tQ(t) ≤ K (72)

holds, the choice Q̄(s) = K/s yields ψ(s) = CsK . In the case of uniform contraction where ω1

and ω2 are linear, there exist a sufficiently large K < ∞ such that (72) holds. When we take
ψ(s) = CsK , the functions λ1 and λ2 reduce to the ones used in earlier results [6] dealing with
uniformly contractive loop gain for ISS systems.

6 Proofs

6.1 Proof of Lemma 1

By assumption, there exist N > 1 and J > 0 such that α∈P and σ∈K are written in the form of

α(|x|) = α̂(|x|)|x|N , σ(|u|) = σ̂(|u|)|u|J

with some functions α̂(s) and σ̂(s) which are continuous on [0,∞). The class C1 property of α

and σ also implies that α̂ and σ̂ are C1 in (0,∞). Pick a real number Q ≥ 1 so that

1
N

+
1

JQ
< 1

is satisfied. Let ϵ ∈ (0, ϵ̄]. In the case of (1/N) + (1/J) < 1, let Q = 1 and ϵ = 0. Define θ ∈ K∞
as

θ(s) =
{

σ(ϵ) (s/σ(ϵ))Q , for s ∈ [0, σ(ϵ))
s , for s ∈ [σ(ϵ),∞)

The class K function σ̃ given by σ̃(s) = θ ◦ σ(s) satisfies

σ̃(s) = σ(s) = 0 , s = 0
σ̃(s) < σ(s) , ∀s ∈ (0, ϵ)
σ̃(s) = σ(s) , ∀s ∈ [ϵ,∞)

(73)

Define p > 1 by

1
p

= 1 − 1
JQ

(74)

Let q = JQ so that (1/p) + (1/q) = 1 holds. Define

V (x) = α(|x|) = ᾱ(|x|) = |x|N/p (75)

f(x, u) = fA(x) + fB(x, u) (76)

fA =
−µp

N
α̂(|x|)|x|N/qx, µ =

q

p
(1 + δ) + 1 (77)

fB =
p

N
(q(1 + δ)α̂(|x|))1/p(qσ̃(|u|))1/qx (78)

Then, we have

∂V

∂x
f=

N

p
|x|

N
p
−2

xT f

=−µα̂(|x|)|x|N +
(

p
q

p
(1 + δ)α̂(|x|)|x|N

)1/p

(qσ̃(|u|))1/q

13



Applying Young’s inequality to the right-hand side, we obtain

∂V

∂x
f ≤ −

(
µ − q

p
(1 + δ)

)
α̂(|x|)|x|N + σ̃(|u|) ≤ −α(|x|) + σ(|u|)

Since q(1 + δ) − µ = δ holds, we arrive at

(1 + δ)α(|x|) = σ̃(|u|) ⇒ ∂V

∂x
f = −µα(|x|) + qσ̃(|u|) = (q(1 + δ) − µ)α(|x|) = δα(|x|)

(1 + δ)α(|x|) < σ̃(|u|) ⇒ ∂V

∂x
f > (q(1 + δ) − µ)α(|x|) = δα(|x|)

Thus, we have (23) by virtue of (73). The choice (74) of p implies N/p > 1, so that V given by
(75) is C1. The function fA is Lipschitz at each point in Rn due to N/q ≥ 0 and the class C1

property of α̂ on (0,∞). The function fB is also locally Lipschitz in x on Rn since α̂(s)1/p is C1

on (0,∞) and bounded on R+. To verify the local Lipschitzness with respect to u ∈ Rm, we first
obtain JQ = q from (74). Next,

σ̃(s)1/q = σ(ϵ)1/q(σ̂(s)/σ(ϵ))Q/q|s| , ∀s ∈ [0, ϵ]

follows from σ ∈ O(> 0). This function σ̃(s)1/q is continuously differentiable in the interval (0, ϵ]
since σ̂(s)Q/q is class C1. The function σ̃(s)1/q is also Lipschitz at zero since Q/q > 0. The identity

σ̃(s)1/q = σ̂(s)1/q|s|J/q , ∀s ∈ [ϵ,∞)

together with q > 1 and J > 0 guarantees that σ̃(s)1/q is C1 at each s ∈ [ϵ,∞) due to the
continuous differentiability of σ̂(s)1/q. Hence, the function fB is locally Lipschitz at all u ∈ Rm.

6.2 Proof of Theorem 4

We first deal with S1 and S2 given by (25) and we begin with proving (ii).
(ii) Suppose that (28) is not satisfied for each i = 1, 2. This assumption is equivalent to

lim inf
s→∞

αi(s) < ∞ ∧ lim inf
s→∞

αi(s) < lim
s→∞

σi(s) + sup
s∈R+

σri(s)

for i = 1, 2. Due to σi ∈ K and σri ∈ P0, there exist vi > 0, wi > 0 and δi > 0 for i = 1, 2 such
that

(1 + δ1)α1(s) < σ1(w2) + σr1(v1), ∀s ∈ {h11, h12, ...}
(1 + δ2)α2(s) < σ2(w1) + σr2(v2), ∀s ∈ {h21, h22, ...}

hold for some increasing sequences h1n → ∞ and h2n → ∞ satisfying h11, h21 ≥ 0, respectively.
For all integers j and k satisfying h1j ≥ w1 and h2k ≥ w2, the properties

|x1|=h1j , |x2|≥h2k ⇒(1+δ1)α1(|x1|)<σ1(|x2|)+σr1(|r1|)
|x1|≥h1j , |x2|=h2k ⇒(1+δ2)α2(|x2|)<σ2(|x1|)+σr2(|r2|)

hold as long as r1 and r2 satisfy |r1| ≥ v1, |r2| ≥ v2. Lemma 1 with replacement of σ(|u|) with
σi(|ui|) + σri(|ri|) guarantees the existence of f1(x1, u1, r1), f2(x2, u2, r2): Rni × Rmi × Rki → R,
C1 functions V1, V2: Rni → R and α1, ᾱ1, α2, ᾱ2 ∈ K∞ such that Σi ∈ Si(ni, αi, σi, σri) and

αi(|xi|) = Vi(xi) = ᾱi(|xi|) (79)

(1 + δi)αi(|xi|) < σi(|x3−i|) + σri(|ri|) ⇒ ∂Vi

∂xi
fi > δiαi(|xi|)
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hold for i = 1, 2. These systems Σ1 and Σ2 satisfy

|x1| = h1j , |x2| ≥ h2k ⇒ ∂V1

∂x1
f1 > δiα1(|x1|) (80)

|x1| ≥ h1j , |x2| = h2k ⇒ ∂V2

∂x2
f2 > δiα2(|x2|) (81)

for all |r1| ≥ v1, |r2| ≥ v2. Define

U(l1, l2) = {(x1, x2)∈Rn1×Rn2 : Vi(xi)≥ ᾱi(li), i=1, 2} (82)

Due to (79), the pair of (80) and (81) implies that trajectories starting from (x1(0), x2(0)) ∈
U(h1j , h2k) stay in U(h1j , h2k) forever if |r1| = v1 and |r2| = v2 hold for all t ∈ R+. The
trajectories remain in U(h1j , h2k) for the same r1 and r2 however large h1j and h2k are. This
invariance property implies that the interconnected system does not have finite gain in terms of
ISS[10].
(i) Suppose that (27) does not hold for i = 1, 2. There exist wi, δi > 0 for i = 1, 2 such that

(1 + δ1)α1(s) < σ1(w2), ∀s ∈ {h11, h12, ...}
(1 + δ2)α2(s) < σ2(w1), ∀s ∈ {h21, h22, ...}

are satisfied for some increasing sequences h1n → ∞ and h2n → ∞ satisfying h11, h21 ≥ 0,
respectively. Lemma 1 guarantees the existence of Σi ∈ Si(ni, αi, σi), i = 1, 2, such that (80) and
(81) hold. Trajectories starting from U(h1j , h2k) remain in U(h1j , h2k) for arbitrary h1j and h2k.
Therefore, the interconnection is not 0-GAS.

In the case of (26), by assumption there exist Mi > 1 and Li > 0 such that αi ∈ O(Mi) and
σi ∈ O(Li) hold for i = 1, 2. Define ᾰi = αi(sKi) and σ̆i = σi(sK3−i) for some Ki > 1, i = 1, 2.
Then, there exist continuous functions α̂i, σ̂i : R+ → R+ such that

ᾰi(|xi|) = α̂i(|xi|)|xi|Ni , Ni = KiMi > 1

σ̆i(|x3−i|) = σ̂i(|x3−i|)|x3−i|Ji , Ji = K3−iLi > 0

hold for i = 1, 2. Since αi and σi are C1, the functions α̂i and σ̂i are also C1 on (0,∞). Lemma 1
yields a Lipschitz continuous time-invariant system Σi ∈ Si(ni, ᾰi, σ̆i, σri) with Vi(xi) = |xi|Ki for
each i = 1, 2. The property Si(ni, ᾰi, σ̆i, σri) = SV i(ni, αi, σi, σri) completes the proof.

6.3 Proof of Theorem 5

The following deals with (25). The technique to deal with (26) is the same as Theorem 4.
(i): Assume αi ∈ K temporarily and let α̃i = αi, i = 1, 2. Suppose that there exists l1 ∈ (0,∞)
such that

σ1 ◦ α−1
2 ◦ σ2(l1) ≥ α1(l1) (83)

holds. Pick l2 ∈ (0,∞) so that α−1
2 ◦ σ2(l1) ≥ l2 ≥ σ−1

1 ◦ α1(l1) is satisfied. Using α2, σ1 ∈ K,
we obtain α2(l2) ≤ σ2(l1) and α1(l1) ≤ σ1(l2). Suppose |r1(t)| = |r2(t)| = 0 for all t ∈ R+.
Lemma 1 guarantees the existence of two time-invariant systems Σ1 ∈ S1(n1, α1, σ1, σr1) and
Σ2 ∈ S2(n2, α2, σ2, σr2) achieving (79) and

αi(|xi|) ≤ σi(|x3−i|) ⇒
∂Vi

∂xi
fi ≥ 0
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for i = 1, 2. This leads to the following:

|x1| = l1, |x2| ≥ l2 ⇒ ∂V1

∂x1
f1 ≥ 0 (84)

|x1| ≥ l1, |x2| = l2 ⇒ ∂V2

∂x2
f2 ≥ 0 (85)

Define U(l1, l2) as in (82). Due to (79), the property characterized by (84) and (85) implies that
trajectories starting from x(0) ∈ U(l1, l2) remain in U(l1, l2). This invariance contradicts the
0-GAS. Next, consider the case of αi ∈ P \ K. Suppose that

αi.1, αi.2 ∈ K, i = 1, 2

αi.1(s) ≥ αi.2(s), ∀s ∈ R+, i = 1, 2

hold. Then, if there exists l1 ∈ (0,∞) such that

σ1 ◦ α−1
2.k ◦ σ2(l1) ≥ α1.k(l1) (86)

holds for k = 1, the same l1 also satisfies (86) for k = 2. This property implies that the negation
of (30) implies the existence of l1 ∈ (0,∞) satisfying

σ1 ◦ α̃−1
2 ◦ σ2(l1) ≥ α̃1(l1) (87)

for all α̃i ∈ K fulfilling (31). Define l2 ∈ (0,∞) satisfying α̃−1
2 ◦ σ2(l1) ≥ l2 ≥ σ−1

1 ◦ α̃1(l1). If

α̃i(li) = αi(li), i = 1, 2 (88)

holds, the argument given above for αi ∈ K, i = 1, 2 leads to the existence of a pair of systems
whose interconnection is not 0-GAS. Suppose that there exists l1 ∈ (0,∞) such that

α̃1(l1) < α1(l1) (89)

and (87) hold for “all” α̃i ∈ K fulfilling (31). Then, α̃1(l1) ≤ σ1(l2) holds with any α̃2 ∈ K fulfilling
(31), which implies that there exists l̄1 ∈ (l1,∞) such that α1(l̄1) ≤ σ1(l2) holds. If (87) and

α̃2(l2) < α2(l2) (90)

hold for all α̃i ∈ K fulfilling (31), there exists l̄2 ∈ (l2,∞) such that α2(l̄2) ≤ σ2(l1) holds. If (89)
and (90) are satisfied simultaneously, we have α1(l̄1) ≤ σ1(l̄2) and α2(l̄2) ≤ σ2(l̄1). Hence, the rest
of the proof is the same as the case of αi ∈ K, i = 1, 2.
(ii): Consider the case of σr1, σr2 ∈ K∞. In order to prove the claim by contradiction, assume
that (33) is violated for all pairs of ωi ∈ K∞, i = 1, 2. First, suppose that there exists l1 ∈ (0,∞)
such that (83) holds with all α̃i ∈ K fulfilling (31). Then, the claim (i) proves that x = 0 is not
guaranteed to be GAS, which implies that the interconnection is not ISS. Next, we suppose that
there are no l1 ∈ (0,∞) and no α̃i ∈ K satisfying (83) and (31). Since all pair of ωi ∈ K∞, i = 1, 2
violate (33), there exist continuous functions ω1, ω2 : R+ → R+ and a non-empty set Y such that

(Id + ω1) ◦ σ1 ◦ α̃−1
2 ◦ (Id + ω2) ◦ σ2(s) = α̃1(s), ∀s ∈ R+ (91)

Id + ω1, Id + ω2 ∈ K∞

lim
s→∞

ωj(s) < ∞, ∀j ∈ Y ⊂ {1, 2} (92)
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are satisfied for some α̃i ∈ K fulfilling (31). The property (92) yields

lim
s→∞

ωj ◦ σj(s) < ∞, (93)

Since σr1 and σr2 are of class K∞, there exists Rj ∈ (0,∞) such that

lim
s→∞

ωj ◦ σj(s) ≤ σrj(|rj |), ∀s ∈ R+, ∀|rj | ≥ Rj (94)

hold for all j ∈ Y. Let l1 be a real number in (0,∞), which is now given arbitrarily in contrast
to the (i) case. Define l2(l1) = α̃−1

2 ◦ (Id + ω2) ◦ σ2(l1) which is of class K. Due to (91), we have
α̃2(l2(l1)) = (Id+ω2) ◦ σ2(l1) and α̃1(l1) = (Id+ω1) ◦ σ1(l2(l1)). By replacing σ with σi + σri in
Lemma 1 , we obtain Σi ∈ Si(ni, α̃i, σi, σri), such that (79) and

α̃i(|xi|) ≤ σi(|x3−i|) + σri(|ri|) ⇒
∂Vi

∂xi
fi ≥ 0

hold for i = 1, 2. This leads to (84) and (85) for all |rj | ≥ Rj , j ∈ Y and rk = 0, k ∈ {1, 2}\Y since
we have (94). Define U(l1, l2) as in (82). The inequalities (84) and (85) imply that trajectories
starting from U(l1, l2) remain in U(l1, l2) as long as |rj(t)| ≥ Rj and rk(t) = 0 hold. Recall that l1
is arbitrary in (0,∞), and independent of Rj . The trajectories for the fixed input |rj(t)| = Rj < ∞
does not leave U(l1, l2) no matter how large l1 is. This violates the ISS property[10]. Therefore,
the interconnected system Σ is not ISS when (33) is violated for all pair of ωi ∈ K∞ and all α̃i ∈ K
fulfilling (31), i = 1, 2. Note that αi ∈ P \K can be handled as in (i). In the case of σri ̸∈ K∞, use
ωi(s) ≡ 0 and ri(t) ≡ 0. The property α̃i(li) ≤ σi(l3−i) + σri(|ri|) is replaced by α̃i(li) ≤ σi(l3−i).

6.4 Proof of Lemma 2

(i) The Lipschitzness of fi(t, xi, 0) in xi at xi = 0 uniformly in t and the Hölder’s condition on Vi

imply that ∂Vi/∂t + ∂Vi/∂xi · fi(t, xi, 0) ≤ −α̂i(|xi|) requires α̂i ∈ O(1 + a). Since α̂i(s) ≥ αi(s)
follows from Σi ∈ Si(ni, αi, σi), we have αi ∈ O(1 + a).
(ii) The existence of a C1 function Vi and the local Lipschitzness of fi implies that ∂Vi/∂xi ·
fi(t, xi, ui) is locally Lipschitz with respect to (xi, ui) uniformly in t. From Σi ∈ Si(ni, αi, σi) it
follows that

∂Vi

∂t
+

∂Vi

∂xi
fi(t, xi, ui) ≤ −αi(|xi|) + ηi(|xi|)|ui|

holds in a small neighborhood N := {|ui| < ϵi} of ui = 0 for some ηi ∈ P fulfilling biϵi ≥ σi(ϵi),
where bi := sups∈R+

ηi(s) < ∞. When σi ̸∈ O(> 0) holds, there exists ci ∈ (0, ϵi] such that
ci = min{s ∈ (0, ϵi] : bis = σi(s)}. Define

σ̂i(s) =
{

bis for s ∈ [0, ci)
σi(s) for s ∈ [ci,∞)

and we arrive at Σi ∈ Si(ni, αi, σ̂i) ⊆ Si(ni, αi, σi) and σ̂i ∈ O(1).

6.5 Proof of Lemma 3

The properties can be verified by merely examining the inequalities.
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6.6 Proof of Theorem 6

(ii): The logical sum of (J1), (J2), (J3) is equivalent to the logical sum of

(N1) lim
s→∞

α2(s) = ∞ ∧ { lim
s→∞

α1(s) = ∞ ∨ lim
s→∞

σ2(s) < ∞}

(N2) lim
s→∞

α2(s) < ∞ ∧ lim
s→∞

σ1(s) < ∞

under the assumption (46). We first prove the claim in the case of (N1). For notational simplicity,
we use the following notations:

ω1 = kω̂1, ω2 = ω̂2, τ2 = τ̂2, α̂2 = α2, σ̂2 = σ2

Replace σri by σ̄ri ∈ K satisfying σri(s) ≤ σ̄ri(s) for all s ∈ R+, i = 1, 2. Due to (49), we can pick
a class K∞ function τri fulfilling

ωi◦τ−1
i − δi◦ωi◦τ−1

i − τ−1
ri ∈ K∞

for each i = 1, 2. The rest of the proof does not involve σ̄ri and τri if σri(ri) is identically zero.
Define

θi(s) = ᾱi ◦ α̂−1
i ◦ τi ◦ σ̂i(s), s ∈ [0, Yi) (95)

θri(s) = ᾱi ◦ α̂−1
i ◦ τri ◦ σ̄ri(s), s ∈ [0, Yri)

Y1 = lim
s→∞

σ̂−1
1 ◦ τ−1

1 ◦ α̂1(s)

Yr1 =
{
∞ , if lims→∞ α̂1(s) ≥ lims→∞ τr1 ◦ σ̄r1

lims→∞ σ̄−1
r1 ◦ τ−1

r1 ◦ α̂1(s) , otherwise
Y2 = ∞, Yr2 = ∞

for i = 1, 2. The function λ1(s) given by (47) satisfies λ1(s) > 0 for all s ∈ (0,∞) and it is
non-decreasing on R+ since (51) and (52). Define non-decreasing functions λθ1, λθr1 : R+ → R+

by

λθ1(s) =
{

λ1 ◦ θ1(s) , s ∈ [0, Y1)
lims→∞ λ1(s) , s ∈ [Y1,∞) (96)

λθr1(s) =
{

λ1 ◦ θr1(s) , s ∈ [0, Yr1)
lims→∞ λ1(s) , s ∈ [Yr1,∞) (97)

By virtue of (39), σ̂1(∞) > τ−1
1 ◦ α̂1(∞) holds if and only if α̂1(∞) < ∞. Thus,

Y1 < ∞∨ Yr1 < ∞ ⇒ lim
s→∞

α̂1(s) < ∞ ⇒ lim
s→∞

λ1(s) < ∞ (98)

follows from (47). The function λ2(s) given by (48) is a non-decreasing function satisfying λ2(s) > 0
for all s ∈ (0,∞) under (51) and (53). Define non-decreasing functions λθ2, λθr2 : R+ → R+ by

λθ2(s) = λ2 ◦ θ2(s) , λθr2(s) = λ2 ◦ θr2(s) , s ∈ R+

We obtain

λ1(V1){−α̂1(|x1|) + σ̂1(|x2|) + σr1(|r1|)}
≤ −λ1(α1(|x1|))

[
ω1 ◦ τ−1

1 ◦ α̂1(|x1|) − τ−1
r1 ◦α̂1(|x1|)

]
+ λθ1(|x2|)σ̂1(|x2|)+λθr1(|r1|)σ̄r1(|r1|) (99)

λ2(V2){−α̂2(|x2|) + σ̂2(|x1|) + σr2(|r2|)}
≤ −λ2(α2(|x2|))

[
ω2 ◦ τ−1

2 ◦ α̂2(|x2|) − τ−1
r2 ◦α̂2(|x2|)

]
+ λθ2(|x1|)σ̂2(|x1|)+λθr2(|r2|)σ̄r2(|r2|) (100)
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by combining calculations in individual cases divided by α̂i(|xi|) ≥ τi ◦ σ̂i(|x3−i|), α̂i(|xi|) <

τi ◦ σ̂i(|x3−i|), α̂i(|xi|) ≥ τri ◦ σ̄ri(|ri|) and α̂i(|xi|) < τri ◦ σ̄ri(|ri|). Thus, the inequality (56) is
fulfilled with

αcl,i(s)=λi(αi(s))
[
ωi◦τ−1

i ◦α̂i − δi◦ωi◦τ−1
i ◦α̂i◦ᾱ−1

i ◦ αi − τ−1
ri ◦α̂i

]
(101)

σcl,i(s)=λθri(|s|)σ̄ri(|s|) (102)

if λ1 and λ2 satisfy

λθ1(s)σ̂1(s) ≤ λ2(α2(s))
[
δ2◦ω2◦τ−1

2 ◦α̂2◦ᾱ−1
2 ◦ α2(s)

]
(103)

λθ2(s)σ̂2(s) ≤ λ1(α1(s))
[
δ1◦ω1◦τ−1

1 ◦α̂1◦ᾱ−1
1 ◦ α1(s)

]
(104)

for all s ∈ R+. Here, δi ◦ ωi ∈ K is used. Consider the following three conditions.

σ2(s)
[
σ̂1 ◦ α−1

2 ◦ θ2(s)
] [

λθ1 ◦ α−1
2 ◦ θ2(s)

]
≤ λ1(α1(s)) [δ2 ◦ ω2 ◦ σ2(s)]

[
δ1 ◦ ω1 ◦ τ−1

1 ◦ α̂1◦ ᾱ−1
1 ◦ α1(s)

]
, s ∈ R+ (105)

[λθ1(s)]σ̂1(s) = λ2(α2(s))
[
δ2◦ω2◦τ−1

2 ◦α̂2◦ ᾱ−1
2 ◦ α2(s)

]
, s ∈ [0, Y1) (106)

[λθ1(s)]σ̂1(s) ≤ λ2(α2(s))
[
δ2◦ω2◦τ−1

2 ◦α̂2◦ ᾱ−1
2 ◦ α2(s)

]
, s ∈ [Y1,∞) (107)

The pair of (106) and (107) implies (103). If (37) is are satisfied, we have τ1◦σ̂1◦α−1
2 ◦θ2(s) ≤ α̂1(s).

This inequality together with the definition Y1 implies lims→∞ α−1
2 ◦θ2(s) ≤ Y1. Thus, substitution

of (106) into the left hand side of (105) results in (104). Hence, the proof is completed if λi,
i = 1, 2 given in (47)-(48) solve (105), (106) and (107). Combining (47) with (48), we arrive at
(106). Due to (48), (98) and the definition of λθ1, the property (52) leads to (107). On the other
hand, from (37), (54) and (55) it follows that λ1 in (47) solves (105). In the (N2) case, σ̂1(∞) < ∞
follows from (41). The property (57) guarantees λi(∞) < ∞, i = 1, 2, in (47) and (48). Define
σcl,i = λi(∞)σri ∈ P0, and we do not need θri.
(i): The properties (42) and (43) allow us to define θ2 as in (95) with Y2 = ∞. If α̂1 ∈ K∞ holds,
θ1 can be defined as in (95) with Y1 = ∞. When α̂1 ̸∈ K∞ and (M1) hold, the properties (37) and
(39) imply τ1 ◦ σ̂1(∞) = σ̂1(∞) = α̂1(∞). Thus, θ1 can be defined as in (95) with Y1 = ∞. When
α̂1 ̸∈ K∞ and (M2) hold, the property (42) implies σ̂1(∞) > τ−1

1 ◦ α̂1(∞) yielding λ1(∞) < ∞.
Although θ1(s) defined by (95) is finite for Y1 < ∞, the function λθ1(s) defined by (96) is finite
for all s ∈ R+.

6.7 Proof of Lemma 4

To prove the former claim, we first recall that (36) implies

lim
s→∞

σ1◦α−1
2 ◦ᾱ2◦α−1

2 ◦σ2(s)
α1 ◦ ᾱ−1

1 ◦α1(s)
≤ 1

Then, the situation of ¬(M3) ∧ (36) is

lim
s→∞

σ1◦α−1
2 ◦ᾱ2◦α−1

2 ◦σ2(s)
α1 ◦ ᾱ−1

1 ◦α1(s)
< 1 ∨ (M1)

Thus, the first claim follows straightforwardly. To prove the latter claim, we first see that ¬(J4)
is identical to

{ lim
s→∞

α1(s) = ∞ ∨ lim
s→∞

σ2(s) < ∞} ∧ { lim
s→∞

α2(s) = ∞ ∨ lim
s→∞

σ1(s) < ∞}
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Moreover, the above situation is equal to the logical sum of the following four cases:

lim
s→∞

α1(s) = ∞ ∧ lim
s→∞

α2(s) = ∞ (108)

lim
s→∞

σ2(s) < ∞ ∧ lim
s→∞

σ1(s) < ∞ (109)

lim
s→∞

α1(s) = ∞ ∧ lim
s→∞

σ1(s) < ∞ (110)

lim
s→∞

σ2(s) < ∞ ∧ lim
s→∞

α2(s) = ∞ (111)

Here, the situation (110) is redundant and can be removed since the case which is not covered by
any one of (108), (109) and (111) is

lim
s→∞

α1(s) = ∞ ∧ lim
s→∞

σ1(s) < ∞ ∧ lim
s→∞

α2(s) < ∞ ∧ lim
s→∞

σ2(s) = ∞ (112)

This situation, however, does not occur since (35) is assumed. Therefore, the latter claim has been
proved since (108)= (J1), (109)= (J3) and (111)= (J2).

6.8 Proof of Lemma 5

First, recall again that L ≥ lims→∞ τ−1
1 ◦α(s) is ensured by (39) and (50). By construction, ψ(s)

is continuously differentiable on (0, R). By definition, the following properties hold:

b ∈ P, ω̂1 ∈ P0 (113)

d, η, α ∈ K (114)

(Id + ω̂1) ◦ η(s) ≤ α(s), ∀s∈R+ (115)

Here, (42) and (43) are used for (113), and the inequality (37) corresponds to (115). Assume that

lim
s→∞

α2(s) = lim
s→∞

σ2(s) (116)

holds. Then, the right hand side of the implication (43) holds. By virtue of (39), we obtain

S = L = lim
s→∞

σ̂1(s) = lim
s→∞

α̂1(s) = R

ω̂1(s) > 0, ∀s ∈ (0, S)

lim
s→S

s + ω̂1(s) = S ,

Hence, the function m satisfies

m(0) = 0, m(s) > s, ∀s ∈ (0, S) (117)

From (63), (64) and (65), we obtain

ψ′(s)
ψ(s)

= Q̄(s) ≥ Q(s), s ∈ (0, R)

By virtue of (60), (117), b(s) ≥ 0 and ψ(s) ≥ 0, the following property holds.

[ψ(s)] d̂(s) ≤
[
ψ(s) + (m(s) − s)ψ′(s)

]
b̂(s), ∀s ∈ (0, S) (118)

From (64) and (65) it follows that

d

ds

(
1

Q̄(s)

)
≤ 1, ∀t ∈ (0, R)
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holds. This property guarantees

ψ′′(s) = ψ(s)(Q̄′(s) + Q̄(s)2) ≥ 0, t ∈ (0, R) (119)

When (63) is satisfied by a non-decreasing function Q̄, we have (119) again. Since the inequality
(119) implies the non-decreasing property of ψ′(s), the inequality (118) lead to (69) since η ∈ K.
The boundedness of ψ on (0, S) follows from (60) and (117). Next, assume that (71) holds. Then,
the right hand side of the implication (42) holds. From (115) and 0 < k < 1, we obtain S < R , and
m satisfies (117) and lims→S{m(s)− s} > 0. The property lims→∞ σ2(s) < ∞ guaranteed by (71)
implies lims→∞ d(s) < ∞. The property ω̂1, ω̂2 ∈ K guaranteed by (42) implies lims→∞ b(s) > 0.
These two properties yields

lim sup
s→S

d̂(s)

b̂(s)
< ∞ (120)

Therefore, the definition (66)-(67) and (120) ensure the boundedness of ψ on (0,∞). The rest is
the same as the case of (116).

6.9 Proof of Lemma 6

First, suppose that

lim
s→∞

α2(s) = lim
s→∞

σ2(s) = ∞ (121)

holds. Then, the assumption (J1) ∨ (J2) ∨ (J3) implies lims→∞ α1(s) = ∞. Hence, L = ∞ follows
from L = lims→∞ σ̂1(s), (39) and (40). Next, assume that

lim
s→∞

α2(s) = lim
s→∞

σ2(s) < ∞ (122)

This property, however, does not admit the existence of a function ω2 ∈ K satisfying (45). Since
both (121) and (122) contradict the assumptions of Lemma 6, the only case remaining under (35)
is (71).
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