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Abstract 

The annotation of protein structure and function from sequence and the 

prediction of compound’s activity from sketch representations are fundamental goals 

in bio- and chemoinformatics. In the present study, fast and accurate predictors of 

protein conformational stability and kinase and protease inhibitions were built from 

graph representations of proteins and ligands. Firstly, Amino Acid Sequence 

Autocorrelation (AASA) vectors were computed from the Cα-carbon linear graph 

representation of a large dataset of protein mutants (>1000) from Protherm database. 

Genetic algorithm-optimized support vector machines (GA-SVM) were trained with 

AASA vectors to predict the real ΔΔG values with squared correlation coefficient of 

0.45 and classify ΔΔG signs with accuracy of 80%. The stable mutants in the test set 

were recognized with accuracies of 70%. Secondly, AASA vectors and ligand’s 

autocorrelation features were computed from the linear graph representation of kinase 

and protease and from 2D molecular graphs collected from ProLINT database. SVMs 

trained with concatenated autocorrelation matrices yielded test set accuracies > 80% 

for kinase and protease targets. The inhibition predictors perform homogenously 

along the different kinase and protease families and ligands’ scaffolds. The predictors 

from sequences and sketch representations of ligands are online available at: 

http://gibk21.bse.kyutech.ac.jp/llamosa/ddG-AASA/ddG_AASA.html 

http://gibk21.bse.kyutech.ac.jp/AUTOkinI/SVMpredictor.html 

http://gibk21.bse.kyutech.ac.jp/AUTOprotI/SVMpredictor.html
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1.1  Background 

A growing amount of biological data is being generated by the rapid progress 

of biotechnologies and the human genome project [1]. Information on metabolic 

pathways, protein structures, nucleic acid sequences, drug metabolism and toxicity, 

biomolecule interactions, biological organisms, diseases, scientific literature, and 

further more is publicly accessible through more than 500 databases containing 

different subset of biological knowledge [2, 3]. Some representative examples include 

diverse databases as: PubMed [4], the searchable compendium of biological literature 

that is maintained by the National Center for Biotechnology Information (NCBI); 

Ensembl [5], the database of human gene predictions that is maintained by the 

European Bioinformatics Institute (EBI) and the Wellcome Trust; the UCSC Genome 

Browser a human, mouse and rat genome browser [6] that is maintained by the 

University of California at Santa Cruz; FlyBase [7], the Drosophila research 

community database that is maintained by the FlyBase Consortium; WormBase [8], 

the Caenorhabditis elegans model-organism database; the Gene Ontology (GO) 

database [9] of gene function, process and location terms; and ChEMBLdb, a 

database of bioactive drug-like small molecules that is maintained by European 

Bioinformatics Institute [10].  

Among the on-line accessible databases for structural and functional 

information of proteins, ProTherm: Thermodynamic Database for Proteins and 

Mutants [11], is the first and more comprehensive thermodynamic database available 

online since 1998 from the BIOINFO BANK laboratory of the Department of 

Bioscience and Bioinformatics of the Kyushu Institute of Technology, Japan. 

ProTherm includes thermodynamic and structural data on proteins and mutants along 

with measuring methods, experimental conditions and literature information.  
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Our laboratory created and maintains a database of protein-ligand 

interactions collected from the literature and developed as web-based public 

accessible database. ProLINT: Protein-Ligand Interactions includes binding data on 

kinases and proteases [12], sequences and structural information regarding the protein 

targets, structural information regarding the ligands together with experimental details 

and literature information.  

Accessing to biological database resources is indispensable to conduct 

nowadays research in fields like molecular biology, genetics and medicinal chemistry. 

The routinary use and analysis of these information resources remains challenging to 

experimentalist researchers although great efforts are devoted to database integration 

and the development of computational tools [13]. Life-sciences scientists are now 

building heterogeneous models by linking analysis of different domains to elucidate 

the keys of their interactions for a better comprehension of the biological systems 

[13]. In this context, web-server and stand-alone applications provided to end-users, 

with different backgrounds and skill sets, gain additional value as computational 

applications to analyze the abundant information available. Computational biology 

offers tools that can provide insight into the functions of proteins based on sequence, 

structure and evolutionary history. Computational analysis of protein structure, 

function and interactions using biological databases involve several techniques such 

as homology modeling, molecular dynamics, docking, quantum chemistry, machine 

learning, quantitative-structure function relationship and so on.  

 

1.1.1 Computational prediction of protein conformational stability 

Defective protein folding is an important cause of mutation-related 

diseases, thus predicting protein structures and stability is a fundamental goal in 
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molecular biology and even predicting changes induced by point mutations has 

immediate application in computational protein design [14-16]. Conformational 

stability is experimentally measured as the unfolding Gibbs free energy change (ΔG) 

(Figure 1.1).  

 

 

 

 

 

 

 

 

Figure 1.1. Protein unfolding Gibbs free energy change (ΔG). 

Although free energy simulations have accurate predicted relative stabilities 

of point mutants [17], the computational cost of the actual methods are extremely 

high to test large number of mutations in protein design applications. Translation of 

structural data into energetic parameters is intended today by developing fast 

algorithms for protein energy calculations. However, the development of fast and 

reliable protein force-fields is a complex task due to the delicate balance between the 

different energy terms which contribute to protein stability. Force-fields for predicting 

protein stability can be divided in three main groups: physical effective energy 

function (PEEF) [18, 19], statistical potential-based effective energy function (SEEF) 

[20, 21, 22] and empirical data-based energy function (EEEF) [23, 24]. 

Furthermore, stability prediction studies not based on protein force-field 

calculations have been focused on correlations of free energy change with structural, 

En
er
gy
	  

folded	  	  

protein	  

unfolded	  	  

protein	  

ΔG	  



	   5	  

sequence information and amino acid properties such as hydrophobicity, accessible 

surface area, etc. In this sense, Gromiha et al. had reported some of the seminal works 

in this topic [25-27]. Furthermore, empirical equations involving physical properties, 

have been calculated from mutant structures. Zhou and Zhou [28] reported a broad 

study regarding 35 proteins and 1023 mutants from which they derived a new stability 

scale. A “transfer free energy” scale was extracted assuming that the mutation-

induced stability change is equal to the change in transfer free energy without needing 

any structural information.  

Likewise, some X-ray structural-independent stability prediction methods 

have gained attention. The advantages of such methods are that they just employ 

amino acid sequence information for predicting protein stability and are extremely 

less computational intensive in comparison with free energy function methods [28, 

29]. Levin and Satir [28] successfully evaluated the functional significance of 

mutations on hemoglobin by amino acid similarity matrixes. Frenz [29] reported a 

nonlinear model for predicting the stability of Staphylococcal Nuclease mutants by 

amino acid similarity scores. Outstanding reports of Capriotti et al. [30-32] describe 

predictors of the unfolding change of protein Gibbs free energy change (ΔΔG) upon 

mutations by sequences and 3D structures from a dataset of more than 2000 mutants.  

More recently, new predictors have been published using sequence and/or 

3D structure information. Particularly, iPTREE-STAB server [33] discriminates the 

stability of proteins and predicts their changes upon single amino acid substitutions 

from amino acid sequence. Similarly, Cheng et al. have developed sequence and 3D 

structure-based SVM predictors [34]. In addition, Parthiban reported the prediction of 

protein mutant stability from distance and torsion potentials [35].  

However, the efficient and accurate computational prediction of 
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conformational stability of protein remains as a challenge. The implementation of 

simple and intuitive sequence-based approaches that consider the effects of multiple 

point mutations, insertion or deletion of residues is particularly important. 

 

1.1.2 Kinase inhibitor therapeutic agents and affinity prediction 

Death by cancer has recently increased all around the world [36]. It has been 

reported that the improvements in conventional cancer treatments such as surgery, 

radiation and cytotoxic chemotherapy will not substantially impact the clinical 

outcomes for cancer patients in the future [36]. Due to this, researches have focused 

on alternative clinical strategies such as the development of a variety of protein-

targeted molecule-based cancer therapies, especially selective kinase inhibitors [36]. 

Kinase, alternatively known as a phosphotransferase, is a type of enzyme that 

transfers phosphate groups from high-energy donor molecules, such as ATP, to 

specific substrates. The process is referred to as phosphorylation.  

Need for discovery of novel kinase inhibitors has acquired a particular 

significance, while has led to more basic efforts at the understanding of kinase 

inhibition process and methods to predict the stability of a potential kinase-inhibitor 

complex. There are approximately 500 kinases encoded in the human genome having 

potential role in cancer [37-39]. The number of available high-resolution X-ray 

crystal structures of kinase-inhibitor complexes has substantially increased during 

recent years. Structural information obtained from these complexes has become an 

important guide in designing selective potential kinase inhibitors. It is of utmost 

importance to make the best use of available structure information from these 

complexes in order to predict the behaviour of hypothetical complexes as an aid for 

inhibitor design [40-41].  
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Inhibition of protein kinases can be broadly classified into three categories: 

ATP-competitive inhibition, substrate-competitive inhibition, and allosteric inhibition. 

Successful treatments of chronic myeloid leukemia and gastrointestinal stromal tumor 

with Gleevec [42] have recently drawn much attention because of its excellent 

selectivity and its ability to bind to a precise inactive conformation of Abl kinase. 

However, the emergence of drug-resistant mutants [43] and structural studies suggest 

that mutations in the kinase domain cause resistance to the Abl kinase inhibitor [44]. 

Other studies have also shown that some inhibitors can recognize specific inactive 

conformation of B-Raf (1UWH) and p38 (1W83), whereas some others can inhibit the 

active form of Abl kinase [45]. But all of them have been shown to decrease or 

completely lose inhibitory activity towards some mutated kinase. In this sense, 

Thaimatta et al. [46], in the review of kinase inhibitors, states that the modulation of 

kinase activity has not been sufficiently exploited for therapeutic purposes. Inhibition 

of a single kinase may be insufficient to achieve a therapeutic benefit, and that 

promiscuous small-molecule kinase inhibitors or cocktails of inhibitors may be more 

promising than selective agents by targeting several kinases. In view of these facts, 

different computational approaches for kinase drug design need to be explored, in 

order to find novel, more efficient and side effects-free kinase inhibitors. 

A large number of QSAR models on kinase inhibition have been reported and 

Tyrosine Kinase is the most studied family. In this regard, Kurup et al. [47] published 

a review of QSAR studies for the inhibitory activity of a chemically wide dataset 

towards five Tyrosine Kinases: Epidermal Growth Factor Receptor Tyrosine Kinase, 

Platelet-Derived Growth Factor Receptor Tyrosine Kinase, Fibroblast Growth Factor 

Receptor Tyrosine Kinase of Vascular Endothelial Growth Factor Receptor Tyrosine 

Kinase and Non receptor Tyrosine Kinase. They reported a huge amount of 40 QSAR 
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equations using hydrophobicity, steric and electronic descriptors. The authors did not 

use target information but they tried to establish target-ligand interaction hypothesis 

by comparing quality and descriptor occurrences on the models for different inhibitor 

datasets on the same target or the same inhibitor dataset for different targets. The 

authors used very intuitive descriptors and, although the stability of target-ligands 

were predicted with high crossvalidation accuracies, the use and generalization of 40 

models as well as their comparative interpretation is rather rough.   

 

1.1.3 Protease inhibitor therapeutic agents and affinity prediction 

Proteases are a family of enzymes representing approximately 2% of an 

organism proteosome that exert bioregulation, matrix remodeling, digestion, and 

immune response processes [48]. These enzymes account for 5–10% of the 

pharmaceutical targets in the current pharmaceutical market [49]. Proteases 

discriminate between the many possible available substrates cleave a specific protein 

or peptide. Subsites controlled protease specificity by assisting in the selection and 

orientation of a given substrate [50]. According to the architecture of enzyme active 

site and mechanism of hydrolysis, there are four major classes of proteases: serine 

proteases (which account for approximately one-third of all proteases), aspartic 

proteases, cysteine proteases, and metalloproteases [49, 51]. 

Proteases virtually occur in all biological process and their ability to 

catalytically turnover substrate, makes them ideal biomarkers for disease diagnostic 

and therapy. Infectious diseases such as malaria and Chaga’s disease involve cysteine 

proteases, falsipain 1 [52] and cruzain [53], which help parasites in the invasion of the 

host cell.  Similarly in HIV infection, an aspartic protease (HIV-1 protease) is 

responsible for the maturation of the virus [54]. In turn, proteolysis can be found to 
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participate in five of the six processes of hallmarks of cancer [55]. A serine protease, 

prostate-specific antigen (PSA, human kallikrein 3), is currently used as clinical 

marker for prostate cancer [56]. Matrix metalloproteinases (MMPs) is a family of zinc 

endopeptidases involved in the connective tissue remodeling and implicated in some 

processes such as ovulation, embryonic growth, angiogenesis, differentiation, and 

healing [57]. Since any disturbance of the generally well-balanced equilibrium 

between the MMPs and their physiological inhibitors can provoke pathological 

situations such as rheumatoid and osteoarthritis, atherosclerosis, tumor development, 

tumor metastasis and pulmonary emphysema, MMP inhibitors have caught the 

interest as an important class of drugs for the development of innovative 

chemotherapeutics in several fields where effective treatments are lacking [58]. 

The development of novel diagnostic and therapeutic protease-active 

compounds depends on the understanding of protease’s inhibition mechanism and 

specificity. Identification of protease substrates and hydrolytic products will 

contribute to elucidate the mechanisms behind the progression of disease and increase 

opportunities for the development of drug candidates and their interventional use [58].  

The availability of three-dimensional structural information for proteases has 

improved this substrate-based drug design allowing receptor-based computational 

design. Structural information about the active site of the protease is computationally 

fitted into its selections of designed molecules from low molecular weight compound 

scaffolds. Several low molecular weight inhibitors of HIV-1 protease such as 

saquinavir, ritonavir, indinavir, nelfinavir, and amprenavir, currently used in humans, 

are among the first successful examples of receptor/structure-based designer drugs 

[59]. They were developed using structures of compounds bound to the active site of 
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HIV-1 protease and with the knowledge of inhibitors of other aspartic proteases like 

rennin [59].  

For the last two decades, classical and 3D-QSAR approached have been 

extensively used to model protease inhibition [60-69]. A comprehensive review by 

Verma	   and	   Hansh [70] discussed a hundred of published and newly formulated 

QSAR models on the inhibition of various compound series against MMP-1, -2, -3, -

7, -8, -9, -12, -13, and -14 were discussed in the context of the chemical–biological 

interactions. Similar to Kurup et al. [47], they established target-ligand interaction 

hypothesis by comparing the quality and descriptor occurrences on the models for 

different inhibitor datasets on the same target or the same inhibitor dataset for 

different targets. Another review on FXa inhibitors discussed 3D-QSAR studies and 

classical QSAR approaches on chemically diverse data sets ranging from 20 to 80 

compounds [71]. The most correlating features were hydrophilicity-related properties 

such as ClogP with molar refractivity and sterimol parameters also important in most 

of the models [71]. Although the ligand activity were predicted with high accuracies, 

the use and generalization of several models as well as the comparative interpretation 

is rather rough. Additional efforts are needed to take the results of computational 

studies to the level of experimental accuracy, both to provide a screened set of 

compounds as well as predict the outcome of experiments.  

1.2  Objectives  

The main goal of this thesis was to develop three fast and simple 

computational tools, which accurately could predict the conformational stability of 

protein mutants and classify the inhibition affinity of ligands towards kinases and 

proteases. The first predictor should help on the design of new proteins and to identify 

disease-causing mutations. The second and the third one should allow the efficient 
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filtering and screening of compound databases for putative potent inhibitors.  To 

accomplish this objective the following specific tasks were developed: 

1.2.1- Prediction of protein conformational stability 

• To build a protein conformational stability dataset by collecting protein 

sequences, experimental values of change of free energy change (ΔΔG) 

upon mutation and structural and experimental information from 

Protherm database [11]. 

• To calculate autocorrelation features from the Cα-carbon linear graph 

representation of mutants sequence. 

• To optimize support vector machines to predict protein conformational 

stability from autocorrelation features using genetic algorithm-based 

hyperparameter optimization and feature selection. 

• To analyze general predictor performance and evaluate the accuracy 

for different types of mutations. 

• To analyze the optimum correlating properties in terms of the 

contribution to the conformational stability. 

• To implement a web-server application to predict the conformational 

stability of protein sequence through the world-wide-web. 

1.2.2- Prediction of kinase and protease inhibitions 

• To build two inhibition datasets for kinase and protease by collecting 

protein sequences, ligands structures and experimental measures of 

inhibition affinity from ProLINT database [12]. 

• To calculate topological autocorrelation features from the weighted 

linear graph representation of targets and 2D graphs of the inhibitors. 

• To analyze target similarity based on the distribution of the high 
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affinity inhibitors. 

• To optimize support vector machines to predict inhibition using 

concatenated matrices of autocorrelation features. 

• To analyze the predictor performance and accuracy for different target 

families and inhibitor scaffolds. 

• To implement two web-server applications to predict inhibitor affinity 

towards different kinase and protease sequences. 

 

1.3  Thesis Outline 

The thesis is organized in six chapters. The Chapter 2 discusses datasets and 

computational methods used in the present study. The Chapter 3 describes the 

computation of Amino Acids Sequence Autocorrelation (AASA) vectors from the Cα-

carbon linear graph representation of sequences and the implementation of support 

vector machines (SVM) and genetic algorithm (GA) hybrid approach to predict real 

values and signs of unfolding ΔΔG of protein upon mutations. In Chapter 4, AASA 

vectors were calculated on kinase sequences and combined with autocorrelation 

features from ligand 2D graphs to train SVM models of kinases inhibition. The 

Chapter 5 deals with the same framework developed in Chapter 4 but now applied to 

predict affinity of ligands towards proteases. Chapter 6 summarizes the results and 

discusses the prospective based on the present study.  
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COMPUTATIONAL METHODS
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2.1.  Protein Mutants Dataset 

A non-redundant version of the mutant list previously reported by Capriotti 

et al. [1] was collected from the Protherm database [2] according to the following 

constrains: 

1) ΔΔG values have been experimentally determined and reported in the 

database. 

2) the data is related to single point mutations (non multiple mutations were 

taken into account). 

After filtering and removing redundant entries, a total of 1383 non-redundant single 

point mutants were used as training set.   

A test set was prepared including non-redundant double and multiple-point 

mutations in Protherm [2] and single point mutations added to the database from 

Cappriotti’s selection date (February, 2004) [2] until September, 2007.  The test 

dataset was collected according to the following constraint:  

1)  ΔΔG values have been experimentally determined and reported in the 

database. 

2) single mutants in Capriotti’s dataset were not considered. 

After filtering we gathered a test set including non-redundant 222 single, 277 

double and 144 multiple-point mutations corresponding to 22, 43 and 18 proteins, 

respectively.   
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2.2. Kinase Inhibition Dataset 

The kinase inhibition data: a total of 8235 inhibitors for 95 sequences of 

kinase, was obtained from our in-house manually-curated and annotated protein-

ligand interaction data in ProLINT database [3]. Annotations include comprehensive 

information about experimentally determined thermodynamic, structural, clinical and 

activity parameters. Kinase sequences were retrieved from UniProt database [4] and 

added to the kinase inhibition dataset. Instant JChem software [5] was used for 

chemical database management. In many cases, ProLINT data do not contain or have 

ambiguous values for some of the parameters for a given interaction, as it may have 

not been reported in the corresponding literature source. The dataset was therefore 

filtered according to the following criteria: 

1. Inhibitors reporting IC50 (81% of kinase entries in ProLINT contain IC50, 5.7% 

for Ki and 13% for percent of inhibitor activity).  

2. Inhibitors fulfilling the mass bioavailability constraint (molecular weight < 

500 g/mol). 

3. Inhibitors reporting unambiguous sequence information for the kinase on 

which experiment was performed.   

After the filtering process, the redundant entries were removed and finally a 

dataset of 3595 nonredundant inhibition complexes (different ligand-target pairs) of 

2233 unique inhibitors with 62 kinases from 19 kinase families was selected (data 

available from the authors upon request). Inhibition complexes were labelled into two 

classes according to the affinity threshold of 1 µM; “stable” class (IC50 < 1 µM) and 

“unstable” class (IC50 > 1 µM) yielding 1200 stable and 2395 unstable complexes.  
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2.3. Protease Inhibition Dataset 

The protease inhibition data: a total of 5048 inhibitors for 52 sequences of 

proteases, were obtained from our in-house manually-curated and annotated protein-

ligand interaction data in ProLINT database [3]. Annotations include comprehensive 

information about experimentally determined thermodynamic, structural, clinical and 

activity parameters. Protease sequences were retrieved from UniProt database [4] and 

added to the protease inhibition dataset. Instant JChem software [5] was used for 

chemical database management. The dataset was filtered according to the following 

criteria: 

1. Inhibitors reporting Ki (40% of proteases entries in ProLINT contain Ki, 

33% for IC50 and 27% for other measures of inhibitor activity).  

2. Inhibitors reporting unambiguous sequence information for the protease on 

which experiment was performed.   

After the filtering process, the redundant entries were removed and finally a 

dataset of 1706 nonredundant inhibition complexes (different ligand-target pairs) of 

739 unique inhibitors with 32 proteases from 9 protease families were selected. 

Inhibition complexes were labelled into two classes according to the affinity threshold 

of 0.1 µM; “high affinity” class (Ki < 0.1 µM) and “low affinity” class (Ki > 0.1 µM) 

yielding 718 low affinity and 988 high affinity complexes.  

 

2.4. Representations of Protein Sequences as Linear Graphs 

Machine learning algorithms have been applied to several problems in 

computational biology. However, the successful application of pattern recognition 
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techniques is tightened by the availability of protein feature vectors properly encoding 

structural information from sequences and/or crystal structures. Besides this fact, the 

scarce information provided by the string sequences means there is a necessity to 

develop alternative representations of the primary structure of nucleic acids and 

proteins and to implement novel frameworks for similarity studies. 

More than one decade ago, several authors started representing biological 

sequences in continuous coordinate spaces [6-12]. The basic idea is to define 

trajectories in the continuous space conserving the statistical properties of the 

sequences of nucleotides in nucleic acids, aminoacids in proteins and repeated 

nucleotide sequences in Multi Locus Sequence Typing [13]. Ideally, the coordinate 

position of each unit in a sequence would uniquely encode for both its identity and its 

context, i.e. the identity of its neighbors [14] and should be scale-independent.  

Based on CGR, different representations of DNA and protein sequences have 

been described.  CGR of DNA sequence was reported by Jeffrey [9] and further 

systematized to any discrete sequence of regular elements [15, 16]. This technique 

was applied to analyse primary structures of protein sequences using a CGR template 

of 20 attractors (amino acids) [11]. 2D graphical representations of proteins starts at 

the center of the circle following the amino acid sequence by moving half way 

towards the corresponding amino acid, similar to the scheme of Jeffrey’s CGR of 

DNA [9]. Randic et al. [14] described a highly compact graphical and numerical 

characterization of proteins constructed inside a unit “magic circle” with the 20 amino 

acids positioned at equal distances along its circumference. The sequences of proteins 

in a database were plotted inside a regular 20-vertex polygon, irrespectively of their 

functions or origins, looking for occurrence frequencies of special sequence motifs in 

the whole protein database. Yu et al. [17] reported 2D map representation of protein 



	   23	  

sequences based on detailed hydrophobic-polar HP model. The 20 different kinds of 

amino acids were divided into four classes: non-polar, negative polar, uncharged polar 

and positive polar. This method was used to develop a highly accurate linear 

discriminant function for the recognition of polygalacturonases from a dataset of 

protein sequences [18], type III Rnases [19] and protein targets of Leishmania 

parasites [20]. 

A 3D pseudo-folding representation proposed by Bai and Wang and derived 

from CGR [21] used a 3D Cartesian coordinate system. In this representation, 

proteins are shown in the interior of regular dodecahedron centered at origin of the 

Cartesian coordinate system and one vertex at the point (0, 0, 1) that is circumscribed 

inside a unit  “magic sphere”. At the dodecahedron vertexes were positioned 20 

amino acids. We applied the “moving across the sequence” scheme, reported by 

Jeffrey [9], to calculate 3D coordinates for amino acid residues in a sequence [22]. 

This representation successfully recognized stable proteins [22] and successfully 

classified calcium channel proteins into electro-physiological classes [23].  

Recently, protein sequences were represented as networks where the amino 

acids are the vertexes (nodes), connected in a specific sequence by the peptide bonds. 

This star graph is a special case of trees with N vertexes, where one has N-1 degrees 

of freedom and the remaining N-1 vertexes have just a single degree of freedom [24, 

25]. Visualization of biological sequences has been also developed using cellular 

automata (CA)  [26]. Sequences were translated into a set of dynamical systems in 

which space and time are discrete. Transforming the symbolic sequence into digital 

codes through optimal space-time evolution rules generated a unique CA image. Xiao 

et al. [27] showed that this representation depicts some important features originally 
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hidden in a long and complicated biological sequence, such as the characteristic 

vector of a sequence.   

A very simple and straightforward representation consists of depicting 

sequence as linear graph in which nodes represent Cα  atoms of amino acid residues 

(Figure 2.1) and weight values (properties) are assigned to each node (residue). In 

fact, this approach can be considered as an extension of the popular and widely used 

2D graph representation of low molecular weight compounds to polymeric 

macromolecules taking amino acids residues as structural units. Different sets of 

amino acid/residues properties from AAindex database [28] have been used for 

generating weighting patterns for such graphs.  Similarly, the well-known z-scores 

from principal component analysis of amino acid/residues properties have been used 

as weights [29]. A variety of feature vectors have been calculated using these 

representations, based on graph index invariants and topological indexes. Amino Acid 

Sequences Autorrelation (AASA) [30, 31], protein linear indexes of the 

‘macromolecular pseudo graph Cα-atom adjacency matrix [32], pseudo-amino acid 

composition [33, 34] as well as full sets of topological and markovian-derived 

descriptors [35, 36] have been proposed for encoding properties distributions and 

quasi-order information in protein sequence. This representation has been 

successfully applied, either explicitly or implicitly, to predict subcellular locations 

[33], secondary structure [34] of proteins, the conformational stabilities of single 

protein mutants [30, 1] and receptor affinities [37].  

In addition to its simplicity and success, this representation is the most 

suitable to combine macromolecular targets and low molecular weight ligands into a 

simple and sound representation. Regarding this, sequences extracted from ProTherm 

[2] and ProLINT [3] databases were represented as weighted linear graphs in our 
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studies. As weights for sequence residues were employed, physicochemical and 

conformational amino acid/residues properties (Table 2.1 and 2.2 Appendix) selected 

from the AAindex database [28]. 

 

 

 

Figure 2.1. Schematic representation as linear graph of a hypothetic decapeptide with 
sequence ASTCGFHCSD. 

 

2.5. Calculation of Structural Features of Proteins and Inhibitors  

The in-silico study of biomolecule structures and interactions constitutes a 

parallel and complementary approach to experimental research, which have used 

molecular dynamics simulations, Quantum Mechanical/Molecular Mechanical (QM-

MM), docking, and Quantitative-Structure Activity Relationships (QSAR) 

computational techniques [38]. In QSAR studies (Figure 2.2), structural features are 

correlated to activity/properties real values or classification schemes using 

mathematical functions that range from simple linear regressions to sophisticate 

machine learning implementations. This approach includes a large number of models 

for the prediction of inhibitor affinity values [39, 40]. 

QSAR and docking techniques have yielded the most of the models for 

predicting enzyme-inhibitor binding affinities [41]. Even if protein targets are closely 

related or correspond to the same protein family, different targets should constitute 

individual training sets to model multiple target-ligand systems. In this sense, this 

technique produces a huge amount of models, each one applicable to each target, to 

model affinities towards multiple targets. This fact makes difficult the model's 

A         S         T        C         G         F         H         C         S         D 	  	   	   	   	   	   	   	   	   	  
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interpretation and generalization, even for closely related targets. Additionally, 

docking studies employ 3D structures from targets and ligands for generating 

interaction scores for ligand-target binding conformations. The main uses of docking 

are to select hits in virtual library screening and to evaluate 3D binding modes. This 

technique is very convenient to preselect “true binders” for chemical library from 

virtual library. A detailed description of target and ligand 3D structures is needed for 

docking. However, only for closely related target some generalizations can be made if 

very good alignments are available and ligands are also very familiar [41]. 

Generalized models for enzyme inhibition that include ligands from different 

scaffolds will be difficult to build by docking. 

Proteochemometrics (PCM) a variant of QSAR analysis proposed by Wikberg 

[42], originates from chemometrics, the mathematical methods to analyze chemical 

data. Based on a specific structure representation, PCM models can describe the 

properties of macromolecules (such as proteins) as well as the interactions between 

them and a series of ligands. These models are useful for predicting the properties of 

new proteins as well as the affinities of new proteins for their ligands. Similarly, one 

PCM model can predict the affinity of new ligands towards a group of related targets. 

A PCM experiment is typically described by three descriptor blocks; the ligand 

descriptor, protein descriptor, and ligand-protein cross-term blocks. A vector of 

variables of ligand descriptors characterizes each ligand. Similarly, each protein is 

described by protein descriptors. Depending on the problem, one or more descriptor 

blocks can be discarded. In our study, the cross-term blocks were discarded since 

nonlinearity was automatically incorporated into the models by nonlinear 

approximation methods.  
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Figure 2.2. Scheme of QSAR framework. 

 

2.5.1 Topological autocorrelation vectors 

The binding of a ligand to a target depends on the shape of the ligand and on a 

variety of factors such as molecular electrostatic potential, polarizability, 

hydrophobicity and lipophobicity. Similarly, the conformational stability of proteins 

Biological,	  chemical,	  biochemical	  and	  
pharmaceutical	  data	  from	  databases	  

Predictive	  tool	  

Activity	  
Property	  

=	  f(Structure)	  
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depends on different intramolecular interactions such as hydrophobic, electrostatic, 

van der Waals, and hydrogen bond that are ruled by the amino acid sequence. 

Therefore, in a QSAR study the strategy for encoding molecular information, in some 

way, either explicitly or implicitly, should account for these physicochemical effects. 

Furthermore, datasets usually include molecules of with different numbers of atoms 

and/or proteins of different lengths, so the structural encoding schemes must allow 

comparing such molecules.  

There are more than 3000 molecular descriptors reported for QSAR analysis, 

which include molecular properties (ClogP, HOMO and LUMO energy, etc), 

substructural fragments, molecular fingerprints, sophisticate topological and 

tridimensional indexes and so on [43]. Among them, autocorrelation vectors are very 

popular and easy to implement topological descriptors widely used in biological 

QSAR. Autocorrelation vectors can encode variable length structures into fixed-length 

information matrices having several useful properties. First, a substantial reduction in 

data can be achieved by limiting the topological distance, l. Second, the 

autocorrelation coefficients are independent of the original atom numbering, so they 

are canonical. And third, the length of the correlation vector is independent of the size 

of the molecule or protein sequence [44].  

2.5.1.1 Topological autocorrelation vectors for ligands 

For the autocorrelation vectors of ligands, H-depleted molecular structure is 

represented as a 2D graph and physico-chemical properties of atoms (i.e. atomic van 

der Waals volumes, atomic Sanderson electronegativities and atomic polarizabilities) 

as real values assigned to the graph vertices. 
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Figure 2.3. Representation of 2D autocorrelation terms at topological distances 1 and 
8 in generic N-hydroxy-2-[(phenylsulfonyl) amino]acetamide derivative.  

 

These descriptors can be obtained by summing up the products of certain 

properties of two atoms, located at given topological distances or spatial lag in the 

molecular graph (Figure 2.3). Broto-Moreau’s autocorrelation vectors were employed 

for encoding the topological structure of the kinase inhibitors.   

Broto-Moreau’s autocorrelation coefficient [45] is defined below:   

€ 

ATSlpk = δij pki
i
∑ pkj                                                         (2.1) 

where ATSlpk is Broto-Moreau’s autocorrelation coefficient at spatial lag l; pki and pkj 

are the values of property k of atom i and j,  respectively, and δ(l, dij) is a delta 

function defined as:                       

€ 

δ(l, dij ) =
1 if dij = l
0 if dij ≠ l
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

               (2.2) 

where dij is the topological distance or spatial lag between atoms i and j. 
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Dragon computer software [46] was used for calculating the 2D 

autocorrelation vectors at spatial lags ranging from 1 to 8 and weighted by 3 atomic 

properties: atomic van der Waals volumes, atomic Sanderson electronegativities and 

atomic polarizabilities, thus a total of 24 (8×3) 2D autocorrelation vectors were 

computed. 

2.5.1.2 Amino acid Sequence Autocorrelation Vectors (AASA) 

Autocorrelation vector formalism can be easily extended to amino-acid 

sequences considering protein primary structure as a linear graph with nodes formed 

by amino-acid residues. We introduced the AASA vectors for modeling the functional 

variations upon mutation of the ghrelin receptor [37] and the conformational stability 

of human lysozyme [30], gene V protein [31] and chymotrypsin inhibitor 2 mutants 

[47]. The calculated autocorrelation vectors encode information concerning whole 

protein sequence. Particularly, AASA vectors of lag l are calculated as follows: 

€ 

AASAlpk =
1
L

δij pki
i
∑ pkj                    (2.3) 

where 

€ 

AASAlpk  is the AASA at spatial lag l weighted by the pk property; L is the 

number of elements in the sum; pki and pkj are the values of property k of amino acids 

i and j in the sequence respectively and δ(l, dij) is the delta function in Eq. 2.2. 

For example, if we consider the decapeptide ASTCGFHCSD, AASA vectors at 

spatial lag 1 and 5 are calculated as follows: 

€ 

AASA1pk =
1
9
(pkA ⋅ pkS + pkS ⋅ pkT + pkT ⋅ pkC + pkC ⋅ pkG + pkG ⋅ pkF + pkF ⋅ pkH

+ pkH ⋅ pkC + pkC ⋅ pkS + pkS ⋅ pkD )
   (2.4)    

       

€ 

AASA5pk =
1
5
(pkA ⋅ pkF + pkS ⋅ pkH + pkT ⋅ pkC + pkC ⋅ pkS + pkG ⋅ pkD )                        (2.5) 
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 In a protein, autocorrelation analysis tests whether the value of a property at 

one residue is independent of the values of the property at neighboring residues. If 

dependence exists, the property is said to exhibit spatial autocorrelation. AASA vectors 

represent the degree of similarity between amino acid sequences.  

To model conformational stability, 48 physicochemical and conformational 

amino acid/residues properties (Table 2.1 Appendix) from the AAindex database were 

used as weights for sequence residues [28]. The spatial lag, l, was ranging from 1 to 

15. A matrix of 720 AASA vectors, 48 properties × 15 different lags, was generated 

with the autocorrelation vectors calculated for each target. AASA vectors were 

calculated by Protmetrics in-house software [48].  

To model inhibition of kinases and proteases, seven physicochemical and 

conformational amino acid/residues properties (Table 2.2 Appendix) from the 

AAindex database [28] were used as weights for sequence residues. The spatial lag, l, 

was ranging from 1 to 5. A matrix of 35 AASA vectors, 7 properties × 5 different lags, 

was generated with the autocorrelation vectors calculated for each target.  

2.5.2 Structural fragments features 

2.5.2.1 Structural Fragments (SF) descriptors for ligands 

SF were computed for ligands by counting 120 fragments in the chemical 

structures by Dragon computer software [46]. 

2.5.2.2 Sequence Structural Fragments (SSF) descriptors for protein sequences 

SF descriptors were computed for the 20 amino acids by Dragon computer 

software [46] and relative amino-acid compositions were computed for the kinase and 

protease sequences by a Matlab [49] code. Afterwards, Sequence Structural 

Fragments (SSF) descriptors (120×1 row vector) were calculated in Matlab [49] for 
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each kinase and protease as the matrix product of the amino-acid SF descriptors 

(120×20 matrix) by the relative amino-acid composition of kinases and proteases 

(20×1 column vector). 

2.6. Machine Learning in Computational Biology  

In computational biology, the existing experimental data is use to built 

predictive models to annotate related information yet experimentally measured [50]. 

Different mathematical models are used to predict the effect of structural features on 

the properties and functions of biomolecules. This knowledge has been employed to 

compute the characteristics of experimentally unmeasured elements of the same or 

related systems from novel bioactive compounds to new functional regions or 

fragments in protein and nucleic acid sequences. The implementation of machine 

learning in computational biology has grown up rapidly. These techniques have 

encountered successful applications in structure-function/property studies to predict 

protein secondary structure [51-53], protein subcellular location [33-34], enzyme 

active sites [54-56], solvent accessibility [57], protein-protein interactions [58,59], 

protein-DNA/RNA interactions [60-62], protein conformational stability [2, 2, 30, 

31], ligand affinity [44, 63-65], etc. Artificial neural networks, support vector 

machines and random forest models have been among the most popular approaches to 

map protein properties and ligand affinities to structural features.  

2.6.1 Support Vector Machines (SVMs) 

SVM is a new machine learning method, which has been used for many kinds of 

pattern recognition problems. Since there are excellent introductions to SVMs [66] 

only the main idea of SVMs applied to pattern classification problems is stated here. 

Firstly, the input vectors are mapped into one feature space (possible with a higher 
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dimension). Secondly, a hyperplane, which can separate two classes, is constructed 

within this feature space. Only relatively low-dimensional vectors in the input space 

and dot products in the feature space will evolve by a mapping function. SVM was 

designed to minimize structural risk whereas previous techniques were usually based 

on minimization of empirical risk. SVM is less vulnerable to the overfitting problem, 

so it can deal with a large number of features. 

The mapping into the feature space is performed by a kernel function.  There are 

several parameters in the SVM, including the kernel function and regularization 

parameter. The kernel function and its specific parameters, together with 

regularization parameter, cannot be set from the optimization problem but have to be 

externally tuned. These can be set by Vapnik-Chervonenkis bounds, crossvalidation, 

an independent optimization set, or Bayesian learning [67]. In this work, the Radial 

Basic Function (RBF) was used as kernel function. The toolbox used to implement 

the SVM with RBF kernel was libSVM for Matlab [49] by Chang and Lin [68] that 

can be downloaded from: http://www.csie.ntu.edu.tw/cjlin/libsvm/.  

Since >300 autocorrelation vectors were available to model protein 

conformational stability, GA-based SVM (GA-SVM) algorithm was implemented for 

choosing the optimum subset of input training vectors and setting the two SVM 

parameters, regularization parameter and width of the RBF kernel. The optimization 

inside the GA framework was driven by crossvalidation. 

In the case of kinase and protease inhibition feature selection step was not 

necessary because an easily manageable amount of 59 autocorrelation vectors were 

available. 
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2.6.2 Genetic Algorithm-optimized Support Vector Machines (GA-
SVMs) 

The application of machine learning for solving classification and function 

mapping problems in computational biological has vastly grown in the last years. 

However, it is difficult to choose the adequate descriptors for predictor training due to 

lack of absolute rules that govern this choice. Evolutionary algorithms and 

specifically Genetic Algorithm have been used for variable selection problems [30, 

31]. Since 302 AASA vectors were available for modelling and only a subset of them 

is statistically significant in terms of correlation with the mutants stability, it was 

needed implementing an optimal model by variable selection.  

In the case of protein conformational stability, GA was applied at the same time 

for selection of the optimum subset of variables and also to the optimization of 

regularization parameter and width of an RBF kernel, according to Fröhlich et al. 

[67]. We can simply concatenate a representation of the parameter to a chromosome 

representing subset of variables used for SVM training. That means we are trying to 

select an optimal feature subset and a regularization parameter at the same time. This 

is reasonable because the choice of the parameter is influenced by the feature subset 

taken into account and vice versa. Usually it is not necessary to consider any arbitrary 

value except certain discrete values with the form: n×10k, where n=1…9 and k=-4…4. 

So, these values can be calculated randomly generating n and k values as integers 

between (1…9) and (-4…4), respectively. In a similar way we used GA to optimize 

the width of an RBF kernel. Then, our chromosome was concatenated with another 

gene with discrete values in the interval (0.001-90 000) for encoding the 

regularization parameter and the width of the RBF kernel. 
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A Five-Fold-Out (FFO) crossvalidation assessed model quality throughout the 

GA search. Five data subsets were created, four subsets are generated in the 

crossvalidation process for training the SVM and another subset is then predicted. 

This process is repeated until all subsets have been predicted. A “venetian-blind” 

method was used for creating the data subsets. In the first place, dataset is ordered 

according to the dependent variable and in the second step the cases are added 

consecutively to each subset, in such a way that they become representative samples 

of the whole dataset. In order to avoid overestimation of the model’s predictive 

power, similar mutants were kept in the same set during crossvalidation, even when 

they reported under different experimental Temperature and pH values. The GA 

routine minimized the regression mean squared error of FFO (MSEFFO) 

crossvalidation experiment.   

Afterwards, the same subset of optimum variables selected by the regression GA-

SVM was used for training a SVM classifier. Nevertheless regularization parameter 

and width of RBF kernel for the SVM binary classifier were set by a bidimensional 

grid search around optimum GA-selected parameters, which minimizes the percent of 

misclassifications of FFO crossvalidation (MCFFO). 

A version of the GA previously reported by us [37] was applied here to SVM 

hyperparameters optimization and feature selection for modelling conformational 

stability. GlibSVM [69] toolbox for Matlab was programmed within Matlab 

environment  [49] using Genetic Algorithm [70] and libSVM Toolboxes [68].  

2.6.3 Model’s validation 
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The quality of the regression SVM models was evaluated by the squared 

correlation coefficient of FFO crossvalidation (R2
FFO) and the root MSEFFO 

(RMSEFFO) and also calculated classification statistics of test set. 

The efficiency of the SVM predictor for the classification problem was accomplished 

using the set of statistics listed below. 

The overall accuracy is 

€ 

Q2 =
p
N
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (2.6)	  

where p is the total number of correct predicted instance and N is the total number of 

instances. 

The correlation coefficient Cr is defined as follow:   

€ 

Cr(s) =
p(s)n(s)− u(s)o(s)[ ]

D
                                                                                    (2.7) 

where D is the normalization factor 

€ 

D= p(s)+u(s)( ) p(s)+o(s)( ) n(s)+u(s)( ) n(s)+o(s)( )[ ]1 / 2                                       (2.8) 

for each class s (+ and – for positive and negative instance); p(s) and n(s) are the 

number of correct predictions and correctly rejected assignments, respectively, and 

u(s) and o(s) are the number of under- and over-predictions.  

The coverage for each discriminant structure s is evaluated as  

€ 

QS =
p(s)

p(s)+u(s)
                                                                                                      (2.9)          

where p(s) and u(s) are the same as in Eq. 2.8 

The accuracy for s is computed as 
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€ 

PS =
p(s)

p(s)+o(s)
                                                                                                     (2.10) 

where p(s) and u(s) are the same as in Eq. 2.8. 

F-score known as the harmonic mean of sensitivity and positive precision given as 

follows: 

€ 

F = 2 ×
Q(+) × P(+)( )
Q(+) + P(+)( )

                                                                                          (2.11) 
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CHAPTER 3. MODELING OF PROTEIN 

CONFORMATIONAL STABILITY
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3.1. Introduction 

This chapter presents the modeling of protein conformational stability from 

the amino acid sequences. Conformational stability was predicted by extending the 

concept of structural autocorrelation vectors [1-6] in molecules to protein primary 

structure. Protein sequence was encoded by means of Amino Acid Sequence 

Autocorrelation (AASA) vectors weighted by 48 physicochemical, energetic, and 

conformational amino acid/residue properties extracted from the AAindex amino acid 

database [7]. Robust classification and regression predictors of the conformational 

stability of protein mutants were trained using sequence information from a dataset of 

1383 non-redundant mutants from Prothem database [8]. In addition to internal 

crossvalidation, the stability of a test set of non-redundant 222 single, 277 double and 

144 multiple-point mutations were also classified. A large set of 720 AASA vectors 

was calculated on the mutant sequences. After eliminating intercorrelated vectors, a 

total of 302 autocorrelation vectors were available for building the models. Then, 

function mapping of conformational stability was accomplished by training regression 

genetic algorithm-optimized support vector machines (GA-SVM) that minimize the 

error of Five- Fold Out (FFO) crossvalidation. In the GA-SVM framework, optimum 

subset of training AASA inputs and SVM parameter values were set using genetic 

algorithm (GA) rules. The optimum SVM was further trained to classify stable and 

unstable mutants but the regularization parameter and width of the radial basis kernel 

(RBF) kernel were set by grid search. Afterwards, normalized Temperature and pH 

values of the ΔΔG experimental measures were added to the SVM in order to improve 

predictor performance and prediction accuracies for different mutations types were 

evaluated.  
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3.2. Results  

 3.2.1 Function mapping of mutants conformational stability 

Firstly, GA-SVM approach was applied to build optimum nonlinear regression 

models of protein conformational stability using nonlinear RBF kernel inside the 

SVM framework. Subspaces in the dataset were searched varying number of training 

variables from 5 to 30. From one generation to another GA minimized the MSEFFO 

with FFO crossvalidation subsets selected according to “venetian blind” method. In 

addition to selecting the optimum input subset, the GA optimized the kernel 

regularization parameter and the width of an RBF kernel.  

Table 3.1. Crossvalidation statistics of the SVM model for prediction of protein 
mutant ΔΔG real values. SVM regularization parameter was 1 and width of the RBF 
kernel was 0.071.  

Regression SVM inputs R2
FFO RMSEFFO 

AASA11Nm, AASA8P, AASA7PB 
AASA7GhN, AASA10Ht, AASA14f, AASA12ΔGC,  

AASA15ΔASA, AASA15ΔCph, AASA14ΔCph 
0.42 0.139 

AASA11Nm, AASA8P, AASA7PB 
AASA7GhN, AASA10Ht, AASA14f, AASA12DGC,  

AASA15ΔASA, AASA15ΔCph, AASA14ΔCph, 
Temperature, pH 

0.45 0.136 

R2
FFO and RMSEFFO are the square correlation coefficient and the root mean square error of five-fold-

out (FFO) crossvalidation. 

 

Table 3.1 shows inputs, parameters and statistical quantities for data fitting 

and crossvalidation experiment of the optimum SVM predictor (input features names 

appear in Table 3.1 Appendix). Optimum regularization parameter and width of the 

RBF kernel were 1 and 0.071, respectively. The optimum autocorrelation vector 
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subset only contains two significant pair correlations (R2>0.7): AASA14f vs. 

AASA15ASAN and AASA15ΔCph vs. AASA14ΔCph. Despite this little intercorrelation, 

the good correlation in FFO crossvalidation reflects that relevant structural 

information is brought into the model by each AASA descriptor. 

Figure 3.1A depicts plot of calculated vs. experimental ΔΔG values in 

crossvalidation experiment according to the optimum SVM model with 10 AASA 

vectors with correlation coefficient of 0.65. In order to increase the predictive 

accuracy of the model, Temperature and pH values of the experimental 

determinations were added as extra inputs to the regression SVM plotted in Figure 

3.1B. The correlation coefficient was increased up to 0.67 representing about 50% of 

explained crossvalidation data variance.  

It is interesting to evaluate the performance of the predictor regarding the 

nature of the mutations. Mutations were classified according to the physico-chemical 

properties of the substituted and new residues. Figure 3.2 depicts plots of calculated 

FFO vs. experimental ΔΔG values for mutants according to mutation types. The 

lowest predictions were yielded for charged/charged, polar/charged and 

apolar/charged. The specific effects of residue substitutions on the real ΔΔG values 

are better predicted for polar/polar, and polar/apolar mutations with crossvalidation 

accuracy over 50%.  In addition, the accuracies of the prediction according to the type 

of secondary structure of the mutation site were investigated. The type of secondary 

structure was assigned to each mutation from the database Protherm [8], in which 

residues are classified in four different secondary structures: helix, sheet, turn and 

coil. The lowest correlations were found for mutations allocated at helix and turn 

structures (Figure 3.1 Appendix).  
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Figure 3.1. Plots of crossvalidation calculated vs. experimental change of unfolding 
Gibbs free energy change (ΔΔG) of protein mutants according to regression SVM 
models without including experimental condition data (A) and including experimental 
condition data (B) as SVM inputs. Dotted lines are an ideal fit with the respective intercept and 
slope equal to zero and one. 
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Figure 3.2. Plots of crossvalidation calculated vs. experimental change of unfolding 
Gibbs free energy change (ΔΔG) of protein mutants for each mutation type according 
to regression SVM models including experimental condition data as SVM inputs. 
Dotted lines are an ideal fit with the respective intercept and slope equal to zero and one. 

 

Similarly, it was carried out an analysis of the regression accuracy taking 

into account the accessible surface area (ASA) values of the mutation sites. According 

to Protherm database, mutations were grouped as buried (ASA<20%), partially buried 

(50%<ASA<20%) and exposed (ASA>50%). The correlation coefficients decrease 

with the decrements of ASA values of the mutated site (Figure 3.2 Appendix). The 

lowest regression accuracies correspond to exposed mutations allocated at the 
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proteins surface and the highest correlation value to mutations in buried sites at 

protein core.  

Table 3.2. Crossvalidation statistics of the SVM model for the classification of 
protein mutant ΔΔG signs. SVM regularization parameter was 7 and width of the RBF 
kernel was 0.167.  

SVM inputs Q2 P(+) P(-) Q(+) Q(-) C 

AASA11Nm, AASA8P, AASA7PB 
AASA7GhN, AASA10Ht, 
AASA14f,AASA12ΔGC,  

AASA15ASAN, AASA15ΔCph, 
AASA14ΔCph 

0.78 0.59 0.87 0.68 0.82 0.48 

AASA11Nm, AASA8P, AASA7PB 
AASA7GhN, AASA10Ht, 
AASA14f,AASA12ΔGC,  

AASA15ASAN, AASA15ΔCph, 
AASA14ΔCph, Temperature, pH 

0.77 0.57 0.88 0.71 0.80 0.48 

+ and - : the indexes were evaluated for positive and negative ΔΔG signs. Q2 is the number of correct 
predictions/number of examples; P(s) is the number of correct prediction for class s/all prediction made 
for s; Q(s) is the number of correct prediction for class s/observed in class s; Cr is Matthews’s 
correlation coefficient. Q(+) and Q(-) are sensitivity and specificity of stable class prediction and P(+) 
and P(-) are precision scores. 

 

 3.2.2 Classification of mutants conformational stability 

In addition to the regression SVM model, a binary classifier for the 

recognition of stable and unstable mutants was built. The optimum AASA vector 

subset was used for training the binary SVM classifier and minimizing MCFFO in a 

grid search set the SVM hyperparameters. Optimum values of regularization 

parameter and RBF kernel width were 7 and 0.167 respectively, which yield training 

and crossvalidation results in Table 3.2. As can be observed, the binary SVM trained 

with optimum AASA subset has overall FFO crossvalidation accuracy of 78% and 

correlation coefficient Cr=0.48. It is noteworthy that the crossvalidation statistics for 

recognizing stable mutants Q(+)=0.68 and unstable mutants Q(-)=0.77 are in the 

range of the overall accuracy achieved. This result is quite interesting since the 
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predictor only used sequence information encoded in 10 AASA vectors. Afterward, 

Temperature and pH normalized values were passed into the binary SVM as extra 

inputs and Q2, Q(+) and Q(-) values increased up to 0.77, 0.71 and 0.80 respectively, 

with a correlation coefficient Cr=0.48. The binary classifier yielded the lowest 

accuracy for mutations of charged residues by other charged residues (Table 3.2 

Appendix). 

 

Figure 3.3. Crossvalidation classification accuracies of the optimum SVM model for 
the ΔΔG signs upon mutations according to secondary structure allocation and 
accessible surface area of the mutated residue. + and - : the indexes were evaluated for 
positive and negative ΔΔG signs. Q2 is the number of correct predictions/number of examples; Q(s) is 
the number of correct prediction for class s/observed in class s. Q(+) and Q(-) are sensitivity and 
specificity of stable class prediction.  
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Furthermore, the accuracy of the classifier according to the type of secondary 

structure found in the mutation site was analyzed. Likewise, the regression model in 

Table 3.3 shows that, the lower accuracies were for mutations allocated at helix and 

coil structures. However, overall classification accuracies, about or higher than 70%, 

were observed for all types of mutations. Figure 3.3 shows the classification 

accuracies for the ASA values of the mutation sites. The overall accuracies for buried 

and partially buried mutations were about 80% and again the classification accuracy 

for mutations in the protein surface was lower around 70%. These results support the 

fact that protein properties, which depend on interactions at the protein surface, are 

more difficult to predict. 

3.2.3 Classification of new mutants 

Besides crossvalidation experiment, the sign of ΔΔG values was predicted for 

a test set with new single point mutants in Protherm database [8], all double and 

multiple mutations on this database. Prediction of real  ΔΔG values was inaccurate.  

Results of stability classification of mutations in the test set are depicted in Figure 3.4. 

As it can be observed, the performance of the predictor on the single point mutation 

test set was poor. A lower overall accuracy about 51% was yielded with an adequate 

recognition of about a 66% of the stable mutations and low 45% of the unstable ones.  

Besides, the double point mutation test set showed Q2 = 0.50 with Q(+) = 0.70 and 

Q(-) = 0.34. Despite the discrete results, the predictor is able to account for single 

point mutation effects and to generalize them in some extent to double point 

mutations. It should be pointed out that unbalance classification results had been 

previously reported by Cappriotti et al. [8, 9] in crossvalidation experiments.  
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Figure 3.4. Test set classification accuracies according to SVM model for the 
classification of protein mutant ΔΔG signs. SVM regularization parameter was 7 and 
width of the RBF kernel was 0.167. + and - : the indexes were evaluated for positive and 
negative ΔΔG signs. Q2 is the number of correct predictions/number of examples; Q(s) is the number 
of correct prediction for class s/observed in class s. Q(+) and Q(-) are sensitivity and specificity of 
stable class prediction. 

 

Multiple mutations exhibited the lowest prediction results with low accuracies 

around 30%. On the contrary, the accuracies of single and double mutant test set were 

about 50%, 68% and 40% for all mutants, stable and unstable mutations. Meanwhile, 

these statistics for the whole test set (single, double and multiple mutants) were low 

with values of 46%, 57% and 38%. When considering only single and double point 

mutant, the test set overall accuracies were about 50% and for recognition of the 

stable single and double point mutants the classifier exhibited a higher accuracy about 

70%.  Finally, Figure 3.5 depicts classification accuracies for the single point mutants 

in the test set according to the secondary structure allocation and the ASA of the 

mutation site.  
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Figure 3.5 Classification accuracies of the optimum SVM model for the ΔΔG signs 
upon mutations of the single mutants in the test set according to the secondary 
structure allocation and the accessible surface area of the mutated residue. + and - : the 
indexes were evaluated for positive and negative ΔΔG signs. Q2 is the number of correct 
predictions/number of examples; Q(s) is the number of correct prediction for class s/observed in class 
s. Q(+) and Q(-) are sensitivity and specificity of stable class. 

 

3.3. Discussion 

3.3.1 Performance of the predictor according to the mutation type 

The prediction accuracies of the ΔΔG real values varied for each mutation 

type, showing that the regression SVM model better learned the effects of some 
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partially describes the effect of salt-bridge and polar-polar interactions at the protein 

surface that should be better characterized using 3D structure details. Salt-bridge and 

hydrogen-bridge interactions at protein surface of charged and polar residues usually 

appear at long-ranges. Despite being separated by long stretches of polypeptide in the 

primary sequence, surface groups lie next to each other in space. In turn, at the protein 

core, interactions often occur among residues at short range. Consequently, these 

interactions are very difficult to model from a sequence framework. On the contrary, 

hydrophobic interactions at protein core mainly appear at short-range in the sequence. 

For mutations in the protein core, the residue size rather than polarity (apolar/apolar 

mutations), may cause an unfavorable packing energy due to the rigidity of 

surrounding residues or, alternatively, the substituting residues themselves may be 

forced into unfavorable rotational isomers. Some surroundings of the mutation 

positions may be readily deformable or compensate effects if occurs no net packing 

energy change [11]. Complex 3D environment-dependent interactions take place also 

in the protein core, which can be only accessible in some extend from a primary 

structure approximation.   

In the case of helix mutations, the low prediction performance might be 

related to the fact that destabilization of helix structures is caused by variations of 

complex residue-residue and residue-solvent interaction patterns at the protein 

surface. The low correlation for mutations allocated at turn structures could be related 

to the variability and complex nature of turn regions in proteins and the low statistical 

significance of this group of mutations being 9% of the dataset. It is noteworthy that 

mutations of charged residues, mainly allocated at protein surface, were also predicted 

with low accuracy (Figure 3.2).  
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3.3.2 Prediction of protein real ΔΔG values upon mutations 

Concerning the prediction of real values of change of Gibbs free energy 

change of proteins, several models used protein 3D structure information of large 

datasets (>1000) and no more than 60% of validation data variances were described 

[12-15]. AGADIR [16, 17] or FOLDEF was reported by Guerois et al. [17] for 

predicting conformational stability of more than 1000 mutants with crossvalidation 

accuracy about 60%. Zhou and Zhou method D-FIRE [14] is based on distance-

scaled, finite ideal-gas reference state that improved structure-derived potentials of 

mean force for structure selection and stability prediction. Their model, with 3D 

protein structures from a database of 895 large-to-small mutations, described 0.45% 

of crossvalidation data variance. Borner and Abagyan [15] developed a model to 

predict both geometry and relative stability of point mutants that could be used for 

arbitrary mutations. An empirical energy function, which includes energy 

contributions of the folded and denatured proteins, and the prediction of a side chain 

mutant, was fitted to a training set consisting in a half of a diverse set of nearly 2000 

experimental stability values for single point mutations. The prediction method was 

then tested on the remaining half of the experimental data, giving a covariance of 0.66 

for 97% of the test set. 

Furthermore, machine learning algorithms in combination with sequence 

or/and 3D information have been applied to solve the protein conformational stability 

problem [18-21]. Capriotti et al. [9, 10, 23] described the implementation of ANNs 

and SVMs predictors of ΔΔG upon mutations using sequences and 3D structures of 

more than 1000 mutants. As predictor inputs they used a combination of experimental 

condition data (pH and Temperature), specific mutated residue and sequence 

environment information. Their “best” sequence-based model explained a discrete 



	   56	  

0.38% value of crossvalidation data variance. It is noteworthy that our optimum 

AASA-SVM overcomes the previous sequence-based models of Capriotti et al. [23]. It 

should be also noticed that they used a redundant dataset that over-estimate the 

predictor performance. 

Recently, Huang et al. [18] reported the iPTREE-STAB server to 

discriminating the stability of proteins (stabilizing or destabilizing) and predicting 

their stability changes upon single amino acid substitutions from amino acid 

sequence. The predictor was trained with a dataset of 1859 non-redundant single point 

mutations of 64 proteins. The prediction of real ΔΔG values is mainly based on 

regression tree using three neighbouring residues of the mutant site along N- and C-

terminals. Their method showed a crossvalidation correlation of 0.70 for predicting 

protein stability changes upon mutations, which is similar to our results. Other recent 

report by Cheng et al. [19] referred to the prediction of single mutant real ΔΔG values 

and signs by SVM predictors trained with information from three different encoding 

schemes: sequence, structure, and combined sequence and structure. In this case, the 

prediction of real ΔΔG values was higher than our results, having crossvalidation 

correlation coefficients of 0.75 and 0.76 for the sequence- and structure-based 

predictors, respectively. 

3.3.4 Classification of protein conformational stability 

Taking into account the classification models of protein stability change upon 

mutations using large and diverse mutant data, our classification model overcomes the 

optimum reported by Capriotti et al. [23] using sequence information. Despite they 

reported an overall accuracy about 77%, the correct predictions were drastically 

shifted towards unstable mutants with accuracy of 91% and for stable mutants the 
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accuracy was lower about 46%. Such statistics reflect that their model nearly 

recognized all mutants as unstable, yielding overall adequate accuracy but inefficient 

discriminating ability. However, our classification model surpassed Capriotti’s 

classifier by predicting unstable and stable mutants with accuracies over 70%. In this 

connection, our models yielded similar accuracy to our recent reports using SVM and 

2D and 3D graph representations of protein sequences [24, 25], which identified both 

stable and unstable mutants with identical good accuracy over 70%. When Capriotti et 

al. [10] used 3D structure information, the highest overall classification accuracy was 

80% but stable mutants were recognized with a low accuracy of 56%. In this context, 

our predictor, despite its primary sequence nature, is more adequate for the 

recognition of stable mutants. 

Huang et al. [18] reported that iPTREE-STAB server was able to recognize 

unstable and stable mutants with overall crossvalidation accuracy about 82% and 

sensitivity and specificity were about 75.3% and 84.5%, respectively. The best 

sequence-based SVM classifier reported by Cheng et al. in Ref. 19 had an overall 

accuracy about 84% but it discriminated between unstable and stable mutants with 

accuracies about 90% and 71% respectively, in crossvalidation experiment. This 

result shows that the predictor is unbalanced and tends to recognize stable mutants 

with lower accuracy (Q(+)=0.71), which is equal to the reported value by our SVM 

classifier. It is noteworthy to mention that none of these predictors are able to handle 

multiple-point mutants. 

In another recent report, Parthiban et al. [20] implemented a distance-

dependant pair potential and torsion angle potential to compare predicted stabilizing 

energies with experimental values from thermal and chemical denaturation 

experiments. The derived force fields yielded a correlation of 0.77 and more than 80% 
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classification accuracy in crossvalidation for chemical denaturation. For thermal 

denaturation the force field yielded a correlation of 0.78 with a prediction efficiency 

of 84.65%.  

3.3.5 Test set predictions 

The low prediction result for the test set suggests that our sequence-based 

approach could be somehow limited due to the complexity of the stabilizing-

destabilizing interactions in proteins. In addition, supervised learning of a predictor 

should have a training dataset with a complete description of the modeled phenomena. 

Training dataset should be complemented as more experimental conformational 

stability studies are published and collected in the Protherm database [8]. Probably 

more experimental measurements on protein conformational stability are needed to 

increase the outcome of machine learning approaches. Nevertheless, our method 

yields fast predictions of the stability of protein sequences. Beyond the agreeable 

results obtained in crossvalidation experiments and the modest results for the test set, 

the major advantage of our approach is the capability of our classifier to predict 

stability's changes upon double or multiple mutations. The predictor is online 

available at http://gibk21.bse.kyutech.ac.jp/llamosa/ddG-AASA/ddG_AASA.html. 

3.3.6 Model’s interpretation 

Interestingly, relevant amino acid/residue properties appear weighting the 

optimum AASA vectors: three structural (Nm, f and  ASAN), one secondary structure-

related (PB), two physico-chemical (P and Ht) and three thermodynamic (GhN, ΔGC 

and ΔCph) properties. These relevant autocorrelations were found at lags from 7 to 15 

medium to large range interactions on the sequence. The occurrence in our models of 

structural, secondary structure-related, physico-chemical and thermodynamic 
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properties, reveals the complexity of the interactions ruling protein stability, which 

are better addressed by a multifactor approach.        

Distributions of structural properties at lags ranging from 11 to 15 reflect the 

significance of an adequate amino acid frame at large ranges in the primary structure, 

resembling certain polypeptidic structural pattern. The number of medium range 

contacts (Nm) is a property that contains information of tridimensional proximities of 

residues in space. The property Nm also appeared weighting optimum autocorrelation 

vectors in a neural network implemented for modeling the conformational stability of 

chymotrypsin inhibitor 2 mutants [26]. Shape-related amino acid property, flexibility 

(f), appears relevant at autocorrelations of large range encoding the distribution of 

freedom degrees on the sequence. Re-accommodation of residue side-chains is a 

critical step in protein folding after amino acid substitution. Mutations may cause an 

unfavorable packing energy due to the rigidity of surrounding residues or, 

alternatively, the substituting residues themselves may be forced into unfavorable 

rotational isomers. Similarly, some surroundings of mutation positions may be 

deformable or some effects should be compensated to do not change packing energy 

[11]. The property f has appeared weighting optimum AASA vectors for modeling 

conformational stability and functional variations upon mutations of gene V protein 

[22] and ghrelin receptor [27]. Another main structural property is the solvent 

accessible surface area for native protein (ASAN), which is a measure of the number of 

amino acid atoms interacting with solvent molecules in the native state. Interestingly, 

solvent-accessible surface area was reported by Gromiha et al. [28] among the most 

linearly correlated properties with ΔΔG for a diverse set of protein mutants. In this 

connection, one of the simplest and most widely used models for calculating 

hydration heat capacity in proteins is the solvent-accessible surface area model [29].  
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The high impact of β-structure tendency strongly suggests that optimum 

secondary structure pattern is another key factor for a stable tertiary conformation. 

Point mutations studies have highlighted the role of secondary structure propensities 

in protein stability. By manipulating favorable and unfavorable secondary structure 

propensities at certain positions in a protein can produce significant variations in 

stability [12]. In fact, we recently reported that secondary structure propensities are 

important in a neural network model of the conformational stability of gene V protein 

mutants [22]. 

Hydrophilicity/hydrophobicity related properties such as polarity (P) and 

thermodynamic transfer hydrophobicity (Ht) are important for predicting protein 

conformational stability according to our optimum SVM models. The important 

autocorrelations of such properties appears at medium lags. Hydrophilic interactions 

between amino acid residues at protein surface usually appear at medium and long 

ranges. Despite being separated by long stretches of polypeptide in the primary 

sequence, surface groups lie next to each other in space. On the contrary, hydrophobic 

interactions at protein core mainly appear at shorter range in the sequence. The P and 

Ht properties were previously found relevant for neural network modeling of 

conformational stability of human lysozyme mutants [21]. The autocorrelation vectors 

weighed by these properties encoded the role of hydrophylic interactions on the 

surface and hydrophobic interactions on the core to maintain protein folding and 

stability. Furthermore, hydrophobic patches frequently appear on the protein surface, 

defined as clusters of neighboring apolar atoms accessible on a given protein surface 

[30]. The hydrophobic part of the solvent-accessible surface of a typical monomeric 

globular protein consists of a single, large interconnected region formed from faces of 

apolar atoms and constituting approximately 60% of the solvent-accessible surface 
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area [31]. At the light of these facts, the combination of hydrophilicity/hydrophobicity 

and solvent-accessible surface properties could encode hydrophobic patches patterns 

of protein mutants.  

Thermodynamical properties that measure unfolding and hydration processes 

of proteins (unfolding Gibbs Free energy change of side-chain (ΔGC), Gibbs Free 

energy change of hydration for native protein (GhN) and hydration heat capacity 

change (ΔCph)) are relevant to model protein conformational stability.  In a previous 

report, the property GhN was relevant in SVM models of the functional variations 

upon mutations of ghrelin receptor [27], meanwhile ΔGC and ΔCph properties were 

important in neural network modeling of human lysozymes conformational stability 

[21]. ΔCph measurements in proteins mean the variation of heat capacity (Cp), which 

is consequence of the hydration of amino acid groups. Considering that protein 

unfolding usually has a positive ΔCp, polar groups hydration is accompanied by a 

decrease in Cp, meanwhile apolar groups hydration increases this magnitude [32]. In 

this sense, Makhatadze and Privalov [33] found a good relation between ΔCph and 

surface area. In turn, GhN, is a measure of spontaneity of the hydration process. Free 

energy has a direct relationship to a primary observable, the equilibrium constant K, 

through , which describes the balance between enthalpy and entropy. 

Makhatadze and Privalov [33] showed that the compact native state of a protein is 

stabilized by the enthalpic interactions between internal groups. Hydration effects are 

clearly significant for protein unfolding, evidence showed that hydration is the major 

effect [33]. The strongest current evidence is that it can be accounted for heat capacity 

change of unfolding for many proteins by adding up hydration contributions from 

individual residues [33]. In resume all those thermodynamical properties are related 

with unfolding denaturation mechanism hypothesis. For denaturation process of 

! 
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globular proteins, Privalov and Gill [34] pointed out the hydration equilibrium, polar 

interactions between solvent and polar residues in the protein, as the main cause of 

unfolding while hydrophobic interactions in the protein core contribute to keep the 

folded state.  

3.4. Conclusions 

GA-SVMs yielded a good classification model for the conformational 

stability of protein mutants describing nearly 80% of correct classifications in 

crossvalidation experiment. The regression model described nearly 50% of 

crossvalidation data variance. Despite low test set prediction accuracy, stable single 

and double point mutants were recognized with adequate accuracies about 70%.  

Optimum AASA vectors, selected by GA-SVM approach, showed that conformational 

stability model depends on a combination of structural, secondary structure-related, 

physico-chemical and thermodynamical properties mainly associated with protein 

hydration process.  
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CHAPTER 4. MODELING OF KINASE 

INHIBITION
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4.1.  Introduction 

This chapter presents the modeling of the ligand dataset with reported 

inhibitory activities towards 62 kinases collected from ProLiNT database [1]. 

Structural fragments and topological autocorrelations features were computed from 

protein sequences and 2D graphs of ligands. The dataset was divided into training 

(80% dataset) and test sets (20% dataset) by k-means clustering. Five clusters were 

generated and cases were homogeneously added to training and test sets by selecting 

instances from each cluster according to cluster's sizes. Subsequently, Support Vector 

Machines (SVMs) model was used to classify hypothetical complexes into stable and 

unstable classes. Predictor’s optimization was carried out by three-fold-out (TFO) 

crossvalidation. The training set was divided into three subsets: two subsets were used 

for training the classifier and the rest subset was then predicted. This process was 

repeated until all the subsets were predicted. The ability of the predictor to recognize 

new ligands and targets was evaluated in the test set. The performance for different 

kinase families and inhibitor scaffolds were also evaluated. 

4.2.  Results 

4.2.1 Clustering analysis 

Selectivity of the 19 kinase families was firstly explored by cluster analysis. 

Two sets of variables, structural fragments and 2D autocorrelation vectors were 

calculated for the 1200 active ligands on the dataset. Afterwards, k-means clustering 

algorithm yielded 19 ligand clusters (same as the number of kinase families) for each 

descriptor type. In order to evaluate the efficiency of kinase selectivity in the two 

descriptor’s sets, we matched ligand clusters with the different kinase families.  
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Figure 4.1. Density map representing occurrence ratios of kinase families on active 
ligand clusters obtained by atom-center fragment descriptors (A) and 2D 
autocorrelation vectors (B). Kinase families: (1) AGC Ser/Thr protein kinase, (2) CAMK Ser/Thr 
protein kinase, (3) CAMP-dependent kinase regulatory chain, (4) CMGC Ser/Thr protein kinase, (5) 
cyclin, (6) DCK/DGK, (7) herpes virus thymidine kinase, (8) PDGF/VEGF growth factor, (9) PI3/PI4-
kinase, (10) PI3K p85 subunit, (11) PP1 inhibitor, (12) phosphoglycerate kinase, (13) phosphorylase b 
kinase regulatory chain, (14) STE Ser/Thr protein kinase, (15) Ser/Thr protein kinase, (16) TKL 
Ser/Thr protein kinase, (17) thymidine kinase, (18) Tyr protein kinase, and (19) atypical kinase. 
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Distributions of the two sets of 19 ligand clusters on the 19 kinase families are 

shown in Figure 4.1. The cluster distributions depict different patterns. Tyrosine 

kinase family was the most populated in both graphs but distributions of the ligand 

clusters on this kinase family differ. In addition, we built two dendrograms by 

clustering kinase families according to the distributions of the ligand clusters in the 

families. Figure 4.2 depicts dendrograms for both descriptor types showing 5 clusters. 

The dendrogram in Figure 4.2A exhibits similar distributions of kinase families in the 

clusters in comparison with the dendrogram in Figure 4.2B. The five clusters in 

Figure 2A represent 4 kinase families and a group of 15 kinase families. The single-

family clusters are: Tyrosine kinase, Cyclin, AGC Ser/Thr protein kinase and atypical 

kinases. In turn, Figure 4.2B depicts three single-family clusters: Tyrosine kinases, 

AGC Ser/Thr protein kinases and atypical kinases; one cluster with two families: 

CMGC Ser/Thr protein kinase and TKL Ser/Thr protein kinase and a several ten-

families cluster. The distributions of the kinase families in the several ten-families 

clusters differ at lower squared Euclidean distances. 

The clustering points out that independently allocated kinase families are 

inhibited by different chemical scaffolds. At the same time, families in multiple 

clusters could share some active ligand similarity depending on each encoding 

scheme. Especially, the allocation of CMGC Ser/Thr protein kinase and TKL Ser/Thr 

protein kinase in the same cluster in Figure 4.2B suggests a similar inhibition scaffold 

for these families according to the topological approach.  
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Figure 4.2. Dendrograms of 5 clusters of kinase families according to occurrences 
ratios on active ligand clusters obtained by fragment descriptors (A) and 2D 
autocorrelation vectors (B). Kinase families: (1) AGC Ser/Thr protein kinase, (2) CAMK Ser/Thr 
protein kinase, (3) CAMP-dependent kinase regulatory chain, (4) CMGC Ser/Thr protein kinase, (5) 
cyclin, (6) DCK/DGK, (7) herpes virus thymidine kinase, (8) PDGF/VEGF growth factor, (9) PI3/PI4-
kinase, (10) PI3K p85 subunit, (11) PP1 inhibitor, (12) phosphoglycerate kinase, (13) phosphorylase b 
kinase regulatory chain, (14) STE Ser/Thr protein kinase, (15) Ser/Thr protein kinase, (16) TKL 
Ser/Thr protein kinase, (17) thymidine kinase, (18) Tyr protein kinase, (19) atypical kinase. 
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We also evaluated the ability of a fragment and its topological descriptors to 

distinguish between active and inactive chemical scaffolds in the dataset. The mean 

squared differences between the normalized descriptors of active and inactive 

inhibitors were 0.361 and 0.334 from the fragment- and topological-based approaches 

respectively. These values significantly differed from the mean squared differences of 

100 scrambled partitions of active and inactive ligands, which were about 10-2 for 

both descriptor types. Topological autocorrelation descriptors differentiate slightly 

better between active and inactive inhibitors in comparison with the fragment 

approach.  

4.2.2 Structural Fragments classifier 

SF and SSF descriptors computed for the kinase sequences and the 2D structural 

sketches of the inhibitors were combined into a single feature matrix by simple 

concatenation of target and ligand descriptors blocks. The dataset was separated into a 

training set with 2696 inhibition complexes (80%) and a test set with 899 inhibition 

complexes (20%).  

In a first attempt, we implemented a linear kernel but the highest crossvalidation 

accuracy was only about 65%. Then, adjusting SVM parameters throughout a TFO 

crossvalidation in a grid search yielded a nonlinear classifier with crossvalidation 

results shown in Table 4.1. An overall TFO crossvalidation accuracy of 78% for the 

classification of inhibition complexes was achieved with a correlation coefficient 

Cr=0.53. It is noteworthy that crossvalidation accuracies for recognizing stable 

Q(+)=0.75 and unstable inhibition complexes Q(-)=0.78 are equivalent to the overall 

accuracy achieved. Taking into account that the predictor was trained with structural 

fragment information from targets and ligands, these accuracies about 80% for 

recognizing stable and unstable inhibition complexes are adequate.  
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Table 4.1. Crossvalidation and prediction statistics for the training and test sets 
according to the fragment SVM model for the classification of the stability of kinase 
inhibition complexes.  

Experiment Q2 Q(+) Q(-) P(+) P(-) Cr 

Training set crossvalidation  0.78 0.75 0.79 0.65 0.86 0.53 
Test set prediction  0.78 0.77 0.77 0.65 0.88 0.55 

+ and - : the indexes were evaluated for “stable” (IC50 < 1 µM) and “unstable” (IC50 > 1 µM) kinase 
inhibition complexes, respectively. Q2 is the number of correct predictions/number of examples; P(s) 
is the number of correct prediction for class s/all prediction made for s; Q(s) is the number of correct 
prediction for class s/observed in class s; Cr is Matthews’s correlation coefficient. Q(+) and Q(-) are 
sensitivity and specificity of stable class prediction and P(+) and P(-) are precision scores. 

 

4.2.3 Topological autocorrelation classifier 

Topological features were computed from the primary sequence of the kinases 

and the 2D sketch of the inhibitor structure descriptors. Similar to the fragment-based 

classifier, the dataset was separated into training and test sets in the same way.  

A linear kernel could only produce a poor performance (67% accuracy) in a 

cross-validated training. Then, adjusting SVM parameters throughout a TFO 

crossvalidation in a grid search yielded an optimum nonlinear SVM classifier with 

crossvalidation results shown in Table 4.2. In Table 4.2 complex-wise statistics refers 

to the basic crossvalidation experiments in which only nonredundant complexes were 

included. In this case, an overall complex-wise TFO crossvalidation accuracy of 82% 

was achieved for the classification of inhibition complexes with a correlation 

coefficient Cr=0.63. Crossvalidation accuracies to identify stable Q(+)=0.85 and 

unstable inhibition complexes Q(-)=0.81 resulted similar to the overall accuracy. 

These accuracies and the correlation coefficient are higher than the statistics reported 

in Table 4.1 for the fragment-based predictor.  
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Table 4.2. Crossvalidation and prediction statistics for the training and test sets 
according to the optimum topological SVM model with for the classification of the 
stability of kinase inhibition complexes. SVM parameters were σ2=0.091 and C=1.36. 

Experiment Q2 Q(+) Q(-) P(+) P(-) Cr 

Complex-wise 0.82 0.85 0.81 0.69 0.92 0.63 

Ligand-wise 0.82 0.84 0.81 0.68 0.91 0.62 
Training set 

crossvalidation 

Kinase-wise 0.65 0.75 0.60 0.48 0.83 0.32 

Complex-wise 0.81 0.87 0.78 0.67 0.92 0.62 Test set 
prediction 

Ligand-wise 0.82 0.91 0.77 0.69 0.94 0.66 
+ and - : the indexes were evaluated for “stable” (IC50 < 1 µM) and “unstable” (IC50 > 1 µM) kinase 
inhibition complexes, respectively. Q2 is the number of correct predictions/number of examples; P(s) 
is the number of correct prediction for class s/all prediction made for s; Q(s) is the number of correct 
prediction for class s/observed in class s; Cr is Matthews’s correlation coefficient. Q(+) and Q(-) are 
sensitivity and specificity of stable class prediction and P(+) and P(-) are precision scores. 

 

Fragment descriptors are more intuitive and easy to interpret, but they only 

account for substructure occurrences on the structure and lack the information of 

connectivity and sequence order. In turn, 2D autocorrelation vectors account for 

property distributions on the topological structure accounting for atom arrangements 

in the bi-dimensional molecular sketch and amino-acid residue distributions along the 

protein sequence. In view of the training set results, we conclude that autocorrelation 

approach outperforms the fragment-based classifier and it is more convenient for 

modeling kinase inhibition. 

In addition, the stability of the optimum topological model to recognize new 

ligands and kinases was evaluated. We performed two additional crossvalidation 

experiments in which kinase complexes sharing similar ligands were kept in the same 

data subset during crossvalidation, we called this experiments ligand-wise 

crossvalidation. Similarly, we run another crossvalidation in which complexes of the 

same kinase were kept in the same subset and this was called kinase-wise 
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crossvalidation. The results of these experiments are reported in Table 4.2, overall 

accuracy for ligand-wise crossvalidation was 82%, illustrating that the model 

correctly classifies the affinity of novel ligands towards existing kinases. All further 

reported statistical analysis for kinase families (Figures 4.3 and 4.4) and ligand 

chemotypes (Table 4.1 Appendix) were performed on ligand-wise crossvalidation.  

Interestingly, the kinase-wise 10-fold-out crossvalidation in Table 4.2 showed that the 

model differentiated complexes of new kinase with overall accuracy about 65% and 

stable complexes with accuracy of 75%. This result, although discrete, is noteworthy 

taking into account that when removing highly represented kinases from the training 

subset also large series of inhibitors are left out. This fact corroborates the relevance 

of the topological feature space to model kinase inhibition as well as the self-

consistency of the optimum SVM model. 

4.2.4 Performance of the optimum topological autocorrelation classifier 

for different kinase families and chemotypes. 

Kinase inhibition dataset includes inhibitory activities of a diverse chemical 

space towards 19 kinase families. It is very interesting to analyze the optimum 

classifier performance for each kinase family in the dataset. The classification 

accuracies of SVM predictor for each kinase family are shown in Table 4.3. The 

predictor performance was very homogeneous to all families. The overall accuracies 

for the recognition of stable and unstable inhibition complexes were higher than 67% 

for all but one the kinase families. However, the classifier was unable to recognize 

stable inhibition complexes of seven protein kinase families with low occurrences of 

stable complexes in the crossvalidation experiments. This fact suggests that the 

training set information is highly diversified and generalization from one family to the 

others is difficult inside the training set. In addition to the low statistical significances 
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of the stable inhibitors of these families in the dataset, another factor accounting for 

these low accuracies in crossvalidation experiments could be the complexity of the 

target-ligand interactions for these kinase families. In this regard, a recent review on 

QSAR modeling of binding affinities stated that conformational changes and binding 

site flexibility lead to the conclusion that similar analogs bind to the same binding site 

in different modes. Furthermore, the binding site residues in the ligand-protein 

interactions are not the same due to the difference in the flexible binding site residues 

[2].  

Although our approach is alignment- and conformation-independent, identical 

or closely related inhibitor structures, which interact in different ways, could cause 

model failure for such inhibition complexes. However, one of the advantages of the 

alignment- and structure-free protein activity/function prediction methods is that they 

are less prone to be affected by protein folding or ligand’s binding orientation. At the 

same time, for QSAR studies, when the binding mechanism and orientation are 

unknown and if a broad variety of targets are processed, it is usually accepted that 

more robust and accurate models can be derived from 2D-structure encoding 

frameworks rather than 3D detailed description of the molecules.  
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Figure 4.3. Ligand-wise TFO crossvalidation accuracies for the 19 kinase families in 
the training set according to the optimum topological SVM model. + and - : the indexes 
were evaluated for “stable” (IC50 < 1 µM) and “unstable” (IC50 > 1 µM) kinase inhibition complexes, 
respectively. Q2 is the number of correct predictions/number of examples; Q(s) is the number of 
correct prediction for class s/observed in class s. Q(+) and Q(-) are sensitivity and specificity of stable 
class prediction. 

 

According to Figure 4.3, kinase families with the highest occurrence ratios on 

the training set exhibit crossvalidation accuracies higher than 80%. These kinase 

families are Tyr protein kinase, AGC Ser/Thr protein kinase, Phosphoglycerate kinase 

and CAMP-dependent kinase regulatory chain families with occurrence ratios of 

68.81%, 7.97%, 4.15% and 3.52%, respectively. Among these families, tyrosine 

protein kinase has been most studied for targeting cancer. Tyrosine protein kinase 

directly participates in cell growth through the signal passing pathways. Five types of 

proteins participate in the growth control of mammalian cells: growth factors, growth 
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factor receptors, intracellular transducers, nuclear transcription factors, and cell cycle 

control proteins. Some cell surface receptors have an extracellular ligand-binding 

domain attached to an integral protein tyrosine kinase in their cytoplasmic domain. 

These receptors transmit the growth signal by phosphorylating their tyrosine residues 

as well as one or more target of proteins, thus initiating a cascade of events [3]. It is 

widely accepted that protein tyrosine kinases play a fundamental role in cancer. That 

is why they became attractive therapeutic targets and it has provided impetus for an 

extensive effort to develop specific inhibitors of these enzymes as chemotherapeutic 

agents. An overall high performance (~80%) of our classifier in predicting the stable 

versus unstable complexes in this kinase family, therefore, has very useful practical 

implications to the inhibitor design problem.  

We also analyzed the predictor behavior for different chemical subspaces on 

the inhibitor dataset. In this sense, 30 substructural templates were considered for 

comparing the classifier accuracy regarding the different chemotypes on the modeled 

chemical space (Table 4.1 Appendix). All the analyzed substructures showed overall 

accuracies about or higher than 70% and accuracies for separate classes were lower 

than 50% only for low affinity ligands bearing 1,3-dichlorobenzene substructure and 

high affinity ligands bearing m-methyltoluene. From this result we conclude that the 

classifier performed well over the chemical space represented by the kinase inhibitors 

in the training set.  

4.2.5 Prediction of the test set 

Crossvalidation accuracy gives an estimate of the internal consistency of the 

predictive models but a more realistic measurement of the prediction power can be 

achieved by predicting a blind test set. In Table 4.2, we show that the results from the 

topological-based classifier on such datasets also perform well and lead to an overall 
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accuracy of about 81% for the complex-wise evaluation. This is promising 

considering the fact that the test set prediction accuracies were in the same range as 

obtained in crossvalidation experiments of the training set in Table 4.2, thus 

excluding the possibility of overfitting. Classification of test set also performed well 

for the topological models taking into account that test set accuracy of the fragment-

based predictor was 78% (Table 4.1).  

In addition, the ability of the topological predictor to recognize totally new 

ligands was estimated by evaluating the model accuracy for 462 out of the 899 kinase 

inhibition complexes in the test set for which ligands information was not available in 

the training set. This predictor correctly classified 82% of the 462 kinase complexes 

with totally new ligands. Remarkably, stable complexes were recognized with 

accuracy of 91% whilst the accuracy for the unstable complexes was 77%. This result 

showed that the optimum classifier not only correctly learned the kinase inhibition 

pattern, but that the learned pattern was adequately generalized to the test set, 

including totally new high-affinity ligands.   

Figure 4.4 depicts classification results for each kinase family on the test set. 

All kinase families were classified with overall accuracies > 55%. Furthermore, 

classifier performance has accuracies over 80% for 16 out of the 18 kinase families in 

the test set. The model failed to recognize only high affinity ligands of CAMP-

dependent kinase regulatory chain family. Thus, the information from the training set 

was successfully generalized and the prediction results were homogenous to the 

majority of the kinase families in the test set. 
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Figure 4.4. Ligand-wise prediction accuracies for the 19 kinase families in the kinase 
inhibitor in the test set according to the optimum SVM model. + and - : the indexes were 
evaluated for “stable” (IC50 < 1 µM) and “unstable” (IC50 > 1 µM) kinase inhibition complexes, 
respectively. Q2 is the number of correct predictions/number of examples; Q(s) is the number of 
correct prediction for class s/observed in class s. Q(+) and Q(-) are sensitivity and specificity of stable 
class prediction. 

 

Similarly, the analysis of the classifier performance on the test set according to 

different chemotypes shows that the classifier attained similar performance to the 

training sets used in crossvalidation in Figure 4.4. All the inhibitor types have overall 

accuracies about or higher 50% and only 1,3-difluorobenzene has accuracy < 70%. 

Low affinity ligands bearing 1,3-diclorobenzene chemotypes were classified with low 

accuracies and the predictor failed to recognized low affinity 1,3-difluorobenzene 
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derivatives. Despite of the low prediction performance for these chemotypes, the 

overall performance of the predictor on this blind set is adequate. The classifier 

recognized the inhibition pattern from different kinase families and also properly 

discriminated between stable and unstable inhibitor complexes belonging to several 

chemical subspaces in the test set. 

The differential relevance of the topological autocorrelation space for 

modeling kinase inhibition was evaluated by sensitivity analysis [4]. The impact of 

each variable in the optimum model was estimated by measuring test set prediction 

accuracies for different modified feature matrices in which each autocorrelation 

vector at a time was replaced by a constant vector of same length. The magnitude of 

the importance of each input variable in the predictor was taken as the 

underperformance score defined as the ratio between F-scores (Eq. 2.11) for original 

and modified feature matrices. The sensibility analysis yields top-9 relevant 

autocorrelation vectors in descending order as follows: AASA3Ht > AASA2Ra > 

AASA4Ra > AASA5Ra > AASA4ASAN > AASA5ASAN > ATS6v > ATS3e > ATS4e.  It is 

noteworthy that the most relevant inputs are kinase’s autocorrelations of 

hydrophobicity/polarity-related properties such as thermodynamic transfer 

hydrophobicity (Ht), solvent-accessible reduction ratio (Ra) and solvent-accessibility 

area for native state (ASAN), in combination with ligand’s autocorrelations of atomic 

volumes and electronegativities on the 2D structure sketch.  

 

4.3.   Discussion 

Inhibition of protein kinases can be broadly classified into three categories: 

ATP-competitive inhibition, substrate-competitive inhibition, and allosteric inhibition. 

Successful treatments of chronic myeloid leukemia and gastrointestinal stromal tumor 
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with Gleevec [5] have recently drawn much attention because of its excellent 

selectivity and its ability to bind to a precise inactive conformation of Abl kinase. 

However, the emergence of drug-resistant mutants [6] and structural studies suggest 

that mutations in the kinase domain cause resistance to the Abl kinase inhibitor [7,8]. 

Other studies have also shown that some inhibitors can recognize specific inactive 

conformation of B-Raf (1UWH) and p38 (1W83), whereas some others can inhibit the 

active form of Abl kinase [9-11]. However, all of them have been shown to decrease 

or completely lose inhibitory activity towards some mutated kinase. In this sense, 

Thaimatta et al. [12] in the review of kinase inhibitors stated that the modulation of 

kinase activity has not been sufficiently exploited for therapeutic purposes. These 

authors suggested that inhibition of a single kinase may be insufficient to achieve a 

therapeutic benefit, and that promiscuous small-molecule kinase inhibitors or 

cocktails of inhibitors may be more promising than selective agents by targeting 

several kinases. In view of these facts, different computational approaches for kinase 

drug design need to be exploited, in order to find novel, more efficient and side 

effects-free kinase inhibitors. 

Kinase sequence information had also been correlated with inhibition 

selectivity. A novel approach combines the understanding of small molecules and 

target sequence and genes, and thereby assists researchers in finding new targets for 

existing molecules or understanding selectivity and polypharmacology of molecules 

in related targets. Chemogenomics combines genomic data, structural biological data, 

classical dendrograms, and selectivity data to explore, define, and classify the 

medicinally relevant target space for any relevant biological system. Consequently, 

exploitation of this information in the discovery of kinase inhibitors defines practical 

kinase chemogenomics (kinomics) [13]. The authors presented the first dendrogram 
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of kinases based entirely on small molecule selectivity data. They found that the 

selectivity dendrogram varied from sequence-based clustering due to the higher-level 

groupings of the smallest clusters, and it remains very comparable for closely 

homologous targets. As a main result, it was found that the smaller comparable 

molecules inhibit higher homologous kinases in a more desirable way.  

In our study, the most relevant autocorrelation features were found to be 

thermodynamic transfer hydrophobicity (Ht), solvent-accessible reduction ratio (Ra) 

and solvent-accessibility area for native state ASAN, which encode a kinases inhibitory 

pattern, defined by the distributions of hydrophobicity/polarity states along the 

sequence.  At the same time, the differential affinity of ligands towards kinases was 

ruled by the distributions of atomic volume and electronegativity on the 2D structure 

sketches. To the best of our knowledge, our study is the first model for predicting 

inhibition data on 62 kinases and a wide chemical space, which allows discriminating 

between stable and unstable inhibition complexes with adequate accuracies about 

82% for training set crossvalidation and test sets. The predictor is available online at: 

http://gibk21.bse.kyutech.ac.jp/AUTOkinI/SVMpredictor.html. 

4.4.  Conclusions 

Kinase inhibition was successfully modeled from sequence and 2D graph 

representation of ligands using SVM. The topological model surpassed the fragment-

based classifier with maximum crossvalidation accuracies about 82% for training set 

crossvalidation and test set prediction. The predictor was stable to the 

inclusion/exclusion of new kinases and accurately classified the affinity of totally new 

inhibitors in the test set. Furthermore, test set accuracies of the optimum topological 

classifier were very homogenous across 19 kinase families and 30 substructural 

fragments of the ligands.  
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CHAPTER 5. MODELING OF PROTEASE 

INHIBITION
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5.1. Introduction 

This chapter presents the modeling of the ligand dataset with reported 

inhibitory activities towards 32 proteases collected from ProLiNT database [1]. 

Structural fragments and topological autocorrelations features were computed from 

protein sequences and 2D graphs of ligands. The dataset was divided into training 

(80% dataset) and test sets (20% dataset) by k-means clustering. Five clusters were 

generated and cases were homogeneously added to training and test sets by selecting 

instances from each cluster according to cluster's sizes. Subsequently, Support Vector 

Machines (SVMs) model was used to classify hypothetical complexes into high and 

low affinity classes. Predictor’s optimization was carried out by three-fold-out (TFO) 

crossvalidation. The training set was divided into three subsets: two subsets were used 

for training the classifier and the rest subset was then predicted. This process was 

repeated until all the subsets were predicted. The ability of the predictor to recognize 

new ligands and targets was evaluated in the test set as well as the performance for 

different protease families and inhibitor scaffolds. 

5.2.  Results 

5.2.1 Clustering analysis 

Selectivity of the 9 protease families was firstly explored by cluster analysis. 

Two sets of descriptors, structural fragments and 2D autocorrelation vectors were 

calculated for the 988 active ligands on the dataset. Afterwards, k-means clustering 

algorithm yielded 9 ligand clusters (same as the number of protease families) for each 

descriptor sets. In order to evaluate the efficiency of proteases selectivity in the two 

descriptors sets, ligand clusters were matched to the different protease families.  
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Figure 5.1. Density map representing occurrence ratios of protease families on active 
ligand clusters obtained by atom-center fragment descriptors (A) and 2D 
autocorrelation vectors (B). Protease families: (1) peptidase A2, (2) peptidase A1, (3) peptidase 
C1, (4) peptidase C2, (5) peptidase M10, (6) peptidase S1, (7) peptidase S9, (8) picornaviruses 
polyprotein, and (9) plasmepsin. 

 
Distributions of both sets of 9 ligand clusters on the 9 protease families 

appear in Figure 5.1. The cluster distributions depict different patterns. Peptidase A2 
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clusters on this protease family differ. In addition, we built two dendrograms by 

clustering protease families according to the distributions of the ligand clusters in the 

families. Figure 5.2 depicts dendrograms for fragment and topological descriptors 

showing 4 family clusters at squared Euclidean distances equal to 3.5 units in both 

cases but the distribution of protease families according each approach follow 

different trends.  

The clustering pointed out that different chemical scaffolds inhibit 

independently allocated protease families. At the same time, the two families in 

multiple clusters could share similarity for the active ligands according to each 

encoding scheme. Among the highly represented families, allocation of peptidase A2 

family and picornaviruses polyprotein family in the same cluster al low distance 

suggests a similar inhibition scaffold for these proteases according to the topological 

approach. The inhibition patterns of these families are similar and significantly differ 

from the rest of the protease families. Interestingly, HIV-1 protease in peptidase A2 

family is a viral protease as well as the members of the picornaviruses polyprotein 

family. 

Fragment and topological descriptors were evaluated to distinguish between 

active and inactive chemical scaffolds in the dataset. The mean squared differences 

between the normalized descriptors of active and inactive inhibitors were 0.0677 and 

0.1878 from the fragment- and topological-based approaches, respectively. These 

values significantly differed from the mean squared differences of 100 scrambled 

partitions of active and inactive ligands that were <10-4 for both descriptor types. 

Mean squared topological autocorrelation difference between active and inactive 

inhibitors is 3-fold higher in comparison with mean squared fragment difference.  
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Figure 5.2. Dendrograms of protease families according to occurrences ratios on 
active ligand clusters obtained by fragment descriptors (A) and 2D autocorrelation 
vectors (B). Protease families: (1) peptidase A2, (2) peptidase A1, (3) peptidase C1, (4) peptidase 
C2, (5) peptidase M10, (6) peptidase S1, (7) peptidase S9, (8) picornaviruses polyprotein, and (9) 
plasmepsin. 
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5.2.2 Structural Fragments classifier 

SF and SSF descriptors computed for the protease sequences and the 2D 

structural sketches of the inhibitors were combined into a single feature matrix by 

simple concatenation of target and ligand descriptors blocks. The dataset was 

separated into a training set with 1279 inhibition complexes (80%) and a test set with 

427 inhibition complexes (20%).  

Table 1. Crossvalidation and prediction statistics for the training and test sets 
according to the structural fragment SVM model for the classification of the stability 
of protease inhibition complexes. SVM regularization parameter and width of the 
RBF kernel were 2 and 5, respectively.  

Experiment Q2 P(+) P(-) Q(+) Q(-) Cr 

Training set crossvalidation  0.75 0.73 0.79 0.75 0.73 0.51 

Test set prediction  0.74 0.78 0.70 0.83 0.72 0.50 
+ and - : the indexes were evaluated for “unstable” (Ki  < 0.1 µM) and “stable” (Ki  > 0.1 µM) protease 
inhibition complexes, respectively. Q2 is the number of correct predictions/number of examples; P(s) 
is the number of correct prediction for class s/all prediction made for s; Q(s) is the number of correct 
prediction for class s/observed in class s; Cr is Matthews’s correlation coefficient. Q(+) and Q(-) are 
sensitivity and specificity of high affinity class prediction and P(+) and P(-) are precision scores. 

 

In a first attempt, we implemented a linear kernel but the crossvalidation 

accuracy was < 70%. Then, a nonlinear SVM classifier was optimized by adjusting 

RBF kernel width and regularization parameter throughout a TFO crossvalidation in a 

grid search. Optimum values of RBF kernel width and regularization parameter were 

5 and 2, respectively, yielding crossvalidation results that appear in Table 5.1. An 

overall TFO crossvalidation accuracy of 75% for the classification of inhibition 

complexes was achieved with a correlation coefficient C=0.51.  
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5.2.3 Topological autocorrelation classifier 

Topological features were computed from the primary sequence of the 

proteases and the 2D sketch of the inhibitor structure descriptors. Similar to the 

fragment-based classifier, the dataset was separated into training and test sets in the 

same way.  

Table 5.2. Crossvalidation and prediction statistics for training and test sets according 
to the topological SVM model for the classification of the stability of protease 
inhibition complexes. SVM regularization parameter and width of the RBF kernel 
were 10 and 0.10, respectively. 

Experiment Q2 Q(+) Q(-) P(+) P(-) Cr 

Complex-wise 0.81 0.81 0.81 0.85 0.76 0.61 

Ligand-wise 0.79 0.79 0.79 0.83 0.74 0.58 
Training set 

crossvalidation 

Protease-wise 0.75 0.71 0.79 0.82 0.68 0.50 

Complex-wise 0.80 0.81 0.78 0.85 0.72 0.58 Test set 
prediction Ligand-wise 0.83 0.86 0.73 0.90 0.64 0.57 

+ and - : the indexes were evaluated for “low affinity” (Ki > 0.1 µM) and “high affinity” (Ki < 0.1 µM) 
protease inhibition complexes, respectively. Q2 is the number of correct predictions/number of 
examples; P(s) is the number of correct prediction for class s/all prediction made for s; Q(s) is the 
number of correct prediction for class s/observed in class s; Cr is Matthews’s correlation coefficient. 
Q(+) and Q(-) are sensitivity and specificity of high affinity class prediction and P(+) and P(-) are 
precision scores. 

 

A linear kernel explained < 70% of training set crossvalidation variance. Then, 

adjusting RBF kernel and SVM parameter throughout a TFO crossvalidation in a grid 

search yielded a nonlinear classifier with crossvalidation results shown in Table 5.2. 

Here complex-wise statistics refers to the basic crossvalidation experiments in which 

only nonredundant complexes were included. In this case, an overall complex-wise 

TFO crossvalidation accuracy of 81% was achieved for the classification of inhibition 

complexes with a correlation coefficient C=0.65. The Crossvalidation accuracies to 

identify high and low affinity inhibition complexes were also 81%. These accuracies 
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and the correlation coefficient are higher than the statistics reported in Table 5.1 for 

the fragment-based predictor. In the view of the training set results, which are similar 

to our findings for kinase inhibition, we conclude that autocorrelation approach 

outperforms the fragment-based classifier and it is more convenient for modeling 

proteases inhibition. 

Moreover, the stability of the optimum topological model to recognize new 

ligands and proteases was evaluated. We performed two additional crossvalidation 

experiments in which protease complexes sharing similar ligands were kept in the 

same data subset during crossvalidation, we called this experiments ligand-wise 

crossvalidation, similarly we run another crossvalidation in which complexes of the 

same protease were kept in the same subset and this was called protease-wise 

crossvalidation. The accuracies for ligand-wise crossvalidation were 75%  (Table 5.2) 

illustrating that the model correctly classifies the affinity of novel ligands towards 

existing protease. All further reported statistical analysis for protease families 

(Figures 5.3 and 5.4) and ligand chemotypes (Table 5.1 Appendix) were performed on 

ligand-wise crossvalidation. Noteworthy, the protease-wise TFO crossvalidation in 

Table 5.2 showed how the model differentiated complexes of new proteases with 

accuracy of 75% and recognized low and high affinity complexes with accuracies of 

79% and 71%. This result is remarkable considering that removing highly represented 

proteases from the training subset leaves out large series of inhibitors. This 

topological SVM predictor of protease inhibition outperforms our previous model on 

kinases in detecting new high affinity targets. In fact, the protease inhibition depicts a 

more homogenous pattern across different targets than the kinase inhibition does. 

Ligand- and target-wise crossvalidations strongly corroborate the relevance of the 
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topological feature space to model protease inhibition as well as the self-consistency 

of the SVM predictor. 

 

Figure 5.3. Ligand-wise TFO crossvalidation accuracies for the 9 protease families in 
the training set according to the optimum topological SVM model. + and - : the indexes 
were evaluated for “low affinity” (Ki > 0.1 µM) and “high affinity” (Ki  < 0.1 µM) protease inhibition 
complexes, respectively. Q2 is the number of correct predictions/number of examples; Q(s) is the 
number of correct prediction for class s/observed in class s. Q(+) and Q(-) are sensitivity and 
specificity of high affinity class prediction. 

 

5.2.4 Performance of the topological autocorrelation classifier on 

different protease families and chemotypes on the training set 

Protease inhibition dataset includes inhibitory activities of a diverse chemical 

space towards 9 protease families. It is very interesting to analyze the optimum 

classifier performance for each protease family in the dataset. The classification 

accuracies for each family according to the optimum SVM predictor are depicted in 

Figure 5.3. The predictor performance was homogeneous to all families. The overall 
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accuracies for the classification of the affinity of inhibition complexes were higher 

than 65% for all proteases with the exception of peptidase S9 family. Interestingly, 

the same protease family was found isolated in the cluster analysis. Therefore, the 

inhibition pattern of this protease group is more complex and largely differs from the 

others. This family is integrated by proline-specific peptidases (most of them serine-

dependent peptidases), which have been found in bacteria, protozoa, plants, and 

animals, including mammals. Nevertheless, these enzymes do not seem to share 

similar functions across these organisms [2, 3]. The classifier recognized low affinity 

inhibition complexes of the peptidase A2 proteases with low accuracy. This family 

included HIV-1 protease and the poor result in crossvalidation experiment could be 

caused by the complexity and variety of the target-ligand interactions for this enzyme 

[4].  

According to Figure 5.3, protease families with the highest occurrence ratios 

on the training set exhibit crossvalidation accuracies > 75%. These protease families 

are peptidase A2, peptidase M10, peptidase S1, peptidase C2 and peptidase C1 

families with occurrence ratios of 42.14%, 18.37%, 17.75%, 10.87% and 6.33%, 

respectively. Peptidase M10 family have been extensively studied for targeting 

cancer. They are involved in connective-tissue remodeling and participate in some 

processes such as ovulation, embryonic growth, angiogenesis, differentiation, and 

healing [5]. MMP inhibitors have caught the interest as an important class of drugs for 

the development of innovative chemotherapeutics in several fields where effective 

treatments are lacking [5]. Considering the relevance of this protease family as 

therapeutic target, it is noteworthy that our classifier successfully discriminated 

between high and low affinity inhibitors of MMP proteases with an overall accuracy 

> 80% in crossvalidation experiments.  
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Cystein proteases belong to the peptidase C1 and peptidase C2 families in 

which a catalytic cysteine mediates protein hydrolysis via nucleophilic attack on the 

carbonyl carbon of a susceptible peptide bond [6]. Cysteine proteases have been 

identified as promising targets for the development of antiparasitic chemotherapy [7]. 

Their widespread importance in both protozoan and helminth parasites of domestic 

animals and humans along with the relative lack of redundancy of cysteine proteases 

in parasites compared to their mammalian hosts makes them attractive targets for the 

development of new antiparasitic chemotherapy [7]. Clinical studies have confirmed 

the efficacy of cysteine protease inhibitors in treatment of Trypanosoma cruzi, 

Plasmodium falciparum, Leishmania major and Trypanoasoma brucei, the agent of 

African trypanosomiasis. Considering this, the topological model that recognizes 

inhibition complexes of peptidase C1 proteases with crossvalidation accuracy > 90% 

could make a good contribution to the quest for potent inhibitors.  

The second most abundant protease family in our data set, peptidase S1 

family, is the import group of serine endopeptidases. Serine proteases perform many 

relevant functions in multi-cellular organisms, including blood clotting, cancer, cell 

death, osmoregulation, tissue remodeling, and immunity to infection [8-10]. Serpins 

are serine protease inhibitors that play a fundamental role in controlling the 

recognition of antigen, effector function, and homeostatic control of cytotoxic T 

lymphocytes through the inhibition of physiological serine protease targets [8]. In 

turn, serine proteases such as kallikrein, thrombin, and plasmin mediate the decrease 

of blood loss and transfusion requirements during coronary artery bypass graft [9]. 

They also play a critical role in neuronal death after injury to the central nervous 

system [10]. The neuroprotective activity of the molecules that modulate the activity 

of serine proteases have encouraged the study of the production and modulation of 
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serpins, such as type 1 plasminogen activator inhibitor, neuroserpin, and protease 

nexin-1 [10]. The significance of serine proteases as therapeutic targets has boosted 

the development of synthetic inhibitors by combining experimental and computational 

medicinal chemistry [11-16]. In this context, our novel predictor is a valuable tool that 

correctly recognizes about 70% and 90% of active and inactive inhibitors towards 

serine proteases in crossvalidation experiments.  

The clinical efficacy of viral proteases inhibitors has been demonstrated in 

HIV infection. Peptidase A2 family includes HIV-1 protease, which is structurally 

related to human aspartic acid proteases, such as renin, cathepsin D, gastrin, and 

pepsin [17]. The earliest HIV protease inhibitors were peptidic in nature with limited 

success due to their poor oral bioavailability and metabolic instability. Subsequently, 

the screening of compound libraries and rational drug design based on solved X-ray 

crystal structures of HIV-1 protease have led to many good inhibitors, such as 

nelfinavir [18]. Although, some HIV protease inhibitors have emerged as potent 

antiretroviral chemotherapeutic agents, the emergence of drug-resistant variants after 

prolonged antiviral therapy leads to resistance to one protease inhibitor and cross-

resistance to other protease inhibitors. This scenario demands continuous drug design 

efforts, which is likely to be supported by our study as in this case our model has an 

accuracy of 76%. 

We also analyzed the predictor behavior for different chemical subspaces on 

the inhibitor dataset. In this sense, 25 substructural templates were considered for 

comparing the classifier accuracy regarding the different chemotypes on the modeled 

chemical space (Table 5.1 Appendix). All but two of the analyzed substructures 

showed overall accuracies about or higher than 70%, where ligands bearing 

bromobenzene or thiofuran were predicted with overall accuracies about 50%. The 
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accuracies for separate classes were lower than 50% only for low affinity ligands 

bearing 1,3-dichlorobenzene substructure and high affinity ligands bearing thiofuran. 

According to this result, we can state that the classifier performed well over the 

chemical space represented by the protease inhibitors in the training set.  

5.2.4 Prediction of the test set 

Crossvalidation accuracy gives an estimate of the internal consistency of the 

predictive models, but a more realistic measurement of the prediction power can be 

achieved by evaluating performance on blind test set. Table 5.2 shows that the results 

from the topological-based classifier on such datasets perform well and lead to an 

overall accuracy of about 80% for the complex-wise evaluation. This is promising 

considering the fact that the test set prediction accuracies were in the same range as 

obtained in crossvalidation experiments of the training set in Table 5.2, thus relaxing 

the concerns of overfitting. Classification of test set performed well for the 

topological models taking into account that test set accuracy of the fragment-based 

predictor was 75% (Table 5.1). 

In addition, the ability of the topological predictor to recognize totally new 

ligands was estimated by evaluating the model accuracy for 248 out of the 427 

protease inhibition complexes in the test set for which ligands information was not 

available in the training set. This predictor correctly recognized 83% of totally new 

high affinity ligands with an adequate specificity of 73%. This result showed that the 

optimum classifier not only correctly learned the protease inhibition pattern, but that 

the learned pattern was adequately generalized to the test set, including totally new 

ligands.   

Figure 5.4 shows classification results for each protease family on the test set. 

Peptidase S9 family was totally misclassified but this protease family is not 
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statistically significant in the test set with the lower occurrence ratio of 0.23%. In 

turn, the rest of the protease families, with the exception of picornaviruses polyprotein 

family, exhibit overall prediction accuracies over 65%. Furthermore, the classifier 

predicts five out of nine protease families in the test set with accuracies about 85%.        

 

 

 
Figure 5.4. Ligand-wise prediction accuracies for the 9 protease families in the test 
set according to the optimum topological SVM model. + and - : the indexes were evaluated 
for “low affinity” (Ki > 0.1 µM) and “high affinity” (Ki  < 0.1 µM) protease inhibition complexes, 
respectively. Q2 is the number of correct predictions/number of examples; Q(s) is the number of 
correct prediction for class s/observed in class s. Q(+) and Q(-) are sensitivity and specificity of high 
affinity class prediction. 

 

The classifier performance on the test set according to the different 

chemotypes was similar to the crossvalidation of the training set (Table 5.1 in 

Appendix). All inhibitor chemotypes have overall accuracies > 50% but 1,3-

difluorobenzene and biphenyl have overall accuracies < 75%. Low affinity inhibitors 
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bearing tetramethylmethane, biphenyl, chlorobenzene and indole chemotypes were 

recognized with low accuracies. Even though the low prediction performance for 

these chemotypes, the overall performance of the predictor on this blind set is still 

encouraging. The classifier recognized the inhibition pattern from different protease 

families and accurately discriminated between high and low affinity inhibitor 

complexes belonging to several chemical subspaces. 

The differential relevance of the topological autocorrelation vectors for 

modeling protease inhibition was evaluated by sensitivity analysis [19]. The impact of 

each variable in the optimum model was estimated by measuring test set prediction 

accuracies for modified feature matrices in which each autocorrelation vector at a 

time was replaced by a constant vector of same length. The magnitude of the 

importance of each input variable in the predictor was taken as the underperformance 

score defined as the ratio between F-scores (Eq. 2.11) for original and modified 

feature matrices. The sensibility analysis yields top-14 relevant AASA vectors with 

approximately equal contributions to the classification model as follows: from 

AASA3Ht to AASA5Ht, from AASA1pK' to AASA5pK', from AASA1Ra to AASA5Ra and 

AASA3ASAN. The top-5 relevant inhibitor autocorrelation vectors in descending order 

were as follows:  ATS8v > ATS4e > ATS7v > ATS8e > ATS8p.  It is noteworthy that 

the most relevant inputs are protease’s autocorrelations of hydrophobicity/polarity-

related properties such as thermodynamic transfer hydrophobicity (Ht), solvent-

accessible reduction ratio (Ra), solvent-accessibility area for native state (ASAN) and 

the electrostatic state related property equilibrium constant with reference to the 

ionization property of COOH group (pK'). These properties combined with ligand’s 

autocorrelations of atomic volumes, electronegativities and polarizabilities at middle 

to large lags on the 2D structure sketch depict a robust protease inhibition pattern.  
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5.3.  Discussion 

Initially, protease inhibitors were developed by natural product screening for 

lead compounds followed by empirical substrate-based optimization [20]. The 

availability of three-dimensional structural information for proteases later improved 

this substrate-based drug design allowing receptor-based computational design. 

Classical and 3D-QSAR approaches have been extensively used to model HIV-1 

protease inhibition [21-23]. Furthermore, machine learning techniques have been 

successfully implemented to predict HIV protease inhibitor activities yielding 

accuracies in the range 70%-80% [24, 25]. The inhibition of gamma-secretase, a 

multi-subunit protease complex of the aspartyl protease family and a promising target 

for the prevention and treatment of Alzheimer's disease, was modeled by random 

forest yielding classification accuracy of 99% and about 350 potential hit candidates 

in a broad virtual screening against the ZINC database [26].  

The design of selective MMP inhibitors has been a difficult task because 

members of the MMP family share structural features including propeptide, catalytic, 

and hemopexin domains. Neural networks models for individual members of this 

enzyme family have been reported with accuracies in the range 72%-81%. Such 

studies partially succeed in distinguishing the structural requirements for the selective 

inhibitors of the MMP proteases but did not consider target information. High 

prediction performance was reported for an external test set of more than 100 

compounds using ligand alignments from X-ray structures and 3D-QSAR to identify 

MMP3 inhibitors [29]. Furthermore, the in vitro evaluation of active candidate 

yielded some nanomolar active inhibitors [29]. Verma and Hansh [30] profoundly 

analyzed MMP family from the classification of these enzymes to the clinical trials of 

their inhibitors. About a hundred of published and newly formulated QSAR models 
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on MMP inhibition were discussed in the context of the chemical–biological 

interactions. The most important features were hydrophobicity and molar refractivity. 

The target information was not explicitly used but the concluded target-ligand 

interaction hypothesis involved comparing the quality and descriptor occurrences on 

the models for different inhibitor datasets on the same target or the same inhibitor 

dataset for different targets. Despite that rigor in this area, the authors used very 

intuitive descriptors and, although the stability of target-ligands were predicted with 

high crossvalidation accuracies, the use and generalization of about hundred models 

as well as their comparative interpretation is rather rough. 

In turn, the inhibition of serine protease thrombin was modeled by a method 

called Linear Interaction Energy in Continuum Electrostatics, which successfully 

predicted the inhibitory activity of about 76% of the compounds in an external test 

set. Active compounds were selected with high sensitivity from a thrombin 

combinatorial library of more than 10000 mimetic chemicals [12]. Similarly, a group 

of low molecular weight cathepsin B inhibitors were predicted by partial least-squares 

(PLS) QSAR models with regression and classification accuracies of 68% and 94% in 

crossvalidation experiments [13]. In another study, the 3D structure of the receptor 

complex of protease NS3, a serine protease that participates in the replication and 

maturation of Dengue virus [14], was used to computationally design and screen a 

virtual library of about 1000 peptidomimetic analogs [15]. The most promising virtual 

hits had inhibition potencies in nanomolar range and Adsorption, Distribution, 

Metabolism and Excretion (ADME) ADME-related properties comparable to the 

training set inhibitors [34]. An interesting review on FXa inhibitors discussed 3D-

QSAR studies and classical QSAR approaches on chemically diverse data sets 

ranging from 20 to 80 compounds [16]. The most correlating feature was 
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hydrophilicity-related properties as ClogP and molar refractivity and sterimol 

parameters were also important in most of the cases.  

Recent QSAR analyses on the major cysteine protease from Trypanosoma 

cruzi, cruzain highlighted this enzyme as a very attractive drug target. Neural network 

[31] and 3D-QSAR [32] studies of cruzain inhibitors described 73-78% of 

crossvalidation data variances and the predicted values were by experimental results. 

Although protease inhibition have been extensively approached by 

computational methods, the existing predictors lack a comprehensive and unified 

implementation that integrates wide targets and ligands spaces. In our study, we 

employed ligand clustering to evaluate the ability of ligand cluster distributions to 

differentiate the protease families. In addition, optimum modeling of protein-ligand 

interactions was developed from simple sequence and 2D graphs combining 

topological descriptors of targets and ligands. Autocorrelation vectors weighted by 

amino acids/residues and atomic properties encode target sequences and inhibitor 

structures. Those descriptors account for amino-acid distributions on the target 

sequences and atom distribution on the 2D sketch of the inhibitor molecules. While 

combining topological autocorrelation features, interactions between target and ligand 

structures are encoded in a conformation-independent set of descriptors. The most 

relevant autocorrelation features were found to be thermodynamic transfer 

hydrophobicity (Ht), solvent-accessible reduction ratio (Ra), the electrostatic state 

related property equilibrium constant with reference to the ionization property of 

COOH group (pK') and solvent-accessibility area for native state ASAN, which encode 

a protease inhibitory pattern, defined by the distributions of hydrophobicity/polarity 

and electronegativity states along the target sequence.  At the same time, the 

differential affinity of ligands towards proteases was ruled by the distributions of 
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atomic volume, electronegativity and polarizability on the 2D structure sketches. To 

the best of our knowledge, our study is the first model for predicting inhibition data 

on 32 proteases and a wide chemical space, which allows discriminating between high 

and low affinity inhibition complexes with adequate accuracies > 80% for the test 

sets. The predictor is available online at: 

http://gibk21.bse.kyutech.ac.jp/AUTOprotI/SVMpredictor.html. 

5.4.  Conclusions 

Protease inhibition was successfully modeled from sequence and 2D graph 

representation of ligands using SVMs. A topological model using sequence 

information surpassed a fragment-based classifier with maximum crossvalidation 

accuracies >80% for training set crossvalidation and test set .The predictor was stable 

to the inclusion/exclusion of new proteases and accurately classified the affinity of 

totally new inhibitors in the test set. Furthermore, test set accuracies of the optimum 

topological classifier were homogenous across the 32 protease families and 25 

substructural fragments of the ligands.  
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CHAPTER 6. SUMMARY AND FUTURE 

PERSPECTIVES
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6.1. Summary 

The present study investigated the modeling of protein properties and 

function combining simple representation of the structure and machine learning 

techniques. Three datasets of protein conformational stability, kinase and proteases 

inhibition were collected from our in-house databases Protherm and ProLINT. 

Proteins and ligands were represented as Cα-carbon linear graphs and 2D molecular 

graphs from which autocorrelation features were computed using different weighting 

schemes. Support vector machines were implemented to map autocorrelation features 

to the property/function. Feature selection was applied for protein conformational 

stability. The main results are the following: 

1. Conformational stability 

• Real ΔΔG values were calculated with correlation coefficient of 0.67. 

• ΔΔG signs were correctly classified with accuracy of 80%. 

• Mutations at the protein core were more accurate predicted in 

comparison to mutations at the protein surface.  

• Protein hydration-related properties rule the prediction of 

conformational stability.  

2. Kinase inhibition 

• AGC Ser/Thr protein kinase, Tyr protein kinase and atypical kinase 

families had exclusive inhibition profiles according to the fragment 

and autocorrelation patterns of active inhibitors. 

• Overall inhibition prediction has accuracy > 80%. 

• 15 out of 19 kinase families have accuracy of 85%. 
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• Inhibition of TKL Ser/Thr protein kinase family was predicted with 

low accuracy suggesting a complex ligand-target interaction profile. 

• Most relevant features resemble the hydrophobicity/polarity states 

along the kinase sequences. 

3. Protease inhibition 

• Peptidase A2 and virus picornaviruses polyprotein families have 

similar and exclusive inhibition profiles according to autocorrelation 

pattern of active inhibitors. 

• Overall inhibition prediction has accuracy > 80%. 

• Five out of nine protease families have accuracy of 85%. 

• Inhibition of peptidase A2 and peptidase S9 families were predicted 

with low accuracy suggesting complex ligand-target interaction 

profiles. 

• Most relevant features resemble the hydrophobicity/polarity and 

electronegativity states along the protease sequences. 

6.2. Future perspective 

This study focuses on the prediction of protein conformational stability and 

kinase and protease inhibition using sequences and 2D molecular graphs. It is an 

attempt to improve the tools to analyze and query structure databases. These results 

show that accurate predictor can be implemented from a proper representation of the 

scare information content in protein sequence and 2D molecular graphs. It provides 

efficient and robust prediction tools to screen sequence and ligand databases for 

putative stable or unstable mutants and potent kinase and proteases inhibitors. Despite 

high to moderate accuracies were obtained; in some cases the complexity of the 

interactions limited the ability of the machine learning technique to reproduce the 
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learned information. In these particular cases, tridimensional structure information, 

added to the models in combination with solvent accessibility, secondary structure 

and evolutionary data, would further improve performance.  
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Appendix 
Table 2.1 Appendix. Numerical values of 48 selected physicochemical, energetic, 
and conformational properties of the 20 amino acids/residues used in protein 
conformational stability modeling. 

Propertya,b A C D E F G H I K 
1 K0 -25.5 -32.82 -33.12 -36.17 -34.54 -27 -31.84 -31.78 -32.4 
2 Ht 0.87 1.52 0.66 0.67 2.87 0.1 0.87 3.15 1.64 
3 HP 13.05 14.3 11.1 11.41 13.89 12.2 12.42 15.34 11.01 
4 P 0 1.48 49.7 49.9 0.35 0 51.6 0.1 49.5 
5 pHi 6 5.05 2.77 5.22 5.48 5.97 7.59 6.02 9.74 
6 pK' 2.34 1.65 2.01 2.19 1.89 2.34 1.82 1.36 2.18 
7 Mw 89 121 133 147 165 75 155 131 146 
8 P1 11.5 13.46 11.68 13.57 19.8 3.4 13.67 21.4 15.71 
9 Rf 9.9 2.8 2.8 3.2 18.8 5.6 8.2 17.1 3.5 

10 m 14.34 35.77 12 17.26 29.4 0 21.81 19.06 21.29 
11 Hnc 0.62 0.29 0.9 -0.74 1.19 0.48 -0.4 1.38 -1.5 
12 Esm 1.4 1.37 1.16 1.16 1.14 1.36 1.22 1.19 1.07 
13 E1 0.49 0.67 0.35 0.37 0.72 0.53 0.54 0.76 0.3 
14 Et 1.9 2.04 1.52 1.54 1.86 1.9 1.76 1.95 1.37 
15 Pa 1.42 0.7 1.01 1.51 1.13 0.57 1 1.08 1.16 
16 Pb 0.83 1.19 0.54 0.37 1.38 0.75 0.87 1.6 0.74 
17 Pt 0.66 1.19 1.46 0.74 0.6 1.56 0.95 0.47 1.01 
18 PC 0.71 1.19 1.21 0.84 0.71 1.52 1.07 0.66 0.99 
19 Ca 20 25 26 33 46 13 37 39 46 
20 F 0.96 0.87 1.14 1.07 0.69 1.16 0.8 0.76 1.14 
21 Pr 0.38 0.57 0.14 0.09 0.51 0.38 0.31 0.56 0.04 
22 Ra 3.7 3.03 2.6 3.3 6.6 3.13 3.57 7.69 1.79 
23 Ns 6.05 7.86 4.95 5.1 6.62 6.16 5.8 7.51 4.88 
24 an 1.59 0.33 0.53 1.45 1.14 0.53 0.89 1.22 1.13 
25 ac 1.44 0.76 2.13 2.01 1.01 0.62 0.56 0.68 0.59 
26 am 1.22 1.53 0.56 1.28 1.13 0.4 2.23 0.77 1.65 
27 V0 60.46 67.7 73.83 85.88 121.48 43.25 98.79 107.72 108.5 
28 Nm 2.11 1.88 1.8 2.09 1.98 1.53 1.98 1.77 1.96 
29 N1 3.92 5.55 2.85 2.72 4.53 4.31 3.77 5.58 2.79 
30 Hgm 13.85 15.37 11.61 11.38 13.93 13.34 13.82 15.28 11.58 
31 ASAD 104 132.5 132.2 161.9 182 73.4 165.8 171.5 195.2 
32 ASAN 33.2 17.9 62.4 81 33.1 29.2 57.7 28.3 107.5 
33 ΔASA 70.9 114.3 69.6 80.5 148.4 44 107.9 142.7 87.5 
34 DGh -0.54 -1.64 -2.97 -3.71 -1.06 -0.59 -3.38 0.32 -2.19 
35 GhD -0.58 -1.91 -6.1 7.37 -1.35 -0.82 -5.57 0.4 -5.97 
36 GhN -0.06 -0.27 -3.11 -3.62 -0.28 -0.23 -2.18 0.07 -1.7 
37 ΔHh -2.24 -3.43 -4.54 -5.63 -5.11 -1.46 -6.83 -3.84 -5.02 
38 -TΔSh 1.7 1.79 1.57 1.92 4.05 0.87 3.45 4.16 2.83 
39 ΔCph 14.22 9.41 2.73 3.17 39.06 4.88 20.05 41.98 17.68 
40 ΔGc 0.51 2.71 2.89 3.58 3.22 0.68 3.95 -0.4 1.87 
41 ΔHc 2.77 8.64 4.72 5.69 11.93 1.23 7.64 4.03 3.57 
42 -TΔSc -2.25 -5.92 -1.83 -2.11 -8.71 -0.55 -3.69 -4.42 -1.7 
43 ΔG -0.02 1.08 -0.08 -0.13 2.16 0.09 0.56 -0.08 -0.32 
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44 ΔH 0.51 5.21 0.18 0.05 6.82 -0.23 0.79 0.19 -1.45 
45 -TΔS -0.54 -4.14 -0.26 -0.19 -4.66 0.31 -0.23 -0.27 1.13 
46 V 1 2 4 5 7 0 6 4 5 
47 s 0 0 2 3 2 0 2 1 0 
48 f 0 1 2 3 2 0 2 2 4 
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L M N P Q R S T V W Y 

-31.78 -31.18 -30.9 -23.25 -32.6 -26.62 -29.88 -31.23 -30.62 -30.24 -35.01 
2.17 1.67 0.09 2.77 0 0.85 0.07 0.07 1.87 3.77 2.67 

14.19 13.62 11.72 11.06 11.78 12.4 11.68 12.12 14.73 13.96 13.57 
0.13 1.43 3.38 1.58 3.53 52 1.67 1.66 0.13 2.1 1.61 
5.98 5.74 5.41 6.3 5.65 10.76 5.68 5.66 5.96 5.89 5.66 
2.36 2.28 2.02 1.99 2.17 1.81 2.21 2.1 2.32 2.38 2.2 
131 149 132 115 146 174 105 119 117 204 181 
21.4 16.25 12.82 17.43 14.45 14.28 9.47 15.77 21.57 21.61 18.03 
17.6 14.7 5.4 14.8 9 4.6 6.9 9.5 14.3 17 15 

18.78 21.64 13.28 10.93 17.56 26.66 6.35 11.01 13.92 42.53 31.55 
1.06 0.64 -0.78 0.12 -0.85 -2.53 -0.18 -0.05 1.08 0.81 0.26 
1.32 1.3 1.18 1.24 1.12 0.92 1.3 1.25 1.25 1.03 1.03 
0.65 0.65 0.38 0.46 0.4 0.55 0.45 0.52 0.73 0.83 0.65 
1.97 1.96 1.56 1.7 1.52 1.48 1.75 1.77 1.98 1.87 1.69 
1.21 1.45 0.67 0.57 1.11 0.98 0.77 0.83 1.06 1.08 0.69 
1.3 1.05 0.89 0.55 1.1 0.93 0.75 1.19 1.7 1.37 1.47 

0.59 0.6 1.56 1.52 0.98 0.95 1.43 0.96 0.5 0.96 1.14 
0.69 0.59 1.37 1.61 0.87 1.07 1.34 1.08 0.63 0.76 1.07 
35 43 28 22 36 55 20 28 33 61 46 

0.79 0.78 1.04 1.16 1.07 1.05 1.13 0.96 0.79 0.77 1.01 
0.5 0.42 0.15 0.18 0.11 0.07 0.23 0.23 0.48 0.4 0.26 

5.88 5.21 2.12 2.12 2.7 2.53 2.43 2.6 7.14 6.25 3.03 
7.37 6.39 5.04 5.65 5.45 5.7 5.53 5.81 7.62 6.98 6.73 
1.91 1.25 0.53 0 0.98 0.67 0.7 0.75 1.42 1.33 0.58 
0.58 0.73 0.93 2.19 1.2 0.39 0.81 1.25 0.63 1.4 0.72 
1.05 1.47 0.93 0 1.63 1.59 0.87 0.46 1.2 0.46 0.52 

107.75 105.35 78.01 82.83 93.9 127.34 60.62 76.83 90.78 143.91 123.6 
2.19 2.27 1.84 1.32 2.03 1.94 1.57 1.57 1.63 1.9 1.67 
4.59 4.14 3.64 3.57 3.06 3.78 3.75 4.09 5.43 4.83 4.93 

14.13 13.86 13.02 12.35 12.61 13.1 13.39 12.7 14.56 15.48 13.88 
161.4 189.8 134.9 135.1 164.9 210.2 111.4 130.4 143.9 208.8 196.4 
31.1 41.3 60.5 60.7 71.5 94.5 48.7 52 28.1 39.5 50.4 

129.8 147.9 74 73.5 93.3 116 62.8 78 115.6 167.8 145.9 
0.27 -0.6 -3.55 0.32 -3.92 -5.96 -3.82 -1.97 0.13 -3.8 -5.64 
0.35 -0.71 -6.63 0.56 -7.12 -12.78 -6.18 -3.66 0.18 -4.71 -8.45 
0.07 -0.1 -3.03 0.23 -3.15 -6.85 -2.36 -1.69 0.04 -0.88 -2.82 
-3.52 -4.16 -5.68 -1.95 -6.23 -10.43 -5.94 -4.39 -3.15 -8.99 -10.67 
3.79 3.56 2.13 2.27 2.31 4.47 2.12 2.42 3.28 5.19 5.03 

38.26 31.67 3.91 23.69 3.74 16.66 6.14 16.11 32.58 37.69 30.54 
-0.35 1.13 3.26 -0.39 3.69 5.25 3.42 1.74 -0.19 5.59 6.56 
3.69 7.06 3.64 1.97 4.47 6.03 5.8 4.42 3.45 13.46 14.41 
-4.04 -5.93 -0.39 -2.36 -0.78 -0.78 -2.38 -2.68 -3.64 -7.87 -7.95 
-0.08 0.53 -0.3 -0.06 -0.23 -0.71 -0.4 -0.24 -0.06 1.78 0.91 
0.17 2.89 -2.03 0.02 -1.76 -4.4 -0.16 0.04 0.3 4.47 3.73 
-0.24 -2.36 1.74 -0.08 1.53 3.69 -0.24 -0.28 -0.36 -2.69 -2.82 

4 4 4 3 5 7 2 3 3 10 8 
2 0 2 0 3 5 0 1 1 2 2 
2 3 2 0 3 5 1 1 1 2 2 
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a K0, compressibility; Ht, thermodynamic transfer hydrophobicity; Hp, surrounding hydrophobicity; P, 
polarity; pHi , isoelectric point; pK', equilibrium constant with reference to the ionization property of 
COOH group; Mw, molecular weight; B1, bulkiness; Rf, chromatographic index; m, refractive index; 
Hnc, normalized consensus hydrophobicity; Esm, short- and medium-range nonbonded energy; E1 long-
range nonbonded energy; Et,total nonbonded energy (Esm + E1); Pa, Pb, Pt, and Pc are, respectively, a-
helical, b-structure, turn, and coil tendencies; Ca, helical contact area; F, mean r.m.s. fluctuational 
displacement; Br, buriedness; Ra, solvent-accessible reduction ratio; Ns, average number of 
surrounding residues; an, ac, and am are, respectively, power to be at the N-terminal, C-terminal, and 
middle of a-helix; V°, partial specific volume; Nm and N1 are, respectively, average medium- and long-
range contacts; Hgm, combined surrounding hydrophobicity (globular and membrane); ASAD, ASAN, and 
ΔASA are, respectively, solvent-accessible surface area for denatured, native, and unfolding; ΔGh,\ GhD, 
and GhN are, respectively, Gibbs free energy change of hydration for unfolding, denatured, and native 
protein; DHh, unfolding enthalpy change of hydration; -TΔSh, unfolding entropy change of hydration; 
DCph, unfolding hydration heat capacity change; ΔGC, ΔHC, and -TΔSC are, respectively, unfolding 
Gibbs free energy, unfolding enthalpy, and unfolding entropy changes of side-chain; ΔG, ΔH, and -TΔS 
are respectively, unfolding Gibbs free energy change, unfolding enthalpy change, and unfolding 
entropy change of protein; V, volume (number of nonhydrogen side-chain atoms); s, shape (position of 
branch point in a side chain); f, flexibility (number of side-chain dihedral angles).  

b K0 in m3/mol/Pa (× 10–15); Ht, Hp, Hnc, Hgm, DGh, GhD, GhN, ΔHh, -TΔSh, ΔGC, ΔHc, -TΔSc, ΔG, ΔH,   
and -TΔS in kcal/mol; P in Debye; Phi and pK' in pH units; Esm, E1, and Et, in kcal/mol/atom; B1, Ca, 
ASAD, ASAN, and ΔASA in Å2; F in Å; V° in m3/mol (× 10–6); ΔCph in cal/mol/K; and the rest are 
dimensionless quantities. 
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Table 2.2 Appendix. Name and values of the amino acids/residues propertiesa,b used 
to model kinase and protease inhibition. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a. Ht, thermodynamic transfer hydrophobicity; pK', equilibrium constant with 
reference to the ionization, property of COOH group; Ra, solvent-accessible reduction 
ratio; V°, partial specific volume; ASAN, solvent-accessible surface area for native 
protein; s, shape (position of branch point in a side chain); f, flexibility (number of 
side-chain dihedral angles). 
b. Ht in kcal/mol; pK' in pH units; ASAN in Å2; V° in m3/mol (× 10–6) and the rest are 
dimensionless quantities. 
	  

 

Residue Ht pK' Ra V0 ASAN s f 
A 0.87 2.34 3.7 60.46 33.2 0 0 
C 1.52 1.65 3.03 67.7 17.9 0 1 
D 0.66 2.01 2.6 73.83 62.4 2 2 
E 0.67 2.19 3.3 85.88 81 3 3 
F 2.87 1.89 6.6 121.48 33.1 2 2 
G 0.1 2.34 3.13 43.25 29.2 0 0 
H 0.87 1.82 3.57 98.79 57.7 2 2 
I 3.15 1.36 7.69 107.72 28.3 1 2 
K 1.64 2.18 1.79 108.5 107.5 0 4 
L 2.17 2.36 5.88 107.75 31.1 2 2 
M 1.67 2.28 5.21 105.35 41.3 0 3 
N 0.09 2.02 2.12 78.01 60.5 2 2 
P 2.77 1.99 2.12 82.83 60.7 0 0 
Q 0 2.17 2.7 93.9 71.5 3 3 
R 0.85 1.81 2.53 127.34 94.5 5 5 
S 0.07 2.21 2.43 60.62 48.7 0 1 
T 0.07 2.1 2.6 76.83 52 1 1 
V 1.87 2.32 7.14 90.78 28.1 1 1 
W 3.77 2.38 6.25 143.91 39.5 2 2 
Y 2.67 2.2 3.03 123.6 50.4 2 2 
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Table 3.1 Appendix. Names of AASA vectors in optimum GA-SVM models of 
conformational stability. 

 

AASA11Nm the amino acids sequence autocorrelation vector at lag 11 
weighted by average medium-range contacts; 

AASA8P the amino acids sequence autocorrelation vector at lag 8 
weighted by polarity;  

AASA7PB the amino acids sequence autocorrelation vector at lag 7 
weighted by β-structure tendency; 

AASA7GhN 
the amino acids sequence autocorrelation vector at lag 7 
weighted by Gibbs Free energy change of hydration for 

native protein; 

AASA10Ht 
the amino acids sequence autocorrelation vector at lag 10 

weighted by thermodynamic transfer hydrophobicity; 

AASA14f the amino acids sequence autocorrelation vector at lag 14 
weighted by flexibility; 

AASA12ΔGC 
the amino acids sequence autocorrelation vector at lag 12 
weighted by unfolding Gibbs Free energy change of side-

chain; 

AASA15ASAN 
the amino acids sequence autocorrelation vector at lag 15 

weighted by solvent-accessible surface area for native 
protein; 

AASA15ΔCph 
the amino acids sequence autocorrelation vector at lag 15 

weighted by hydration heat capacity change 

AASA14ΔCph 
the amino acids sequence autocorrelation vector at lag 15 

weighted by hydration heat capacity 
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Table 3.2 Appendix. Percent of crossvalidation correct classifications of the 
optimum SVM model for the DDG signs upon mutations according to the mutations 
type. In brackets the relative fraction of each mutation type in the training dataset of 
1383 single point mutants. 

 

Native           New Charged Polar Apolar 

Charged 66% (6%) 79% (9%) 72% (10%) 

Polar 70% (5%) 84% (9%) 72% (16%) 

Apolar 71% (4%) 88% (13%) 80% (28%) 
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Table 4.1 Appendix. Ligand-wise TFO crossvalidation and prediction accuracies for 

training and test sets for 30 substructures in the kinase inhibitors dataset according to 

the optimum topological classifier. 

 

 

  

Substr. 

     

           
 

 

Train Test Train Test Train Test Train Test Train Test 

Q2 0.83 0.81 1.00 1.00 0.81 0.94 0.80 0.90 0.84 0.86 

Q(+) 0.83 0.85 1.00 1.00 0.77 0.92 0.80  0.75 1.00 

Q(-) 0.83 0.79   0.86 1.00 0.79 0.90 0.85 0.83 

Occ.(%) 14.0 13.2 0.4 0.7 1.3 1.9 1.6 1.1 2.3 3.1 

Substr. 

    
 

            Train Test Train Test Train Test Train Test Train Test 

Q2 0.81 0.80 0.84 0.85 0.73 0.72 0.79 0.74 0.89 1.00 

Q(+) 0.84 0.87 0.95 0.91 0.92 0.92 0.80 0.82 1.00 1.00 

Q(-) 0.79 0.76 0.81 0.80 0.50 0.50 0.79 0.70 0.83 1.00 

Occ.(%) 91.8 92.5 3.1 2.9 26.1 25.3 19.3 22.8 0.7 1.3 

Substr. 

 
   

 

            Train Test Train Test Train Test Train Test Train Test 

Q2 0.86 0.75 0.94 1.00 0.79 0.80 0.81 0.82 0.92 1.00 

Q(+) 0.74 0.92 1.00 1.00 0.78 0.85 0.45 0.88 1.00 1.00 

Q(-) 0.97 0.60 0.93 1.00 0.80 0.79 0.90 0.80 0.91 1.00 

Occ.(%) 2.7 3.1 1.1 0.8 56.8 59.3 3.8 3.7 2.3 2.3 
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+ and - : the indexes were evaluated for “stable” (IC50 < 1 µM) and “unstable” (IC50 > 

1 µM) kinase inhibition complexes, respectively. Q
2
 is the number of correct 

predictions/number of examples; Q(s) is the number of correct prediction for class 

s/observed in class s. Q(+) and Q(-) are sensitivity and specificity of stable class 

prediction. Occ.(%) is the occurrence ratio. 

 

Substr. 

     

            Train Test Train Test Train Test Train Test Train Test 

Q2 0.77 0.77 0.69 0.76 0.86 0.84 0.80 0.50 0.86 0.89 

Q(+) 0.89 0.94 0.97 0.96 0.90 1.00 1.00 1.00 0.95 0.96 

Q(-) 0.66 0.62 0.30 0.40 0.81 0.71 0.67 0.00 0.67 0.65 

Occ.(%) 22.3 17.9 7.3 7.9 5.7 4.1 0.2 0.2 10.8 10.9 

Substr. 

 
 

  
 

            Train Test Train Test Train Test Train Test Train Test 

Q2  1.00 0.78 0.75 0.93 1.00 0.74 0.77 0.93 1.00 

Q(+)  1.00 0.78 0.78 1.00 1.00 0.68 0.69 1.00 1.00 

Q(-)   0.79 0.73 0.92 1.00 0.81 0.89 0.92 1.00 

Occ.(%) 0.0 0.1 11.2 13.6 0.93 1.00 2.0 2.4 0.93 1.00 

Substr. 

     

            Train Test Train Test Train Test Train Test Train Test 

Q2 0.96 0.93 0.84 0.83 0.95 0.99 0.89 0.95 0.80 0.83 

Q(+) 0.70 0.71 0.91 0.92 0.38 1.00 0.97 1.00 0.91 0.91 

Q(-) 0.98 0.97 0.77 0.75 0.98 0.99 0.80 0.83 0.56 0.56 

Occ.(%) 5.5 4.9 36.5 36.4 7.8 8.2 2.3 2.1 7.9 8.0 
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Table 5.1 Appendix. Ligand-wise TFO crossvalidation and prediction accuracies for 

training and test sets for 25 substructures in the protease inhibitors dataset according 

to the optimum topological classifier. 

Substr. 

     

 Train Test Train Test Train Test Train Test Train Test 

Q2 0.78 0.78 0.79 0.74 0.90 1.00 0.79 0.75 0.79 0.81 

Q(+) 0.77 0.80 0.82 0.85 0.86 1.00 0.75 0.80 0.68 0.83 

Q(-) 0.80 0.74 0.71 0.38 1.00  0.86 0.71 0.94 0.78 

Occ.(%) 66.8 69.6 8.6 8.0 0.8 2.1 2.7 2.8 5.7 4.9 

Substr. 

     

 Train Test Train Test Train Test Train Test Train Test 

Q2 0.78 0.80 0.91 0.89 0.83 0.78 0.74 0.77 0.75  

Q(+) 0.76 0.81 0.95 0.89 0.79 0.71 0.79 0.86 0.33  

Q(-) 0.81 0.77 0.50  0.87 0.83 0.63 0.43 1.00  

Occ.(%) 96.3 95.6 1.7 2.1 13.0 15.2 9.5 8.2 0.6 0.0 

Substr. 

 
   

 

 Train Test Train Test Train Test Train Test Train Test 

Q2 0.53 0.67 1.00 1.00 0.78 0.80 0.73 0.93 0.78 0.89 

Q(+) 0.47 1.00 1.00 1.00 0.76 0.82 0.74 0.92 0.84 0.89 

Q(-) 0.75 0.50  1.00 0.80 0.77 0.71 1.00 0.58 0.88 

Occ.(%) 1.5 0.7 0.8 0.7 93.4 93.9 9.0 9.4 15.6 16.6 

Substr. 
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 Train Test Train Test Train Test Train Test Train Test 

Q2 0.83 0.81 0.67 0.75 0.96 0.75 1.00 0.57 0.50 1.00 

Q(+) 0.88 0.95 0.88 0.83 0.95 0.79  0.25 0.50 1.00 

Q(-) 0.64 0.43 0.43 0.50 1.00 0.67 1.00 1.00   

Occ.(%) 4.9 6.3 1.2 1.9 3.5 4.7 0.3 1.6 0.3 0.9 

Substr. 

 

 

  
 

 Train Test Train Test Train Test Train Test Train Test 

Q2 0.67  0.73 0.79 0.75 0.53 0.86 0.82 0.80 0.80 

Q(+) 0.50  0.79 0.89 0.77 0.67  0.33 0.78 0.82 

Q(-) 1.00  0.60 0.43 0.69 0.00 0.86 1.00 0.83 0.78 

Occ.(%) 0.2 0.0 9.3 8.0 4.0 3.5 1.1 2.6 7.2 4.7 

 

+ and - : the indexes were evaluated for “low affinity” (Ki > 0.1 µM) and “high 

affinity” (Ki  < 0.1 µM) protease inhibition complexes, respectively. Q2 is the number 

of correct predictions/number of examples; Q(s) is the number of correct prediction 

for class s/observed in class s. Q(+) and Q(-) are sensitivity and specificity of high 

affinity class prediction. Occ.(%) is the occurrence ratio. 
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Figure 3.1 Appendix. Plots of crossvalidation calculated vs. experimental change of 

unfolding Gibbs free energy change (G) of protein mutants for each mutation type 

(secondary structure found in the mutation site) according to regression SVM models 

including experimental condition data as SVM inputs. Dotted lines are an ideal fit 

with the respective intercept and slope equal to zero and one. 
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Figure 3.2 Appendix. Plots of crossvalidation calculated vs. experimental change of 

unfolding Gibbs free energy change (G) of protein mutants for each mutation type 

(accessible surface area (ASA) values of the mutation sites) according to regression 

SVM models including experimental condition data as SVM inputs. Dotted lines are 

an ideal fit with the respective intercept and slope equal to zero and one.
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