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Abstract. We investigate in what regime of the frequency the new tunneling
mechanism using unstable and stable manifolds of dividing saddle(K.Takahashi &
K.S.Ikeda, J.Phys.A. 41 (2008) 095101; Phys.Rev.A, 79 (2009) 052114) works as
the leading mechanism of multi-dimensional barrier tunnelling. In the large and
small limits of the frequency, the tunneling rate is well evaluated based on the
instanton picture. It is in the intermediate frequency range that the new mechanism
dominates the tunneling process. The tunneling rate takes the maximum value in this
intermediate range.

PACS numbers: 05.45.Mt, 03.65.Xp, 03.65.Sq, 05.45.-a

1. Introduction

Recent progress in semiclassical description of tunneling in multi-dimensional systems[1,

2, 3] forces some essential alteration to understanding basic mechanism of tunneling.

For multi-dimensional barrier systems, we discovered a new semiclassical mechanism

for tunneling[4, 5, 6], which is essentially different from the well-known instanton

mechanism[7]. The presence of the same mechanism was later reconfirmed in ref.[8] in a

slightly different situation. In this new mechanism, trajectories contributing to tunneling

are guided by complexified stable and unstable manifolds of the saddle orbit above the

top of a potential barrier, for brevity called SUMGT(stable-unstable manifold guided

tunneling). It was also confirmed that, if chaos exists in the real space, complexified

stable and unstable manifolds of chaos guide tunneling trajectories[9, 10], and it may

provide a unified theoretical understanding for various novel tunneling phenomena

peculiar to multi-dimensional systems, including chaos-assisted and resonance-assisted

tunneling[1, 2, 3, 11, 12, 13, 14, 15, 16].

In the previous paper[6], taking a periodically perturbed 1D barrier system as a

model, we reported the observability of crossover between the two different types of

tunneling mechanism, namely instanton and SUMGT as a characteristic change in the
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shape of the tunneling spectrum with change of the perturbation strength. Further,

we have introduced simple tools to judge which mechanism, SUMGT or instanton,

dominates the tunneling process for given parameters and initial condition and to

estimate the tunneling rate without going into fully detail semiclassical calculation and

analysis implemented in ref.[5].

In this paper, we will show the outline of derivation of those simple tools, since

we shew only the results without derivation in ref.[6], and we will, by using them,

investigate change of underlying tunneling mechanism in the whole range of perturbation

frequency from a nearly zero to an extremely large value, which is an important problem

but has not been completely analyzed yet[17]. There observe significant transitions with

frequency, among which SUMGT dominates in a middle range, though the time averaged

instanton and single instanton work in low and high frequency limits, respectively.

2. Model and quantum calculation

The model system adopted in this paper is the periodically perturbed Eckart barrier,

which we have been using in the previous works [5, 6]:

H(Q,P, ωt) =
1

2
P 2 + (1 + ε sin ωt)sech2(Q). (1)

We assume that a plane wave with a constant input energy at E1 = 0.5 is incident on

this potential.

First, we show in Fig.1 results of quantum calculations at several representative

perturbation frequencies. For the quantum calculations, we have used the scheme

developed based on Miller’s (quantum) S-matrix formula[18] by ourselves in ref.[19],

which generates an incident plane wave at a high degree of accuracy with exponentially

small errors so that a scattering eigenstate is obtained numerically. The resultant

tunneling spectrum as a function of the output energy E2 (the absolute value of the

S-matrix shown in Fig.1) consists of delta spikes with a interval ~ω due to periodicity of

the perturbation and so the interval changes with ω, where the spectrum is normalized

such that
∑

n |S(E2 = E1 + n~ω)|2 is the total transmissive probability.

For a low frequency at ω = 0.01, the spectrum is localized in a very narrow range

around E1 at all three values of ε, i.e., ε = 0.1, 0.2, 0.4. The shape of spectrum and

tunneling amplitude are well predicted by an approximation based on instanton.

For a middle frequency at ω = 0.4, the spectra at ε = 0.4 and ε = 0.2 form plateau

envelopes spreading over wide ranges of energy, whose width is roughly estimated as

(1 − ε < E2 < 1 + ε) and corresponds to the oscillating range of real unstable manifold

at an asymptotic side (|Q| À 1). As reported in the previous works[5, 6], those spectra

are the results of SUMGT. On the other hand, the spectrum at ε = 0.1 is a superposition

of two characteristic spectra, a head lobe explained by perturbed instanton theory and

a shoulder formed over an upper range of energy as a result of SUMGT[6]. The side

shoulder grows with increase of ω then it changes into a plateau spectrum at a higher

frequency ω. The growth of the shoulder also depends on ε: the larger ε is, the faster
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Figure 1. (Color on line) Change of tunneling spectra (absolute value of the S-matrix)
with ω at ε = 0.1, ε = 0.2, ε = 0.4 and at ~ = 1000/(3π × 210) ∼ 0.1036. The input
energy is chosen as E1 = 0.5 and E2 is the output energy. (a) ω = 0.01. (b) ω = 0.4.
(c) ω = 10.0.

the shoulder grows with ω, then the spectrum of the strong perturbation first changes

from a localized one to a plateau through intermediate spectra with a side shoulder and

the spectra for the middle and weak perturbations follow successively.

For a high frequency at ω = 10.0, the peak interval ~ω is larger than the energy

difference between the potential height at rest and the input energy, i.e., 1 − E1, then

the semiclassical approximation may not be available in this case. Each peak of the

spectrum is well separated from others and heights of peaks at the same energy value

are not so much different for the three values of ε. The peaks at energy levels excited,

i.e., E2 = E1 + n~ω (n ≥ 1), rapidly decay with ω, then at ω ≥ 30.0, only the peak

at the input energy E1 appears in our numerical range. This means that the spectrum

converges to that of the unperturbed system irrespective of ε.

Consequently, the quantum calculations show that shape and energy range of

spectrum change drastically with increase of ω and so the whole frequency range is

separated into three characteristic ranges, in which the spectrum behaves differently. It

indicates that there are at least three characteristic mechanisms successively governing

the tunneling process with change of ω.

3. Semiclassical analysis

The semiclassical S-matrix[18, 20] is given by

S(E2, E1) ∼ lim
Q1,|Q2|→∞

∑
c.t.

√
|P2||P1|√

2πi~P1P2

√
− ∂2SS

∂E1∂E2

× e−i(P2Q2−P1Q1)/~e
i
~ SS(Q2,E2,Q1,E1), (2)

where the classical action is defined by

SS =

∫ Q2

Q1

PdQ −
∫ t2

t1

H(Q, P, ωt)dt + E2t2 − E1t1. (3)

The summation
∑

c.t. is taken over all the contributing trajectories satisfying the input

and output boundary conditions[18, 20]. The coordinate Qi and momentum Pi (or



Structural change of tunneling spectrum with perturbation frequency 4

C1

2C

C 0

Re 

s
Im

s

t 01

s=0
S+

g1

g2

g3

S+

g1

g2

g3
- S+

-

-S

S

S

Sg0g0S- +

Figure 2. Singularities and representative integration paths on the lapse time plane.

energyEi = P 2
i /2) at the input side(i = 1) and at the output side(i = 2) are quantities

observed and should be taken as real values, whereas times ti are unobserved and are

allowed to be complex variables. Then, the initial and final manifolds are respectively

defined by

I = {(t1, Q, P )|t1 ∈ C, Q = Q1, P = P1(= −
√

2E1)} (4)

and

F = {(t2, Q, P )|t2 ∈ C, Q = Q2, P = P2(= −
√

2E2)}, (5)

which determine isolated (real and/or complex) trajectories. In practical calculation,

we can regard (Q,P ) as functions of the lapse time s ≡ t − t1 (∈ C), the initial time

t1 (∈ C), and the set of fixed initial values (Q1, P1) (∈ R2, Q1 > 0) so that t1 is taken as a

complex search parameter to find trajectories satisfying the output boundary condition,

i.e., Q = Q2(fixed) and E2 ∈ R+(positive real)[20].

The classical solution of the unperturbed system at ε = 0 is given for 0 < E1 < 1

by

Q(t) = sinh−1(λ cosh(
√

2E1(t − t0))), (6)

where λ ≡
√

1/E1 − 1 and t0 is the time at which the trajectory hits the turning

point[18, 20]. Given initial condition (Q = Q1(À 1), P = P1(= −
√

2E1 < 0)) at t = t1,

the interval between t0 and t1 is given by t0 − t1 = (Q1 − log λ)/
√

2E1 ≡ t01.

As shown in Fig.2, the solution has singularities in the lapse time plane and the

singularities are aligned along two vertical lines, i.e., entrance singularities Sg−
n ’s and

exit singularities Sg+
n ’s. The distances between the singularities are given as follows:

Sg±
n − Sg±

n+1 = π/
√

2E1 and Sg+
n − Sg−

n = 2 1√
2E1

sinh−1(1/λ). Fig.2 also shows

representative integration paths labeled ’Cn’(n: integer), which are different in topology.

Trajectories defined along integration paths homotopic to C2n+1’s make contributions

to the tunneling component, while trajectories along C2n’s go back to the reflective side

[20, 4]. The path C1 makes a dominant contribution for the tunneling rate, because it

has the shortest imaginary time evolution giving the smallest imaginary part in classical

action among all odd number integration paths C2n+1’s. The complex trajectory with

imaginary time evolution along the vertical part of C1 is called ’instanton’[7] and the

imaginary depth of instanton is determined by tinst(E1) = −π/
√

2E1[6]. Then, the
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tunneling amplitude is estimated by

WI = exp
(
−1

~
ImSI0

)
, (7)

where the imaginary part of the classical action ImSI0 along instanton is given by

ImSI0 =
√

2E1
1 − E1

E1 +
√

E1

. (8)

Even when a non-zero perturbation is applied to the system, the topology of

integration paths is roughly characterized by that of the unperturbed system at ε = 0 in

the case that the instanton picture works well[4, 5]. In the low frequency limit ω → 0,

the adiabatic approximation based on instanton can be available. In this case, the

effective imaginary-time-evolution of instanton may be given by tinst(E) = −π/
√

2E at

E ∼ E1 + ε, i.e., the shortest imaginary path during the period of perturbation, but the

tunneling amplitude is, as shown later, estimated more precisely by the time average of

instantaneously instanton weights[6]:

Wav =
1

T

∫ T

0

exp(−1

~
ImSI) dt, (9)

where

ImSI =
√

2E1
a(t) − E1

E1 +
√

a(t)E1

(10)

with a(t) = 1 + ε sin ωt, the time dependent barrier height.

On the other hand, the different semiclassical mechanism, SUMGT, dominates the

averaged instanton for the middle frequency range. In this case, trajectories contributing

to tunneling go along the complexified stable manifold of the unstable periodic orbit on

the top of a oscillating potential barrier in the reactant side and are scattered along the

unstable manifold of it in the product side. Actually, a certain critical trajectory on the

stable manifold Ws guides those tunneling trajectories and its initial point t1c, so called

critical point, is the intersection of the initial manifold I with the stable manifold Ws.

The existence of the critical point can be proved by using the Melnikov method[4,

21]. Actually, the energy of a trajectory on the stable manifold at a given time t can be

evaluated by

H(Qs(t), Ps(t), ωt) = H(Qups(t), Pups(t), ωt)

−
∫ ∞

t

{∂V

∂t′
(Qs(t

′), ωt′) − ∂V

∂t′
(Qups(t

′), ωt′)
}

dt′,

(11)

where V (Q,ωt) = (1+ε sin ωt)sech−2Q, (Qups, Pups) denotes the unstable periodic orbit,

and (Qs, Ps) a trajectory on the stable manifold. At the first order approximation of

O(ε), namely Melnikov method[21], the solution Qs(t) in eq.(11) is replaced by the

unperturbed solution Qs0 on the stable manifold[4],

Qs0(t − t1, Q1, P1) = sinh−1(e−
√

2(t−µ)), (12)
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where the parameter µ indicates the initial phase or initial time of the solution. Note

that in the Melnikov method, we use the solution on the stable manifold and so the time

plane topology of the trajectory is much simpler than those of SUMGT trajectories due

to the divergence movement of the singularities Sg+
n ’s at the critical point. Namely, as

shown in refs. [4] and [5], the singularities Sg+
n ’s diverge at the critical point, though

the singularities Sg−
n ’s remain almost at the same positions. The integration path is

taken such that it starts at the complex initial time t1, passes between Sg−
0 and Sg−

1 and

goes toward the real positive infinity, but any homotopic deformations are possible. So

it is simply taken as t1 → µ → t2 + Imt1 → t2(∈ R), where Imµ = Imt1 and t2 → +∞.

Since H(Qs(t), Ps(t), ωt) converges to H(Qups(t), Pups(t), ωt) in the limit Ret → +∞,

then eq.(11) is integrated analytically and the energy at the initial time t1 is given as a

function of µ[4],

H(t1) ∼ 1 + ε(1 − χ(ω)) sin ωµ+O(ε2), (13)

where χ(ω) is defined by

χ(ω) ≡ 2ω

∫ ∞

0

sin ωs

1 + e2
√

2s
ds, (14)

and µ is related with t1 as µ ≡ t1 + (Q1 − log 2)/
√

2. On the initial plane I, the initial

energy E1 should take a real value. If E1 (∈ R+) is taken such that E1 < 1−ε(1−χ(ω)),

i.e., tunneling case, the intersection t1c between Ws and I occurs in the complex domain

and its imaginary part is given by

Imt1c =
1

ω
cosh−1

{ 1 − E1

ε(1 − χ(ω))

}
. (15)

Then, Imt1c decreases with increase of ω and/or ε.

The semiclassical weights of SUMGT trajectories is evaluated by

WS = ~ω exp(−1

~
ImSS), (16)

where the coefficient ~ω arises from the spike-density of the spectrum with the interval

~ω[20]. The values of ImSS for SUMGT trajectories are well approximated by that of the

critical trajectory starting at t1c, because the major contributing trajectories of SUMGT

start from a very small neighborhood of t1c and are guided by the critical trajectory

until being close to the unstable periodic orbit. As remarked above, the time plane

topology of the critical trajectory is much simpler than those of SUMGT trajectories

due to the divergence behavior of the singularities Sg+
n ’s[4, 5], then evaluation of ImSS

becomes easier. Actually, ImSS of the critical trajectory can be evaluated by using the

Melnikov method[6]. To do this, the classical action is rewritten as follows,

SS(Q2, E2, Q1, E1) =

∫ t2

t1

H(Q,P, ωt) dt

−
∫ t2

t1

2V (Q, ωt) + E2t2 − E1t1. (17)

Time evolution of Hamiltonian H(Q,P, ωt) is given by eq.(11). According to the usual

way of the Melnikov method[21], classical variables Q(t) and P (t) are replaced by those
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Figure 3. (Color on line) Depth of critical point vs. depth of instanton with ω.

of the unperturbed trajectory on the stable manifold. Taking the integration path as

t1c → t′2 → t2(∈ R), where Imt1c = Imt′2 and Ret′2 = t2 → +∞, we, after some

calculations, obtain the expression of ImSS [6],

ImSS ∼ Imt1c(1 − E1) −
1 − E1

ω

sinh(ωImt1c)

cosh(ωImt1c)

+
√

2 sinh(ωImt1c)

∫ 0

∞
dx

∫ x

∞
ds

ε sin ωs

cosh2(
√

2s)
+O(ε2), (18)

which allows us to calculate the tunneling weight through eq.(16).

The threshold value ωci at which the transition between instanton and SUMGT

occurs is simply determined by comparison of the imaginary depth of instanton

|tinst(E = E1 + ε)| with the imaginary part of critical point Imt1c. Fig.3 shows Imt1c

as a function of ω at ε = 0.1, 0.2, 0.4 together with |Imtinst(E1 + ε)|. tinst(E1 + ε)

is independent of ω and does not so much change with ε. On the other hand, Imt1c

decreases as ∝ 1/ω for the range ω < 1 and it becomes smaller with increase of ε at

each fixed ω in this range. In the limit ω → ∞, Imt1c, however, converges irrespective

of ε to a constant, Imt1c → π
2
√

2
, which is always less than |Imtinst(E1 + ε)|. Then the

intersection of Imt1c with |Imtinst(E1 + ε)| always exists for any perturbation strength if

ε < 1−E1, but the intersections for ε = 0.1, 0.2 and 0.4, say ωci1, ωci2 and ωci4, hold the

relation ωci4 < ωci2 < ωci1. In the range ω < ωci, instanton should dominates tunneling

process, but out of this range SUMGT may take the place of instanton.

In Fig.4, the maximum value of peaks of the quantum tunneling spectrum max|S|,
namely tunneling amplitude, at ε = 0.1, 0.2, 0.4 is plotted as a function of ω, where the

incident plane wave is normalized such that |S|2 = 1 for the free particle without any

potential. In Fig.4, the semiclassical weight of instanton without perturbation WI , that

of averaged instanton Wav and that of SUMGT WS are also drawn for comparison.
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Figure 4. (Color on line) Comparison of semiclassical predictions by SUMGT and
instanton with quantum calculation in the maximum height of spectrum.

In the range ω < ωci, the weight of averaged instanton Wav well reproduces the

quantum results, which converge to different constant values at ε = 0.1, 0.2, 0.4 in the

limit ω → 0. On the other hand, in the range ωci < ω < ωcq, the SUMGT weight WS

takes the maximum at a certain value of ω and well follows the quantum results ignoring

small oscillations, where ωcq ≡ 1−E1

~ is the frequency above which the particle gains a

piece of energy to go beyond the potential barrier by absorbing a single quanta ~ω.

It is in this range that the tunneling spectrum forms a plateau manifesting the direct

influence of the unstable manifold as shown in Fig.1(b) [5, 6]. It is quite interesting

that the maximum value of tunneling amplitude in the range ωci < ω < ωcq becomes

more than ten times (or hundred times) larger than Wav for ε = 0.2 and 0.1, though it

is slightly larger than Wav at ε = 0.4. It means that the effect of SUMGT is magnified

for weak perturbations rather than strong one. We are now studying this problem for

future publication. Note that the discrepancy between the quantum calculation and the

SUMGT weight WS seems to increase with decrease of ε. It mainly comes from ignoring

the amplitude factor in eq.(2), i.e.,
√

− ∂2SS

∂E1∂E2
. Indeed, as shown in ref.[5], the order of

the amplitude factor is estimated as
√

1/(εω) in a low frequency range(ω < 1) and takes

larger values for smaller ε’s. We don’t have any simple evaluation in a high frequency

range(ω > 1), but we believe that it is also attributed to neglect of the amplitude factor.

In the range ω > ωcq, SUMGT is not available any more except for a border region

near ωcq. Indeed, the maximum of quantum spectrum rapidly decreases with ω and

converges to that of the unperturbed system well estimated by WI . It means that the

frequency is too high for the particle to gain any energy in the limit ω → ∞. On the



Structural change of tunneling spectrum with perturbation frequency 9

other hand, the imaginary part of SS of the critical trajectory seems to converge to a

constant value,

lim
ω→∞

ImSS = (1 − E1)π/
√

2, (19)

so that WS turns to increase with ω as ∝ ω(see eq.(16)) after a rapid decrease in a short

interval of ω above ωcq and is always larger than WI for ω > ωcq. In the range ω À ωcq,

the energy of the state excited by absorbing a single quanta ~ω, i.e., E = E1 + ~ω,

exceeds the characteristic energy range of the unstable manifold 1 − ε < E < 1 + ε

(ε < 1−E1), which means that there is no spectrum peak in this energy range. Therefore,

the SUMGT approximation does not work. In this regime the quantum perturbation

method should be available. Practically, the escaping amplitude due to the absorption

of the quanta ~ω can be roughly estimated by

|S(E1 + ~ω)| ∼ επCω| < uE1+~ω|V0(Q)|uE1 > |
≡ Wqp, (20)

where uE is the scattering eigenstate of the unperturbed system, V0(Q) = sech2(Q) and

Cω =
{

sinh2
(π

~
√

2E ′
)/[

sinh2
(π

~
√

2E ′
)

+ cosh2
(π

2

√
8

~2
− 1

)]}1/2

(21)

with E ′ = E1 + ~ω. This component is nothing more than the so-called ’photo-assisted’

tunneling amplitude, which shows a good agreement with the quantum calculation as

shown in Fig.4, but it decreases exponentially with ω and is finally replaced by the

instanton tunneling amplitude WI(also see Fig.4).

4. 2D system

Finally we mention that the characteristic changes of tunneling spectra described above

occur in a 2D autonomous barrier system such as [5]

Ĥtot(Q, P̂ , q, p̂) =
1

2
P̂ 2 + (1 + βq)sech2Q + Hch(q, p̂), (22)

where Hch denotes Hamiltonian of a harmonic channel given by Hch(q, p) = 1
2
p̂2 + 1

2
ω2q2.

It provides a simplified model of collinear atom-diatomic molecule collisions[13, 18],

where the harmonic channel imitates the di-atomic molecular vibration. In the limit

β = 0, the system is separable: the reaction degree of freedom (Q,P ) and channel degree

of freedom (q, p). The quantum and classical dynamics of the reaction degree of freedom

are completely described by those of the unperturbed system of eq.(1) with ε = 0. Even

when the channel energy is highly excited such that the total energy Etot = Htot is

larger than the potential energy at its saddle point (Q, q) = (0,−β/ω2), instanton

type tunneling is observed for a sufficiently small initial energy of the reaction degree

of freedom. One can easily confirm that the 2D system(22) has a periodic saddle at

(Q,P ) = (0, 0), i.e., a harmonic vibration of the channel, which is just the 1D normally



Structural change of tunneling spectrum with perturbation frequency 10

hyperbolic invariant manifold(NHIM)[22]. The saddle has the same stable and unstable

manifolds in the reaction degree of freedom like the 1.5D model (1)(see eq.(12)).

For a non-zero but not so strong perturbation(β 6= 0), the channel vibration plays

the role of periodic force of the 1.5D system, if the initial channel energy(eigenvalue of

Hch) is sufficiently large. Indeed, the energy exchange between reaction and channel

degrees of freedom in the collision process is negligibly small compared with the initial

channel energy, then the motion of the channel is well approximated by the unperturbed

channel vibration, i.e., harmonic oscillator. In this case, the parameter β plays the

role of ε and the channel frequency ω corresponds to the perturbation frequency of

the 1.5D system in eq.(1). Thus the theoretical results so far developed for the non-

autonomous model(1) are valid for the 2D autonomous model(22)[5]. The complex

domain Melnikov-like perturbation theory developed for the non-autonomous model

can be straightforwardly extended to the 2D model without any modification. We can

predict the intersection of the stable manifold with the initial manifold(initial channel

eigenstate) in the complex domain, and estimate the tunneling amplitude for the 2D

system in the same way. So tunneling caused by SUMGT, i.e., plateau spectrum, arises

in certain parameter ranges. As a result, the observed tunneling spectrum of the 2D

model exhibits changes with change of ω similar to Fig.1. Details will be reported in

forthcoming papers.

Note that in the regime of the true energy-barrier-tunneling, namely Etot less than

the saddle of the potential, the unstable periodic orbit will be bifurcated into a complex

one. It is expected from quantum calculations in ref.[13] and from our preliminary

quantum calculation that SUMGT makes less contribution and instanton type tunneling

dominates, even if an entanglement of the stable manifold with the initial manifold

exists. So we don’t discuss this case.

5. Conclusion

In conclusion, we claim that there are three ranges of perturbation frequency in which

the tunneling effect is qualitatively different to each other. In the low frequency range

(ω < ωci), the adiabatic approximation based on instanton, i.e., averaged instanton,

works well, which is expected from some other works[17]. In the middle frequency range

(ωci < ω < ωcq), which is the inherently multi-dimensional regime, SUMGT governs the

tunneling process instead of instanton. In high range (ω > ωcq), tunneling converges

to that of the unperturbed system, i.e., the unperturbed instanton, but the transition

from SUMGT to the unperturbed instanton observed in a short frequency range is well

approximated by the quantum perturbation method.

The formation of plateau spectrum by the SUMGT mechanism and spectrum

transformation caused by the switching of mechanism from the SUMGT to instanton are

quite universal phenomena, and they will certainly be observed in numerical simulation

of more realistic models, which will be reported in forthcoming papers. Moreover, we

expect that plateau type spectrum and spectrum transformation will be observed in
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actual experiments such as molecule-molecule or molecule-atom collision processes. In

particular, plateau-like spectra have been observed in the experiments of the above-

threshold ionization of Rydberg atoms and the connection with our theory is quite

interesting [23].
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