博士学位論文

生物規範型高出力関節機構に関する研究

指導教官 石井 和男

西田 祐也

第]草	Ī	序論	2
1.1	研究	建卡素	2
1.2	生物	7模倣型ロボット	4
1.3	研究	已目的	5
1.4	論文	この構成	5
1.5	変数	女,記号の約束一覧表	6
第2章	Ē	跳躍ロボットの設計指針	17
2.1	はじ	こめに	17
2.2	無次	ス元パラメータの導出	18
2.	2.1	跳躍ロボットのモデル	18
2.2	2.2	無次元解析	18
2.3	跳躍	星ロボットの解析	20
2.	3.1	出力質量比の導出	20
2	3.2	脚部の強度に関する質量比の導出	21
2	3.3	エネルギ伝達効率に関する質量比の最適化	.22
2.4	跳躍	፤ ロボットの設計例	.23
2.4	4.1	最低限必要な出力質量比の推定	.23
2.4	4.2	バネ機構を有したロボットに必要な出力質量比の推定	24
たちっ土			
弗 ∮ 早	Ĺ	バッタの跳躍機構	35
弗 3 早 3.1	t はじ	バッタの跳躍機構 いめに	.35 .35
弗 3 早 3.1 3.2	t はじ バッ	バッタの跳躍機構 いめに ッタの跳躍メカニズム	.35 .35 .36
弗 3 早 3.1 3.2 3.1	t はじ バッ 2.1	バッタの跳躍機構 こめに ッタの跳躍メカニズム バッタの脚構造	.35 .35 .36 .36
第 3 早 3.1 3.2 3.1 3.2	t はじ バッ 2.1 2.2	バッタの跳躍機構 こめに ハタの跳躍メカニズム バッタの脚構造 バッタの跳躍動作	.35 .35 .36 .36 .36
第 3 早 3.1 3.2 3.2 3.2 3.3	t はじ バッ 2.1 2.2 出力	バッタの跳躍機構 こめに 	.35 .35 .36 .36 .36 .36
第 3 早 3.1 3.2 3.2 3.3 3.3 3.3	t はじ バッ 2.1 2.2 出大 3.1	バッタの跳躍機構 こめに ハタの跳躍メカニズム バッタの脚構造 バッタの跳躍動作 」特性の解析 膝関節のモデリング	35 35 36 36 36 37 37
第 3 早 3.1 3.2 3.3 3.3 3.3 3.3	i はじ バッ 2.1 2.2 出大 3.1 3.2	バッタの跳躍機構 こめに バッタの跳躍メカニズム バッタの脚構造 バッタの跳躍動作 	35 35 36 36 36 36 37 37 37
第 3 早 3.1 3.2 3.3 3.3 3.3 3.3 3.3	i はじ バッ 2.1 2.2 出力 3.1 3.2 3.3	バッタの跳躍機構 こめに パッタの跳躍メカニズム バッタの脚構造 バッタの跳躍動作 加特性の解析 膝関節のモデリング ヤコビ行列 歩行動作時のトルクと角速度	35 35 36 36 36 37 37 37 38
第 3 早 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.1 3.1 3.1 3.1	i はじ バッ 2.1 2.2 出力 3.1 3.2 3.3 3.4	バッタの跳躍機構 こめに バッタの跳躍メカニズム バッタの脚構造 バッタの跳躍動作 つ特性の解析 膝関節のモデリング ヤコビ行列 歩行動作時のトルクと角速度 跳躍動作時のトルクと角速度	.35 .36 .36 .36 .37 .37 .37 .38 .39
第 3 早 3.1 3.2 3.3 3.3 3.3 3.3 3.1 3.1 3.1 3.1 3.1	i はじ バッ 2.1 2.2 出 3.1 3.2 3.3 3.4 出力	バッタの跳躍機構 こめに シタの跳躍メカニズム バッタの脚構造 バッタの跳躍動作 つ特性の解析 膝関節のモデリング ヤコビ行列 歩行動作時のトルクと角速度 跳躍動作時のトルクと角速度 の特性のシミュレーション	.35 .35 .36 .36 .36 .37 .37 .37 .38 .39 .41
第 3 早 3.1 3.2 3.3 3.3 3.3 3.3 3.1 3.1 3.1 3.1 3.1 3.1	t はじ バッ 2.1 2.2 3.1 3.2 3.3 3.4 出力 t	バッタの跳躍機構 ひめに シタの跳躍メカニズム バッタの脚構造 バッタの跳躍動作 つ特性の解析 膝関節のモデリング ヤコビ行列 歩行動作時のトルクと角速度 跳躍動作時のトルクと角速度 調節のシミュレーション 高出力関節機構の開発	.35 .36 .36 .36 .36 .37 .37 .38 .39 .41 .50
第 3 早 3.1 3.2 3.1 3.2 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 4 2 4.2	t はじ 2.1 2.2 3.1 3.2 3.3 3.4 式 こ 品 出	 バッタの跳躍機構 シめに バッタの跳躍シカニズム バッタの跳躍動作 バッタの跳躍動作 特性の解析 膝関節のモデリング ヤコビ行列 歩行動作時のトルクと角速度 跳躍動作時のトルクと角速度 り特性のシミュレーション 高出力関節機構の開発 当力関節機構の解析 	.35 .35 .36 .36 .37 .37 .37 .38 .39 .41 .50 .51
第 3 早 3.1 3.2 3.1 3.2 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	t はじ バッ 2.1 2.2 3.1 3.2 3.3 3.4 は こ こ 2.1	 バッタの跳躍機構 シめに バッタの跳躍メカニズム バッタの跳躍動作 ウ特性の解析 膝関節のモデリング ヤコビ行列 歩行動作時のトルクと角速度 跳躍動作時のトルクと角速度 小特性のシミュレーション 高出力関節機構の解析 高出力関節機構の解析 	.35 .36 .36 .36 .37 .37 .37 .37 .37 .38 .39 .41 .50 .51 .51
第 3 早 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 4.2 4.2 4.1	t はじ スシ 2.1 2.2 3.1 3.2 3.3 3.4 t こ 日 2.1 2.2	 バッタの跳躍メカニズム	.35 .36 .36 .36 .37 .37 .37 .37 .38 .39 .41 .50 .51 .51

4.3	高出力関節機構の設計・制作	53
4.	3.1 粘性測定実験	53
4.	3.2 高出力関節機構の開発	54
第5章	性能評価実験	66
5.1	収縮力制御実験	66
5.2	伸長・屈曲動作(歩行動作)実験	67
5.3	跳躍動作実験	68
5.4	跳躍高さ測定実験	69
第6章	ち 考察及び結論	79
6.1	跳躍ロボットの設計指針に関する考察	79
6.2	バッタの跳躍機構のまとめ	80
6.3	高出力関節機構のまとめ	82
6.4	生物規範型高出力関節機構の開発について	83
6.5	今後の展望	83
謝辞		84
参考文	献	

Fig. 1-1 Neo mechatronics society [1]	7
Fig. 1-2 DC motor characteristic [7]	7
Fig. 1-3 "Mowgli" developed by Tokyo University [30]	8
Fig. 1-4 "Hopper" developed by Sandia National Laboratories [31]	8
Fig. 1-5 Compact jumping developed by Nagoya Institute of Technology [32]	9
Fig. 1-6 "Tekken" developed by The University of Electro-Communications [33]	9
Fig. 1-7 "ROPID" developed by Robot Garage [34]	10
Fig. 1-8 Animal inspired jump robot developed by Toyama Prefectural University [35]	10
Fig. 1-9 Spherical soft robot by Ritsumeikan University [36]	11
Fig. 1-10 Throw and collect type inspector developed by Tokyo Institute of Technology [37	7]11
Fig. 1-11 "BigDog" developed by Boston Dynamics [38]	12
Fig. 1-12 "AirHopper" developed by Tokyo Institute of Technology [39]	12
Fig. 1-13 Artificial finger developed by Tokai University [52]	13
Fig. 1-14 Linear mechanism developed by Tokyo Institute of Technology [53]	13
Fig. 1-15 Robot hand developed by Tokyo Institute of Technology [55][56]	14
Fig. 1-16 Jumping performance of locusts	14
Fig. 1-17 Joint mechanism developed by Lausanne [66][67]	15
Fig. 1-18 Joint mechanism developed by Kogakuin University [68][69]	15
Fig. 2-1 Power mass ratio of actuators [29]	25
Fig. 2-2 Model of jumping robot	25
Fig. 2-3 Jumping motion in two-mass jumping system	26
Fig. 2-4 Model of Leg	26
Fig. 2-5 \overline{W}_{\min} vs. \hat{m} under \hat{J} and \hat{c} is constant	27
Fig. 2-6 Optimal \hat{m} vs. \hat{J} and	27
Fig. 2-7 Mass rate vs. M	28
Fig. 2-8 Each mass under <i>M</i> =0.1-1.0[kg]	28
Fig. 2-9 Each mass under <i>M</i> =1.0-10[kg]	29
Fig. 2-10 Estimated \overline{W}_{min} needed for joint mechanism	29
Fig. 2-11 Power mass ratio of general motor	30
Fig. 2-12 Jumping motion in robot with spring	30
Fig. 2-13 Estimated \overline{W}_{min} needed for motor	31
Fig. 2-14 \overline{W}_{min} depend on v_{acc}	31
Fig. 3-1 Locust legs [62]	42
Fig. 3-2 Hind-leg of locust	42

Fig. 3-3 Semi-lunar process in hind-leg [62]	43
Fig. 3-4 Jumping process	43
Fig. 3-5 Lump effect	44
Fig. 3-6 Model of jumping mechanism of locust	44
Fig. 3-7 Link vectors	44
Fig. 3-8 Waling motion	45
Fig. 3-9 Jumping motion	45
Fig. 3-10 Torque and angular velocity during extension	46
Fig. 3-11 torque and angular velocity during flexion	46
Fig. 3-12 Torque and angular velocity during jumping motion	47
Fig. 3-13 Power during jumping motion	47
Fig. 4-1 Model of high power joint mechanism	55
Fig. 4-2 Viscosity of motor with gear	55
Fig. 4-3 Experiment device	56
Fig. 4-4 Measurement device	56
Fig. 4-5 Result of viscosity measurement experimentation	57
Fig. 4-6 Motor viscosity due to current	57
Fig. 4-7 Overview of designed joint mechanism	58
Fig. 4-8 Detail of drive unit	59
Fig. 4-9 Detail of spring unit	59
Fig. 4-10 Detail of joint	60
Fig. 4-11 Parallel links	60
Fig. 4-12 Link vectors of designed joint mechanism	61
Fig. 4-13 System of high power joint mechansim	61
Fig. 4-15 Bottom view of control board	62
Fig. 4-16 Overview of developed joint mechanism	63
Fig. 4-17 Side view of developed joint mechanism	63
Fig. 5-1 Basic motion experiment	70
Fig. 5-2 Result of force control of extensor	70
Fig. 5-3 Result of force control of flexor	71
Fig. 5-4 Force control and angle of extensor during extension and flexion	71
Fig. 5-5 Force and angle of flexor during extension and flexion	72
Fig. 5-6 Angle and angular velocity during jumping motion (small pulley)	72
Fig. 5-7 Comparing angular velocity of machine (small pulley) and simulation (μ =4.0	x10 ⁻⁷)73

Fig. 5-8 Comparing angular velocity of machine (small pulley) and simulation (μ =8	3.0×10^{-7})73
Fig. 5-9 Angle and angular velocity during jumping motion (big pulley)	74
Fig. 5-11 Jumping experiment	75
Fig. 5-13 jumping motion without viscosity effect	76

第1章

序論

第1章 序論

1.1 研究背景

少子高齢化に起因し将来の労働力不足や3Kと呼ばれる作業の労働人口の不足が懸念されている.2030年には65歳以上の高齢者が全人口の3割を超え,現役の労働者数が全人口の 半数まで落ち込むことが予想されている.労働力が不足する状況において,人の生活の質

(QOL: Quality Of Life)を維持することは最も重要な課題の一つであり、幼児や児童の安 全性の確保、労働者のサポート、病人や高齢者の生活補助などが欠かせない.労働力の減 少を補完しながら QOLを維持するため、ロボット技術の社会への導入や新しいサービス市 場の開拓が期待されている(Fig.1-1 参照)[1-3].しかし、現在のロボット技術は人の生活 空間で運用可能な段階までは到達しておらず、ロボット技術を社会に導入するには、ロボ ットに用いられる様々な要素技術に関する研究開発が必要である[4].

著者らは、ロボットの活動範囲拡大を目的とし、ロボットによる跳躍や歩行動作等の移 動技術について研究を行っている[5][6]. ロボットの設計における大きな制約条件の一つが アクチュエータである. アクチュエータの性質として、高トルクで動作させる場合は低速、 高速で動作させる場合には低トルクで動作する. アクチュエータを定格の動作範囲で駆動 させた場合、減速機等を用いて Fig.1-2 に示す効率(出力/入力)が高い領域に動作点を存在 させることが一般的である [7]. ここで、出力とは、力[N]と速度[m/s]、もしくはトルク[Nm] と角速度[rad/s]を掛け合わせた仕事率[W]である.本論文で議論する跳躍運動は運動の主体 であるロボット自身を上方に加速し射出する運動であるため、高出力なアクチュエータが 不可欠である[8].

これまでに、多くの跳躍ロボットが研究されており[9-29]、大別すると次の4つに分類することができる.

- (a) 跳躍動作に特化したロボット
- (b) 歩行動作に特化したロボット
- (c) 跳躍と車輪移動が可能なロボット
- (d) 跳躍と歩行動作が可能なロット

(a)に分類される代表的なロボットを Figs.1-3~5 に示す.(a)のロボットは瞬間的に大きな出 力が出せるアクチュエータを搭載しており,高い跳躍高さを実現している[30-32].しかし, 跳躍高さの調節が容易ではなく,また跳躍以外の動作ができないことより,用途が限定さ れる.Fig.1-6~8 に示されるような(b)に属するロボットは,歩行により連続して移動する ことができるが,跳躍高さが低い(もしくは跳躍できない)ため高い障害物を跳び超える ことは困難である[33-35].Fig.1-9,1-10 に示す(c)のロボットは,跳躍と走行の2つの移 動が可能である[36-37].杉山らが開発した柔軟ロボット(Fig.1-9)は,円の中心から放射状 に配置された8つの SMA コイルにより円周上の弾性殻(天然ゴム)を変形させることで, 接触点回りに重力によるモーメントを発生させ、地面を転がるように移動する.また、跳 躍動作は、弾性殻を収縮・弛緩させることで発生する反発力を用いて行っている[36].ワタ リらが開発した跳躍・回転移動体は DC モータと車輪で走行を行い、圧力タンクに蓄えられ た圧縮空気を用いて跳躍を実現している[37].しかしながら(c)のロボットは可搬重量や 搭載空間に課題がある.Fig.1-11,1-12に示されるような(d)のロボットは、跳躍と歩行動 作の両方を同じアクチュエータで実現している[38-39].Boston Dynamics 社で開発された BigDog は 4 足歩行のロボットで、2 ストローク単気筒ガソリンエンジンと油圧アクチュエ ータを用いてスムーズな歩行を実現している.また、ギャロップ走行や跳躍して障害物を 跳び越えることも可能である[38].菊池らは、空気圧アクチュエータを用いた 4 足歩行ロボ ット AirHopper を開発した.AirHopper は 680mm の高い跳躍動作とスムーズな歩行動作が可 能である[39].油圧や空気圧式アクチュエータにはメンテナンス性や制御性において課題が 多い.

上記で述べたように, 跳躍や歩行のどちら片方の動作に特化したロボットは小型なシス テムであるのに対し, 跳躍と走行または跳躍と歩行動作が可能なロボットは大型(もしく は複雑)なシステムが必要である.これは, 既存の DC モータなどの小型アクチュエータの 出力が低いことが原因と考えられる.したがって, DC モータを用いたロボットで跳躍や歩 行動作を実現するためには, DC モータの性能の低さを機械的に補い, 機能性を向上させる 関節機構の研究が重要である.

多くの関節機構は、歯車やカム、ボールねじ、リンク機構を用いることで高い減速比を 実現しており,入力されるトルクより高いトルクを出力することが多い(Fig.1-13 参照) [40-54]. 減速比としての役割を持つ関節機構において、力と速度は前述のようにトレード オフの関係であるため、減速比が固定であれば、力か速度のどちらか一方の要求を満たす ことしかできない. この問題を解決するため, 高木らは, Fig.1-14, 1-15 に示すような負荷 感応無段変速機を有する関節機構を考案した[55-56]. 高木らの関節機構は, エンドエフェ クタに加わる負荷に応じてリンクの状態が変化することにより、負荷が大きい場合は減速 比が大きくなる. 負荷が加わっていない場合には高速に動作し,物体を把持した場合には 力強く動作する.しかしながら,他のアクチュエータと同様,力強くかつ高速(高出力) に動作することが困難である.山田らは、飛び移り座屈(Snap-through buckling)を利用し た関節「柔軟カタパルト」を開発し,跳躍動作や遊泳動作を実現している(Fig.1-5 参照) [57]. 飛び移り座屈とは、帯状の柔軟物をS字に湾曲した状態からアーチ状に瞬間的に変形 する現象である.飛び移り座屈によって発生する出力は、柔軟物の材質や形状に依存する ため、瞬間的に大きな出力となるが、連続的に出力を調節することは容易ではない、本研 究では、上記で述べた関節機構の問題点を改善し、伸張・屈曲動作(歩行動作)、瞬発動作 が可能な高出力関節機構の実現を目指す.

1.2 生物模倣型ロボット

自然界には、移動する手段に跳躍を用いる動物が数多く存在する[58]. 犬や猫の胴体から 食料となる血液を手に入れるために、ノミは体長の 10 倍以上の高さまで跳躍することが報 告されている.ノミはレジリンと呼ばれるゴム状のタンパク質にエネルギを蓄え,蓄えた エネルギを瞬間的に解放することで跳躍動作を行っている[59]. 商業用ゴムが蓄えられたエ ネルギの 85% (残り 15%は熱として発散される) を放出するのに対し, レジリンは 97%の エネルギを放出可能である.体長約 50[mm]のサバクトビバッタは,ノミと同様にレジリン にエネルギを蓄積・解放することで,最大約 250[mm]の高さまで跳躍する [60]. 連続跳躍 して移動するカンガルーは、着地時に発生する衝撃エネルギを自身のアキレス腱に蓄え、 そのエネルギを次の跳躍に利用することで効率の良い移動を実現している[61]. 動物はレジ リンや腱などの受動的な弾性要素(生体バネ)を積極的に用いることで、高い跳躍や効率 の良い移動を行うことができる[62-63].人間に関してもカンガルーと同様に腱にエネルギ を蓄えて跳躍力を向上させていることが報告されている[64-65]. したがって、この動物が 持つ生体バネを規範することで,高出力な関節機構が実現できると考えられる.ただし, ノミは跳躍に特化した構造であるため跳躍以外の動作ができない.またカンガルーは,筋 肉(腱)自体に弾性要素があるため、機構に応用することは困難である.一方、バッタは 歩行と跳躍の両方の動作が可能で、エネルギの蓄積を外骨格で行っているため、機構に応 用することが容易である. 本研究ではアクチュエータにはモータを用い, 関節の構造を工 夫することにより新たな関節機構を実現することを目標とし、バッタの跳躍機構に着目し た.

バッタやコオロギなどのバッタ目に属する昆虫は力強い後脚を保有しており,この後脚 による跳躍は逃避や移動の手段としてもいられている.Fig.1-16にバッタの跳躍性能を示す. バッタは,筋肉の駆動方法により跳躍と歩行動作を切り替え,エネルギの解放機構を有す ることなく跳躍動作を行っていることが報告されている[60].したがって,バッタの後脚を 模倣することにより,跳躍や歩行動作が可能な軽量かつ高出力な関節機構が開発できると 考えられる.Kovacらはバッタを規範した7[g]の跳躍ロボットで1.0[m]の跳躍高さを実現し, 三浦らはコオロギを模倣することで跳躍と歩行が可能なロボットを開発している[66-69]. Fig.1-17にKobacらが開発した跳躍ロボットの関節機構,Fig.1-18に三浦らが開発した跳躍 ロボットの関節機構を示す.Kobacらの跳躍機構は,カムとバネで構成されており,本質的 にバッタの跳躍機構と異なる[66-67].三浦らの跳躍機構はコオロギを模倣しており,2つの 異なるバネ定数を持つバネとリンクで構成されている.歩行時にはバネ定数の低いバネ, 跳躍時にはバネ定数の高いバネを収縮し,クラッチで蓄えたエネルギを解放している [68-69].三浦らの跳躍機構もKobacらと同様に,本質的にコオロギの跳躍機構と異なる.

1.3 研究目的

本研究では,跳躍や歩行動作が可能な小型で高出力な関節機構を開発することを目的と する.バッタの跳躍機構を規範とすることで,エネルギを蓄積・解放することで高い跳躍 性能を発揮でき,関節の位置制御が可能な高出力関節機構の実現を目指す.また開発した 関節機構で跳躍動作を行い,本関節機構の有効性を示す.

1.4 論文の構成

第2章では、目標の跳躍性能を実現するために関節機構に最低限必要な単位質量当たりの出力(出力質量比)を推定する方法について述べる.また、推定した出力質量比が市販されているDCモータで実現可能であるか検証を行う.第3章では、バッタの跳躍機構をモデル化し、外積で導出されるヤコビ行列を用いてバッタの跳躍機構の出力特性を解析する.また、バッタの跳躍機構が搭載しているアクチュエータ以上の出力を発生できることを示す.第4章では、第2、3章で得られた知見をもとに設計した高出力関節機構について述べる.第5章では、高出力関節機構の有効性を検証するために行った性能評価実験、及び跳躍実験ついて述べる.

【定数、係数の表記】

k_{im}	: 衝擊係数	
n	: 乗数	
π	: 円周率	
k _{sp}	: バネ定数	[N/m]
ρ	: 密度	[kg/m ³]
Ε	:ヤング率	$[N/m^2]$
μ	: 直線方向の粘性係数	[Ns/m]
$\widetilde{\mu}$: 回転方向の粘性係数	[Nms/rad]
D	: 材料で決定する係数	

【変数の表記】

l	: 加速距離 or リンク長	[m]
h	: 跳躍高さ	[m]
d	: 脚部の直径	[m]
т	:各部の質量	[kg]
M	: 全質量	[kg]
θ	: リンクの絶対角度	[rad]
φ	: 関節の角度	[rad]
v	: 速度	[m/s]
$\dot{\theta}$: 角速度	[rad/s]
g	: 重力加速度	$[m/s^2]$
f	:粘性抗力	[N]
F	: 跳躍力 or 収縮力	[N]
τ	: 負荷トルク	[Nm]
Т	: トルク	[Nm]
\overline{W}	: 出力質量比	[W/kg]
\overline{W}_{\min}	:最低限必要な出力質量比	[W/kg]
m	: 負荷質量比	
ĉ	: 強度に関する質量比	
\hat{J}	: 跳躍比	

【ベクトルの表記】

- *l* : *l*のベクトル
- θ : θ O \checkmark / / / / / /
- $\dot{\boldsymbol{\theta}}$: $\dot{\boldsymbol{\theta}}$ のベクトル
- f : fのベクトル
- **F** : Fのベクトル
- **τ** : τ の ベクトル
- **T** : T の ベクトル

【行列の表記】

- J: 俳長・屈曲動作時のヤコビ行列
- *G* : 跳躍動作時のヤコビ行列

【その他の約束】

※ハットは無次元パラメータを表す

Fig. 1-1 Neo mechatronics society [1]

Fig. 1-2 DC motor characteristic [7]

Fig. 1-3 "Mowgli" developed by Tokyo University [30]

Fig. 1-4 "Hopper" developed by Sandia National Laboratories [31]

Fig. 1-5 Compact jumping developed by Nagoya Institute of Technology [32]

Fig. 1-6 "Tekken" developed by The University of Electro-Communications [33]

Fig. 1-7 "ROPID" developed by Robot Garage [34]

Fig. 1-8 Animal inspired jump robot developed by Toyama Prefectural University [35]

Fig. 1-9 Spherical soft robot by Ritsumeikan University [36]

Fig. 1-10 Throw and collect type inspector developed by Tokyo Institute of Technology [37]

Fig. 1-11 "BigDog" developed by Boston Dynamics [38]

Fig. 1-12 "AirHopper" developed by Tokyo Institute of Technology [39]

Fig. 1-13 Artificial finger developed by Tokai University [52]

Fig. 1-14 Linear mechanism developed by Tokyo Institute of Technology [53]

Fig. 1-15 Robot hand developed by Tokyo Institute of Technology [55][56]

Fig. 1-16 Jumping performance of locusts

Fig. 1-17 Joint mechanism developed by Lausanne [66][67]

Fig. 1-18 Joint mechanism developed by Kogakuin University [68][69]

第2章

跳躍ロボットの設計指針

第2章 跳躍ロボットの設計指針

2.1 はじめに

跳躍運動を実現するためには高出力なアクチュエータが必要であるが、アクチュエータ 自体の質量が大きいと跳躍に必要な力が増加する.アクチュエータの選定を行う際には質 量も考慮する必要がある.したがって、関節機構は力、速度、質量の3つの観点から評価 する必要がある.本研究では、式(2-1)に示されるような出力質量比*W*[W/kg]を用いて、 アクチュエータと関節機構を評価する.式(2-1)中の*F*[N]は出力される力、v[m/s]は速度、 *m*[kg]は質量を表す.

$$\overline{W} = \frac{Fv}{m} \tag{2-1}$$

Fig.2-1 に様々なアクチュエータの出力質量比を示す[2-1]. Fig.2-1 に示されるように,同一 種類のアクチュエータの出力質量比はほぼ一定である[70].

本章では、目標の跳躍性能を持つロボットを作るために最低限必要な関節機構の出力質 量比 \overline{W}_{min} [W/kg]を推定する. 2.2 節では跳躍運動に影響及ぼす変数に対して無次元解析を 行い、 \overline{W}_{min} を推定するために必要な無次元パラメータを導出する. 2.3 節では、 \overline{W}_{min} を無 次元パラメータの関数として表す. また、強度と跳躍効率の観点から【~と~を意味する】 無人パラメータを求める. 無次元パラメータを用いることで、ロボットの大きさと質量に 依存しないパラメータで変数を表すことができる[71]. 2.4 節では、設定した脚長と質量を 持つ跳躍ロボットが目標の跳躍性能を得るために必要な \overline{W}_{min} を推定し、その \overline{W}_{min} が一般的 なモータで実現可能かどうか検討する[72-76].

2.2 無次元パラメータの導出

2.2.1 跳躍ロボットのモデル

跳躍ロボットは Fig.2-2 で示されるように胴体部の質量 m_b , 胴体部を支えるための構造部 材の質量 m_{fra} , 及び跳躍力を発生させる関節機構の質量 m_{act} を持ち,全質量が M で表され るモデルとして解析を行う.なお,跳躍運動の解析時には、モデルを m_b , m_{fra} , m_{act} の3つ の質量で表された 2 質点系として考える.Fig.2-3 に 2 質点モデルの跳躍運動を示す.跳躍 運動開始時において、ロボットの胴体部は加速距離 l_{acc} の間、跳躍力 F_{jum} により加速し、 v_{acc} の速度を得たとする.この加速運動において加速される質量は m_b のみである.その後、 m_b が持つ運動エネルギが脚部にも伝達し、ロボット全体が速度 v_{jum} を得る. v_{jum} はロボットが 上空に射出される時の初期速度であり、ロボットは v_{jum} によって hの高さまで跳躍する.

2.2.2 無次元解析

Fig.2-3 のような跳躍運動において、ロボットの跳躍に関与する独立した変数は重力加速 度 g を含めた m_b , m_{fra} , M, l_{acc} , h, g の 6 つとする. F_{jum} , v_{acc} , v_{jum} はその他の変数から算 出可能であるため、上記の変数群から除外する. 6 つの独立した変数に含まれる基本単位は、 質量[kg], 長さ[m], 時間[s]の 3 つである. したがって、跳躍運動に関する無次元パラメー タは、Buckingham の II 定理より 3 つ (=6-3) 存在する[77]. ここで、3 つの無次元パラメー タを導出するために、次式に示すような無次元パラメータを仮定する.

$$m_b^{n_1} m_{fra}^{n_2} M^{n_3} l_{acc}^{n_4} h^{n_5} g^{n_6} = non - dimension$$
(2-2)

式(2-2)が無次元であるためには、各基本単位[kg], [m], [s]の含有量の総和がゼロでなければならない. したがって、乗数 n₁, n₂, n₃, n₄, n₅, n₆は以下の制約条件を持つ.

$$\int n_1 + n_2 + n_3 = 0 \tag{2-3}$$

$$\begin{cases} n_4 + n_5 = 0 \end{cases}$$
 (2-4)

$$n_6 = 0$$
 (2-5)

式 (2-3) を n₃,式 (2-4) を n₄について解くと

$$\int n_4 = -n_5 \tag{2-7}$$

となる. 式 (2-6), (2-7)を式 (2-2) に代入し, 整理すると

$$\left(\frac{m_b}{M}\right)^{n_1} \left(\frac{m_{fra}}{M}\right)^{n_2} \left(\frac{h}{l_{acc}}\right)^{n_5}$$
(2-8)

となり,3つの無次元パラメータを得る.下記に次元解析によって得られた無次元パラメー タを示す.

$$\hat{J} = \frac{h}{l_{acc}} \tag{2-9}$$

$$\hat{m} = \frac{m_b}{M} \tag{2-10}$$

$$\hat{c} = \frac{m_{fra}}{M} \tag{2-11}$$

跳躍比 \hat{J} は単位加速距離あたりの跳躍高さを表した無次元パラメータであり、 \hat{J} を用いるこ とで脚長に依存せず跳躍高さを評価することが可能である[78].本研究では、 \hat{J} をロボット の目標の跳躍性能を表す指標として用いる.質量比 \hat{m} は全質量に対する胴体部の割合を表 した無次元パラメータである.加速時のロボットの挙動は m_b に依存し、胴体部の運動エネ ルギが脚部に伝達する過程における速度の低下は m_b と m_l の比率に依存するため、 \hat{m} はロボ ットの跳躍効率を表すパラメータとして考えることができる.跳躍比 \hat{c} は全質量と構造部材 の質量の割合を表し、脚部の強度に関与する無次元パラメータである.各部の質量を \hat{m} , \hat{c} を用いると次のように表すことができる.

$$m_b = M\hat{m} \tag{2-12}$$

$$m_{fra} = M\hat{c} \tag{2-13}$$

$$m_{act} = M(1 - \hat{m} - \hat{c})$$
 (2-14)

2.3 跳躍ロボットの解析

2.3.1 出力質量比の導出

全質量が M, 脚長が l の跳躍ロボットが目標の \hat{J} を得るために, 関節機構に最低限必要と される出力質量比 \overline{W}_{min} について考える.加速時において胴体部は l_{acc} の間,一定の F_{jum} によって加速されたとするならば, v_{acc} は次式のように与えられる.

$$v_{acc} = \sqrt{\frac{2l_{acc}(F_{jum} - m_b g)}{m_b}}$$
 (2-15)

また,跳躍直前にロボットが持つ運動エネルギが全て跳躍運動に変換されると仮定し, v_{jum}は h を用いて次式のように与えられる.

$$v_{jum} = \sqrt{2gh} \tag{2-16}$$

2 質点跳躍モデルおいて, 胴体部が持つ運動エネルギが脚部に伝達される時の運動は, 非弾 性衝突時の運動と等価であり, 伝達の前後で運動エネルギは変化するが運動量は保存され る[79]. ここで, *v_{acc} と v_{jum}*の間には, 運動量保存側より導出される以下の関係式が存在す る.

$$v_{jum} = \frac{m_b}{M} v_{acc} \tag{2-17}$$

式 (2-17) に式 (2-15), (2-16) を代入し, F_{jum}について解くことで次式を得る.

$$F_{jum} = \frac{g(M^2h + m_b^2 l_{acc})}{m_b l_{acc}} v_{acc}$$
(2-18)

上式は関節機構に最低限必要な力を表している.出力質量比は式(2-1)によって定義されており,式(2-1)に式(2-15),(2-18)を代入することで*W*_{min}を求められる.

$$\overline{W}_{\min} = \frac{\sqrt{2g^{3}h}(M^{3}h + Mm_{b}^{2}l_{acc})}{m_{b}^{2}m_{act}l_{acc}}$$
(2-19)

式 (2-19) を式 (2-9) ~ (2-11) の無次元パラメータで整理すると

$$\overline{W}_{\min} = \sqrt{2g^{3}l_{acc}} \frac{\sqrt{\hat{J}(\hat{J}+m)}}{\hat{m}^{2}(1-\hat{m}-\hat{c})}$$
(2-20)

2.3.2 脚部の強度に関する質量比の導出

ロボットが跳躍,または着地した際に圧縮荷重 *P* が脚部に作用したとする.脚部の形状は Fig.2-4 で示されるような直径 *d*,長さ *l* の円柱体であると仮定し,*m*_{fra} は次式で与えられる.

$$m_{fra} = \pi \, l \, d^2 \rho_{fra} \tag{2-21}$$

 ρ_{fra} は構造部材の密度である.ここで、座屈変形を引き起こさないために脚部が許容できる 最大の座屈応力 P_{buc} は、オイラーの座屈荷重の式より、次のように与えられる[80].

$$P_{buc} = \frac{n\pi^3 E \, d^4}{64 \, l^2} \tag{2-22}$$

n, Eは, それぞれ端末条件係数,構造部材のヤング率である.もし, Pが P>P_{buc}であるならば座屈変形が生じ, P<P_{buc}であるならば座屈変形は発生しない. PをMの k_{im}倍と仮定すれば, dは式 (2-13), (2-21), (2-22)から導出される下記の条件を満足する必要がある.

$$d \ge \sqrt{\frac{l^3 D_1}{\hat{c}}} \tag{2-23}$$

$$D_1 = \frac{64k_{im}\,\rho_{fra}\,g}{n\pi^2 g} \tag{2-24}$$

k_{im}(>>1)は安全率を考慮して設計者によって決定される.したがって,跳躍または着地時 に発生する *P*によって座屈変形しないために最低限必要な*ĉ*は下記の式で表される.

$$\hat{c} = \sqrt{\frac{l^4 D_2}{M}} \tag{2-25}$$

$$D_2 = \frac{64k_{im}\,\rho_{fra}^2\,g}{n\,\pi\,g} \tag{2-26}$$

式 (2-24), (2-26) で表される D_1 , D_2 は構造部材の材質等によって決定される定数である. つまり,設計者がロボットの脚長と全重量を決定したならば, \hat{c} は一意に求められる.

2.3.3 エネルギ伝達効率に関する質量比の最適化

Fig.2-5 に各 \hat{J} , \hat{c} に対する, \hat{m} を変化させた場合の \overline{W}_{min} を示す. Fig.2-5 より, \overline{W}_{min} を最小とするような \hat{m} が存在している. また, 最小値をとる \hat{m} は \hat{J} , \hat{c} の値によって変化する. 推定される \overline{W}_{min} が小さいほど低出力なモータで目標の \hat{J} を得ることができるため, 最小値をとる \hat{m} を最適解とする.本研究では, 各 \hat{J} , \hat{c} に対する最適な \hat{m} を式 (2-27)で表される最急降下法を用いて求めた.最急降下法を用いた数値解析により, 極値を求められる.

$$d\hat{m} = -\eta \frac{\partial \overline{W}_{\min}}{\partial \hat{m}}$$
(2-27)

 η は勾配係数であり、式(2-27)は数値解析的に最適値を求める際の \hat{m} の更新量を表す.各 \hat{J} , \hat{c} に対する最適な \hat{m} を Fig.2-6 に示す. \hat{J} が増加すると最適値 \overline{W}_{min} をとる \hat{m} が大きくな り、 \hat{c} が増加すると最適値 \overline{W}_{min} をとる \hat{m} が小さくなる傾向がみられる.目標跳躍高さ(\hat{J}) は設計者によって与えられる値であり、 \hat{c} はロボットの剛性の観点から設定されるため、 Fig.2-6 の結果より最適な \hat{m} が得られる.

2.4 跳躍ロボットの設計例

2.4.1 最低限必要な出力質量比の推定

下記に本研究における Wmin の推定手順を示す.

- 設計者がロボットの全質量 M, 脚長 l (lacc), 目標のĴを設定する
- ② 構造部材の強度の観点からĉを求める(式(2-24),(2-25)を使用)
- ③ 跳躍効率の観点から*î*を求める(Fig.2-6を使用)
- ④ 式 (2-19) を用いて、 Wmin を推定する

本推定法を用いて、l=0.5[m], $M=0.1\sim10[kg]$ である跳躍ロボットが $\hat{J}=1.0$ を実現するため に必要な関節機構の \overline{W}_{min} の推定を行った.推定する際に使用した設計パラメータを Table 1 に示す.脚部の構造部材はアルミニウム、座屈荷重が加わる際の端末条件は一端固定他端 自由端と仮定する.

Fig.2-7 に推定の過程で得られた \hat{c} 及び \hat{m} , Figs.2-8,9 に M に対する各質量の質量分布を示 す. Fig.2-7~2-9 から, M が小さいほど構造部材の質量 m_{fra} が占める割合が大きく, P O fュエータの質量 m_{act} ,及び胴体の質量 m_b が占める割合が小さい.逆に,M が大きいほど m_{fra} , m_{act} が占める割合が小さく, m_{act} が占める割合は大きくなる. この結果は, 質量が大きいロ ボットは自身を支える構造部材の割合が減少し, ペイロードを増やせることを意味してい る. Fig.2-10 に m_{act} に対する \overline{W}_{min} を示す. m_{act} が小さいほど関節機構には大きな \overline{W}_{min} が必要 になる.本推定法によると, M=0.1[kg], l=0.5[m]のロボットが $\hat{J}=1.0$ の跳躍性能を得るには 質量比を $\hat{c}=0.73$, $\hat{m}=0.18$ に設定し, $\overline{W}_{min}=10000[W/kg]$ 以上の関節機構を使用する必要があ る.また, M=1.0[kg]のロボットは質量比を $\hat{c}=0.33$, $\hat{m}=0.42$ に設定し $\overline{W}_{min}=800[W/kg]$ 以上の 関節機構を使用, M=10[kg]のロボットは質量比を $\hat{c}=0.10$, $\hat{m}=0.54$ に設定し $\overline{W}_{min}=380[W/kg]$ 以上の関節機構を使用しなければならない.

ここで,推定した *W*_{min}が実現可能か検討するため,市販されているモータの出力質量比に ついて考える.在来のモータは高速回転時に最高効率を得るように設計されているため, ロボットのアクチュエータとして利用するためには,減速が必要不可欠である.本研究で は,モータの回転数が 200[rpm]以下になるようにギヤを選定し,モータの出力をギヤ付き のモータの質量で割った値をモータの出力質量比とした. Maxon motor 社と Faulharber 社の モータの性能を Table 2, 3,出力質量比を Fig.2-11 に示す[81-82].これらのモータの出力質 量比は質量に対して大きく変化せず,最大値が約 180[W/kg]であった.跳躍ロボットが目標 のĴを得るには,推定した*W*_{min} 以上の出力質量比を持つアクチュエータが必要であるため, 単に市販されているモータを関節機構に組み込んだだけでは目標のĴを実現することはで きない.したがって,エネルギを蓄積・解放する機構を関節機構に取り入れ,出力質量比 が 180[W/kg]程度のモータで 380[W/kg]以上の出力質量比を実現する必要がある.次節にエ ネルギ蓄積機構を有した関節機構に必要なモータの出力質量比の推定について述べる.

2.4.2 バネ機構を有したロボットに必要な出力質量比の推定

エネルギ蓄積機構の有効性を検証するため、Fig.2-12 に示されるようなエネルギ蓄積機構 を有するロボットのモデルについて考え、前節と同様に必要なモータの \overline{W}_{min} を推定する. モデルの関節機構内部にはモータとバネが搭載されており、モータはバネに対してのみ仕 事を行い、 I_{acc} の間バネに蓄えられたエネルギを用いて胴体部が加速し、ロボットが跳躍す る.バネによる加速の終了時において、次式のエネルギの釣り合いが成り立つ.

$$m_b g l_{acc} + \frac{1}{2} m_b v_{acc} = \frac{1}{2} k_{sp} l_{acc}^2$$
(2-27)

 k_{sp} は関節機構内部にあるバネのバネ定数である.跳躍するために必要な k_{sp} は式(2-27)を k_{sp} について解くことで求められる.

$$k_{sp} = \frac{m_b (2gl_{acc} + v_{acc}^2)}{l_{acc}^2}$$
(2-28)

バネ定数が式 (2-28) で表されるバネを l_{acc} だけ変位させるために必要なモータの力 F_{ch} は, フックの法則より次式で表される.

$$F_{ch} = k_{sp} l_{acc} = \frac{m_b (2g l_{acc} + v_{acc}^2)}{l_{acc}}$$
(2-29)

モータが F_{ch} の力でバネにエネルギを蓄えるときの速度を v_{ch} としたとき、モータに必要な \overline{W}_{min} は次のように定義される.

$$\overline{W}_{\min} = \frac{F_{ch}v_{ch}}{m_{act}}$$
(2-30)

 m_{act} はモータの質量である.したがって、バネ機構を有したモデルに必要なモータの \overline{W}_{min} は、式 (2-30)に式 (2-13)、(2-29)を代入することで求められる.

$$\overline{W}_{\min} = 2gv_{ch}\frac{\hat{m}^2 + \hat{J}}{\hat{m}(1 - \hat{m} - \hat{c})}$$
(2-31)

前節の設計パラメータを用い、1 秒間でバネに力を蓄えたと仮定すると $v_{ch}=l_{acc}/1.0=0.5$ [m/s] となる.バネ機構を有したモデルに必要なモータの \overline{W}_{min} を推定した結果をFig.2-13を示す. Fig.2-13より、関節機構にエネルギ蓄積機構を導入することで必要な \overline{W}_{min} を減少し、市販の モータで $\hat{J}=1.0$ を達成可能である.Fig.2-14に $v_{ch}=0.05, 0.50, 1.00$ [m/s]と設定した場合の \overline{W}_{min} を示す. \overline{W}_{min} は v_{acc} に依存し、 $v_{acc}=1.0$ [m/s]では市販のモータで $\hat{J}=1.0$ を実現できない.以 上の結果より、加速距離 $l_{acc}=0.5$ [m]を1秒間でバネを圧縮する機構を搭載した場合、M=0.2~10[kg]の範囲の質量を有するロボットで目標の $\hat{J}=1.0$ を達成する.

Fig. 2-1 Power mass ratio of actuators [29]

Fig. 2-2 Model of jumping robot

Fig. 2-3 Jumping motion in two-mass jumping system

Fig. 2-4 Model of Leg

Fig. 2-6 Optimal \hat{m} vs. \hat{J} and \hat{c}

Fig. 2-8 Each mass under M=0.1-1.0[kg]

Fig. 2-9 Each mass under M=1.0-10[kg]

Fig. 2-10 Estimated \overline{W}_{min} needed for joint mechanism

Fig. 2-11 Power mass ratio of general motor

Fig. 2-12 Jumping motion in robot with spring

Table 2-1 Design parameters

k _{lim}	n	$ ho_{fra}$	E
[-]	[-]	[kg/m ³]	[N/m ²]
20	0.25	2700	6.9x10 ¹⁰

Table 2-2 Specification of motor with gear in Maxon Company [81]

Model number	Power	Voltage	Revolution	Torque	Weight	Power mass ratio
	[W]	[V]	[rpm]	[Nm]	[g]	[W/kg]
RE6	0.3	6	83	103.0	3.0	56.6
RE8	0.5	12	71	204	3.0	70.4
RE10 0.75W	0.75	12	180	65.0	7.7	51.0
RE10 1.2W	1.2	12	175	176	7.7	52.9
RE10 1.5W	1.5	12	195	207	7.7	84.7
RE13 1.5W	1.5	12	185	210	17	42.9
RE13 2.0W	2.0	12	105	378	17	48.8
RE13 3.0W	3.0	12	196	744	17	69.8
RE16 2.0W	2.0	12	198	205	9.8	64.9
RE16 3.2W	3.2	12	146	611	9.8	66.9
RE16 4.5W	4.5	12	183	2190	12	89.6
RE25 10W	10	12	167	3970	86	46.3
RE25 20W	20	12	184	13800	108	89.7
RE26	18	15	196	10500	108	69.7
RE30	60	12	160	43000	194	139
RE35	90	15	139	44600	194	169
RE36	70	18	200	24100	162	137
RE40	150	12	161	72200	460	160
RE65	250	12	136	85700	3700	40.5

Model number	Power	Voltage	Revolution	Torque	Weight	Power mass ratio
	[W]	[V]	[rpm]	[mNm]	[g]	[W/kg]
0615-s	0.11	4.5	76	5.12	4	18.3
0816-s	0.18	8	64	10.2	5.4	20.2
1016-s	0.36	12	64	7.68	10	21.8
1219-s	0.5	12	63	7.68	10	23.8
1224-s	1.3	12	52	12.8	10	56.5
1319-r	0.95	12	193	8.58	24	26.4
1331-r	2.57	12	150	7.92	24	59.8
1336-с	1.98	12	136	19.1	24	42.1
1727-с	2.25	12	181	15.1	28	40.2
2232-se	8.7	12	165	12.0	48	79.1
2342-cr	17	12	188	43.0	90	95.5
2642-cr	22.1	12	149	86.0	139	87.4
2657-cr	45.9	12	147	86.0	139	156
3242-cr	24.7	12	121	206	230	61.0
3257-cr	79.2	12	133	211	230	168
3557-с	14.5	12	112	90.3	171	32.5
3557-cs	26.1	12	126	112	171	58.5
3863-с	204	12	56	899	720	182

Table 2-3 Specification of motor with gear in Faulharber Company [83]

第3章

バッタの跳躍機構

第3章 バッタの跳躍機構

3.1 はじめに

筋肉の動作においても、アクチュエータの性質と同様に最大の力を発生する場合はゆっ くりと動作し、小さい力で動作可能な場合は俊敏に動作する.大きな力と高速の両方を同 時に実現するには弾性要素にエネルギを蓄積する機構が必要であり、高い跳躍性能を持つ バッタはエネルギ蓄積機構を有すると考えられる.本章では、力学的な視点からバッタの 後脚を解析し、バッタの跳躍機構の特徴を述べる.次に、バッタが有する筋肉(アクチュ エータ)単体の出力とバッタの跳躍能力を比較検証する.

3.2 節では、バッタの後脚内部にある各部位の機能について述べる.3.3 節ではバッタの 跳躍機構をモデリングし、外積から導出されるヤコビ行列を用いて出力特性を解析する. 3.4 節では3.3 節で得られた跳躍機構モデルを用いて出力特性のシミュレーション結果を示 す[83-87].

3.2 バッタの跳躍メカニズム

3.2.1 バッタの脚構造

バッタの後脚は全脚中で最も大きく、バッタによっては全長 40[mm]にも達する(Fig.3-1 参照).後脚は,腿節,脛節,足根の3つの部位で構成されている.腿節内部には脛節を伸 長させるための伸筋,脛節を屈曲させるための屈筋があり、大部分を伸筋が占める(Fig.3-2 参照).一般的に筋肉が発生できる収縮力は筋肉の断面積に比例するため、屈筋と比較して 伸筋は高い収縮力を発生する.また、足根には鋭い爪が存在し、地面を蹴る際に足が滑る ことを防ぐ働きがある.バッタの膝関節部を拡大した写真を Fig.3-3 に示す.バッタの膝関 節部の特徴の一つが半月突起と呼ばれるレジリンで構成された外骨格である.半月突起は 他の外骨格と比較して非常に堅く、弾性体としての機能を持つ[88-90].腿節と脛節は半月 突起のみで連結されている.Fig.3-4 に示されるように脛節を動作させるための伸筋と屈筋 は、腱を介して脛節に接続している.伸筋の腱が脛節に直接接続しているのに対して、下 方に位置する屈筋の腱はランプと呼ばれる突起物を経由して脛節に接続している.

3.2.2 バッタの跳躍動作

バッタの跳躍動作について以下に述べる.半月突起と脛節との連結点を回転中心として, バッタは伸筋により膝関節を伸長,屈筋により屈曲させている.跳躍する前,バッタは Fig.3-4 (b) に示すように屈筋を収縮し,膝関節を完全に屈曲させる.屈曲時,半月突起に は伸筋から発生する収縮力がほとんど作用しない.そのため,半月突起は湾曲せず関節の 回転中心として機能する.次に,バッタは屈筋を収縮した状態のまま伸筋を収縮し,跳躍 に必要なエネルギを半節突起に蓄える (Fig.3-4 (c) 参照).つまりバッタは,この伸筋と屈 筋を共収縮させ,弾性体である半月突起にエネルギを蓄えている.共収縮時において,屈 筋より伸筋の収縮力の方が大きいため,完全に屈曲した状態を保持できず,機構に工夫が なければ力 (モーメント)の釣り合いを考えると回転する.バッタの膝関節では,Fig.3-5 に示すように,ランプで屈筋の収縮力が作用する向きが変更され屈筋による回転モーメン トを増加させることで,共収縮時における力の釣り合いの問題を解決している.共収縮後, バッタは屈筋を弛緩させるだけで,特別なトリガ機構を用いることなく半月突起に蓄えら れたエネルギを瞬間的に解放し,高い出力を得ることができる[88-90].バッタは伸筋と屈 筋の駆動方法により弾性体 (半月突起)の使用方法を変え,跳躍と歩行動作を使い分けて いると考えられる.

3.3 出力特性の解析

3.3.1 膝関節のモデリング

バッタの跳躍機構をリンク及び回転対偶として表現したモデルを Fig.3-6 に示す. Fig.3-6 において、2 次元平面は腿節として考える. 伸筋を伸張用の直動アクチュエータ(図の上方), 屈筋を屈曲用の直動アクチュエータ、半月突起を直動バネ、ランプをプーリ、脛節を出力 リンクでモデリングした. 伸長用, 屈曲用アクチュエータの片端を xy 平面に固定された回 転対偶, もう片端を出力リンクに固定された回転対偶に接続する. また, 直動バネの片端 は xy 平面, もう片端は出力リンクに固定された回転対偶に接続する. なお, 直動バネは水 平方向のみ駆動し, 腿節は xy 平面に固定されたとして考える. バッタの跳躍機構の解析に は, Fig.3-7 に示すような絶対座標系に置かれたリンクベクトルを用いる. リンクベクトル は下記に示すような仮定を持つ.

- *l*_bは絶対座標系の Y_Gと平行である
- *l_{sp}*, *l*₁ は絶対座標系の *X_G* と平行である
- *l*_{sp}は*l*_bの垂直二等分線である
- le, l2の大きさは各直動アクチュエータによって変化する

3.3.2 ヤコビ行列

任意のリンクベクトル $l_i = [l_{ix} l_{iy} 0]^T$ が次式に示すような出力リンクの絶対角度 θ_o の関数で表されたとする.

$$\boldsymbol{l}_i = \boldsymbol{g}(\boldsymbol{\theta}_o) \tag{3-1}$$

出力リンクの微小変位 $\dot{\theta}_{o}$ に対する l_{i} の微小変位ベクトル $\dot{l}_{i} = [\dot{l}_{i,x} \ \dot{l}_{i,y} \ 0]^{T}$ には,式(3-1)の 両辺を微分することで求めることができる.

$$\dot{\boldsymbol{l}}_i = \boldsymbol{J}_i(\boldsymbol{\theta}_o)\dot{\boldsymbol{\theta}}_o \tag{3-2}$$

ただし,

$$\boldsymbol{J}_{i}(\boldsymbol{\theta}_{o}) = \frac{\partial g(\boldsymbol{\theta}_{o})}{\partial \boldsymbol{\theta}_{o}}$$
(3-3)

J_i(θ_o)は θ_oと l_iの微小変位量の関係を表すヤコビ行列である.本関節機構は 2 入力,1 出力 のシステムであるため,関節機構の姿勢(関節角度)に対して入力一意に定まらない.こ のようなシステムにおいて,微分でヤコビ行列を導出することはこんなんである.本研究 では微分ではなく外積を用いてヤコビ行列を導出する.

3.3.3 歩行動作時のトルクと角速度

歩行動作時にバッタの跳躍機構が発生するトルクと角速度について考える.ここで、 Fig.3-8 (a) に示すように、アクチュエータ a_e の速度ベクトル \dot{l}_e によって出力リンクに角速 度 $\dot{\theta}_o$ が発生したとする.この時、駆動させていないアクチュエータ a_f は負荷として作用し、 バネの長さベクトル l_{sp} は変位しないと仮定する. $\dot{\theta}_o$ と \dot{l}_e の関係は外積によって次式で表さ れる.

$$\dot{\boldsymbol{l}}_{e} = \boldsymbol{l}_{o1} \times \dot{\boldsymbol{\theta}}_{o} = \boldsymbol{l}_{o1} \times \boldsymbol{e}_{z} \dot{\boldsymbol{\theta}}_{o}$$
(3-4)

 $e_{z}=[0 \ 0 \ 1]^{T}$ は $\dot{\theta}_{o}=[0 \ 0 \ \dot{\theta}_{o}]^{T}$ の単位方向ベクトルである.式(3-2)と式(3-4)より, l_{e} と θ_{o} の微小変位に関するヤコビ行列 J_{e} は次式で与えられる.

$$\boldsymbol{J}_e = \boldsymbol{l}_{o1} \times \boldsymbol{e}_z \tag{3-5}$$

したがって、 J_e を用いると $\dot{\theta}_o$ は、次のように表される.

$$\dot{\theta}_o = \boldsymbol{J}_e^{\#} \boldsymbol{\dot{l}}_e \tag{3-6}$$

 $J_e^{\#}$ は J_e の疑似逆行列を表す.式(3-6)と仮想仕事の原理から伸長動作時の出力トルク T_o とアクチュエータ a_o の収縮力のベクトル $F_e = [F_{ex}F_{ey}0]^T$ の関係式は次式で表される.

$$T_o = \boldsymbol{J}_e^I \boldsymbol{F}_e - \boldsymbol{\tau}_f \tag{3-7}$$

 τ_f は受動的に動作するアクチュエータ a_f の粘性力 f_f によって発生する負荷トルクである.ア クチュエータ a_f の収縮力のベクトル $F_f = [F_{f_x}F_{f_y}0]^T$ によって,出力リンクに発生する $T_o \ge \dot{\theta}_o$ も同様に求めることができる (Fig.3-9 参照).

$$\dot{\theta}_o = \boldsymbol{J}_f^{\#} \boldsymbol{\dot{l}}_f \tag{3-8}$$

$$T_o = \boldsymbol{J}_f^T \boldsymbol{F}_f - \boldsymbol{\tau}_e \tag{3-9}$$

ただし,

$$\boldsymbol{J}_f = \boldsymbol{l}_{o2} \times \boldsymbol{e}_z \tag{3-10}$$

 $\dot{\boldsymbol{l}}_{f} = [\dot{\boldsymbol{l}}_{f,x} \ \dot{\boldsymbol{l}}_{f,y} \ 0]^{T}$ はアクチュエータの速度ベクトル, τ_{e} は受動的に動作するアクチュエータ a_{e} の粘性力 f_{e} によって発生する負荷トルクである.

3.3.4 跳躍動作時のトルクと角速度

跳躍動作時にバッタの跳躍機構が発生するトルクと角速度について考える. Fig.3-9(a) に示すように,膝関節が完全に屈曲した状態で2つのアクチュエータ a_e , a_f を共収縮させ, バネにエネルギが蓄えられたとする. この時, 直動バネには F_e しか作用しないと仮定する ならば, 直動バネの変位量 δ_{sp} は次の式で近似される.

$$\delta_{sp} = r_{sp} - |\boldsymbol{l}_{sp}| \tag{3-11}$$

 l_{sp} は直動バネの自然長である. 直動バネの反発力 F_{sp} はフックの法則と式(3-11)より求めることができる.

$$F_{sp} = k_{sp} \left(r_{sp} - | \boldsymbol{l}_{sp} | \right)$$
(3-12)

 k_{sp} は直動バネのバネ定数である.共収縮後,アクチュエータ m_f が停止し, $F_{sp}=[F_{spx}F_{spy}0]^T$ によって出力リンクに T_o , $\dot{\theta}_o$ が発生したとする.この時,伸長用アクチュエータの粘性係数が非常に高いため, l_e の長さは変化せず,出力リンクはB点を中心に回転すると仮定する. $T_o \ge F_{sp}$ の関係式は,ヤコビ行列 G_{sp} を用いて次式で表される.

$$T_o = \boldsymbol{G}_{sp}^T \boldsymbol{F}_{sp} \tag{3-13}$$

$$\boldsymbol{G}_{sp} = \boldsymbol{I}_{o1} \times \boldsymbol{e} \tag{3-14}$$

跳躍動作時の $\dot{\theta}_o$ はバネの速度は $\dot{I}_{sp} = [\dot{I}_{sp,x} \ \dot{I}_{sp,y} \ 0]^T$ はが未知であるため、伸長、屈曲動作時 と同様に求めることができない、本研究では、アクチュエータ a_f の粘性係数 μ_f 用いて、跳 躍動作時の $\dot{\theta}_o$ を求める、アクチュエータ m_f からの粘性力のベクトル $f = [f_{fx} f_{fy} \ 0]^T$ は、 $T_o \in$ 用いて次式で与えられる.

$$\boldsymbol{f}_f = (\boldsymbol{G}_f^{\#})^T T_o \tag{3-15}$$

$$\boldsymbol{G}_{f} = (\boldsymbol{I}_{o1} + \boldsymbol{I}_{o2}) \times \boldsymbol{e}_{z} \tag{3-16}$$

 $G_f^{\#}$ は G_f の疑似逆行列を表す. この時, アクチュエータ $m_f o_{\mu_f} \ge f_f$ に次に示すような関係 式があるとする.

$$\boldsymbol{f}_f = \boldsymbol{\mu}_f \boldsymbol{l}_f \tag{3-17}$$

式 (3-17) を \dot{l}_f について解くと,

$$\dot{\boldsymbol{l}}_f = \frac{\boldsymbol{f}_f}{\mu_f} \tag{3-18}$$

となる.式 (3-15) に式 (3-18) を代入すると,

$$\dot{\boldsymbol{l}}_f = \frac{1}{\mu_f} (\boldsymbol{G}_f^{\#})^T T_o$$
(3-19)

となる. したがって,式 (3-19) より跳躍動作時の $\dot{ heta}_o$ は,

$$\dot{\theta}_o = \frac{1}{\mu_f} \boldsymbol{G}_f^{\#} (\boldsymbol{G}_f^{\#})^T T_o$$
(3-20)

で表される.

3.4 出力特性のシミュレーション

本節では、3.3 節で得られた解析式を用いてバッタの跳躍機構の出力特性を調べる.設定 した跳躍機構のリンク長を Table 1,使用する伸長用アクチュエータの性能を Table 2,屈曲 用アクチュエータの性能を Table 3 に示す.最大屈曲角度を 0.35[rad],伸長角度を 2.79[rad] に設定した場合における伸長動作時の T_o , $\dot{\theta}_o$ を Fig.3-10,屈曲動作時の T_o , $\dot{\theta}_o$ を Fig.3-11 に示す. Fig.3-10, 3-11の横軸はバッタの関節角度,左の縦軸はトルク,右の縦軸は角速度 を表す.伸長動作時は約 φ =3.14[rad]で最大トルク 1.99[Nm],屈曲動作時は φ =0.35[rad]で最 大のトルク 1.49[Nm]を得る. φ =0.35[rad]において伸長トルクより屈曲トルクの方が大きいた め、2 つのアクチュエータの共収縮時に屈曲状態を維持することが可能である.

Fig.3-12 に跳躍動作時の T_o , $\dot{\theta}_o$, Fig.3-13 にバッタの跳躍機構の出力を示す. Fig.3-12 より, 跳躍動作時においてバッタの跳躍機構は ϕ =0.52[rad]の近傍で最大トルク 0.83[Nm]と最大角速度 30.6[rad/s]を得ることが分かった. また, 圧縮したバネが伸びきるため, 関節角度 が φ =1.05[rad]以上はトルクが発生できない. Fig.3-13 より, バッタの跳躍機構は φ =0.52[rad] の近傍で, 搭載している 2 つのアクチュエータ (筋肉) の合計出力を大きく上回る出力 25.3[W]を得られることが分かった.

シミュレーション結果より、バッタの跳躍機構は 1 つの筋肉のみを稼働させることで高 いトルクを伴う歩行動作が可能、筋肉の共収縮によって蓄積したエネルギを解放すること で高い出力を伴う跳躍動作が可能であることを示した.したがって、バッタの跳躍機構を 模倣することで歩行・跳躍動作が可能な関節機構が実現できると考えられる.

Fig. 3-1 Locust legs [62]

Fig. 3-3 Semi-lunar process in hind-leg [62]

Fig. 3-4 Jumping process

Fig. 3-5 Lump effect

Fig. 3-6 Model of jumping mechanism of locust

Fig. 3-7 Link vectors

Fig. 3-11 torque and angular velocity during flexion

Fig. 3-12 Torque and angular velocity during jumping motion

Fig. 3-13 Power during jumping motion

<i>l_b</i> [mm]	<i>l_{sp}</i> [mm]	<i>l</i> ₀₁ [mm]	<i>l</i> ₀₂ [mm]	<i>l_b</i> [mm]
60	200	20	150	50

Table 3-2 Specification of extensional actuator

Power	Wact	[W]	1.0
Force	F _{act}	[N]	100
Velocity	<i>v_{act}</i>	[m/s]	100
Viscosity	u _f	[Ns/m]	1.0

Table 3-3 Specification of flexional actuator

Power	Wact	[W]	1.0
Force	F _{act}	[N]	10
Velocity	<i>v_{act}</i>	[m/s]	1.0
Viscosity	u _f	[Ns/m]	1.0

第4章

高出力関節機構の開発

第4章 高出力関節機構の開発

4.1 はじめに

本章では、第2章、3章で得られた知見をもとに目標の跳躍性能を有する高出力関節機構 を設計・開発することである.なお、目標の跳躍性能は \hat{J} =1.0、ロボットの仕様はM=1.0[kg], l=0.3 [m] (l_{acc} =0.2[m])とする.

4.2節では、バッタの跳躍機構を関節機構に適用可能なモデルに変更したものに対して解析 を行い、モータが関節機構の出力特性に及ぼす影響について検証する.4.3節では、まず上 記のロボットの仕様において、目標の跳躍性能を実現するために関節機構とモータに最低 限必要な *W*_{min} を推定し、本関節機構に使用するモータを決定する.次に、決定したモータ の粘性係数を測定し、設計をする上で必要なモータの減速比やリンク長を決定する.また、 設計・制作した関節機構の機構と制御回路について述べる.

4.2 高出力関節機構の解析

4.2.1 高出力関節機構のモデル

第2章の知見をもとに考案した高出力関節機構のモデルをFig.4-1に示す.本関節機構は, 出力リンクに接続されたワイヤをプーリに接続されたモータの力で巻き取ることにより, バッタの跳躍機構における伸筋と屈筋と同様の働きを示す.この時,伸筋,屈筋用ワイヤ に作用する収縮力 *Fe*, *Ff*と伸筋,屈筋用モータが出力するトルク *Te*, *Tf*との関係は,それ ぞれ次式で表される.

$$F_e = \frac{T_e}{r_e} \tag{4-1}$$

$$F_f = \frac{T_f}{r_f} \tag{4-2}$$

r_e, *r_f*は, それぞれ伸筋, 屈筋用モータに接続されたプーリの半径である. 屈曲, 伸長動作時における本関節機構の出力トルクと角速度は式 (4-1), (4-2) を式 (3-9), (3-10), 跳躍動作時の出力トルクと角速度は式 (3-14), (3-19) にそれぞれ代入することで求めることができる.

4.2.2 モータの粘性係数

一般的に市販されているモータは高速回転時に最高効率を得るため、高いトルクが必要 とされる関節機構等に使用する際には歯車等で減速させる必要がある.しかし、モータの 回転数を減速させた場合、減速比に応じてモータの機械的な粘性が大きくなるという問題 がある.ここで、Fig.4-2 示されるようなモータが取り付けられた *n* 段歯車減速機の粘性係 数について考える.*n* 段歯車減速機の回転角度を θ_n 、*i* 段目の減速比を ξ_i 、*i* 段目の車軸回転 方向の粘性係数を $\tilde{\mu}_i$ としたとき、*i* 段目の回転角度 θ_i は次のように表される.

$$\theta_i = \frac{\xi_n}{\xi_i} \theta_n \tag{4-3}$$

粘性抵抗によって消費する n 段歯車減速機全体の運動エネルギ E は次式で与えられる.

$$E = (\widetilde{\mu}_0 + \frac{\widetilde{\mu}_1}{\xi_i^2} + \dots + \frac{\widetilde{\mu}_n}{\xi_n^2})\theta_n \dot{\theta}_n \xi_n^2$$
(4-4)

 μ_0 はモータの粘性係数, $\dot{\theta}_n$ は n 段歯車減速機の出力軸の角速度である.式(4-4)より,系 全体の等価粘性係数 U は,

$$U = \left(\widetilde{\mu}_0 + \frac{\widetilde{\mu}_1}{\xi_i^2} + \dots + \frac{\widetilde{\mu}_n}{\xi_n^2}\right) \xi_n^2$$
(4-5)

で表される.モータの粘性係数がその他の粘性係数に対して非常に大きいと仮定すれば, 全体の等価粘性係数*U*は

$$U \cong \widetilde{\mu}_0 \xi_n^2 \tag{4-6}$$

と近似される.

4.2.3 モータの減速比の割合

3.34 項と 4.2.2 項の知見より,本関節機構は伸長用モータの減速比が高ければ高いほど, また屈曲用モータの減速比が低ければ低いほど,跳躍動作時において高い出力を得ること ができる.しかし,伸長用モータの減速比が屈曲用モータの減速比より大きく上回るなら ば,共収縮時において屈曲状態を保持することは困難である.したがって,屈曲状態を維 持し,かつ最大の出力を得られる減速比の組み合わせを推定する必要がある.

共収縮時に屈曲状態を維持する条件は、式(3-7)~(3-11)より次式で与えられる.

$$\boldsymbol{J}_{e}\boldsymbol{F}_{e} < \boldsymbol{J}_{f}\boldsymbol{F}_{f} \tag{4-7}$$

式(4-6)の両辺の絶対値をとり、式を整理すると

$$\frac{F_e}{F_f} < \frac{l_{02} (\cos \theta_o \sin \theta_{f2} - \sin \theta_o \cos \theta_{f2})}{l_{01} (\sin \theta_0 \cos \theta_e - \cos \theta_o \sin \theta_e)}$$
(4-8)

となる.この時、屈曲状態時に最大の屈曲トルクが得られると仮定すれば、θρ を

$$\theta_{f2} = \theta_o + \frac{\pi}{2} \tag{4-9}$$

と表すことができる.式(4-8)に式(4-9)を代入すると,

$$\frac{F_e}{F_f} < \frac{l_{02}}{l_{01}(\sin\theta_0\cos\theta_e - \cos\theta_o\sin\theta_e)}$$
(4-10)

が得られる.伸長用モータの最大トルクは屈曲用モータの k_{uq}倍とし,モータの最大の力で バネに力を蓄えていたとすれば,式(4-10)は次式のように表すことができる.

$$\frac{\xi_e}{\xi_f} < \frac{k_{tq} r_e l_{02}}{r_f l_{01} (\sin\theta_0 \cos\theta_e - \cos\theta_o \sin\theta_e)}$$
(4-11)

 ξ_e, ξ_f は, それぞれ伸長用, 屈曲用モータの減速比である. 本研究では k_{tq} =1.0 とし, 式(4-11) で表される減速比の制約条件を満たすギヤの中から, ξ_e/ξ_f が最大となるようになるギヤの組み合わせを使用する.

4.3 高出力関節機構の設計・制作

4.3.1 粘性測定実験

高出力関節機構を設計するために必要な使用するモータの粘性係数を測定した. Fig.4-3, 4-4 に粘性測定実験に使用した実験装置を示す. Fig.4-4 中の右のモータは粘性を測定される モータ (高出力関節機構に使用), 左のモータは一定のトルクを供給ためのモータである. ここで, 受動的に動作するモータに一定のトルクを与えた時の運動について考える. 受動 モータに与えるトルクを T_1 , モータの角加速度を $\ddot{\theta}$, 角速度を $\dot{\theta}$ としたとき, 運動方程式は 次式で与えられる.

$$(I_1 + I_2)\ddot{\theta} + (\widetilde{\mu}_1 + \widetilde{\mu}_2)\dot{\theta} = T_1$$
(4-12)

 $I_1, I_2, \tilde{\mu}_1, \tilde{\mu}_2$ は、それぞれトルクを与えるモータと粘性を測定されるモータの慣性モーメント、回転方向の粘性係数を表す. $\ddot{\theta}=0[rad/s^2]$ の時、 μ_2 が運動に対して支配的だと仮定すれば式 (4-12) は次の式のように表すことができる.

$$\widetilde{\mu}_2 \dot{\theta} = T_1 \tag{4-13}$$

式 (4-13) を µ2 について解くと

$$\widetilde{\mu}_2 = \frac{T_1}{\dot{\theta}} \tag{4-14}$$

となる. つまり, 一定のトルクをモータに与え, $\ddot{\theta}=0[rad/s^2]$ の時の $\dot{\theta}$ を計測することにより, 回転方向の粘性係数を導出することができる.

Fig.4-3, 4-4 の実験装置を用いて計測した角速度を Fig.4-5, 得られた角速度と式 (4-14) を用いて算出した粘性係数を Fig.4-6 に示す.実験の結果,モータの粘性係数を 4.0x10⁻⁷[Nms/rad]に決定した.

4.3.2 高出力関節機構の開発

3 章で導出した出力特性の解析式, 4.2 節の減速比の割合の式, 粘性測定実験で求めた粘 性係数をもとに,試行錯誤的にリンク長,プーリの半径,減速比を決定した.決定した設 計パラメータを Table 4-1 に示す. また Table 4-1 もとに詳細設計した高出力関節機構の外観 を Fig.4-7, 駆動ユニットの詳細を Fig.4-8, バネ機構の詳細を Fig.4-9, 関節部の詳細を Fig.4-10, 平行リンクユニットの詳細を Fig.4-11, 関節機構におけるリンクベクトルを Fig.4-12 に示す. 本関節機構は大きく分けて駆動ユニット、スプリングユニット、関節ユニット、平行リン クの4つに分類される.駆動ユニットは、モータ、プーリ、シャフトなどで構成されてい る. モータの動力がカップリングを介してシャフトに固定されたプーリに伝達するような 構造になっており、モータを動作させることでワイヤを巻き取ることができる、スプリン グユニットは、スライダ、圧縮バネ、シャフトなどで構成されており、スライダのスラス ト方向のみ受動的に動作する. 関節ユニットは、出力リンク、ストッパー、シャフトなど で構成されている.出力リンクの回転はシャフトとカップリングを介してエンコーダに伝 達される.また,ストッパーによって伸長,屈曲角度に制限を与えている.平行リンクユ ニットは、2組の平行リンクと1つの直動リンクで構成されている. 平行リンクを用いるこ とで, 関節機構の回転運動が鉛直方向の運動に変化され, 真上に跳躍することが可能であ る.本関節機構において、3章で述べたバッタの関節機構のリンクベクトルにおけるrbはベ ース長, r_e は伸張用モータから出力リンクに伸びるワイヤの長さ, r_{sp} はベースから回転軸 までの長さ, rn は 2 つのモータの位置関係, r2 は屈曲用モータから出力リンクに伸びるワ イヤの長さ,**r**ol,**r**o2 はワイヤから回転軸までの長さに該当する.開発した高出力関節機構 のシステム構成を Fig.4-13, 制御回路を Figs.4-14~15, 写真を Figs.4-16~17, リンク長を Table4-1, 使用を Table4-2 に示す.

Fig. 4-1 Model of high power joint mechanism

Fig. 4-2 Viscosity of motor with gear

Fig. 4-3 Experiment device

Fig. 4-4 Measurement device

Fig. 4-5 Result of viscosity measurement experimentation

Fig. 4-6 Motor viscosity due to current

Fig. 4-7 Overview of designed joint mechanism

Fig. 4-9 Detail of spring unit

Fig. 4-11 Parallel links

Fig. 4-12 Link vectors of designed joint mechanism

Fig. 4-13 System of high power joint mechansim

Fig. 4-14 Top view of control board

Fig. 4-15 Bottom view of control board

Fig. 4-16 Overview of developed joint mechanism

Fig. 4-17 Side view of developed joint mechanism

	Symbol	Value	Unit
	l_b	20	[mm]
	l_{sp}	230	[mm]
Link length	l_{o1}	100	[mm]
	l_{o2}	160	[mm]
	l_{f1}	10	[mm]
Pulley radius	r _e	3	[mm]
	r_f	4	[mm]
Gear ratio	ξe	84	[-]
	ξ _f	19	[-]

Table 4-1 Design parameters

Table 4-2 Specification of joint mechanism

Dimensions	W: 206 x D: 572 x H: 326 [mm]		
Weight	1.2 [kg]		
Actuator	3.2 [W] DC-Motor x 2		
Moving range	Max: 1.40 [rad] Min: 0.35 [rad]		
Communication	USB Communication		
Sensors	Encoder x 1 Current sensor x 2		

第5章

性能評価実験

第5章 性能評価実験

5.1 収縮力制御実験

本研究で提案した高出力関節機構は,伸長,屈曲用プーリに接続されているワイヤの収 縮力に応じたトルクが関節の回転中心回りに発生し,伸長や屈曲動作を実現する機構であ る.そのため,安定した伸長,屈虚動作,また跳躍動作を実現させるためには,任意の収 縮力を発生させる必要がある.任意の収縮力の制御を行うため,本研究では下記に示す PID 制御によるフィードバック系を構成した.

$$u = k_p e + k_i \int e \, dt + k_d \, \frac{de}{dt} \tag{5-1}$$

 u, e, k_p, k_i, k_d は、それぞれ操作量、目標値との誤差、比例ゲイン、積分ゲイン、微分ゲインである. なお、モータによって発生する収縮力 F_i は、式(5-2)を用い電流値 I_i から求められる.

$$F_i = \frac{\alpha_i I_i \xi_i}{r_i} (i = e, f)$$
(5-2)

最大伸長状態時に伸長用モータに 50[N]の目標収縮力,最大屈曲状態時に屈曲用モータに 10[N]の目標収縮力をステップ状に与え,収縮力制御の応答を確認した (Fig.5-1 参照). Table 5-1 に実験環境, Table 5-2 に実験に使用した PID 制御のゲイン, Fig.5-2 に伸張用モータの収縮力制御の応答の結果, Fig.5-3 に屈曲用モータの収縮力制御の応答の結果を示す.実験の 結果,伸張用,屈曲用モータ共に 1.0[s]以内に目標の収縮力に収束することが分かった.また,屈曲用モータより伸張用モータの方が収縮力のバラつきが大きいことが分かった.これは,2つのモータの減速比の違いによるものだと考えられる.
5.2 伸長·屈曲動作(歩行動作)実験

伸張用, 屈曲用モータに目標収縮力を交互に与えることによって伸長, 屈曲動作が実現 できるか検証するため, Fig.5-1の実験装置を用いて実験を行った. 伸長, 屈曲動作実験は, 5-1節の収縮力制御実験と同様のゲインパラメータを用い, 下記に示す手順で行った. なお, 0[N]の目標収縮力を与えているモータは, リレーをOFFにすることにより電気的に解放し, 逆起電力によって発生する電気抵抗の影響を減少させている.

- (1) 完全屈曲状態に設定する
- (2) 5.0 秒間伸長用モータに 50[N]を与え, 屈曲用モータのリレーを OFF にする.
- (3) 5.0 秒間伸張用モータのリレーを OFF にし, 屈曲用モータに 10[N]の目標収縮 力を与える.
- (4) (2), (3)を繰り返す.

Fig.5-4, 5-5 に実験中の伸長用, 屈曲長モータの応答と関節角度を示す. 図中の左軸は収縮 力[N], 右軸は関節角度[rad]を表す. 実験結果より, 上記で示した目標収縮力で動作させた 場合, 伸長, 屈曲動作共に 1.5[s]程度で最大角度まで動作できることが分かった. また, 関 節が最大角度まで動作した直後, 収縮力が大きく変化している. この原因は, 最大角度ま で動作した際に生じる衝撃である.

5.3 跳躍動作実験

設計した角速度が得られるか検証するために, Fig.5-1 の実験装置を用いて跳躍動作実験 を行った.跳躍動作実験は, 5-1 節の収縮力制御実験と同様のゲインを用い,下記の示す手 順で行った.

- (1) 伸長用モータのリレーを OFF にし, 屈曲用モータに 10[N]の目標収縮力を与え, 完全屈曲状態にする.
- (2) 伸張用モータに 400[N], 屈曲用モータに 80[N]の目標収縮力を与え, 2 つのモ ータの共収縮によりバネに力を蓄える.
- (3) 伸張用モータの目標は変えず, 屈曲用モータのリレーを OFF にし, バネに蓄 えた力を解放する.

屈曲用モータのリレーを OFF にした後, 1000[Hz]のサンプリングで 300[ms]の間関節角度を 取得した.関節角度,角速度を Fig.5-6 に示す.図中の曲線は 3 次の多項式近似から得られ た角度であり,角速度は近似式を微分して算出した.跳躍動作実験で得られた角速度と設 計時のシミュレーション (µ₀=4.0x10⁻⁷[Nms/rad])で得られた角速度との比較を Fig.5-7 に示 す.本関節機構はバネに蓄えた力を解放してから 138[ms]後に最大の角速度 5.9[rad/s]が得ら れている.また,開発した関節機構の角速度は,全体的にシミュレーションの角速度の 1/2 程度であった.この原因は,実際のモータの粘性係数が設計時に想定していた粘性係数よ り大きな値であったと考えられる.Fig.5-8 に跳躍動作実験で得られた角速度と粘性係数を 設計時の 2 倍の 8.0x10⁻⁷[Nms/rad]に設定したシミュレーションの角速度の比較を示す.開 発した関節機構の角速度は,全体的に粘性係数が 8.0x10⁻⁷[Nms/rad]のシミュレーションの角 速度と同程度であった.

モータの粘性抗力の影響を減少させることで、跳躍動作時の角速度の向上が見込めるか どうか検証するため、屈曲用プーリの半径を2倍の8[mm]に変更し、跳躍動作実験を行った. 理論上、屈曲用プーリの半径を2倍にすることで屈曲用モータからの粘性抗力の影響が半 減する. PID制御のゲイン、実験手順、角速度の算出方法は、上記と同様である. Fig. 5-9 に 1000[Hz]のサンプリング周波数で 300[ms]の間取得した関節角度と角速度、Fig.5-10 に実 験で得られた角速度とシミュレーションで得られた角速度の比較を示す. Fig.5-9 より、屈 曲用プーリの半径を2倍にした関節機構は、バネの力を解放してから 80[ms]後に最大の角 速度 9.23[rad/s]を得ることが分かった. また、関節機構の角速度はμ₀=4.0x10⁻⁷[Nms/rad]とμ₀=8.0x10⁻⁷[Nms/rad]のシミュレーションの角速度の中間程度であった. この原因は、第4章 で導出したギヤ比と粘性係数の関係を表した式(4-11)、もしくは粘性係数とトルクの関係 を表した式(4-14)が実機と異なっていることを意味する.

5.4 跳躍高さ測定実験

本関節機構の跳躍性能を評価するため、で Fig.5-10 の実験装置を用いて跳躍高さ測定実験 を行った. 跳躍高さ測定実験は Table 5-3 のゲインを用い、5-3 節と同じ手順で行った. なお、 実験で使用した屈曲用のプーリの半径は 8[mm]である. Fig.5-11 に 30[fps]のビデオカメラで 撮影した跳躍の連続写真を示す本関節機構は最大で 40[mm]の高さまで跳躍している.本関 節機構の加速距離は 200[mm]なのでĴは 0.2 である.本関節機構の全質量に対して十分なト ルクが関節回りに発生しているのにも係わらず、20%程度のĴしか得られない原因は、モー タの粘性抵抗の影響が非常に大きいことだと考えられる.

低い跳躍高さの原因がモータの粘性抵抗であるか判断するため、モータの粘性の影響を 受けない動作を用いて跳躍高さ測定実験を行った.この跳躍高さ測定実験は、5-3節と同じ ゲインパラメータを用い、下記に示す手順で行った.

- (1) 伸張用モータに 0[N], 屈曲用モータに 10[N]の目標収縮力を与え, 最大屈曲所 帯にする.
- (2) 伸張用モータに 400[N], 屈曲用モータに 80[N]の目標収縮力を与え, 2 つのモ ータの共収縮によりバネに力を蓄える.
- (3) 2つのモータの目標収縮力を固定した状態で、屈曲用ワイヤを切断し、バネに 蓄えられた力を解放する.

Fig.5-12 に 30[fps]のビデオカメラで撮影した跳躍の連続写真を示す.実験の結果,屈曲用 ワイヤを切断して跳躍した場合,最大で 200[mm]の高さまで跳躍していることが分かった. この場合のĴは 1.0 であるため,屈曲用モータの粘性抵抗の影響受けない場合,本関節機構 は目標の跳躍性能を満足できることが分かった.

Fig. 5-1 Basic motion experiment

Fig. 5-2 Result of force control of extensor

Fig. 5-3 Result of force control of flexor

Fig. 5-4 Force control and angle of extensor during extension and flexion

Fig. 5-5 Force and angle of flexor during extension and flexion

Fig. 5-6 Angle and angular velocity during jumping motion (small pulley)

Fig. 5-7 Comparing angular velocity of machine (small pulley) and simulation ($\mu = 4.0 \times 10^{-7}$)

Fig. 5-8 Comparing angular velocity of machine (small pulley) and simulation (μ =8.0x10⁻⁷)

Fig. 5-9 Angle and angular velocity during jumping motion (big pulley)

Fig. 5-10 Comparing angular velocity of real machine (Big pulley) and simulation

Fig. 5-11 Jumping experiment

Fig. 5-12 Jumping motion with viscosity effect

Fig. 5-13 jumping motion without viscosity effect

F F F F F F F F F F F F F F F F F F F				
	Name	Value	Unit	
D 1	Input voltage	10.0	[V]	
Power suppry	Remit current	4.0	[A]	
	PWM frequency	610	[Hz]	
P w M signal	Resolution	16	[bit]	
Dete ano consin a	Sampling frequency	100	[Hz]	
Data processing	Moving average	20	[-]	

Table 5-1 Experimental environment

	Name	Value	Unit
	Control frequency	100	[Hz]
Extensor	Proportional gain	3.0	[-]
Extensor	Differential gain	0.5	[-]
	Integral gain	2.0	[-]
	Control frequency	100	[Hz]
Flower	Proportional gain	0.8	[-]
Flexor	Differential gain	0.5	[-]
	Integral gain	0.8	[-]

Table 5-2 Control parameters I

Table 5-3 Control parameters II

	Name	Value	Unit
	Control frequency	100	[Hz]
Extensor	Proportional gain	6.0	[-]
Extensor	Differential gain	0.5	[-]
	Integral gain	2.0	[-]
	Control frequency	100	[Hz]
Flovor	Proportional gain	0.8	[-]
Flexor	Differential gain	0.5	[-]
	Integral gain	0.8	[-]

第6章

考察及び結論

第6章 考察及び結論

6.1 跳躍ロボットの設計指針に関する考察

第2章では、跳躍ロボットに必要な関節機構の性能を概算することを目的として、目標の跳躍比を実現するために最低限必要な関節機構の出力質量比の推定方法について議論した.推定するために使用したモデルは、胴体部の質量と脚部の質量で構成される2質点跳躍モデルである.胴体部の質量は、胴体部を支えるための構造部材の質量と胴体部を加速させるための関節機構の質量に分けて扱った.本研究の2質点跳躍モデルでは、従来の2質点系では困難な関節機構の出力質量比の推定を行うことが可能である.2質点跳躍モデルにおいて、関節機構の出力質量比は跳躍比、加速に関する質量比、強度に関する質量比の3つの無次元パラメータの関数として与えられる.関節機構の出力質量比を推定するために、まず設計者がロボットの全質量、脚長、目標の跳躍能力を決定する.次に、座屈破壊しないために必要な構造部材の強度の観点から強度に関する質量比、最適化の観点から質量比を算出し、最終的に関節機能の出力質量比を得る.

提案した推定方法を用い解析の結果,質量が小さいロボットほど出力質量比が大きく, 質量が大きいロボットほど小さいという傾向が得られた.この傾向は,ロボットの質量が 大きければ大きいほど,確保できるアクチュエータの質量が大きくなることを意味する. 質量が大きいロボットほど強度に関する質量比が小さく,十分なアクチュエータ質量を確 保することができ,相対的に出力質量比が小さくなる.

推定した出力質量比が実現可能か検討するため,一般的に市販されているモータの出力 質量比と比較した.比較の結果,市販されているモータだけの出力では目的の跳躍力が得 られないことが分かる.

モータから出力されるトルクを向上させる方法として,ギヤやリンク機構などの減速機 を取り付ける方法が考えられるが,単に減速機は出力されるトルクと角速度の割合を変化 させる働きしかないため,出力を増幅することはできない.したがって,市販されている モータで目標の跳躍力を実現するためには,モータの性能を向上させるか,もしくはエネ ルギを蓄える機構を取り付ける必要がある.

エネルギを蓄える機構の有効性を検証するため、バネ機構を有したモデルに使用するモ ータに最低限必要な出力質量比を推定した.このモデルにおいて、モータはバネにエネル ギを蓄えるためだけに使用し、跳躍はバネに蓄積されたエネルギのみを利用すると仮定し た.推定の結果、質量が小さいロボットほど跳躍に必要な射出速度が小さくなるという結 果が得られた.同じ運動エネルギを蓄積するためには、質量が小さいロボットは十分な跳 躍速度を加速によって得る必要がある.また、バネ機構を用いることによって、市販され ているモータを用いて目標とする跳躍力を実現することが可能であると考えられる.

6.2 バッタの跳躍機構のまとめ

第3章では、まずバッタの後脚にある各部位の機能やバッタの跳躍機構について述べた. バッタは、後脚に存在するバネと同じ性質のレジリンで構成された半月突起に力を蓄え、 その蓄積した力を瞬間的に解放することで、筋肉単体では実現することができない高い跳 躍運動を実現している.下記にバッタの後脚の特徴及び動作をまとめた.

【バッタの後脚の特徴】

- (1) 主にバネに力を蓄える伸筋の方が屈筋より収縮力が大きい.
- (2) バネと同じ性質である半月突起がある.
- (3) 屈筋の収縮力の方向を変化させるランプある.
- (4) 最大屈曲状態時にエネルギを蓄積する.

【バッタの後脚の動作】

- (1) 伸長,屈曲時には片方の筋肉のみを使用する.
- (2) 力を蓄積する際には、伸筋と屈筋を共収縮させる.
- (3) 蓄えた力を解放する際には、伸筋を収縮させた状態で屈筋を弛緩させる.

静力学的にバッタの後脚の出力特性を解析するため、上記に示す後脚の特徴や動作を踏ま え、バッタの後脚のモデリング行った.後脚のモデルにおいて、2つのアクチュエータは伸 筋と屈筋、直動方向に稼動する圧縮バネは半月突起、プーリはランプを表現している.伸 長、屈曲動作時において、駆動させないアクチュエータ(受動アクチュエータ)は負荷(粘 性抵抗)として作用し、バネの長さは変化しないと仮定した.一般的に関節機構に用いら れるような高トルクなアクチュエータは高剛性であり、粘性抵抗が高い.後脚のモデルを より現実的なモデルに近付けるため、受動的に動作するアクチュエータは粘性抵抗によっ て負荷を発生させると仮定した.跳躍動作時において、バネに力を蓄積させるときには、 伸筋用アクチュエータは負荷として作用すると仮定した.蓄積する力を解放する時には、 屈曲用アクチュエータは負荷として作用するとした.また、解放時には、伸長用アクチュ エータの長さはほとんど変化しないと仮定した.

上記で示した後脚のモデルは、2入力(伸筋,屈筋の収縮力)、1出力(関節周りのトルク) のシステムであるため、後脚のモデルの姿勢(関節角度)に対して入力が一意に決定され ない.このようなシステムにおいて、順運動学の関係式を微分してヤコビ行列を導出する ことは困難である.本研究では微分ではなく外積から導出されるヤコビ行列を用いて、後 脚のモデルの出力特性の解析を行った.外積から導出されるヤコビ行列は微分のヤコビ行 列とは異なり、入力される収縮力の方向(単位方向ベクトル)を持つ.

導出したバッタのモデルの入出力関係の式を用いてシミュレーションを行った.シミュレ ーションに使用するリンク長や最大伸長,屈曲角度はバッタの資料をもとに決定した.シ ミュレーションの結果,最大屈曲状態において伸長時のトルクは屈曲動作時のトルクの 1.5 倍以上であった.これは,共収縮状態時において,屈曲状態を保持することが可能である ことを示している.跳躍動作時の最大トルクは伸長動作時の 1/2 程度,最大角速度は伸長時 の 10 倍程度であった.跳躍動作時に最大で搭載しているアクチュエータの 10 倍以上の出 力を発生できることが分かった.これは,バッタが筋肉の収縮力をバネ機構(半月突起) によって高い角速度に変換し,筋肉単体で実現できない出力を発生していることを意味す る.したがって,バッタの後脚を規範した関節機構の伸張用モータには,回転速度ではな くトルクを重視したモータを使用するのが望ましい.

6.3 高出力関節機構のまとめ

第2章,3章で得られた知見をもとに目標の跳躍性能を有する高出力関節機構の設計・制 作を行った.高出力関節機構を設計するために,バッタの後脚のモデルにおけるアクチュ エータをプーリとモータで表現したモデルを用いた.プーリを介して出力リンクに接続さ れたワイヤをモータで巻き取ることにより,バッタの跳躍機構における伸筋と屈筋の働き を近似する.本関節機構において,各モータの減速比は出力に大きな影響を与える.伸張 用モータの減速比ξeは主に伸長動作時のトルク,バネに蓄積する力に影響を及ぼす.屈曲 用モータの減速比ξfは主に屈曲動作時のトルク,跳躍動作時の角速度に影響を及ぼす.つ まり,減速比の割合ξe/ξfが大きければ大きいほど,跳躍動作時の出力は大きくなると考 えられるが,ξe/ξfの大きさによっては共収縮時に屈曲状態を保持できない可能性がある. 本研究では,共収縮時に屈曲状態できる割合の中からξe/ξfが最大となるものを使用した. 開発した高出力関節機構の性能を評価するために,伸長,屈曲動作実験,跳躍動作実験, 跳躍高さ測定実験を行った.

伸長、屈曲動作実験では、伸張用モータと屈曲用モータを交互に与えたときの収縮力の応 答と関節角度を計測した.伸長,屈曲動作実験を行った結果,共に 1.5[s]程度で最大角度ま で動作することが分かった.また,最大角度まで動作した際に生じる衝撃によって収縮力 が振動した.跳躍動作実験の結果,実機の角速度のピークは,シミュレーションのピーク の 1/2 程度であった.実機の角速度がシミュレーションの結果より大きく下回った主な原因 は、シミュレーション時に想定していた値より実際のモータの粘性係数が大きな値であっ たと考えられる.そこで,モータの粘性係数を減少することで跳躍動作時の角速度が向上 するか検証するため、2倍の半径の屈曲用プーリを使用して再度跳躍動作実験を行った.実 験の結果,屈曲用プーリの半径を2 倍にすることで、角速度が増加する.跳躍高さ測定実 験は,跳躍動作実験と同じ手順で行い,カメラ映像を用いて跳躍高さを測定した.実験の 結果,本関節機構の全質量に対して十分なトルクが関節和真理に発生しているのにも関わ らず、目標の跳躍力の 20%程度しか実現していない. 原因は、モータの粘性抵抗の影響が 非常に原因と考えられる.低い跳躍高さの原因がモータの粘性抵抗であるか判断するため, 屈曲用ワイヤを切断することでバネに蓄積された力を解放し、その時の跳躍高さを測定し た. 測定の結果, 屈曲用ワイヤを切断して跳躍した場合, 目標の高さまで跳躍しているこ とが分かった.

6.4 生物規範型高出力関節機構の開発について

本研究ではロボットの活動範囲の拡大を目指し、歩行と跳躍動作が可能な小型で高出力 な関節機構の開発に取り組んだ.関節機構によって歩行動作を実現するためには、減速機 を用いて高いトルクを得る必要がある.減速機を持つ関節機構には力と速度の間にトレー ドオフの関係があるため、跳躍のような瞬発的な動作を行うことができない.跳躍動作を 関節機構によって実現するには、エネルギを蓄積・解放する機構が必要である.しかし、 バネを使用した関節機構は構造上出力を調節することは困難であるため、歩行動作に向か ない.この問題を改善するため、本研究ではバッタの跳躍機構に着目し、生物規範型高出 力関節機構を開発した.提案した関節機構は従来の関節機構とは異なり、歩行や跳躍のど ちらか一方の動作に特化した構造になっておらず、その両方が実現可能である.また、モ ータの駆動方法によって歩行と跳躍動作の切り替えができるため、クラッチなどの機構を 必要とせず、小型に作ることが可能である.

以上のことから,バッタの跳躍機構を模倣した高出力関節機構の有効性が示された.提案した関節機構は,様々な場所で活躍するロボットの関節機構として十分な出力と機能を 有していると結論する.

6.5 **今後の展**望

本研究で提案した高出力関節機構をロボットに使用している関節機構の代替として利用 することで活動範囲の向上が図れる,ロボットの活躍の幅が広がると考えられる.例えば, 脚式移動ロボットの脚部に使用した場合,ロボットは段差がある環境での歩行だけではな く,跳躍により障害物を飛び越えたり,走行によって俊敏に動作したりすることが可能で ある.今まで歩行に特化していた脚式移動ロボットが跳躍や走行などの瞬発動作を実現す ることで,学校や家庭など物が錯乱する人間の生活空間などでの搬送作業や防犯警備など にロボットが進出すると期待できる.

謝辞

本研究の遂行,博士論文の執筆,及び研究室での生活においてお世話になりました皆様 への感謝の意をここに記します.

度重なる失態でご迷惑をかけたのにも関わらず終始懇切丁寧なるご指導を頂きました指 導教官である石井准教授に感謝の意を込め,厚く御礼申し上げます.石井先生は,右も左 を分からず戸惑う私に対して親身に接し、物事の見方や考え方、研究に対する姿勢など、 研究以外にも多くのことをご教授して下さいました.高専在籍中に参加していたロボット コンテストで培った技術力を評価して頂き、石井先生のご厚意で入学してすぐに宙返り運 動が可能なロボット"Jumping Joe"のプロジェクトに参加させて頂きました."Jumping Joe" は強力なバネとモータを駆使して宙返り運動を実現するため、非常に壊れやすく調整が難 しいロボットでした. 展示会やイベントの度に "Jumping Joe" のメンテナンスに苦労する 私に対して石井先生は、ご自分が体験された経験を踏まえた技術的なノウハウをご教授下 さいました. 大変感謝しております. 博士後期課程においては、下水道管検査ロボットや 船底清掃ロボット、血栓症予防ロボット等の開発プロジェクト、研究室内対抗ロボットコ ンペディションの取りまとめ役,石井研究室発ベンチャー企業 RoboPlus ひびきの㈱の代表 取締役など、普通の研究室では中々経験することができない貴重な体験をさせて頂きまし た.私がプロジェクトの作業で徹夜している際,石井先生はいつも付き添って下さいまし た.特に印象的だったのが東京に出発する前日の船底清掃のメンテナンスの時で,夜中遅 くに石井先生と塩水をロボットにかけながら問題個所を探していたことは、今でもはっき りと覚えております.

石井先生のもとで過ごした 5 年間は決して楽しいことばかりでありませんでしたが、私 にとって非常に貴重で有意義な時間でした.石井先生なくしては、博士の研究を遂行でき るほどの能力を身につけられなかったと思います.まだ石井先生には研究員として 1 年間 ほどお世話になりますが、早く一人前の研究者として社会に貢献できるよう、日夜研究に 励んでいこうと思います.

本論文発表の審査をお受けして頂きました九州工業大学の山川先生,永松先生,中川先 生に深く感謝致します.先生方には, COE マルチ英才教育のカリキュラムにおいてもご指 導,ご助言を頂きました.自分の専門分野とは異なる先生方のおかげで,私は研究に対す る視野を大きく広げることができ,博士論文を完成できたと思います.厚く御礼申し上げ ます. 石井研究室の先輩に当たる Amir Ali Forough Nassiraei さんは、特に RoboPlus ひびきの㈱ 関係のプロジェクトで大変お世話になりました.私が設計・製作した制御回路に間違いが あり、Amir さんにご迷惑をおかけした際にも「No problem」と暖かい言葉をかけて下さり、 親身に接して頂きました.

2010 年 8 月から石井研究室の研究員として戻ってこられた OB の西田周平さんは,博士 論文の執筆中に悩んでいた私をいつも励まして下さいました.西田周平さんと同じ研究室 のメンバーとして過ごした時間は1年間もありませんでしたが,とても楽しい時間でした.

石井研究室の先輩の佐藤雅紀さんには、常日頃から私の研究の進捗状況などを気遣って 頂きました.ご自分の作業でお忙しいのにも関わらず夜遅くまで私の相談をのって下さり、 適切なご助言をして頂きました.本当にありがとうございました.

同じ"Jumping Joe"のプロジェクトチームの一員である先輩の園田隆さんには様々な場面 で助けて頂き,感謝の気持ちで胸がいっぱいです.展示会やイベントの前日に夜遅くまで 二人で"Jumping Joe"を整備していたことを昨日の事の様に覚えております.私が博士後期課 程に進学した際には,私の研究の事を気遣って何度もミーティングをして頂き,ご自分の 経験で得られた知識や考え方,技術的なノウハウなど様々なことを教えて下さいました. 博士の研究が終わり,博士論文が完成したのも,私がここまで成長できたのも紛れもなく 園田さんのおかげだと思います.本当にありがとうございました.

石井研究室の先輩である石塚誠さん、大畑智海さん、杉山公一さん、松尾貴之さん、江 里口優さん、神田敦司さん、武村泰範さん、真田篤さん、後輩の北住祐一君に厚く御礼申 し上げ致します.また本研究で開発したロボットの製作に協力してくれた本田君をはじめ、 石井研究室の方々にも感謝の意を示します.

最後にこれまで私の成長を見守り,励まし,支えてくれた両親の西田健也や西田英代, 姉の西田めぐみ,そして婚約者の松村菜穂子に感謝の意を込めて,謝辞と致します.

> 平成 23 年 3 月 西田 祐也

参考文献

- [1] 経済産業省,ロボット政策研究会中間帆酷暑(案)~ロボットで拓くビジネスフロ ンティア~, URL: http://www.meti.go.jp/press/20050512004/robot-set.pdf, 2005
- [2] 石原昇, 五内川拡史, ロボット・イノベーション, 日刊工業新聞社, 2007
- [3] 浮田宋伯,「クオリティ・オブ・ライフのためのロボティクス」特集について,日本 ロボット学会誌, Vol.28, No.9, pp.1, 2010
- [4] 田所論,平井成興,淺間一,菅野重樹,吉瀬裕,犬道武生,水川真,長谷川勉,小 管一弘,ロボティクスメカトロニクス,日本機械学会誌,Vol.113, No.1101, pp.66-69, 2010
- [5] A.A.F. Nassiraei, Seiji Masakado, Takayuki Matsuo, Takashi Sonoda, Isao Takahira, Hajime Fukushima, Masayuki Murata, Kodai Ichikawa, Kazuo Ishii, Tsutomu Miki, Development of an Artistic Robot "Jumping Joe", Proceedings of IEEE IROS'06, pp.1720-1725, 2006
- [6] A.A.F. Nassiraei, M. Murata, K. Ichikawa, K. Ichikawa, K. Ishii, Realization of the Rapid Movements for the Entertainment Robots by Using Two New Actuators "Inertia Actuator" & "Cam Charget", Proceedings of ASME IMECE2006, IMECE2006-14257, 2006
- [7] ツカサ電工株式会社,製品カタログ(出力13~17W 5スロット,高い信頼性の高 トルクモータ), URL:http://www.tsukasa-d.co.jp/motor/dc/tg 21/, 2010
- [8] 山海嘉之, 跳ぶロボット, バイオメカニズム学会誌, Vol.20, No.2, 1996
- [9] 松岡清利,反復跳躍運動の機械モデル,バイオメカニズム 5,東京大学出版会, pp.251-258, 1979
- [10] Raibert M. H., Dynamic stability and resonance in a one-legged hopping machine, In 4th Symposium on Theory and Practice of Robots and Manipulators, Warsaw Polish Scientific Publications, pp.352-367, 1981
- [11] Raibert M. H., Special Issue on Legged Systems, International J. Robotics Research, Vol.3, pp.75-92, 1984
- [12] M. H. Raibert, Legged Robots That Balance, The MIT Press, 1986
- [13] Jessica Hodgins, Marc H. Raibert, Biped Gymnastics, MIT Press, Vol.4, pp.5-14, 1988
- [14] 谷和男, バネを利用した車輪型跳躍機械, 第8回日本ロボット学会学術講演会予稿 集(2), pp.611-612, 1990
- [15] 中野栄治,大久保宏樹,木村浩,跳躍機械の着地制御,日本ロボット学会誌, Vol.9, No.2, pp.169-176, 1991
- [16] 山藤和男,三矢喜之,跳躍移動ロボットの開発と運動制御,日本機械学会論文集(C 編),57巻,537号,pp.1616-1620,1991
- [17] 金井宏樹、山藤和男、可変構造型移動ロボットの制御アーム -脚が他における姿勢変化と跳躍動作一、日本機械学会論文集(C編)、57巻、539号、pp.2336-2341、 1991
- [18] 五閑学,山藤和男,吉瀬裕,なわ跳びロボットの開発と運動制御,第9回日本ロボ ット学会学術講演会予稿集(2), pp.637-638, 1991

- [19] 我妻慶一, 嘉納秀明, エネルギ蓄積型跳躍機械, 第9回日本ロボット学会学術講演 会予稿集(2), pp.635-636, 1991
- [20] Playter R.R., Raibert M. H., Control of a biped somersault in 3D, Proceedings of IROS'92V, 1992
- [21] Playter R. R., Raibert M. H., Generation of a somersault by a 3D biped robot, IFAC'92V, 1992
- [22] Kazuo Tani, Masahiko Shirai, A Jumping Machine Using the Entergy Stored in Springs, IFToMM-jc International Symposium on Theory of Machines and Mechanisms, pp.265-270, 1992
- [23] Sankai Y., Shirai M., Yasuhara K., Neural Based Sensing and Control for One-Legged Robot, JASME ICAM'93, ADVANCED MECHATRONICS, pp.924-930, 1993
- [24] 白井雅彦,渡辺健一,山海嘉之,一足跳躍ロボットの制御に関する研究,第11回日本ロボット学会学術講演会,No.3, pp.1095-1098, 1993
- [25] 本多幸太郎, 佐野明人, 川名雄, 坂口正道, 古荘純次, 関節型四足ロボットによる 跳躍相を含むバウンス歩行制御の実現, 第11回日本ロボット学会学術講演会予稿集, pp.637-638, 1993
- [26] Sankai Y., Ohta M., A Basic Concept of Super Rabbit, RoManSy, Vol.9, pp.349-359, 1993
- [27] Sankai Y., A Biocybernetic System in the Artificial Organ Control and Bio-Robotics, Lecture Note of International Center of Biocybernetics, pp.66-99, 1994
- [28] 大久保宏樹,中野栄二,木村浩,跳躍機械の2次元面内着地制御,日本ロボット学 会誌, Vol.12, No.8, pp.153-160, 1994
- [29] 大久保宏樹,半田実,中野栄二,自己振動を利用した跳躍機械の構成,第13回日本 ロボット学会学術講演会予稿集,pp.1091-1092,1995
- [30] Ryuma Niiyama, Akihiko Nagakubo, Yasuo, Kuniyoshi, Mowgli: A Bipedal Jumping and Landing Robot with an Artificial Musculoskeletal System, Proceedings of IEEE International Conference on Robotics and Automation 2007 (ICRA 2007), pp.2546-2551, 2007
- [31] 9 メートルの大ジャンプ!跳躍ロボット「hopper」登場, マイコミジャーナル 2000/11/08 記事, URL:http://journal.mycom.co.jp/news/2000/11/08/15.html, 2000
- [32] Atsushi Yamada, Hiroshi Mameda, Hiromi Mochiyama, Hideo Fujimoto, A Compact Jumping Robot utilizing Snap-through Buckling with Bend and Twist, proceedings the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.389-394, 2010
- [33] 福岡泰宏,木村浩,4足ロボットの生物規範型不整地適応動作歩行:自立型「鉄犬2」 による野外歩行の実現,日本ロボット学会誌,Vol.25,No.1,pp.138-154,2007
- [34] 株式会社ロボガレージホームページ, URL: http://www.robo-garage.com/top.html
- [35] 坂井泰樹,大島徹,藤川智彦,百生登,鳥海清司,神谷和秀,二関節筋機構による 動物規範型跳躍ロボット, Dynamics & Design Conference 2006, 549-1 – 549-4, 2006
- [36] 杉山勇太, 平井慎一, 柔軟ロボットの変形を用いた移動と跳躍, 日本ロボット学会, Vol.24, No.3, pp.378-387, 2006

- [37] ワタリエイリ,塚越秀行,北川能,ロボットの投擲・跳躍能力を高める磁性ブレー キシリンダ,日本ロボット学会, Vol.28, No.1, pp.95-105, 2010
- [38] Marc Raibert, Kevin Blankespoor, Gabriel Nelson, Rob Playter, the BigDog Team, BigDog: the Rough-Terrain Quadruped Robot, Proceedings of the 17th World Congress The International Federation of Automatic Control Seoul, pp.10822-10825, 2008
- [39] Fumitaka kikuchi, Yusuke Ota, Shigeo Hirose, Basic Performance Experiments for jumping Quadruped, Proceedings o IEEE International Conference on Intelligent Robots and System (IROS 2003), pp.3378-3383, 2003
- [40] 高橋,小金沢,把持物なじみ機能を有する人工指,第4回計測自動制御学会 SI 部門 学術講演会予稿集,pp.271-272,2003
- [41] K. Koganezawa, Artificial Finger with Shape-fitting Mechanism, Proceedings of International Conference of Intelligent Manipulation and Grasping, pp.103-109, 2004
- [42] Harada Electric Industry Co., Myo-electric controlled forearm prosthesis SH-1, URL http://www.h-e-i.co.jp
- [43] 石塚,小金沢,把持物なじみ機構と3自由度駆動を可能とする DPGS を搭載した指 とハンドの開発,第24回日本ロボット学会学術講演会予稿集,2006
- [44] W.T. Townsend, The BarrettHand grasper-programmably flexible part handling and assembly, Industrial Robot, Vol.27, No.3, pp.181-188, 2000
- [45] J. Butterfab, M. Grebenstein, H. Liu, G. Hirzinger, DLR-Hand II: Next Generation of a Dextrous Robot Hand, Proceedings of IEEE International Conference on Robotics and Automation, pp.109-114, 2001
- [46] A. Namiki, Y. Imaki, M. Ishikawa, M. Kaneko, Development of a High-speed Multifingered Hand System and Its Application to Catching, Proceedings of IEEE International Conference on Intelligent Robots and Systems, pp.2666-2671, 2003
- [47] G. Hirzinger, J. Butterfab, M. Fischer, M. Grebenstein, M. Hahnle, H. Liu, I. Schaefer, N. Sporter, A Mechatronics Approach to the Design of Light-Weight Arms and Multifingered Hands, Proceedings of the 2000 IEEE International Conference on Robotics and Automation, pp.46-54, 2000
- [48] S.C. Jacobsen, E. K. Iversen, D. F. Knutti, R. T. Johnson, K. B. Biggers, Design of the UTAH/M.I.T. Dextrous Hand, Proceedings of the 1989 IEEE International Conference on Robotics and Automation, Vol.3, pp.1520-1532, 1986
- [49] N. Fukaya, S. Toyama, T. Asfour, R. Dillmann, Design of the TUAT/Karlsruhe Humanoid Hand, Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robot and Systems, pp.1754-1759, 2000
- [50] D. D. Wilkinson, V. Weghe, Y. Matsuoka, An Extensor Mechanism for and Anatomical Robot Hand, Proceedings of the 2003 IEEE International Conference on Robotics and Automation, pp.236-243, 2003
- [51] N. Dechev, W. L. Cleghorn, S. Naumann, Thumb Design of an Experimental Prosthetic Hand, Proceedings of the 2nd International Symposium on Robotics and Automation, 2000
- [52] Koichi Koganezawa, Yasutaka Ishizuka, Novel mechanism of artificial finger using double planetary gear system, Proceedings of IEEE International Conference on Intelligent Robots and System (IROS 2008), pp.22-26, 2008

- [53] 高木健,小俣透,大きな把持力が得られる直動機構,日本ロボット学会誌, Vol.25, No.2, pp.299-305
- [54] Takeshi Takaki, Toru Omata, High Performance Anthropomorphic Robot Hand with Grasp Force Magnification Mechanism, Proceedings of IEEE International Conference on Robotics and Automation (ICRA 2009), pp.1697-1703, 2009
- [55] 高木健,小俣透,ロボットハンドのための負荷感応無段変速機,日本ロボット学会 誌, Vol.23, No.2, pp.238-244, 2005
- [56] 高木健,小俣透,負荷感応無段変速機を用いた 100[g]・100[N]指の開発,日本ロボ ット学会誌, Vol.24, No.2, pp.263-269, 2006
- [57] 山田篤史,渡正充,望山洋,藤本英雄,高剛性受動関節を有する閉ループ柔軟カタ パルトと遊泳ロボットへの応用,日本ロボット学会誌, Vol.27, No.10, pp.1144-1153, 2009
- [58] Marsh R. L., Jumping ability of anuran amphibians, In Advances in Veterinary Science and Comparative Medicine, Vol.38B, pp.51-111, 1994
- [59] 東昭, 生物の動きの事典, 株式会社朝倉書店, 1997
- [60] How Grasshopper Jump, URL:http://www.st-andrews.ac.uk/~wjh/jumping/index.hml
- [61] Thomas A. Mcmahon, John Tyler Bonner 著,木村武二 訳,生物の大きさとかたち -サイズの生物額-,㈱東京科学同人,2000
- [62] Thomas J. Roberts, Richard L. Marsh, Probing the limits to muscle-powered accelerations: lessons from jumping bullfrogs, Journal of Experimental Biology, Vol.206, No.15, pp.2567-2580, 2003
- [63] W. Gronenberg, Fast actions in small animals: springs and click mechanisms, Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, Vol.178, No.6, pp.467-472, 2007
- [64] 樋口憲生,李哲鎬,加納明彦,湯浅景元,垂直跳びにおける前伸長の速さ・強さが 跳躍高におよぼす効果,中京大学体育学論叢, Vol.28, No.1, pp59-64, 1986
- [65] 金子潤,竹下香寿美,川上泰雄,福永哲夫,垂直跳びにおいて重りを持つことが跳 躍動作に及ぼす影響,スポーツ科学研究, Vol.2, pp.63-71, 2005
- [66] Mirko Kovac, Martin Fuchs, Andre Guignard, Jean-Christophe Zufferey, Dario Floreano, A miniature 7g jumping robot, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2008), pp.373-378
- [67] Mirko Kovac, Manuel Schlegel, Jean-Christophe, Dario Floreano, A Miniature Jumping Robot with Self-Recovery Capabilities, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.583-588
- [68] 三浦宏文,高信英明,内田千春,野浦康司,コオロギを規範とした跳躍ロボットの 研究,工学院大学研究報告,97号,pp.1-8,2004
- [69] 高信英明,明賀秀行,吉澤宏和,鈴木健司,三浦宏文,コオロギ型跳躍ロボットの 研究,工学院大学研究報告,101号,pp.17-23,2006

- [70] 広瀬茂男,生田幸士,梅谷陽二,形状記憶合金アクチュエータの開発(性能評価と その新構成法の導入),日本ロボット学会誌, Vol.4, No.2, 1985
- [71] 東森充,石井抱,金子真,無次元解析に基づくなぞり型脚式ロボットの設計,日本 機械学会論文集,71巻,704号,pp.230-236,2005
- [72] 西田祐也, 園田隆, 石井和男, 2 質点跳躍モデルにおけるパラメータ設計指針に関 する基礎研究, ロボティクスメカトロニクス講演会 2009, 2P1-C03, 2009
- [73] Yuya Nishida, Takashi Sonoda, Kazuo Ishii, Design Principle of Jumping Robot in Two-mass System Proceedings of The 9th POSTECH-KYUTECH Joint Workshop on Neuroinformatics, pp.30-31, 2009
- [74] 西田祐也, 園田隆, 石井和男, 2 質点モデルにおける跳躍ロボットの設計指針, 第 27回日本ロボット学会学術講演会概要集, 3P1-05, 2009
- [75] Yuya Nishida, Takashi Sonoda, Kazuo Ishii, Design Principle of Two-mass Jumping System, Proceedings of IEEE International Conference on System, Man, and Cybernetics (SMC2009), p1023, 2009
- [76] Yuya Nishida, Takashi Sonoda, Kazuo Ishii, An Index Parameter "Power Mass Ratio" to Evaluate Two-mass Jumping System, Proceedings of East-Asia Inter-University Workshop on Brain Engineering 2010 (EAW'10), pp.157-169
- [77] 大久保宏樹, 中野栄二, 木村浩, ばねとアクチュエータによる跳躍機械の構成法, 日本ロボット学会, Vol.10, No.7, pp.948-954, 1992
- [78] 中野栄二, 大久保宏樹, 跳躍ロボット全般, 日本ロボット学会誌, Vol.11, No.3, 1993
- [79] 小出昭一郎,物理学,株式会社裳華房, 1975
- [80] ポイントを学ぶ 材料力学,西村尚 編著,丸善株式会社, 1988
- [81] Maxon motor ホームページ, http://www.maxonjapan.co.jp/index.htm
- [82] Faulhaver $\pi \Delta \sim \vec{v}$, http://www.faulhaber-group.com/
- [83] 西田祐也, 園田隆, 石井和男, リンク機構を用いた高出力関節機構の提案, ロボットメカトロニクス講演会予稿集, 3N2-1, 2010
- [84] 西田祐也,園田隆,石井和男,ヤコビ行列を用いた高出力関節機構の解析,第28回 日本ロボット学会学術講演会予稿集,3N2-1,2010
- [85] Yuya Nishida, Takashi Sonoda, Kazuo Ishii, Analysis of High Power Joint Mechanism using Jacobian Matrix, Proceedings of The 10th POSTECH-KYUTECH Joint Workshop on Neuroinformatics, pp.25-26, 2010
- [86] Yuya Nishida, Takashi Sonoda, Kazuo Ishii, High Power joint mechanism Imitating Locust Leg Structure, Proceedings of World Automation Congress 2010 (WAC2010), ISORA629, 2010
- [87] Yuya Nishida, Takashi Sonoda, Kazuo Ishii, Jacobian Matrix Derived From Cross Product and Its Application into High Power Joint Mechanism Analysis, Journal of Bionic Engineering, Vol.7, Suppl., pp.218-223, 2010

- [89] HC Bannet Clark, The energetic of the jump of the locust *Schistocerca gregaria*, Journal of Experimental Biology, Vol.63, pp.53-83, 1975
- [90] W.J. Heitler, The locust jump, Journal of Comparative Physiology A: Neuroethology, Sensory, Neural and Behavioral Physiology, Vol.89(1), pp.93-104, 1974
- [91] 社団法人日本機械学会 編著,マルチボディダイナミクス(1) 基礎理論-,株 式会社コロナ社, 2006
- [92] 田島洋、マルチボディダイナミクスの基礎、東京電機大学出版局、2006
- [93] 広瀬茂男, ロボット工学 -機械システムのベクトル解析-,株式会社裳華房, 1987

Appendix

∇				_
	1:1 ^按 三角法 3 材 ABS Plastic		西田 祐也	
	尺 度図	畨専 攻	氏名	1
	題 High power joint 図 HPJ-v01-Drive-Plate-01-L-v03.ipt	<u>4</u> 学 九州工業大学	^所 石井研究室	
				₫
			-2	

4

Ð

	 				•
	1:1 撥 三角法	3 材 ABS Plastic	脳情報専攻	西田 祐也	
	High power joint 度	HPJ-v01-Drive-Plate-01-R-v03.ipt 番	九州工業大学 ^曹	石井研究室 ^医	
Ā	日日		小 校	所属	∢
				A-3	

Δ

4

₽

A-11

 \leq

	5:1 撥 法 三角法 13 村 街 ABS Plastic 脳情報専攻 西田 祐也
	題目 High power joint 月 図 HPJ-v01-Drive-Pully-02-v01.ipt 函 学 九州工業大学 母 所 石井研究室 A
BQ	
	A-13

		5:1 ^接 三角法 14 ^档 ABS Plastic 脳情報専攻 西日 祐也
		尺 度図 蕃専 攻氏 名
		Hihg power joint PJ-v01-Circuit-Couplingv01.ipt 九州工業大学 石井研究室
		題目図名学校所属
₽		•
	ere de la construcción de la con	
		A-14

	5:1 ^数 三角法 16 ^树 ABS Plastic 脳情報専攻 西日 祐也
	尺 度図 番専 攻氏 名
	 問題 Hihg power joint MPJ-v01-Drive-Stopper-01-v01.ip 新 大小小工業大学 所 石井研究室
Big 32	
	A-16

_	\square					-
		三角法	ABS Plastic	専攻	右也	
		投影法	杖 資	青報	Ŧ	
		5:1	17	売	西1	
		尺度	図播	專攻	氏 名	
	18 20 20	High power joint	PJ-v01-Drive-Stopper-02-v01.ipt	九州工業大学	石井研究室	
		題目	図 H	学校	断 厩	
₽						A
	Se S					
					17	
					-A	
-	<u> </u>					

