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Abstract

A new approach, for the estimation of the failure probability from a mixed model

of inferior and quality populations for the case that the ratio of the inferior population

to the quality populations is unknown, is introduced. The possible existence of a quality

population in the mixed populations is investigated using the Akaike information criterion.

The probability of failure after the screening test is then obtained.

Key Words Binomial distribution, Mixture model, Akaike information criterion,

Bootstrap

- 417 -



1. Introduction

If the underlying distribution of starting failure of a computer product is assumed

to follow a single homogeneous population and we only observe the failure counts for

each test sample; we also assume that the product can be started again after the failure of

starting. Then the failure probability is easily estimated by the binomial failure probability

computation, e.g. p = K / N where K is the total count of failures and N is the number of

total trials. ,

Table 1 shows a test result of failure counts for 142 test samples. We can see that

some samples fail very easily, while others very hardly fail. Typically, a and c lines and

e-i lines in the table show very different features from each other; line e expresses that

there are five samples that fail once in ten trials. Therefore, we cannot simply suppose an

existence of only one homogeneous population for that situation.

The following situations are considered in general:

(1) A single homogeneous population with (constant) failure probability p is assumed, as

mentioned above.

(2) Failure probability p is assumed to follow a certain (continuous) probability distribu­

tion.

(3) The products are mixed from more than 2 kinds of populations where one population

may have a failure probability p = O.

(4) The situations (2) and (3) are combined.

It would be difficult to consider the situations (2) and (4) by looking at Table 1

because the failure probability p is not explicitly expressed by some (continuous) random

variables. We are, thus, going to consider the situation (1) and (3) in this paper. When

we assume that samples drawn from a population will never be broken, we define such a

population as a quality population, whereas a population where the failures mayor may

not be observed is defined as an inferior population. Many conventional mixture problems,

i.e., failure populations alone, have been considered up to now, but a mixed population of

inferior and quality populations has not been discussed except for continuous cases (e.g.,

Hirose (2002), Meeker (1987)); this is a new point of the paper.

Suppose, first, that we have a mixed population of inferior and quality populations for

the case that the ratio, r, of the inferior population to the quality populations is unknown

and the failure count, kj , for each test sample is observed. We first estimate the ratio r,

and the failure probability p by a single test for the inferior population. We next want to
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ssume that group G I is a population of quality products and G2 inferior. Assume

at ri denotes the probability that a sample belongs to group G i and Pi denotes the

probability for group Gi ; we suppose that PI = 0 first (i.e., quality group), but we

o deal with the cases that PI > 0 (i.e., inferior group) later.

nce we cannot determine whether a sample is drawn from G I or G2 , we set the

ional expectation, P, of the failure probability for a sample as

P =Pr(failure GIIGI) + Pr(failure G2 !G2 )

(n) k( )n-k (n) k( )n-k= k PI 1 - PI . rl + k P2 1 - P2 . r2,

rting failures are observed in n starting trials. Since

p.~(1- pd n
-

k = 1, (k = 0, PI ----+ 0),

p~(1 - PI)n-k ----+ 0, (k > 0, PI ----+ 0),

P ----+ rl + (1 - P2)n . r2, (k = 0, PI ----+ 0),

P -4 (~)P~(l - P2)n-k . 1'2, (k > 0, Pi -40).

the likelihood becomes

L =Pr(no failures) x Pr(at least one failure)

= (0 {rl + (1 - P2)n j
. r2})

J . no failures

X(II (~; )p;; (1 - P2)n;-k; . 1'2)
J at least one failure
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The number of inferior groups might be larger than 1, say g - 1, then (6) can be extended

as

(7)

3. Failure Probability After Screening

If the failure probability for the population is already estimated, then we can pre­

dict the failure probability during M times starting after m times screening test. The

p;r:PP9:piFty, Qm,M, of M times no failures after m times no failures is

Q _ Pr(no failures in (m + M) trials)
m,M - Pr(no failures in m trials)

rl + (1 - P2)m+M . r2

rl + (1 - P2) m . r2 .

(8)

Therefore, the probability, Pm,M, that at least one failure occurs during M times starting

after screening is

(9)

An extension of (9) to g - 1 inferior groups is similarly obtained.

4. Application

By maximizing the likelihoods in (6) and (7), we can obtain the maximum likelihood

estimates for rand p. The computational results for the data in Table 1 are shown in Table

2, where numbers of inferior groups are 1, 2, 3, 4. In the table, a simple homogeneous

population model and conventional mixture models (Pi > 0, i = 1, ... , g) are also shown.

As a typical case, the contour plot of the log-likelihood function for the case that one

inferior and one quality populations are mixed is shown in Figure 1, in which a unique

solution can be seen. From the table, we can see that (1) the assumption of the existence
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of a quality group is appropriate, and (2) the case that the number of groups is 4 is the

most suitable, according to the Akaike information criterion, i.e., Ale, (Akaike (1973)).

It can be seen from the table that the assumption of a single homogeneous population is

very unrealistic; the Ale value to that model is 222.914, while the most appropriate model

gives its value of 114.172.

The confidence intervals of the estimates ri and Pi are computed using the bootstrap

method (Efron, (1982)). For instance, the histogram for the estimate rl (quality population

ratio) is shown in Figure 2. As the figure indicates, the estimate rl is not so informative.

However, Figure 3, showing the relation between rl and r2, suggests that rl + rl may be

informative; the histogram for rl + rl shown in Figure 4 presents this tendency. We may

say that that G l and G2 consist of almost entirely quality groups. This is consistent with

the results under the assumption that there are one inferior and one quality groups. The

95% confidence intervals of rl and rl + rl are shown in Table 3, along with the case of

9 = 2.

Next, the failure probabilities Qm,M after screening under the condition that PI = a
and 9 = 4 are computed, and Pm,M are shown in Table 4; for example, the no failure

probability in 5000 trails (M = 5000) after m screenings is close to

(10)

This tendency is also valid for 1000 trails.

The confidence interval of the estimates Pm,M and Qm,M are also obtained using the

bootstrap method. The histogram for the estimates P30 ,1000 is shown in Figure 5. The

figure indicates that the estimate P30,1000 is not so informative. This tendency remains

unchanged even when m = 100. The 95% confidence interval of P30 1000 and PIOO 1000 are, ,

shown in Table 5 along with the case of 9 = 2. In 9 = 2, Pm ,1v1 is much more informative

than that in 9 = 4.
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5. Discussions

5.1 Discrete mixture model and continuous mixture model

Hirose (2002) proposes a mixture model of fragile and durable populations for (con­

tinuous) lifetime analysis. The mathematical formulation is expressed as

k

L((},r) = {1- rF(T;(})}n-k. IT rf(ti;(}), (0::; r::; 1),
. i=l

(11)

where F and f are the cumulative probability distribution function and the density function

respectively, () is the unknown parameter, T is the censoring time, ti is the observed failure

time. Here, r is the ratio of the fragile population to the mixed population. This reminds

us of a similar treatment to a discrete model here. For example, if we assume that the

starting failure probability is F(T) and successful probability is 1 - F(T), (11) becomes

L ex (1 - rp)n-k . (rp) k . (12)

We may assume that F(t) = 1-exp(-at). By combining a constant term IT j (~j) to (12), L

can be maximized when rp = 27/4120 and log L gives a value of -110.457 which is exactly

the same as that given in the simple binomial model; see Table 2, the number of parameters

is 1. However, we cannot determine the values of rand p uniquely by maximizing (12).

Thus, we cannot find the ratio r in the discrete model unlike the continuous model.

5.2 Model selection

To select the most optimal model is a difficult problem. We have to use some justi­

fication methods. The AlC is s>ne of the methods. To select a model which gives smaller

confidence intervals for the estimates than any other models may be another choice. From

the AlC viewpoint, the model 9 = 4 is the most appropriate. From the smaller confidence

interval viewpoint for Pm,M, 9 = 2 may be an appropriate model. However, it would be

dangerous to adopt the latter case. Even if Pm,M is not so informative, adopting the case

of 9 = 4 would be appropriate.
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6. Summary and Concluding Remarks

Estimation method of the failure probability from a mixture model of inferior and

quality populations for the case that the ratio of the inferior population to the quality

populations is unknown is introduced. A failed data case indicates the possible existence

of a quality population in the mixed populations using the Akaike information criterion.

The probability of failure after the screening test is also obtained.
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Table 1. Test result of failure counts.

trials failure times number of samples

a 1000 0 1

b 1000 4 1

c 100 0 8

d 10 0 123

e 10 1 5

f 10 2 1

g 10 3 1

h 10 4 1

10 9 1

total 4120 27 142

Table 2. Estimated parameters, log L, and AlC.

number of parameters PI P2 P3 P4 Ps logL AlC

rl r2 r3 r4 rs

2 0 0.01830 -96.5605 197.121

0.6917 0.3083

4 0 0.004506 0.4489 -55.7097 119.419

0.45071 0.5214 0.02788

6 0 0.003774 0.1896 0.8998 -51.0865 114.173

0.5621 0.3891 0.04178 0.007044

8 0 0.003774 0.1896 0.8998 0.191 x 10-12 -51.0865 118.173

0.4918 0.3891 0.04178 0.007044 0.07025

1 0.006553 -110.457 222.914

1

3 0.4401 0.002207 -57.3370 120.674

0.02880 0.9712

5 0 0.004506 0.4489 -55.7097 121.419

0.45071 0.5214 0.02788
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Table 3. 95% confidence intervals of rI, rl + r2·

lower upper

confidence estimate confidence 9

limt limit

rl 4.4 x 10-13 0.5621 0.9470 4

rl + r2 0.8975 0.9512 0.9893 4

rl 0.4633 0.6917 0.8855 2

Table 4. The probability of failures Pm,M after screening.

M m=30 m=50 m= 100

1 0.001457 0.001375 0.001214

5 0.007208 0.006823 0.006025

10 0.01425 0.01352 0.01194

50 0.06588 0.06275 0.05542

100 0.1203 0.1147 0.1013

500 0.3244 0.3093 0.2732

1000 0.3733 0.3560 0.3144

5000 0.3820 0.3643 0.3217

10000 0.3820 0.3643 0.3217

50000 0.3820 0.3643 0.3217

g=4

Table 5. 95% confidence intervals of Pm,M.

lower upper

confidence estimate confidence 9

limt limit

P30.1000 0.0001 0.3733 0.9435 4

PlOO,lOOO 2.7 X 10-11 0.3144 0.9394 4

P 30 ,lOOO 0.03879 0.2039 0.4215 2

PlOO,lOOO .001991 0.06566 0.2215 2
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Fig. 1 The contour plot of the log-likelihood for the case
that one inferior and one quality populations are mixed.
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Fig. 2 The histogram of estimate rl .
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Fig. 5 The histogram of estimate P30,1000·
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