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Chapter 1

Introduction

1.1 Problem Formulation

Data in modern applications such as Brain Computer Interface based on EEG signals often contain

multi-modes due to mechanism of data recording, e.g. signals recorded by multiple-sensors (elec-

trodes), in multiple trials, epochs, for multiple subjectsand with different tasks, conditions. Moreover,

during processing and analysis, dimensionality of the datacould be augmented due to expression of

the data into sparse domain (time-frequency representation) by different transforms such as Short Time

Fourier Transform (STFT), wavelets. That means data itselfis naturally a tensor, and has multilinear

structures. Standard approaches which analyze such data byconsidering them as vectors or matrices

such as such as PCA/SVD, ICA, NMF, and their variants might be not suitable due torisk of losing

the covariance information among various modes. To discover hidden multilinear structures, features

within the data, the analysis tools should reflect the multi-dimensional structure of the data47.

Tensor decompositions and factorizations provide naturalrepresentations for multidimensional

data by capturing multi-linear and multi-aspect structures in a much lower dimension25;47;49;106. Nowa-

days, tensor have been becoming increasingly important in applications across diverse disciplines,

especially signal processing, data mining, feature extraction, classification and multi-way cluster-

ing5;47;106;116. In chemometrics, Appellof and Davidson11 studied excitation-emission fluorescence

data using the tensor model. Anderson and Bro developed the Nway toolbox10, and provided excellent

examples and data. Vasilescu and Terzopoulos119 proposed the multilinear projection and Tensorfaces

for face recognition in which faces are modeled with multiple factors relating to scene structure (i.e.,

the location and shapes of visible objects), illumination (i.e., the location and types of light sources),

and imaging (i.e., viewpoint, viewing direction and cameracharacteristics). Sidiropouloset. al.186 es-

tablished the model of received signals in direct sequence code division multiple access (DS-CDMA)

system as a three-way diversity tensor with modes: antenna,symbol and chip. Later, Sidiropouloset.

al.186 linked parallel factor analysis to multiple-invariance sensor array processing. Yu and Petrop-

ulu214 estimated MIMO system responses using the fourth-order statistics normally generated 5-D

tensors. Mørup131 analyzed multi-channel EEG and MEG data in multiple modes such as frequency,

time, space, trials and subjects. Tensor decompositions and multi-way analysis allow naturally to ex-

tract hidden (latent) components and to investigate complex relationships among them, for example, in
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exploration of social networks5;15;105;164. Phan150 developed the tensor toolbox for feature extraction

and applications (NFEA), and provided demonstrations for BCI.

One of the most common tensor decompositions is the Tucker decomposition which was first in-

troduced by Tucker in 1963206. Tucker decomposition is an interactive model in which coretensor

provides relationship between two components via the JointRate index153. A particular case of the

constrained Tucker decomposition is the DEDICOM (DEcomposition into DIrectional COMponents)

model79;80 which allows to analyze asymmetric relationships between groups (objects). In this direc-

tion, Harshman and Lundy80 analyzed asymmetric measures of yearly trade (import-export) among a

set of nations over a period of 10 years. Lundyet al.118 presented an application of three-way DEDI-

COM to skew-symmetric data for paired preference ratings oftreatments for chronic back pain (with

additional constraints to obtain meaningful results). Bader et al. analyzed email communications of

Enron company using the three-way DEDICOM model13;14.

PARAFAC or canonical polyadic decomposition (CP)33;34;81;82;83, one of the most popular ten-

sor factorizations, allows approximating multiway data byrank-one tensors in model reduction. CP

can also be considered as a particular variation of the Tucker decomposition. Recent years have seen

a surge of interest in nonnegative and sparse matrix/tensor factorization and decompositions (NTF

and NTD) which provide physically meaningful latent (hidden) components or features with physical

or physiological meaning and interpretations43;47;113. Nonnegative matrix/tensor factorization or de-

compositions are emerging techniques for data mining, dimensionality reduction, pattern recognition,

object detection, classification, gene clustering, sparsenonnegative representation and coding, and

blind source separation (BSS)19;47;84;86;128;129;157;184;188. For example, NMF/NTF have already found

a wide spectrum of applications in positron emission tomography (PET), spectroscopy, chemometrics

and environmental science where the matrices have clear physical meanings and some normalization

or constraints are imposed on them19;177;188.

The main objective of this thesis is to propose algorithms for CP and Tucker decompositions and

present applications based on tensor decompositions. The thesis is divided into 7 major chapters. No-

tation and basic models are introduced in Chapter 1. Proposed algorithms are represented in Chapters

2, 3, 4, 5, and simulations to verify them are in Chapter 6. Chapter 7 is particularly devoted to studying

in feature extraction for multiway data.

Chapter 2 introduces the ALS algorithms for tensor decompositions with/without constraints. The

“work-horse” Alternating Least Squares (ALS) algorithm has been experimentally proved to work

very well on general data24;187. However, this algorithm can be relatively slow when data are nearly

(multi)collinear or huge. The combination of ALS and line search algorithms25;50;51 can improve the

performance, but they still demand considerable iterations before convergence for some collinear data.

For NTF and NTD, the ALS with a rectifier might not work for sparse data. This chapter will present



1.1. Problem Formulation 7

an efficient variation of the ALS algorithm with low computationalcost. The proposed algorithms

convert the ALS algorithm for rank-R update to sequential rank-1 updates. That is we establish the

ALS update rule for each component of factor. The learning rule does not require matrix inverse, and

hence reduces computational cost. Moreover, this would be more stable for ill-conditioned problems

and ensure relatively lower complexity even for large -scale problems.

Chapter 3 presents a robust algorithm for nonnegative CP andTucker decompositions. The “work-

horse” ALS algorithm can be adapted for use in nonnegative tensor decompositions including CP and

Tucker models by combining with the rectifierrxs� � maxpx, 0q. However, the modified algorithms

can be relatively slow for nearly collinear and sparse data7;78;109;210. To improve performance and in-

crease convergence speed, several simple techniques were proposed for the ALS algorithm, such as the

weighted ALS incorporating a weighting matrix into the costfunction47, the line-search140;171, or reg-

ularization terms controlling sparsity and orthogonality41;78;210;215. Generally, these techniques help

ALS cope with collinear and/or sparse factors. However, some other problems arise from controlling

regularization parameters. The fact is that the ALS with a simple rectifier might not be an appropriate

algorithm for NTF. To this end, we propose a recursive methodfor solving the nonnegative quadratic

programming (NQP). CP and Tucker decompositions can be formulated as NQP problems. Novel ALS

algorithms for nonnegative CP and Tucker decompositions are then proposed based on solving NQP

problems. Moreover, they can be run on low memory machine or on parallel computing system.

Chapter 4 introduces all-at-once algorithms for tensor decompositions based on the Gauss-Newton

(GN) iteration. All-at-once or simultaneous update algorithms are expected to cope with the problem

of collinear data4;142;143;144;167;168;196;202;203. Nevertheless, those algorithms are computationally de-

manding due to construction of gradients and Hessians with respect to all the entries of the factors.

Moreover, in practical experiments, some algorithms stillface problems involving large-scale Jaco-

bians and large-scale inverses of the Hessians. The chapterpresents efficient ways to construct the

Hessian. Especially, for low-rank approximation, we introduce fast dGN algorithms without build-

ing up huge Hessians, and also with elimination of Kroneckerproducts which are often used in CP

algorithms. A suite of low-cost algorithms to factorize complex-valued tensors based on damped

Gauss-Newton (dGN or LM) iterations with convenient computations for the approximate Hessian

and gradients. The proposed algorithms are verified to overwhelmingly outperform “state-of-the-art”

algorithms for difficult benchmarks with bottlenecks, swamps for both real and complex-valued ten-

sors.

Chapter 5 presents approaches for tensor factorization suitable for large-scale problems and fast

parallel implementation based on grid (or block) tensor decomposition (gTF). The proposed model and

algorithms solve till now intractable problem for arbitrary high dimension and large-scale tensors. We

factorize all the sub-tensors (block) independently by using efficient algorithms in parallel mode and
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next integrate partial results for the whole tensor to estimate desired factors. For practical application

such as classification of multiway data, the training data isoften augmented with some new samples,

hence the basis factors of the feature subspace for the expanded training tensor need to be updated.

A simple way is to factorize the new whole training tensor again. However, this approach demands

high computational cost. A convenient way is that we update the old bases with factors of the new

coming data. A simple low complexity formula for stopping criteria is proposed to the grid tensor

factorizations.

Chapter 6 verifies and compares proposed algorithms with well-known algorithms in a variety of

benchmarks including real-world data or random tensors with dense or sparse factors, or factors with

bias, factors with collinear components. For some experiments, factors are constructed from structured

matrices such as Hilbert matrix, Cauchy matrix, Lotkin matrix. Real-world applications are also intro-

duced in this chapter to confirm our algorithms and reveal their abilities in variety of applications such

as EEG analysis, clustering, face clustering and classification, BSS in CDMA systems or convolutive

MIMO systems.

Chapter 7 proposes a suite of model and algorithms for feature extraction and classification, espe-

cially suitable for large scale problems. In our approach, we first decompose multi-way data under the

Tucker decomposition with/without constraints to retrieve basis factors and significant features from

core tensors. In addition, by revisiting the Tucker decomposition, we have developed family of algo-

rithms based on Higher Order Discriminant Analysis (HODA).The chapter also presents a wide range

of applications including object classification, hand-written digit classification, scenes recognition,

BCI based on EEG motor imagery signals.

1.2 Tensor Notations and Multilinear Algebra Basics

A tensor is a multi-way array of data; for example a vector is a1-way tensor and a matrix is 2-way

tensor. In general, we shall denote a tensor by bold calligraphic letters, e.g.,A P RI1�I2�����IN , matrices

by bold capital letters, e.g.A � ra1, a2, . . . , aRs P RI�R, and vectors by bold italic letters, e.g.a j or

I � rI1, I2, . . . , INs. For example, for a three-dimensional tensorY P RI�J�K , its frontal slice, lateral

slice, and horizontal slice are denoted respectively byYk � Y::k,Y: j:, andY i::.

Definition 1.1. TubeA tube (vector) at a positionpi, jq along the mode-3 is denoted byyi j :, and the
corresponding tubes along the mode-2 and mode-1 areyi:k and y: jk

47. For an N-D tensorY , a tube
at a positionpi1, . . . , in�1, in�1, . . . , iNq along mode-n is an In vector

Api1, . . . , in�1, :, in�1, . . . , iNq � ��� Api1, . . . , in�1, 1, in�1, . . . , iNq
...

Api1, . . . , in�1, In, in�1, . . . , iNq ��� . (1.1)
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Definition 1.2. Outer product The outer product of the tensorsY P RI1�I2�����IN and X P
R

J1�J2�����JM is given byZ � Y �X P RI1�I2�����IN�J1�J2�����JM ,

zi1,i2,...,iN , j1, j2,..., jM � yi1,i2,...,iN x j1, j2,..., jM . (1.2)

Observe that, the tensorZ contains all the possible combinations of pair-wise products between

the elements ofY andX. As special cases, the outer product of two vectorsa P RI andb P RJ yields

a rank-one matrixA � a � b � abT P RI�J, and the outer product of three vectors:a P RI , b P RJ

andc P RQ yields a third-order rank-one tensorZ � a � b � c P RI�J�Q, zi jq � ai b j cq.

Definition 1.3. (Kronecker product) The Kronecker product of two matricesA P RI�J andB P RT�R

is a matrix denoted asA b B P RIT�JR and defined as (see the MATLAB functionkron):

A b B � ����� a11 B a12 B � � � a1J B
a21 B a22 B � � � a2J B
...

...
. . .

...

aI1 B aI2 B � � � aIJ B

����� � �
a1 b b1 a1 b b2 � � � aJ b bR�1 aJ b bR

�
.

It should be mentioned that, in general, the outer product ofvectors yields a tensor whereas the

Kronecker product gives a vector. For example, for the threevectorsa P RI , b P RT , c P RQ their

three-way outer productY � a � b � c P RI�T�Q is a third-order tensor with the entriesyitq � aibtcq,

while the three-way Kronecker product of the same vectors isa vector vecpYq � cb bb a P RIT Q.

Notation 1.1. (Kronecker product of matrices)Given set of N matricesApnq P RIn�Rn, the following
notation denotes Kronecker products among themtAub � âN

n�1
Apnq � ApNq b � � � b Apnq b � � � b Ap1q,tAub�n � â

k,n
Apkq � ApNq b � � � b Apn�1q b Apn�1q b � � � b Ap1q.

Definition 1.4. (Hadamard product) The Hadamard product of two equal-size matrices is the
element-wise product denoted by⊛ (or .� for MATLAB notation) and defined as

A ⊛ B � ����� a11 b11 a12 b12 � � � a1J b1J

a21 b21 a22 b22 � � � a2J b2J
...

...
. . .

...

aI1 bI1 aI2 bI2 � � � aIJ bIJ

����� . (1.3)

Notation 1.2. (Hadamard product of matrices)Given set of N matricesApnq P RI�R, the following
notation denotes Hadamard products among themtAu⊛ � ⊛N

n�1Apnq � ApNq
⊛ � � � ⊛ Apnq

⊛ � � � ⊛ Ap1q,tAu⊛�n � ⊛k,nApkq � ApNq ⊛ � � � ⊛ Apn�1q ⊛ Apn�1q ⊛ � � � ⊛ Ap1q.
Definition 1.5. (Khatri-Rao product) For two matricesA � ra1, a2, . . . , aJs P RI�J and B �rb1, b2, . . . , bJs P RT�J, their Khatri-Rao product, denoted byd, performs the following operation:

A d B � ra1 b b1 a2 b b2 � � � aJ b bJs (1.4)� �
vecpb1aT

1 q vecpb2aT
2 q � � � vecpbJaT

J q� P RIT�J. (1.5)



10 Chapter 1. Introduction

The following properties of the Khatri-Rao product are often employed :pA d BqT pA d Bq � ATA ⊛ BTB, (1.6)pA d Bq: � rpATAq ⊛ pBTBqs�1pA d BqT . (1.7)

These properties also hold true for complex-valued matricesA P CI�J, andB P CT�J. In this case,

the transpose operators are replaced by the Hermitian transposes.

Notation 1.3. (Khatri-Rao product of matrices) Given set of N matricesApnq P RIn�R, the following
notation denotes Khatri-Rao products among themtAud � äN

n�1
Apnq � ApNq d � � � d Apnq d � � � d Ap1q,tAud�n � ä

k,n
Apkq � ApNq d � � � d Apn�1q d Apn�1q d � � � d Ap1q.

Corollary 1.1. tAudT tAud � tATAu⊛ �⊛N
n�1ApnqTApnq,tAud�nT tAud�n � tATAu⊛�n �⊛k,nApkqTApkq,tAubT tAub � tATAub �âN

n,1
ApnqTApnq,tAub�nT tAub�n � tATAub�n �â

k,n
ApkqTApkq.

Definition 1.6. (vectorization) Vectorization of an N-D tensorA P RI1�I2�����IN is to map an entry
ai �Api1, i2, . . . , iNq to an entryapivecpi, I qq of vectora, i.e.,

ivecpi, I q � i1 � pi2 � 1qI1 � pi3 � 1qI1I2 � � � � � piN � 1qI1 � � � IN�1. (1.8)

Definition 1.7. (unfolding or matricization of tensor) Mode-n unfolding of an N-D tensorA P
R

I1�I2�����IN is to horizontally concatenate all tubes ofA along mode-n to establish an In�p±m,n Imq
matrix. The mode-n unfolding can be expressed via vectorization of tensors as follows

Apnq � �
vec

�
Ap1,nq	 � � � vec

�
ApIn,nq	 �T

, (1.9)

whereApin,nq is anpN � 1q-order subtensor ofA whose the n-th index is fixed to in

Apin,nqpi1, . . . , in�1, in�1, . . . , iNq �Api1, . . . , in, . . . , iNq.
Notation 1.4. (mode-n tensor-matrix product) The product of a tensor and a matrix along the mode-
n is denoted as

Y � G�n A , or Ypnq � A Gpnq. (1.10)

Multiplication in all possible modespn � 1, 2, . . . ,Nq of a tensorG and a set of matricesApnq is

denoted as

G� tAu � G�1 Ap1q �2 Ap2q � � � �N ApNq, (1.11)rG� tAuspnq � ApnqGpnq �ApNq b � � � b Apn�1q b Apn�1q b � � � b Ap1q�T
. (1.12)
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Multiplication of a tensor with all except one or two modes isdenoted as

G��n tAu �G�1 Ap1q �2 Ap2q � � � �n�1 Apn�1q �n�1 Apn�1q � � � �N ApNq .
G��pn,mq tAu �G�1 Ap1q � � � �n�1 Apn�1q �n�1 Apn�1q � � � �m�1 Apm�1q �m�1 Apm�1q � � � �N ApNq .
Notation 1.5. (mode-n tensor-vector product) The mode-n multiplication of a tensorY P
R

I1�I2�����IN by a vectora P RIn is denoted by

Z � Y �̄n a P RI1�����In�1�In�1�����IN , (1.13)

and the tensor-vector product of a tensorY with a set of N column vectorstau �  
ap1q, ap2q, . . . ,

apNq( is given by

Y �̄ tau � Y �̄1 ap1q �̄2 ap2q � � � �̄N apNq . (1.14)

Definition 1.8. (contraction between two tensors) The contracted product ofA P
R

I1�����IM�J1�����JN and B P RI1�����IM�K1�����KP along the first M modes is a tensor of size
J1 � � � � � JN � K1 � � � � � KP, given byxA,By1,...,M;1,...,Mp j1, . . . , jN, k1, . . . , kPq � I1̧

i1�1

� � � IM̧

iM�1

ai1,...,iM , j1,..., jN bi1,...,iM ,k1,...,kP. (1.15)

The remaining modes are ordered such that those fromA come beforeB106. The arguments

specifying the modes ofA and those ofB for contraction need not be consecutive. However, the

sizes of the corresponding dimensions must be equal106. For example, the contracted tensor product

along the mode-2 of a tensorA P R3�4�5, and the mode-3 of a tensorB P R7�8�4 returns a tensor

C � xA,By2;3 P R3�5�7�8.

The contracted tensor product ofA andB along the sameM modes simplifies toxA,By1,...,M;1,...,M � xA,By1,...,M , (1.16)

whereas the contracted product of tensorsA P RI1�����IN andB P RJ1�����JN along all modes except

the mode-n is denoted asxA,By�n � Apnq BTpnq P RIn�Jn, pIk � Jk, �k , nq. (1.17)

In a special case ofM � 0, the contracted product becomes the outer product of two tensors.

The contracted product of two three-way tensorsA P RI�J�K andB P RP�Q�R along the mode-1

returns a four-way tensor defined as

C � xA,By1 P RJ�K�Q�R, c jkqr �
i̧

ai jkbiqr , pI � Pq,
and the contracted product along the two modes returns a matrix, for example:

F � xA,By1,2 � xA,By�3 P RK�R, fkr �
i̧, j

ai jkbi jr , pI � P, J � Qq



12 Chapter 1. Introduction

A
(3)

A
(1) A

(2) T

Y

I1 � I2 � I3

I� pI1 � Rq pR� I2q
pI3 � Rq

pR� R� Rq
Figure 1.1: Illustration of a 3-D tensor factorization. TheI1� I2� I3 dimensional tensorY is explained
by the three factorsAp1q,Ap2q,Ap3q along the three modes. Factors consist of the same number of
componentsR.

which can be expressed in a matrix multiplication form asF � Ap3q BTp3q. For two tensors of the same

dimension, the contracted product along all their modes is their inner productxA,By1,...,N � xA,By. (1.18)

Definition 1.9. (partitioned matrix) A partitioned matrixU of N matricesUpnq along the mode-2
(horizontal) is denoted by

U � �
Up1q � � � Upnq � � � UpNq� � �

Upnq�N

n�1
, (1.19)

and a partitioned matrixV of NM matricesVpn,mq along two modes is denoted byV � �
Vpn,mq�N,M

n�1,m�1.

Definition 1.10. (block diagonal matrix or direct sum) A block diagonal matrixB of N matrices
Upnq is denoted by

B � �� Up1q
. . .

UpNq �� � blkdiag�Upnq	N

n�1
� Nà

n�1

Upnq. (1.20)

1.3 Canonical Polyadic Decomposition

Definition 1.11. (Canonical polyadic decomposition or PARAFAC (CP) ) “Factorize a given N-

th order data tensorY P RI1�I2�����IN into a set of N factors matricesApnq � rapnq1 , a
pnq
2 , . . . , a

pnq
R sP RIn�R, pn� 1, 2, . . . ,Nq representing the common (loading) factors”33;81;89, that is,

Y � Ŗ

r�1

ap1qr � ap2qr � . . . � apNqr � Ŷ , (1.21)

where symbol “�” means outer product, and we assume unit-length components}apnqr }2 � 1 for
n� 1, 2, . . . ,N� 1, r � 1, 2, . . . ,R (see Figure1.1). TensorŶ is an approximation of the data tensor
Y .
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The CP model with nonnegative factorsApnq is also known as Nonnegative Tensor Factorization

(NTF) which is an extension model of Nonnegative Matrix Factorization (NMF). Alternatively we can

describe the CP model using tensor notation given by106

Y � I �1 Ap1q �2 Ap2q � � � �N ApNq, (1.22)

whereI is an identity tensor. The mode-n matricizationYpnq, n � 1, 2, . . . ,N can be represented by

set of matrix factorizations:

Ypnq � Apnq �ApNq d � � � d Apn�1q d Apn�1q � � � d Ap1q 	T � Apnq tAud�nT
, (1.23)

or as a summation of rank-one approximations

Ypnq � Ŗ

r�1

apnqr

�
apNqr b � � � b apn�1q

r b apn�1q
r b � � � b ap1qr

	T � Ŗ

r�1

apnqr

�
ab�n

r

	T
. (1.24)

We denote concatenation of vectorizations of factorsApnq by

a � �
vec

�
Ap1q	T � � � vec

�
ApNq	T

�T � �
ap1qT

1 � � �ap1qT
R � � �apNqT

1 � � �apNqT
R

�T
. (1.25)

1.3.1 Basic Statistics for a Synthetic Tensor

This section presents some basic statistics for a syntheticCP tensorY . In simulation, we often build

up dense and large-scale tensors degraded by an additive Gaussian noise. To generate random noise,

we need the standard deviation vecpYq. The following lemma helps us to quickly compute this statistic

instead of manipulating on samplesyi1...iN .

Lemma 1.1. The following properties hold for an N-dimensional tensorY � I �1 Ap1q � � ��N ApNq.
1.

I̧̧̧̧̧̧̧̧

i�1

yi � �t1T Au⊛� 1, wherei � ri1, i2, . . . , iNs, I � rI1, I2, . . . , INs.
2.

I̧̧̧̧̧̧̧̧

i�1

y2
i � 1T

�tATAu⊛� 1.

The multi-index summation is defined for an index vectorK � rK1,K2, . . . ,KNs as

Ķ̧̧̧̧̧̧̧

k�1

� K1̧

k1�1

K2̧

k2�1

� � � KŅ

kN�1

. (1.26)

Proof. Summation of all the entries of the tensorY is given by

I̧̧̧̧̧̧̧̧

i�1

yi � 1T vecpYq � �
1IN d 1IN�1 d � � � d 1I1

�T
�

ApNq d ApN�1q d � � � d Ap1q	 1� ��
1TApNq	

⊛

�
1TApN�1q	

⊛ � � � ⊛ �1TAp1q		 1 .
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C

A
B

T

I1 � I2 � I3

R1 � R2 � R3
R2 � I2

I1 � R1

I3 � R3

�Y G

Figure 1.2: Illustration for a 3-way Tucker decomposition;the objective here is to find factors (com-

ponent matrices)Apnq � rapnq1 , a
pnq
2 , . . . , a

pnq
Rn
s P RIn�Rn (n � 1, 2, 3) and a core tensorG P RR1�R2�R3,

typically Rn ! In.

Frobenius norm of the tensorY is given by
I̧̧̧̧̧̧̧̧

i�1

y2
i � vecpYqT vecpYq � 1T tAudT tAud 1 �

1T
 
AT A

(⊛
1 . �

1.4 Tucker Decomposition

Tucker decomposition106;206, illustrated in Figure1.2 for a 3-way case, is a basic model for high

dimensional tensors which allows effectively to perform model reduction and feature extraction.

Definition 1.12. (Tucker decomposition) Decomposition of a given N-th order tensorY P
R

I1�I2����IN into a product of an unknown core tensorG P RR1�R2����RN and a set of N unknown

factors (component matrices),Apnq � rapnq1 , a
pnq
2 , . . . , a

pnq
Rn
s P RIn�Rn (n� 1, 2, . . . ,N)206

Y � R1̧

j1�1

R2̧

j2�1

� � � RŅ

jN�1

g j1 j2��� jN �
ap1qj1

� ap2qj2
� � � � � apNqjN

	� E� G�1 Ap1q �2 Ap2q � � � �N ApNq � E � G� tAu � E � Ŷ � E, (1.27)

whereŶ is an approximation ofY , andE denotes the approximation error.

For three-dimensional data the basic Tucker-3 model of a tensorY is represented with three factors

A � Ap1q,B � Ap2q,C � Ap3q (see Figure1.2)

Y � G�1 A �2 B�3 C. (1.28)

The above Tucker-3 model is readily reduced to the Tucker-2 model by merging one factor with core

tensor, for example factorAp3q � C andF � G�3 C to give:Y � F �1 A �2 B.

Note that the Tucker decomposition is in general non unique.However, in the special case where

the core tensor has nonzero elements only on the superdiagonal, the Tucker model is reduced uniquely
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to the PARAFAC under some mild conditions81. To obtain meaningful and unique representation by

the Tucker decomposition, orthogonality, sparsity and nonnegativity constraints are often imposed on

hidden factors and the core tensor of the Tucker decomposition to obtain meaningful and unique repre-

sentations103;131. For convenience, orthogonal factors are denoted byUpnq, and nonnegative or general

factors byApnq. By imposing nonnegativity constraints for CP, we obtain the NTF (Nonnegative Ten-

sor Factorization) model, while for the Tucker models with the nonnegativity constraints we obtain the

so called NTD (Nonnegative Tucker Decomposition) model. NTF and NTD have been found many

potential applications in neuroscience, bioinformatics,chemometrics and text mining47;103;131. Fur-

thermore, by imposing orthogonality constraints on the factor matrices we obtain a model referred to

as the HOSVD (Higher Order Singular Value Decomposition) algorithm or the HOOI (Higher Order

Orthogonal Iterations) algorithm, introduced first by Lathauweret al.58;60.

1.5 Decomposition into Directional Components

DEDICOM (decomposition into directional components) is a family of matrix and tree-way tensor de-

compositions introduced by Harshman in 197881 for matrices and by Kiers in 1993 for 3D tensors100

and investigated by many researchers, Bader, Kolda, Acar, Takane, Kiers and Sun et al.106;193. DEDI-

COM model is a particular case of the Tucker-2 decomposition, and is described as follows: “Given a

three-dimensional data tensorY P RI�I�K, the DEDICOM model of this tensor returns a factor matrix

A P RI�J of loadings or weights, a communication pattern matrixR P RJ�J� that captures asymmetric

relationships, and a sparse core tensorD P RJ�J�K with diagonal frontal slices giving the weights of

columns ofA for each slice in the third mode (see Figure1.3)

Yk � A diagtdkuR diagtdkuAT , pk � 1, . . . ,Kq , (1.29)

wheredk is thek-th column of matrixD P RJ�K . Matrix D is built up from diagonals of the frontal

slices of the core tensorD”.

LetG P RJ�J�K be a core tensor whose frontal slices are represented as

Gk � diagtdkuR diagtdku. (1.30)

This shows that DEDICOM is related to the particular (constrained) Tucker-2 decomposition

Y � G�1 A �2 A. (1.31)

DEDICOM can be employed in extracting some complex relationships in social networks5;15;105.

Harshman and Lundy80 analyzed asymmetric measures of yearly trade (import-export) among a set of

nations over a period of 10 years. Lundyet al.118 presented an application of three-way DEDICOM to
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pI � I � Kq pI � Jq pJ � J � KqpJ � J � Kq pJ � Jq pJ� IqT
DD

Y

A
A

R�

(a) The three-way DEDICOM model

pI � I � Kq pJ� J� KqpI � Jq pJ� IqT

Y A

A
G�

(b) DEDICOM represented in compressed form via the symmetric Tucker-2 model whose core tensorG is
defined by its frontal slices:Gk � diagtdkuR diagtdku.

Figure 1.3: Illustration of the three-way DEDICOM model of the data tensorY P RI�I�K, and its
relationship to the symmetric Tucker-2 decomposition.

skew-symmetric data for paired preference ratings of treatments for chronic back pain with additional

constraints to get meaningful results. In the context of weblink, interesting analysis was performed

by Kolda et al. in 2005107 and Kolda and Bader in 2006105 by combining hyper-links and anchor

text information by representing web graph data as a sparse three-way tensor with modes:web-pages� web-pages� anchor text. Baderet al. analyzed email communications of Enron company using

the three-way DEDICOM model13;14. Bader, Harshman, and Kolda15 recently applied their DEDI-

COM algorithm to email communication graphs over time. In the most social network analysis, the

data are nonnegative tensors. For example, the Enron email data can be constructed as a three-way

tensor15;164;170 in which each entryxi jk expresses the number of emails sent from an employeei to

an employeej in a monthk. Or for the international trade data80, each entry of the three-way tensor

(country� country� year) provides the import/export data among nations in a certain year. Nonneg-

ative constrains imposed on matricesA, D andR are necessity due to meaningful interpretation.



Chapter 2

Alternating Least Squares Algorithm and
Its Variations

2.1 ALS Algorithms for CP and NTF

This chapter presents basic algorithms for CP, which can be straightforwardly applied for NTF. Most

algorithms for the (nonnegative) matrix and tensor factorizations are based on minimization of the

squared Euclidean distance (Frobenius norm)7;47;106 used as the global cost function (subject to non-

negativity constraints), that is

DpY ||Ŷq � 1
2
}Y � Ŷ}2

F . (2.1)

A basic approach to the above formulated optimization problem (2.1) is alternating minimization

and projection: the specified cost function is alternately minimized with respect to sets of parameters,

each time optimizing one set of arguments while keeping the others fixed. It should be noted that

the cost function (2.1) for NTF is convex with respect to entries ofApnq, but not all. Alternating

minimization of the cost function (2.1) leads to a nonnegative fixed point ALS algorithm which can be

described briefly as follows:

1. Initialize all Apnq randomly or by using the recursive application of Perron-Frobenius theory to

SVD19;23, or by selected fibers or structures from the dataY 7;212.

2. EstimateApnq from the approximation by solving (2.1)

min
Apnq DFpY ||Ŷq � 1

2
||Y � Ŷ ||2F,with fixedApmq,m, n.

3. For nonnegative factors, set all negative elements ofApnq to zero or a small positive valueε.

4. Estimate other factors until convergence.

The above ALS algorithm can be written in the following explicit form for Apnq 10;24;33;81;187;188

Apnq � Ypnq tAud�n

� 
ATA

(⊛�n
	 :
, pn� 1, 2, . . . ,Nq, (2.2)
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whereA : is the Moore-Penrose inverse ofA, Ypnq is the mode-n matricized version of tensorY , and

the Hadamard productΓpn,nq �  
ATA

(⊛�n is given by

Γ
pn,nq � pApNqTApNqq ⊛ � � � ⊛ pApn�1qTApn�1qq ⊛ pApn�1qT

Apn�1qq ⊛ � � � ⊛ pAp1qTAp1qq. (2.3)

A fast implementation of ALS for 3-way tensor200 reduces the expensive computation of

Ypnq Äk,n Apkq. Unfortunately, this algorithm cannot be generalized to higher orders204. The ALS

algorithm and its variations pointed out in51 are simple algorithms and can work well for general

data24;187. For NTF, the ALS algorithm was modified to eliminate all negative entries by a rectifier

Apnq � �
Apnq

ALS

�� � maxtε,Apnqu, (2.4)

ε is a small constant (typically, 10�16) to enforce positive entries. Note thatmax operator is performed

component-wise for entries of matrices. Various additional constraints onApnq can be imposed42.

Computing the Khatri-Rao producttAud�n requirespN� 1qRIN�1 multiplications (for simplicity,

dimensions are assumed to be identicalI1 � . . . � IN � I ). The matrix productYpnq tAud�n demands

RIN multiplications. Hadamard productstATAu⊛�n do not consume much multiplications. Hence, the

approximate number of multiplications required for the learning rule (2.2) is RIN � pN � 1qRIN�1.

This technique was widely applied to employ algorithms for CP as NTF algorithms. However, for

practical experiments, ALS (2.4) may not converge to the solution without additional regularization

parameters. They may take many iterations to converge. Moreover, they are also not guaranteed

to converge to a global minimum or even a stationary point, but only to a solution where the cost

functions cease to decrease19;106. ALS can face problems whenΓpn,nq is not full column rank, and it is

relatively slow for collinear (ill-conditioned) data withswamp, bottle-neck or CP-degeneracies51. To

improve performance and increase convergence speed, several simple techniques were proposed for the

ALS algorithm, such as the weighted ALS incorporating a weighting matrix into the cost function47,

the linesearch extrapolation methods10;25;81;140;171;171;200, rotation method145;146, compression26;101,

regularization terms controlling sparsity and orthogonality 41;78;210;215, applying the iterated Tikhonov

regularization133;175, the damped Newton iteration217, the projected gradient methods115 or simply

adding a small diagonal matrixµIR into Γpn,nq 51

Apnq � Ypnq tAud�n

�
Γ
pn,nq � µ IR

	�1
. (2.5)

However, for real-world data, a proper selection of parameter µ influences performance of the final

result. Further modifications were discussed in Chapter 447.

The fact is that ALS algorithm faces (pseudo-) inverse whichcan be ill-conditioned for real-world

data, and also time consuming to calculate reliably. IfApnq has only one componentR � 1, that

is the tensorY is approximated by a rank-one tensor, the Hadamard product
 
ATA

(⊛�n in (2.2)
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returns a scalar, matrix inverse will become a division by a scalar. Therefore, if we form an ALS

update rule for each componentapnqr of the factorApnq, this learning rule does not require matrix in-

verse, and hence reduces computational cost. Moreover, this would be more stable for ill-conditioned

problems and ensure relatively lower complexity even for large -scale problems. Based on this

idea a new algorithm is proposed in this chapter as follows: instead of estimating the whole factor

Apnq � rapnq1 , a
pnq
2 , . . . , a

pnq
R s P RIn�R� , we sequentially estimate componentsapnqr

37;38;39;44;47.

2.2 Line Search Techniques for ALS Algorithm

Harshman81 and Bro10;25 proposed the line search method to predict the factorsApnq from theirs pre-

vious estimations by a simple linear regression

Apnq
t�1 � Apnq

t � η∆Apnq , n� 1, 2, . . . ,N , (2.6)

wheret denotes the iteration index,∆Apnq � Apnq
t � Apnq

t�1 and stepsizeη is iteratively searched so that

the LS criterion (2.1) is reduced by substituting the step sizeη� α η, whereα is a suitable constant.

The LS method can find a suitable step value but it is quite difficult to find an optimal step. To this

end, the Exact Line Search (ELS)70;200 or the Enhanced Line Search (ELS)171 was proposed to find

optimalη at every even iteration by minimizing the modified cost function of (2.1) with fixedApnq
DpY ||Ŷq � 1

2

���Y � I � !
Apnq � η∆Apnq)���2

F
.

An optimal stepsize is a root of a polynomialppηq of degree (2N � 1) which yields the smallest cost

function value or the highest fitness. ELS alleviates bottlenecks more efficiently than LS51. However,

the technique demands high computational cost due to building up and solvingppηq200.

2.3 Hierarchical ALS Algorithm Using Squared Euclidean Distances

This section presents a variation of the ALS algorithm whichsequentially updates components of the

factors. Bro introduced column-wise formulation for the ALS algorithm in his thesis25. Heiser and

Kroonenberg208 also suggested a triadic update for 3-way CP in which the firstloading vectors in every

mode are first estimated, then the second etc. Cichockiet. al.44 introduced the HALS algorithm for

NMF in 2007. Hoet. al.90;91 later analyzed convergence of the Rank-one Residue Iteration algorithm

exploiting a similar idea to update one component instead ofthe factor. However, these algorithms are

highly computational due to computation of residual tensors during iterations, and limited to matrix

and 3-way tensor. Phan and Cichocki152 proposed the optimized algorithm for CP and NTF in which

residue tensors were bypassed. Moreover, the algorithm is straightforwardly derived as a special case
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of the ALS algorithm156;158. The algorithm was later extended to the alpha- and beta- divergences37.

For NTF, Phanet. al. extended the rank-one update algorithm to rank-K update algorithm161.

To estimate a componentapnqr , we assume all other components are fixed. The approximation

tensorŶ is split into two parts as follows

• A rank-one tensor̂Y
prq

is built up from componentsapnqr to be estimated

Ŷ
prq � ap1qr � ap2qr � � � � � apNqr . (2.7)

• A rank-(R-1) CP tensorŶ
p�rq

is composed byN factorsApNq�r � �
apnq1 , . . . , a

pnq
r�1, a

pnq
r�1, . . . , a

pnq
R

�
Ŷ

p�rq �
ķ,r

ap1qk � ap2qk � � � � � apNqk � I �1 Ap1q�r �2 Ap2q�r � � � �N ApNq�r . (2.8)

According to the approximationY � Ŷ p�rq � Ŷ prq � E by R componentsapnqr , r � 1, . . . ,R, n �
1, . . . ,N, we consider the residual tensorỸ

prq
which is approximated by the rank-one tensorŶ

prq
Ỹ

prq � Y � Ŷ p�rq � Ŷ prq � E. (2.9)

Hence, the update rule forapnqr is deduced from (2.2) as follows

apnqr � Ỹprqpnq tarud�n

� 
aT

r ar
(⊛�n

	 : � Ỹprqpnq tarud�n 
aT

r ar
(⊛�n

� Ỹ prq �̄�n taru
γ
pnq
r

, (2.10)

whereỸprqpnq is the mode-n unfolding tensor ofỸ , taru , tap1qr , a
p2q
r , . . . , a

pNq
r u, and scaling coefficient

γ
pnq
r is computed as follows:

γ
pnq
r �  

aT
r ar

(⊛�n �  
aT

r ar
(⊛ {�apnqTr apnqr

	 � #
apNqTr apNqr , n , N

1, n� N.
(2.11)

Due to normalizationapnqr � apnqr {}apnqr }2 for n� 1, 2, . . .N�1 after each iteration step, scaling factor

γ
pnq
r can be omitted and the learning rule (2.10) is simplified as

apnqr � �
Y �Yp�rq	 �̄�n taru � Y �̄�n taru � I �n Apnq�r �̄�n

 
AT�r ar

(� Y �̄�n taru � Apnq�r

 
AT�r ar

(⊛�n
, (2.12)

where
 
AT�r ar

(
,

"
Ap1q�r

T
ap1qr , . . . ,A

pNq�r

T
apNqr

*
. ProductY �̄�n taru is sequentially calculated

aspN � 1q tensor-vector multiplications along all modes, but mode-n. We note that a tensor-vector

productY�̄k apkqr results anpN� 1q-dimensional tensor and requiresI N multiplications, that means it

reduces dimension of the resulted tensor by 1. Therefore, productY �̄�n taru needs in total a number
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Algorithm 2.1: HALS Algorithm for CP and NTF
Input : Y : input data of sizeI1 � I2 � � � � � IN,

R: number of basis components
Output : N factorsApnq P RIn�R

1 begin
2 Initialize all Apnq and normalize allapnqr to unit length
3 repeat
4 for n� 1 to N do // Update Apnq
5 for r � 1 to Rdo
6 apnqr � Y �̄�n taru � Apnq�r

 
AT�r ar

(⊛�n

7 apnqr � �
apnqr

�� // Retrieve nonnegative entries

8 if n , N then // Normalize and fix scaling

9 apNqr � apNqr }apnqr }2}apNqr }2
2

, apnqr � apnqr}apnqr }2

10 end
11 end
12 end
13 until a stopping criterion is met
14 end

of multiplications ofI N � I N�1 � � � � � I2 � I
I�1

�
I N � I

�
. In comparison with that of the ALS rule

RIN � pN � 2qRIN�1, the update rule (2.12) is at leastR times less expensive than ALS (2.2). This

is valid because (2.12) updates only one component whereas (2.2) updatesR components, Moreover,

by employing the cascade calculation, the update rule (2.12) does not demand significant temporal

storage. It is necessary to bear in mind that the ALS rule (2.2) computes the Khatri-Rao producttAud�n which may result a large-scale matrixI N�1 � R.

Pseudo-code of this algorithm is described in Algorithm2.1. For NTF, a rectifier is applied to

the update rule (2.12) as an additional step to retrieve nonnegative component shown in Step7. In

addition, normalizationapnqr to unit-length vector is also included. In stead of using therectifier, this

method can be extended for use in compressed sensing by combination with shrinkage rules47;162;179.

2.4 HALS Algorithm with Constraints for NTF

Natural constraints such as sparseness, smoothness or uncorrelatedness (orthogonality) can be im-

posed on the factors. In this section, we derive the regularized HALS algorithm with such constraints.

Generally, the cost function (2.2) can be incorporated additional penalty terms as

Dr
FpY}I � tAuq � DFpY}I � tAuq �

ņ

αnJApnq , (2.13)
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whereJApnq are suitably designed regularization terms for factorsApnq, and regularization parameters

αn ¡ 0 control the amount of regularization. Each factorApnq can have independent parameterαn.

2.4.1 Sparseness Constraints

The following penalty term is often used to impose sparseness

Jsp
A �

ņ

α
sp
n }Apnq}1,

BJspBApnq � αsp
n 1In�R. (2.14)

2.4.2 Orthogonality Constraints

The regularization term which enforces (as much as possible) orthogonality of basis componentsapnqr

is introduced in the cost function (2.13) as

Jcr
n � αcr

n
p̧,l

apnqTp apnql ,
BJcr

nBapnqr

� αcr
n

p̧,r

apnqp � αcr
n Apnq�r 1R�1 . (2.15)

That also means componentsapnqr should be as sparse as possible. From the learning rule (2.12), we

obtain the new learning rule with uncorrelatedness constraints given by

apnqr � �
Y �̄�n taru � Apnq�r

 
AT�r ar

(⊛�n � αcr
n Apnq�r 1R�1

��
γ
pnq
r

. (2.16)

2.4.3 Smoothness Constraints

To measure the smoothness of componentsapnqr , we employ the penalty term defined as137,

Jsm
n � αsm

n }ϕpL apnqr q}1, (2.17)

whereL is a suitably designed matrix (the Laplace operator) which measures the smoothness (by

estimating the differences between neighboring samples ofapnqr )1 andϕ : RÑ R is an edge-preserving

function applied componentwise. Although this edge-preserving nonlinear function may take various

forms137:

ϕptq � |t|α{α, 1¤ α ¤ 2, (2.18)

ϕptq � a
α� t2, (2.19)

ϕptq � 1� |t|{α� logp1� |t|{αq, α ¡ 0, (2.20)

1In the special case forL � I In andϕptq � |t|, the smoothness regularization term becomes sparsity term.
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we restrict ourself to simple cases, whereϕptq � |t|α{α for α � 1 or 2, andL is the derivative operator

of the first or second order. For example, the first order derivative operatorL with In points can take

the form:

L � ���� 1 �1
1 �1
. . .

. . .
1 �1

�ÆÆ
, (2.21)

and the cost function (2.13) becomes similar to the total-variation (TV) regularization (which is often

used in signal and image recovery6;35):

Dr
FpY}I � tAuq � DFpY}I � tAuq � αsm

In�1̧

k�1

|an
kr � apnqpk�1qr |. (2.22)

Another important case assumes thatϕptq � 1
2|t|2 andL is the second order derivative operator withIn

points90. In such a case, we obtain the Tikhonov-like regularization:

Dr
FpY}I � tAuq � DFpY}I � tAuq � 1

2
αsm }L apnqr }2

2. (2.23)

In such a case the update rule forapnqr is given by:

apnqr � pγpnqr I � αsm LTLq�1pY �̄�n taru � Apnq�r

 
AT�r ar

(⊛�nq. (2.24)

Bro25 considered a particular case in whichL is the second-order smoothing operator. The learn-

ing rule (2.24) is robust to noise. However, it involves a rather high computational cost due to the

calculation of an inverse of a large matrix in each iteration. To circumvent this problem and to consid-

erably reduce the complexity of the algorithm we present a second-order smoothing operatorL in the

following form:

L � ����� �2 2
1 �2 1
. . .

. . .
. . .

1 �2 1
2 �2

�ÆÆÆ

� ����� �2 �2

. . . �2 �2

�ÆÆÆ
������ 0 2
1 0 1

. . .
. . .
. . .

1 0 1
2 0

�ÆÆÆ
� �2I � 2S. (2.25)

However, instead of computing directlyL apnqr � �2 apnqr �2Sapnqr , in the second term we can approxi-

mateapnqr by its estimation ˆapnqr obtained from the previous update. Hence, the smoothing regularization
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term withϕptq � |t|2{8 takes a simplified and computationally efficient form:

Jsm
n � αsm

n

2
}apnqr � Sâpnqr }2

2 , (2.26)BJsm
nBapnqr

� αsm
n apnqr � αsm

n Sâpnqr . (2.27)

Finally, the learning rule for the regularized (smoothed) HALS algorithm takes the following form:

apnqr � �
Y �̄�n taru � Apnq�r

 
AT�r ar

(⊛�n � αsm
n S apnq��

γ
pnq
r � αsm

n

. (2.28)

2.5 Flexible HALS Using Alpha Divergence

The algorithms derived in previous sections can be extendedto more robust algorithms by apply-

ing a family of generalized Alpha and Beta divergences. We consider a simple approximative NMF

model37;47 to illustrate the basic idea of the proposed algorithm for tensor decomposition

Y � ABT � Ŗ

r�1

ar bT
r , (2.29)

where Y P RI�T� is a data matrix and the desired nonnegative matrices are expressed asA �ra1, a1, . . . , aRs P RI�R� andB � rb1, b2, . . . , bRs P RT�R� .

We define the Alpha divergence as follows36;38;45;46:

Dprq
α

�rYprqs� || ar bT
r

	 �
$''''''''''''&''''''''''''%

i̧k

�� zprqik

αpα� 1q ���zprqik

yprqik

�α � 1

��� zprqik � yprqik

α� 1

�
, α , �1, 0, (2.30a)

i̧k

�pzprqik q ln

�
zprqik

yprqik

�� zprqik � yprqik

�
, α=0, (2.30b)

i̧k

�
yprqik ln

�
yprqik

zprqik

�� zprqik � yprqik

�
, α=-1, (2.30c)

whereyprqik � yik �°
p,r aipbkp andzprqik � air bkr for r � 1, 2, . . . ,R.

The choice of parameterα P R depends on statistical distributions of noise and data. In the

special cases of the Alpha divergence forα � t1,�0.5,�2u, we obtain respectively the Pearson’s chi

squared, Hellinger’s, and Neyman’s chi-square distances while for the casesα � 0 andα � �1, the

divergence has to be defined by the limits of (2.30a) asαÑ 0 andαÑ �1, respectively. When these

limits are evaluated forα Ñ 0 we obtain the generalized Kullback-Leibler divergence defined by Eq.

(2.30b) whereas forα Ñ �1 we have the dual generalized Kullback-Leibler divergencegiven in Eq.

(2.30c)8;42;45;46.
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The gradient of the Alpha divergence (2.30) for α , �1 with respect toair andbkr can be expressed

in a compact form as: BDprq
αBbkr

� 1
α

i̧

ai j

���zprqik

yprqik

�α � 1

�� , (2.31)BDprq
αBai j

� 1
α

ķ

bkr

���zprqik

yprqit

�α � 1

�� . (2.32)

By equating the gradients to zero, we obtain a new multiplicative localα-HALS algorithm:

br � ���
Yprq T

� 
rαs� ar

aT
r a 
rαs

r

�

r1{αs
, ar � ���

Yprq� 
rαs� br

bT
r b 
rαs

r

�

r1{αs
, (2.33)

where the “rise to the power” operationsx 
rαs are performed componentwise. The above algorithm

can be generalized to the following form

br � Ψ�1

��Ψ��YprqT��	 ar

aT
r Ψparq �
, ar � Ψ�1

��Ψ��Yprq��	 br

bT
r Ψpbrq �
, (2.34)

whereΨpxq is suitable chosen function, for example,Ψpxq � x 
rαs, componentwise2.

In a similar way, the learning rules for theN-order NTF problem can be derived. For this purpose,

we consider then-mode matricized (unfolded) version of the tensorY

Ypnq � Apnq pAd�nqT . (2.35)

Actually, this can be considered as an NMF model withA � Apnq andB � Ad�n, br � rAd�nsr �tarud�n. Applying directly the learning rule (2.34) to the model (2.35) gives

upnqr � Ψ�1

����Ψ��Ỹprqpnq��
 br

bT
r Ψpbrq �ÆÆ
, (2.36)

whereỸprqpnq is ann-mode matricized version of̃Y
prq

Ỹprqpnq � Ypnq � pYpnq � apnqr bT
r � Ypnq � pYpnq � apnqr tarud�nT

. (2.37)

For a specific nonlinear functionΨp�q (Ψpxq � xα)

Ψpbrq � Ψptarud�nq � ΨpapNqr q d � � � dΨpapn�1q
r q dΨpapn�1q

r q � � � dΨpap1qr q� tΨparqud�n, (2.38)

2Forα � 0 instead ofΦpxq � xα we usedΦpxq � lnpxq36.
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and the denominator in (2.36) can be simplified as

bT
r Ψpbrq � tarud�nTtΨparqud�n � taT

r Ψparqu⊛�n, (2.39)

this completes the derivation of a flexible Alpha-HALS NTF update rule, which in the tensor form is

given by37

apnqr � Ψ�1

��Ψ�rY prqs�	 �̄�n taru 
aT

r Ψparq(⊛�n

��� , (2.40)

where all nonlinear operations are componentwise3 .

2.6 Flexible HALS Using Beta Divergence

Beta divergence can be considered as a flexible and complementary cost function to the Alpha di-

vergence. In order to obtain local NMF algorithms we introduce the following definition of the Beta

divergence36;45;126:

Dprq
β
prYprqs� || ar bT

r q �
$''''''''''''&''''''''''''%

i̧k

�pryprqik s�q ryprqik sβ� � zprq βik

β
� ryprqik sβ�1� � zprq β�1

ik

β� 1

�
, β ¡ 0, (2.41a)

i̧k

�pryprqik s�q ln

� ryprqik s�
zprqik

�� ryprqik s� � zprqik

�
, β=0, (2.41b)

i̧k

�
ln

�
zprqikryprqik s��� ryprqik s�

zprqik

� 1

�
, β=-1, (2.41c)

whereyprqik � yik �°
p,r aipbkp andzprqik � air bkr for r � 1, 2, . . . ,R. The choice of the real-valued

parameterβ ¤ �1 depends on the statistical distribution of data and the Beta divergence corresponds

to Tweedie models42;45;46;126. For example, if we consider the Maximum Likelihood (ML) approach

(with no a priori assumptions) the optimal estimation consists of minimization of the Beta Divergence

measure when noise is Gaussian withβ � 1. For the Gamma distributionβ � �1, for the Poisson

distribution β � 0, and for the compound Poissonβ P p�1, 0q. However, the ML estimation is

not optimal in the sense of a Bayesian approach where a prioriinformation of sources and mixing

matrix (sparsity, nonnegativity) can be imposed. It is interesting to note that the Beta divergence as

special cases includes the standard squared Euclidean distance (forβ � 1), the Itakura-Saito distance

(β � �1), and the generalized Kullback-Leibler divergence (β � 0).

3In practice, instead of half-wave rectifying we often use different transformations, e.g., real part ofΨpxq or adaptive
nonnegative shrinkage function with gradually decreasingthreshold till variance of noiseσ2

noise.
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In order to derive a local learning algorithm, we compute thegradient of (2.41), with respect to

elements tobkr , air : BDprq
βBbkr

�
i̧

�
zprq βik � pryprqik s�q zprq β�1

ik

	
air , (2.42)BDprq

βBair
�

ķ

�
zprq βik � pryprqik s�q zprq β�1

ik

	
bkr. (2.43)

By equating the gradient components to zero, we obtain a set of simple HALS updating rules referred

to as the Beta-HALS algorithm37:

bkr � 1°I
i�1 aβ�1

ir

I̧

i�1

aβir pryprqik s�q , (2.44)

air � 1°K
k�1 bβ�1

kr

Ķ

k�1

bβkr pryprqik s�q. (2.45)

The above update rules can be written in a generalized compact vector form as

br � prYprq Ts�qΨparq
ΨpaT

r q ar
, ar � prYprqs�q Ψpbrq

ΨpbT
r q br

, (2.46)

whereΨpbq is a suitably chosen convex function (e.g.,Ψpbq � b 
rβs) and the nonlinear operations are

performed element-wise.

The above learning rules could be generalized for theN-order NTF problem (using the similar

approach as for the Alpha-HALS NTF):

apnqr � prỸprqpnqs�q Ψpbrq
ΨpbT

r q br
, (2.47)

wherebr � tarud�n, andỸprqpnq is defined in (2.37).

By taking into account (2.38), the learning rule (2.47) can be written as follows

apnqr � prỸprqpnqs�q tΨparqud�ntΨparqud�n T tarud�n
� rỸ prqs� �̄�n tΨparqutΨparqT aru⊛�n

. (2.48)

Actually, the update rule (2.48) can be simplified to reduce computational cost by normalization of

vectorsapnqr for n� 1, . . . ,N � 1 to unit length vectors after each iteration step:

apnqr � �
Ỹ

prq �̄�n tΨparqu�� , apnqr � apnqr {}apnqr }2. (2.49)

Once again, this algorithm can be rewritten in the fast form as follows

apnqr � �
Y�̄�n tΨparqu � Apnq�r

 
ΨpA�rqT ar

(⊛�n
�� . (2.50)

The HALS NTF algorithm is a special case of (2.50) with Ψpxq � x.
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2.7 ALS Algorithm for Tucker Decomposition

The general Tucker model does not impose any constraint on factors and a core tensor. In many appli-

cations such as dimensionality reduction and feature extraction, several existing Tucker decomposition

algorithms consider orthogonality of factors, such as the Higher-Order Singular Value Decomposi-

tion (HOSVD) and Higher Order Orthogonal Iteration (HOOI) algorithms57;58;60;61. For Nonnegative

Tucker Decomposition (NTD), the multiplicative algorithms47;103;131;151 are natural extensions of mul-

tiplicative Nonnegative Matrix Factorization (NMF) algorithms based on minimization of the squared

Euclidean distance (Frobenius norm) and the Kullback-Leibler divergence. Mørup, Hansen, and Arn-

fred131 extended multiplicative NMF (Nonnegative Matrix Factorizations) algorithms for sparse Non-

negative Tucker Decompositions (NTD), and also released the ERPWAVELAB toolbox130 for anal-

ysis of multi-channel EEG and MEG data. These cost functionshave been recently generalized and

extended using the Bregman, Csiszár, and Alpha- and Beta- divergences45;47;64;103. The multiplicative

algorithms have a relatively low complexity but they are characterized by rather slow convergence and

they sometimes converge to spurious local minima.

We consider the squared Euclidean distance (Frobenius norm)7;103;106;109 subject to nonnegativity

constraints, that is

DFpY ||G� tAuq � 1
2

���Y �G�1 Ap1q �2 Ap2q � � � �N ApNq���2

F
� 1

2

���Y � Ŷ ���2

F
, (2.51)

or its variation in the matricized form given by

DFpY ||G� tAuq � 1
2

���Ypnq � ApnqGpnqAb�n T
���2

F
. (2.52)

A simple ALS update rule forApnq can be straightforwardly obtained from (2.52)

Apnq � YpnqAb�n GTpnq �Gpnq �ATA
�b�n GTpnq	�1

(2.53)� xY ��n tATu,Gy�n xG��n tATAu,Gy�1�n, (2.54)

wherexX,Yy�n � XpnqYTpnq denotes contraction betweenX andY along all modes except mode-n. A

variation of the update rule (2.54) for NTD is combined with a rectifier, i.e.,Apnq � �
Apnq��.

For an NTD model with nonnegative factors and nonnegative core tensor the ALS algorithms may

not converge to a stable solution. Although Bro and Anderson10 have applied the ALS algorithm to

find the nonnegative factors, their algorithm does not allowto impose nonnegativity constraints for a

core tensor. In fact, the learning rule (2.54) is not employed to decompose real-world data due to slow

convergence and high computational cost. An alternative and well-known ALS algorithm for Tucker

decomposition is the HOOI algorithm58;60. This section does not aim to introduce the ALS rule (2.54),

but to derive an ALS algorithm for NTD with low complexity. The idea of the new algorithm for
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Tucker decomposition and NTD is quite similar to that used toderive the HALS algorithm for CP and

NTF in previous sections.

If Apnq has only one componentRn � 1, the contracted product under the matrix inverse in (2.54)

returns a scalar, matrix inverse will become a division by a scalar. This allows to establish an update

rule for each componentapnqrn of the factorApnq which does not require matrix inverse.

2.8 Hierarchical ALS Algorithm for Tucker Decomposition

The proposed algorithm for nonnegative Tucker decomposition consists of two parts:

• Derive update rule for each (nonnegative) component (vector) apnqrn , for n � 1, 2, . . . ,N and

rn � 1, 2, . . . ,Rn,

• Derive update rule for the core tensorG.

With some adjustments of the basic cost function (2.51) and the standard ALS algorithm (2.54),

we establish local learning rules for (nonnegative) components and for the core tensor.

2.8.1 Learning Rule for Factors Apnq
In order to estimateapnqrn

(�n,�rn) we split the Tucker model (1.27) into two parts:

• A tensor consists of all rank-one tensors with which the specific componentapnqrn
P RIn� is not

involved

Y p�rnq � ¸̧̧̧̧̧̧̧tk|kn,rnu gk ap1qk1
� ap2qk2

� � � � � apNqkN
� G�rn

��n tAu �n Apnq�rn
,

where k � rk1, k2, . . . , kNs is the index vector1 ¤ k ¤ R � rR1,R2, . . . ,RNs, tk|kn , rnu
denotes a set of vectorsk in which kn , rn, Apnq�rn

is a version ofApnq without apnqrn
. Subtensors

G�rn
of G do not consist of any entriesgk1,...,kn�1,rn,kn�1,...,kN with km � 1, 2, . . . ,Rm,m, n.

• Another part consists of all rank-one tensors which containthe componentapnqrn

Y p�rnq � ¸̧̧̧̧̧̧̧tk|kn�rnu gk ap1qk1
� � � � � apn�1q

kn�1
� apnqrn � apn�1q

kn�1
� � � � � apNqkN

� Grn
��n tAu �n apnqrn ,

whereGrn
P RR1�����Rn�1�1�Rn�1�����RN� is a subtensor of the core tensorG obtained by fixing

then-th index torn. Mode-n matricized version of tensorGrn
is exactly thern-th row of mode-n

matricized version of the core tensorG, i.e.,rGrn
spnq � �

Gpnq�rn:
.
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Using the above notations, we can rewrite the decomposition(1.27) of the data tensorY �
Y p�rnq �Y p�rnq � E. We consider a residual tensorỸ

prnq
Ỹ

prnq � Y �Y p�rnq � Y p�rnq � E �� Grn
��n tAu �n apnqrn

� E , (2.55)

which is approximated by only one componentapnqrn
along mode-n. Hence, the ALS learning rule (2.54)

to estimate the vectorapnqrn from the tensorỸ
prnq can be expressed in a relatively simple form as

apnqrn
� xỸ prnq ��n tATu,Grn

y�nxGrn
��n tATAu,Grn

y�n

, (2.56)

for rn � 1, 2, . . . ,Rn andn� 1, 2, . . . ,N.

After some algebraic manipulations and replacing the tensor Ỹ
prnq by (2.55),

Ỹ
prnq ��n tATu � Y ��n tATu �G�rn

��n tATAu�n Apnq�rn
, (2.57)

the learning rule (2.56) is simplified as

apnqrn
� xY ��n tATu, Grn

y�n � xG�rn
��n tATAu �n Apnq�rn

,Grn
y�nxGrn

��n tATAu,Grn
y�n� xY ��n tATu, Grn

y�n � Apnq�rn
xG�rn

,Grn
��n tATAuy�nxGrn

,Grn
��n tATAuy�n

. (2.58)

We note thatApnqTApnq has relatively small size ofRn � Rn due toRn ! In. Moreover, tensor product

Y ��n tATu returns a tensor of sizeR1 � � � � � Rn�1 � In � Rn�1 � � � � RN, and tensor product

G��n tATAu does not return a large tensor. Hence, they do not demand a significant extra storage.

2.8.2 Update Rules for the Core Tensor

The core tensor can be estimated using two following methods: global update for the whole tensorG,

and sequential update for each entrygr1r2...rN .

2.8.2.1 Multiplicative Update Rule for Core TensorG

Vectorization of the Tucker model (1.27) gives us a nonnegative matrix factorization of vecpYq
vecpYq � �

ApNq b ApN�1q b � � � b Ap1q	 vecpGq . (2.59)

The vector vecpGq can be estimated by using any existing NMF algorithms. For example, by applying

the ISRA (Image Space Reconstruction Algorithm) update rule55;63;67;110, also often referred to as
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Algorithm 2.2: HALS Algorithm for Tucker and NTD
Input : Y : input data of sizeI1 � I2 � � � � � IN,

R1,R2, . . . ,RN: number of basis components for each factor
Output : N factorsApnq P RIn�Rn� and a core tensorG P RR1�R2�����RN�

1 begin
2 Initialization all Apnq andG
3 repeat
4 for n� 1 to N do // Update Apnq
5 V � xY ��n tATu,Gy�n, W � xG��n tATAu,Gy�n
6 for rn � 1 to Rn do

7 apnqrn
� �

vrn � Apnq�rn
w�rn,rn

��
wrn,rn

8 end

9 ℓ � �}apnq1 }2, . . . , }apnqRn
}2

�
10 G� G�n diagtℓu, Apnq � Apnq diagtℓ
r�1su
11 end
12 foreach 1¤ r � rr1, . . . , rNs ¤ rR1, . . . ,RNs do // Update G

13 gr � �
gr �Y�̄taru �G�̄tAT aru��

14 end
15 until a stopping criterion is met
16 end

Lee-Seung algorithms113, we obtain the following multiplicative update rule

vecpGq � vecpGq ⊛ ��
ApNq b � � � b Ap1q	T

vecpYq
m��
ApNq b � � � b Ap1q	T �

ApNq b � � � b Ap1q	 vecpGq
� vecpGq ⊛ vec
�
Y �  

AT
(�m vec

�
G�  

ATA
(�

(2.60)

which can be written in the tensor form as

G � �
G ⊛

�
Y � tATu�m �

G� tATAu��� . (2.61)

2.8.2.2 Local Update Rule for Core TensorG

The multiplicative update rules have a relatively low complexity but are characterized by slow conver-

gence and involve the risk of converging to spurious local minima. An alternative approach is that we

sequentially update each entrygr1,r2,...,rN of the core tensorG. In this section, we exploit this approach

to derive local update rules for entries of the core tensorG.
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Intuitively, from the cost function (2.51), the ALS update rule for the core tensorG can be formu-

lated as follows

G� Y �1 Ap1q : �2 Ap2q : � � � �N ApNq : , (2.62)

whereA: � �
ApnqTApnq��1

ApnqT denotes the Moore-Penrose pseudo inversion. However, thisupdate

formula requires to compute pseudo inverses of all factorsApnq for each iteration step.

In order to explain a basic concept, let us assume first that all the factorsApnq have only one vector,

that isRn � 1,�n: Apnq � apnq. In such a simple scenario a data tensor is approximated by a rank-one

tensor and the core tensor simplifies to a scalarG � g, and the pseudo-inverses will become transposes

of these factors

apnq : � apnqT

apnqT apnq . (2.63)

With the assumption that all the components areℓ2-norm unit length vectors:apnq T apnq � 1, the ALS

update rule forG simplifies the tensor-vector products of the data tensor andthe components

g � Y �1 ap1qT �2 ap2qT � � � �N apNqT � Y �̄1 ap1q �̄2 ap2q � � � �̄N apNq � Y�̄tau . (2.64)

The ALS update rule (2.64) for rank-one approximation is extremely simple and stablesince we do

not need to compute matrix inverse.

In the next step, we present an algorithm to estimate all the entries of the core tensor for the

general Tucker decomposition with factors having more thanone component. We assume that an entry

gr , r � rr1, r2, . . . , rNs of the core tensorG needs to be updated. This entry has relation to componentstaru � tap1qr1
, ap2qr2
, . . . , apNqrN

u. We divide the Tucker model (1.27) into two parts

• A tensorY p�rq consists of all the rank-one tensors which are not built up from the components

ap1qr1
, ap2qr2

, . . . ,apNqrN
,

Yp�rq � ¸̧̧̧̧̧̧̧
k,r

gk ap1qk1
� ap1qk1

� � � � � apNqkN
. (2.65)

• And a rank-one tensor built up fromap1qr1 , ap2qr2 , . . . , apNqrN : Y p�rq � gr ap1qr1 � ap2qr2 � � � � � apNqrN .

The decomposition (1.27) can be now rewritten as

Y � Y p�rq �Y p�rq � E . (2.66)

To exploit the learning rule (2.64), we define a new residual tensor which is approximated by the

rank-one tensorY p�rq
Ỹ

prq � Y �Y p�rq � Y p�rq � E � gr ap1qr1 � ap2qr2 � � � � apNqrN � E , (2.67)
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Assume that all the componentsapnqrn areℓ2-norm unit length vectors:apnqT
rn apnqrn � 1, the entrygr can

be updated using the learning rule (2.64)

gr � Ỹ
prq �̄ taru � �

Y � Ŷ �Yp�rq	 �̄ taru� gr �Y �̄ taru �G�̄  
AT ar

(
(2.68)

wheretAT aru � tAp1qT ap1qr1
, . . . ,ApNqT apNqrN

u
Finally, the learning rules (2.58) and (2.68) are summarized in Algorithm2.2 (referred here to

as the HALS NTD algorithm). Note thatw�rn,rn � �
w1,rn, . . . ,wrn�1,rn,wrn�1,rn, . . . ,wRn,rn

�T
consists

of pRn � 1q entries extracted from vectorwrn exceptwrn,rn. Without rectifiers in Steps7 and 13,

Algorithm 2.2 is for Tucker decomposition.

2.8.3 Regularization for HALS NTD Algorithm

Similar to the HALS algorithms for NTF in Section2.4, we can impose additional constraints such

as sparseness, smoothness or uncorrelatedness (orthogonality) on the factors and the core tensor for

NTD. Generally, the cost function (2.51) can be incorporated additional penalty terms as

Dr
FpY}G� tAuq � DFpY}G, tAuq �

ņ

αnJApnq � αGJG, (2.69)

whereJApnq andJG are suitably designed regularization terms for factorsApnq and core tensorG, and

regularization parametersαn ¡ 0 andαG ¡ 0 control the amount of regularization. Each factorApnq
can have independent parameterαn.

2.8.3.1 Sparseness Constraints

The following penalty term is often used to impose sparseness

Jsp
A �

ņ

α
sp
n }Apnq}1,

BJspBApnq � αsp
n 1In�Rn. (2.70)

2.8.3.2 Orthogonality Constraints

The regularization term which enforces (as much as possible) orthogonality of basis componentsapnqrn

is introduced in the cost function (2.51) as

Jcr
n � αcr

n
p̧,l

apnqTp apnql ,
BJcr

nBapnqrn

� αcr
n

p̧,rn

apnqp � αcr
n Apnq1Rn � αcr

n apnqrn . (2.71)
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That also means componentsapnqrn should be as sparse as possible. From the learning rule (2.58) and

derivation given inA2.1, we obtain a new learning rule with uncorrelatedness constraints given by

apnqrn � �
vrn � Apnq�rn

w�rn,rn � αcr
n Apnq�rn

1
��

wrn,rn

, (2.72)

V � xY ��n tATu, Gy�n, (2.73)

W � xG,G��n tATAuy�n. (2.74)

2.8.3.3 Smoothness Constraints

The penalty term is the same as that used in Section2.4.3

Jsm
n � αsm

n

2
}apnqrn

� Sâpnqrn
}2

2 ,
BJsm

nBapnqrn

� αsm
n apnqrn

� αsm
n Sâpnqrn

, (2.75)

whereS is defined in (2.25). The learning rule for the regularized (smoothed) HALS NTDalgorithm

takes the following form:

apnqrn
� �

vrn � Apnq�rn
w�rn,rn � αsm

n S apnqrn

��
wrn,rn � αsm

n
. (2.76)

2.8.3.4 Discriminant Constraints

One of important applications of NTD is feature extraction in which the core tensors represent reduced

(compressed) features and factors are bases of the feature subspace. We consider theN-way tensorY

as a training data which is concatenated fromIN samples (subtensors)Y pkq � Y iN�k P RI1�I2...�IN�1.

To extract features from samplesYpkq, we decompose the training tensorY into N � 1 factors except

the last mode. FactorsApnq pn� 1, 2, . . . ,N�1q will be regularized by between-class and within-class

scatter matrices. It is interesting to notice that the features for a sampleYpkq � Y iN�k to classify an

object can be obtained by a simple projection:

F pkq � Y pkq �1 Ap1qT �2 Ap2qT � � � �N�1 ApN�1qT� Y pkq ��n AT �n ApnqT � Zpkq �n ApnqT . (2.77)

We denote the average feature tensor for classc by F̄
pcq

, for c � 1, 2, . . . ,C, and the average

feature tensor for whole samples bȳ̄F . The within-class and between-class scatter matricesSw andSb

are defined as

tr rSws � IŅ

k�1

}F pkq � F̄ pckq}2
F � tr

�
ApnqT Sp�nq

w Apnq� , (2.78)

tr rSbs � Ç

c�1

Kc}F̄ pcq � ¯̄F }2
F � tr

�
ApnqT Sp�nq

b Apnq� , (2.79)
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whereck indicates the category of the samplek, Kc is the number of training samples in thec-th class,

and symmetric scatter matricesSp�nq
w andSp�nq

b are expressed via tensor contracted products

Sp�nq
w � IŅ

k

xZpkq � Z̄pckq
,Zpkq � Z̄pckqy�n , (2.80)

Sp�nq
b � Ç

c

KcxZpcq � ¯̄Z,Zpcq � ¯̄Zy�n . (2.81)

In order to find the discriminant basis factors for nonnegative Tucker decomposition, the overall

cost function is designed using penalty terms so that trrSws is as small as possible while trrSbs is as

large as possible

Jdc � 1
2
αw tr rSws � 1

2
αb tr rSbs . (2.82)

The partial derivative with respect toApnq is given byBJdcBApnq � �
αw Sp�nq

w � αb Sp�nq
b

	
Apnq . (2.83)

From the learning rule (2.58) (assuming that the discriminant terms are in the numerator), we

obtain the new learning rule for factorsApnq as

apnqrn
� �

vrn � Apnq�rn
w�rn,rn � Sp�nq apnqrn

��
wrn,rn

(2.84)

whereSp�nq � αw Sp�nq
w �αb Sp�nq

b . When the discriminant terms are in the denominator, an alternative

implementation of the learning rule (2.84) is given by

apnqrn � �pSp�nq � wrn,rnIq�1
�

vrn � Apnq�rn
w�rn,rn

	�� . (2.85)

2.8.3.5 General HALS NTD Algorithm with Multiple Constrain ts

The HALS NTD algorithm can simultaneously impose multiple regularization terms on factorsApnq.
From the learning rules (2.72), (2.76) and (2.84), the general learning rule with orthogonality, smooth-

ness and discriminant constraints can be formulated as

apnqrn
� �

vrn � Apnq�rn
w�rn,rn � αcr

n Apnq�rn
1� pαsm

n S� αb Sp�nq
b � αw Sp�nq

w q apnqrn

��
wrn,rn � αsm

n
. (2.86)
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2.9 HALS Algorithm for Large-Scale Data

The HALS algorithms are developed to avoid matrix inverses which are necessary in the ALS algo-

rithms and to reduce the complexity of computation via sequential estimation of the components. To

estimateApnq, we need to calculate productY ��n tATu as in Step5 in Algorithm 2.2. Although this

product does not produce significant temporal storage, for large-scale tensorY , it might be compu-

tationally demanding. In this section, we consider a methodto deal with this problem. We note that

real-world tensors are often sparse or the features replicate along modes. This gives us an ability to

manipulate tensors on some tubes which are sampled along modes instead of computing the full tensor.

For each mode-n, we select a set of (random) indicesIn of Jn, typically Rn ¤ Jn ! In,

In �  
1¤ ĩ1   ĩ2   . . .   ĩJn ¤ In

(
, (2.87)

then, build up sub-factors̃Apnq P RJn�Rn from Jn rows of factorApnq P RIn�Rn with row indices

indicated byIn, which can be written as

Ãpnq � ApnqpIn, :q P RJn�Rn . (2.88)

Selected indices can be identified by the CUR decomposition or its extension for multiway data30;75.

The learning rule (2.58) can be reformulated using subfactorsÃpnq as follows

apnqrn � xỸ pnq ��n tÃTu,G�rn
y�n � Apnq�rn

xG�rn
,Grn

��n tÃTÃuy�nxGrn
,Grn

��n tÃTÃu y�n

, (2.89)

where the reduced tensorỸ
pnq

takes samples from selected tubes along all modes but exceptmode-n

Ỹ
pnq � YpI1, . . . ,In�1, :,In�1, . . . ,INq . (2.90)

The strategy of tube selection reduces the dimension of the error tensorỸ
pnq

to R1 � Rn�1 � In �
Rn�1 � . . .� RN which is much smaller than that of the full error tensorY pnq. We note that the set of

selected tube indices can be changed during the estimation of factorsApnq.
Finally, the learning rule (2.89) dramatically reduces the complexity of the HALS NTD algorithm

(2.58) and is suitable for very large-scale low-rank and tensor approximations. In the experimental

section, we illustrate the performance of this method for objects classification.

2.10 Speeding up HALS with Inner Loop

This section presents an efficient technique to speed up convergence of HALS algorithms.After some

first iterations (for example 20, 30 iterations) for estimation factorsApnq and core tensorG, we impose
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Algorithm 2.3: HALS Algorithm with Inner Loop
Input : Y : input data of sizeI1 � I2 � � � � � IN,

R1,R2, . . . ,RN: number of basis components for each factor
Output : N factorsApnq P RIn�Rn� and a core tensorG P RR1�R2�����RN�

1 begin
2 Initialization all Apnq andG
3 repeat
4 for n� 1 to N do
5 for k � 1 to L do // Inner loop

6 UpdateApnq� from the currentApnq
7 if }Apnq� � Apnq}F   ε}Apnq}F then Exit inner loop
8 Apnq � Apnq�
9 end

10 end
11 UpdateG
12 until a stopping criterion is met
13 end

an inner loop to updateApnq illustrated in Step5 in Algorithm 2.3. The number of iterations in the

inner loopL could be 10 or 20, the update can jump out of the loop when difference between two

consecutive estimations is lower than a threshold (Step8).

2.11 Summary

Rank-one update algorithms (or HALS) have been proposed forCP and Tucker with/without nonneg-

ativity constraints. These algorithms avoid matrix inverses. Hence they are more stable than the ALS

algorithms, especially for nearly collinear data. These algorithms also avoid Khatri-Rao and Kronecker

products often arising in CP and Tucker algorithms. The proposed algorithms compute products of the

data tensor and vectors. Because of less computational cost, the rank-one update algorithms are faster

than the ALS algorithms. Moreover, multiple constraints such as orthogonality, sparseness, smooth-

ness are straightforwardly imposed on the factors (and the core tensors for Tucker decompositions).

These rank-one algorithms can face the same problem of the ALS algorithm such as bottleneck and

swamp when data is highly collinear.

A2.1 Appendix: Derivation of Learning Rule for A pnq
This section presents an alternative derivation of the developed HALS NTD algorithm by minimizing

a set of local cost functions instead of deriving it from the standard ALS updates rules.

To estimate the componentapnqrn , we assume that all the other components in all factors and the
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core tensor are fixed. Instead of minimizing (2.51), we can use a more sophisticated approach by

minimizing a set of local cost functions given by:

Dprnq
F papnqrn

q � 1
2

∥

∥

∥

∥

Y �Y p�rnq �Y p�rnq ∥∥
∥

∥

2

F
� 1

2

��� Ỹprnq �G jn�rn
��n tAu �n apnqrn

���2

F� 1
2

��� Ỹprnqpnq � apnqrn rG jn�rn
spnq Ab�n T

���2

F
, (2.91)

for rn � 1, 2, . . . ,Rn andn� 1, 2, . . . ,N.

We first calculate the gradient of (2.91) with respect to vectorapnqrnBDprnq
FBapnqrn

� ��
Ỹprnqpnq � apnqrn rGpnqsrn: Ab�n T

	
Ab�nrGpnqsTrn: (2.92)

and set it to zero to obtain a learning rule forapnqrn (n� 1, 2, . . . ,N andrn � 1, 2, . . . ,RN) given by

apnqrn � Ỹprnqpnq Ab�n rGpnqsTrn:rGpnqs rn: Ab�n T Ab�n rGpnqsTrn:
� 1

wrn

xỸ prnq
,G ��n tAuy�n. (2.93)

The learning rule (2.93) is equivalent to the update rule given in (2.56).

A2.2 Appendix: Derivation of Learning Rule for Core TensorG

Entries of the core tensor can be sequentially updated with assumption that all components are fixed.

We consider the following cost function

DF � 1
2

∥

∥

∥

∥

Y �Yp�rq �Yp�rq ���2

F
� 1

2

∥

∥

∥

∥

Ỹ
prq �Y p�rq ���2

F� 1
2

��� vecpỸprqq � �
apNqrN

b � � � b ap1qr1

	
gr

���2

2
. (2.94)

To derive the update rule, we calculate the gradient of (2.94) with respect to elementsgr̄BDprq
FBgr̄

�� �
apNqrN

b � � � b ap1qr1

	T �
vecpỸprqq � �

apNqrN
b � � � b ap1qr1

	
gr̄

	
(2.95)

and set it to zero to yield a learning rule for entries of the core tensorG, given by

gr̄ � ��� �
apNqrN

b � � � b ap1qr1

	T
vecpỸprqq�

apNqrN
b � � � b ap1qr1

	T �
apNqrN

b � � � b ap1qr1

	���� . (2.96)

This update rule can be simplified by taking into account thatthe Kronecker product of the two unit-

length vectorsa andb, i.e.,c� ab b, is also a unit-length vector, that is,} c}2
2 � cT c� pab bqTpab

bq � paT aq b pbT bq � 1b 1 � 1. Hence, if all the componentsapnqrn
are normalized to theℓ2-norm

unit length vectors, we obtain a simplified version of the learning rule (2.96)

gr � �
Ỹ

prq �̄1 ap1qr1
�̄2 ap2qr2

� � � �̄N apNqrN

�� . (2.97)



Chapter 3

Appropriate ALS Algorithms for
Nonnegative CP and Tucker

Decompositions

Chapter 2 introduced the “work-horse” Alternating Least Squares (ALS) algorithms for CP and Tucker

decompositions and adapted it for use in nonnegative tensordecompositions including CP and Tucker

models by combining with the rectifierrxs� � maxpx, 0q. However, the modified algorithms can be

relatively slow for nearly collinear data7;78;109;210. To improve performance and increase convergence

speed, several simple techniques were proposed for the ALS algorithm, such as the weighted ALS

incorporating a weighting matrix into the cost function47, the line-search140;171;200, or regularization

terms controlling sparsity and orthogonality41;78;210;215, the projected gradient methods115, active set

method102. Further modifications were discussed in Chapter 447.

Generally, these techniques help ALS cope with collinear and/or sparse factors. However, some

other problems arise from controlling regularization parameters. The fact is that the ALS with a simple

rectifier might not be an appropriate algorithm for NTF. Simple experiments with sparse and nonnega-

tive factors can straightforwardly prove this confirmation. An alternative version of the ALS algorithm

is the HALS algorithm37;152 which estimates only one component for each factor, and avoids inverses

of matrices. This algorithm was proved to outperform the multiplicative algorithms73. However, for

tensor composed by highly collinear factors, both multiplicative and HALS algorithms often fail to

factorize such data. Moreover, the HALS algorithm may not factorize sparse tensors without using

additional regularization terms to control sparsity.

To this end, an appropriate ALS algorithm for NTF is proposedby recursively solving nonnegative

quadratic programming problems in this chapter as follows

• Propose a recursive method for solving the nonnegative quadratic programming.

• Formulate ALS algorithms for nonnegative CP and Tucker decompositions based on solving

nonnegative quadratic programming problems.

• Proposed ALS algorithm for low memory machine or for parallel computing system.
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3.1 Recursive Update Rules for Nonnegative Quadratic Programming

In this section, we reinvestigate the nonnegative quadratic programming which involves applications

in signal processing and machine learning such as nonnegative matrix/tensor factorizations and de-

compositions (NMF, NTF, NTD)47;103;113;130;132;142;143;183, the classification by support vector ma-

chines181;182.

Problem 3.1(Nonnegative Quadratic Programming)
Consider the quadratic programming problem with nonnegative constraints

minimize fpxq � 1
2

xT Q x� bT x, (3.1)

subject to x ¥ 0,

whereQ P RR�R is a nonnegative symmetric positive-semidefinite matrix,b � rb1 b2 � � � bRsT , x �rx1 x2 � � � xRsT . This problem has an unique global optimal solutionx� � rx�1 x�2 � � � x�RsT , x�r ¥ 0,�r.

Although the optimization problem (3.1) is similar to the NQP mentioned in181;182 for SVM or

for NMF216, the matrixQ in our NQP is different, and is nonnegative. Due to the nonnegativity con-

straints, Problem3.1 does not have an analytical solution. Shaet. al182 proposed the multiplicative

iterative learning rules employed SVM. Zdunek and Cichocki216 proposed a method using second-

order Taylor expansion with using second-order Taylor expansion. Some other methods such as the

projected gradient115, the exponentiated gradient104 could be employed in order to solve (3.1). Prac-

tical results revealed that the multiplicative update rules converge slowly115, while convergences of

other iterative are quite sensitive to the choice of learning rate.

By exploiting the structure of the nonnegative matrixQ and the objective function (3.1), this sec-

tion will derive a robust algorithm for NQP based on the recursive technique. The proposed algorithm

can be applied to any applications involving nonnegative least squares approximation. We note that the

nonnegative CP and Tucker decompositions can be converted to the nonnegative quadratic program-

ming after a few mathematical manipulations.

Problem3.1can be solved by consideration of two Lemmas3.1and3.2.

Lemma 3.1. A stationary point of function (3.1) is denoted by

x̃ � rx̃1 x̃2 � � � x̃RsT � Q�1 b. (3.2)

If Dx̃r   0, then x�r � 0.

Proof. Without loss of generality, we assume that ˜xR   0. The gradient of (3.1) with respect toxR at
point x�1, � � � , x�R�1 given by

gpxRq � ∇xR f px�1, � � � , x�R�1, xRq � qR,R xR� qR,1:R�1 x�1:R�1 � bR (3.3)
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Algorithm 3.1: Recursive Algorithm for NQP

Input : Q: nonnegative symmetric matrixpR� Rq, b : vectors ofRentries
Output : x: nonnegative vector minimizes (3.1)

1 begin
2 I � t1, 2, . . . ,Ru
3 repeat
4 x̃I � Q�1

I
bI

5 I� � tr P I : x̃r   0u; I� IzI�
6 until I� � H
7 x � maxt0, x̃u
8 end

has a solution given by

x̌R � bR� qR,1:R�1 x�1:R�1

qR,R
. (3.4)

Assume that x�R ¡ 0, by taking into the assumption off
�
x�1, � � � , x�R�1, x�R� ¤

f px�1, � � � , x�R�1, xRq ,�xR P r0,�8q, we straightforwardly obtainx�R � x̌R. That meansx� is
the solution of equation (3.2): Q x� � b. Consequently,x� � x̃ or x�R � x̃R ¡ 0. That conflicts to the
above assumption ˜xR   0. Therefore, we havex�R � 0. �

Lemma 3.2 (Solution of Problem3.1). Solutionx� of Problem3.1 can be found under a recursive
formulation.

Proof. The gradient of the functionf pxq with respect tox given by

∇ f pxq � Q x� b (3.5)

has an unique solution

x̃ � rx̃1 x̃2 � � � x̃RsT � Q�1 b. (3.6)

It is straightforward that if ˜x ¥ 0, thenx� � x̃ is solution of (3.1).
For another case, we assume that there areK ¤ R nonnegative entries̄I � tr : x̃r   0, 1 ¤ r ¤

Ru, cardtĪu � K. Based on Lemma3.1, all the corresponding variables are zerosx�rk
� 0. The restpR� Kq variables are solutions of a similar Problem3.1but of an lower orderpR� Kq

minimize f pxIq � 1
2

xT
I

QI xI � bT
I

xI (3.7)

subject to xI ¥ 0,

whereQI is a part of the matrixQ deletedK rows andK columns with indices̄I, andbI is a part of
the vectorb removedK entriesĪ. This establishes a recursive formulation to find nonnegative solution
of (3.1). This procedure described in Algorithm3.1 iterates until there are not any zero entry ˜x, that
meansK � 0.

Algorithm 3.1 has never fallen into infinite-loop and ensures to find the proper solution after a
finite number of iterations which does not exceedIn.

�
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3.2 Novel Alternative Least Square Algorithm for NTF

3.2.1 QALS Algorithm for NTF

The proposed algorithm will be derived based on the ALS minimization of the squared Euclidean

distance (Frobenius norm) to estimate the factorApnq while the others fixed. We convert the cost

function for NTF to a quadratic function given by

D � 1
2
}Y � Ŷ}2

F � 1
2
}Y}2

F � 1
2
}Ŷ}2

F � xY , Ŷy� 1
2
}Y}2

F � 1
2
}Apnq tAud�n T}2

F � xYpnq,ApnqtAud�n Ty� 1
2
}Y}2

F � 1
2

vec
�

ApnqT	T �
I In b Γpnq	 vec

�
ApnqT	� vec

�
Φ
pnqT	T

vec
�

ApnqT	 , (3.8)

whereΓpnq � tATAu⊛�n P RR�R, andΦpnq � YpnqtAud�n P RIn�R. The first term in (3.8) }Y}2
F is

constant, hence it can be ignored. The last two terms in (3.8) can be formulated as a minimization

problem

min f
�
apnq	 � 1

2
apnqT

Ψ
pnq apnq � vec

�
Φ
pnqT	T

apnq , (3.9)

s.t. apnq ¥ 0,

whereΨpnq � I In bΓpnq P RInR�InR, andapnq is a vectorized version of the factorApnqT , and expressed

by concatenation of all rowsapnqin
, pin � 1, 2, . . . , Inq of the factorApnq

apnq � vec
�

ApnqT
	 � �

apnq1: apnq2: � � � apnqIn:

�T
. (3.10)

We haveApnqTApnq (�n) are symmetric positive-semidefinite matrices. Moreover,for full column

rank matricesApnq, ApnqTApnq (�n) are symmetric positive definite matrices. Hence, the Hadamard

productΓpnq is again positive-(semi)definite according to the Schur product theorem94. This leads to

the Kronecker productΨpnq also a positive-(semi)definite1. As a consequence, the problem (3.9) is in

the form of Problem3.1 in which x , apnq ¥ 0 andQ , Ψpnq. The factorApnq can be updated using

Algorithm 3.1.

It is worth noting that the stationary point of the function (3.9) without nonnegative constraints

given by

ãpnq � Ψpnq�1
vec

�
Φ
pnqT	 � vec

��
Φ
pnq
Γ
pnq�1

	T



(3.11)

is indeed a vectorized version of the ALS algorithm (2.2). If there is not any negative entry, the factor

Apnq is exactly the ALS update. Otherwise, we solve the reduced system as in (3.7). Pseudo-code of

the proposed algorithm is listed in Algorithm3.2. The functionnqp refers to as Algorithm3.1. If we
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ignore the loop Step3 in the functionnqp, the ALS algorithm (2.2) is obtained. Normalization of the

factorsApnq is always necessary but is not explicitly described in Algorithm 3.2

apnqr � apnqr}apnqr }2

, n� 1, 2, . . . ,N� 1,�r. (3.12)

We note that the Kronecker productΨpnq � I In b Γpnq is indeed the direct sum ofIn matriceΓpnq
given by

Ψ
pnq � I In b Γpnq � ����� Γpnq Γpnq . . .

Γ
pnq ����� , (3.13)

and produces a sparse matrix whose number of nonzero elements is onlyInR2, and does not consume

significant temporary extra-storage. Moreover, the inverse of the blockdiagonal matrixΨpnq is quickly

calculated based on the inverses of block matrices

Ψ
pnq�1 � ������ Γpnq�1

Γ
pnq�1

. . .

Γ
pnq�1

������ . (3.14)

The reduced versioñΨ
pnq

of the diagonal block matrixΨpnq after deleting columns and rows with the

same indices is also a diagonal block matrix. Hence, inverses ofΨ̃
pnq

also can be expressed by inverses

of its diagonal blocks as in (3.14). This helps to reduce computational cost in Step4 of the NQP

functionnqp during the estimation Step5 of Algorithm 3.2. Therefore, for low rank approximations

R! In, Algorithm 3.1has relatively low computational cost.

3.2.2 Algorithm for Low Memory Machine and Parallel Computi ng

The NQP problem (3.9) demands to solve a system ofIn Rvariables. AlthoughΨpnq in (3.8) is a sparse

matrix, for large-scale data and high-rank approximation,the complexity of Algorithm3.2 increases

rapidly with increasing the number of samplesIn and the number of componentsR. Hence, it could

demand high computational cost, and also large space cost. To this end, an alternative algorithm will

be presented in this section to run on low memory machine, or in a parallel system with multiple nodes.

From definition of vectorsapnq (3.10) and the structure of matricesΨpnq (3.13), the cost function

(3.8) is rewritten asIn simultaneous nonnegative quadratic programming problemsfor all In rowsapnqin:

in � 1, 2, . . . , In of the factorApnq
min finpapnqin: q � 1

2
apnqin: Γ

pnq apnqTin: � φ
pnq
in: apnqTin: , (3.15)

s.t. apnqin: ¥ 0
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Algorithm 3.2: NQP for NTF - QALS
Input : Y : tensorI1 � I2 � � � � � IN,

R : number of approximation components
Output : N nonnegative factorsApnq of size (In � R) minimize the problem (3.8)

1 begin
2 Random or leading singular vectors to initialize forApnq
3 repeat
4 for n� 1 to N do

5 vec
�
ApnqT

� � nqp�I In b �tATAu⊛�n
�
, vec

��
YpnqtAud�n

�T
		

6 end
7 until a stopping criterion is met
8 end

whereφpnqin: is the in-th row of the matrixΦpnq. For each problem (3.15), Algorithm 3.1 is straightfor-

wardly applied to estimate the rowsapnqin: with Q , Γpnq, x , apnqTin: and b , φpnqin: . It is clear that the

NQP problem (3.15) solves onlyRvariables. Hence this demands much lower computational cost than

solving Problem (3.9). The proposed method is suitable for large-scale problem on a limited-memory

system.

Moreover, these simultaneous problems can be independently solved. They can be optimized to

run for multi-core CPU PCs or GPU devices such as CUDA. The code also can be run on a remote

cluster of computers using multiple workers to take advantage of parallel processing. The pseudo-

code of this algorithm is given in Algorithm3.3 in which parfor denotes the parallel loop. Matlab

implementation of this algorithm allows each iteration of the parfor loop (Step8) is executed in

parallel on MATLAB workers. Because several workers can be solving concurrently the NQP (3.15)

on the same loop, this algorithm can provide significantly better performance than Algorithm3.2.

3.2.3 Complexity of QALS Algorithms

Computational complexity of Algorithms3.2and3.3depends mostly on inverse of matricesQ � Ψpnq
or Q � Γpnq and the number of recursive iterations of Algorithm3.1. For Algorithm3.2, Q is a block

diagonal matrix ofIn (R� R) matrices. For Algorithm3.3, Q is only anR� R matrix. This means

algorithms have space cost of orderOpIR2q and OpR2q, respectively. We note that Algorithm3.2

updates the whole factorApnq, and can convert to Algorithm3.3 to update rows ofApnq. Hence, we

only need to analyze complexity of Algorithm3.3. In the worst case, the NQP algorithm repeatsR

times to update one row. Hence, the worst case complexity of Algorithm 3.1 is of orderOpR3 � pR�
1q3 � � � � � 23 � 1q � OpR4q.

Practical analysis on random tensors (discussed further inSection6.2.3) shows that the number

of recursive iterations did not exceedplog2pRq � 1q, was high on some first iterations of estimation,
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Algorithm 3.3: Parallel Algorithm for NTF - pQALS
Input : Y : tensorI1 � I2 � � � � � IN,

R : number of approximation components
Output : N nonnegative factorsApnq of size (In � R) minimize the problem (3.8)

1 begin
2 Random or leading singular vectors to initialize forApnq
3 repeat
4 for n� 1 to N do
5 Γ

pnq � tATAu⊛�n

6 Φ
pnq � YpnqtAud�n

7 parfor in � 1 to In do // parallel loop for update Apnq
8 apnqT

in: � nqp�Γpnq,φpnqT
in:

	
9 end

10 end
11 until a stopping criterion is met
12 end

and tended to be lower for later iterations. This result is valid because the number of variables to

be tuned is reduced during the estimation until convergenceis achieved. Illustration of occurrence

rates for the number of recursive iterations in the NQP function is shown in Figure6.13for various

tensor factorizations. As seen in Figure6.13, even forR � 600, In � 1000, the NQP function in

Algorithm 3.3 iterated almost 4 times. LetK be the smallest integer 2K ¥ R: K � rlog2pRqs. The

worst case complexity of Algorithm3.3for updateapnqin: is OpR3 � pR� 1q3 � � � � � pR� K � 1q3q �
OpKR3q � Oplog2pRqR3q.
3.2.4 Simplified Algorithm for NMF

A simplified version of Algorithms3.2 and3.3 for 2 dimensional data (matrix) formulates the QALS

algorithms for NMF described by the following model

Y � A XT , (3.16)

whereY P RI�J� is the observed data,A P RI�R� , andX P RJ�R are two nonnegative factors. The

algorithm sequentially updates factorsA andX by solving two nonnegative quadratic programming

problems

min fApAq � 1
2

vec
�
AT

�T �
I I b �

XTX
��

vec
�
AT

�� vec
�
XTYT

�T
vec

�
AT

�
,

s.t. A ¥ 0,

min fXpXq � 1
2

vec
�
XT

�T �
I J b �

ATA
��

vec
�
XT

�� vec
�
ATY

�T
vec

�
XT

�
,

s.t. X ¥ 0,
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Algorithm 3.4: QALS Algorithm for NMF
Input : Y: nonnegative matrixI � J

R : number of approximation components
Output : A P RI�R andX P RJ�R nonnegative factors

1 begin
2 Random or leading singular vectors to initializeA andX
3 repeat
4 vec

�
AT

� � nqp �I I b �
XTX

�
, vec

�
XT YT

��
5 vec

�
XT

� � nqp �I J b �
ATA

�
, vec

�
AT Y

��
6 until a stopping criterion is met
7 end

Pseudo code of this algorithm is given in Algorithm3.4.

3.3 QALS Algorithm for NTD

In a similar way to derive the QALS algorithm for NTF, we derive an ALS algorithm for NTD by

consideration of the cost function for NTD as an NQP problem as follows

D � 1
2
}Y � Ŷ}2

F � 1
2
}Y}2

F � 1
2
}Ŷ}2

F � xY , Ŷy� 1
2
}Y}2

F � 1
2
}Apnq Gpnq tAub�n T}2

F � xYpnq,ApnqGpnq tAub�n Ty� 1
2
}Y}2

F � 1
2

vec
�

ApnqT	T �
In b Λpnq	 vec

�
ApnqT	� vec

�
Υ
pnqT	T

vec
�

ApnqT	 , (3.17)

whereΛpnq � xG��n tATAu,Gy�n P RRn�Rn, andΥpnq � xY ��n tATu,Gy�n P RIn�Rn. The first

term in (3.17) }Y}2
F is constant, hence it can be ignored. The last two terms in (3.8) can be formulated

as a minimization problem to findApnq
min f

�
apnq	 � 1

2
apnqT In b Λpnq apnq � vec

�
Υ
pnqT	T

apnq , (3.18)

s.t. apnq ¥ 0,

whereapnq is a vectorized version of the factorApnqT . In order to findG, the cost function (3.17) is

also rewritten

D � 1
2
}Y}2

F � 1
2

vecpGqT �tATAub� vecpGq � vec
�
Y � tATu�T

vecpGq , (3.19)

as

min f pgq � 1
2

gT tATAub g� vec
�
Y � tATu�T

g , (3.20)

s.t. g� vecpGq ¥ 0.
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Algorithm 3.5: NQP for NTD - QALS
Input : Y : tensorI1 � I2 � � � � � IN,

R1,R2, . . . ,RN : number of approximation components
Output : N factorsApnq P RIn�Rn and a core tensorG minimize the problem (3.17)

1 begin
2 Random or leading singular vectors to initialize forApnq
3 repeat
4 for n� 1 to N do
5 Λ

pnq � xG��n tATAu,Gy�n

6 Υ
pnq � xY ��n tATu,Gy�n

7 vec
�
ApnqT

� � nqp�In b Λpnq, vec
�
Υ
pnqT		

8 end
9 vecpGq � nqp�tATAub, vec

�
Y � tATu��

10 until a stopping criterion is met
11 end

According to Algorithm3.2, factorsApnq and core tensorG can be updated as follows

vec
�

ApnqT	 � nqp

�
In bΛpnq, vec

�
Υ
pnqT		 , (3.21)

vecpGq � nqp
�tATAub, vec

�
Y � tATu��. (3.22)

Of course, we also have an alternative update rule for rows offactorsApnq which is much low com-

plexity than (3.21)

apnqTin: � nqp

�
Λ
pnq, υpnqTin:

	
. (3.23)

Algorithm 3.5 illustrates pseudo-code of the above learning rules for NTD. In practice, in order to

improve stability and convergence of the algorithm, we utilize the regularized NQP algorithm in sec-

tion 3.4 instead of thenqp function in Steps7 and9.

3.4 Regularization for QALS Algorithms

An important point for QALS algorithms is that matricesΓpnq, Λpnq are well-conditioned. For factor-

ization of collinear factors or in some first iterations, an additional regularization parameterµ is added

to matrices to ensure the stability of the algorithms. The parameter plays a role similar to that of the

damping parameter in the Levenberg-Marquardt iteration. The parameterµ should be initialized by

a large enough value, then slowly descends down to near-zeroafter each 5-10 iterations. Finally, the

solution of the NQP problem is slightly modified as follows

x � nqppQ � µI , bq . (3.24)



48 Chapter 3. Appropriate ALS Algorithms for NTF and NTD

Algorithm 3.6: Rank-K Update Algorithm - rK-QALS
Input : Y : tensorI1 � I2 � � � � � IN,

R : number of approximation components
Output : N nonnegative factorsApnq of size (In � R)

1 begin
2 Random or leading singular vectors to initialize forApnq
3 repeat
4 for n� 1 to N do
5 repeat
6 R � activeset
7 Γ

pnq
R

� tAT
R
ARu⊛�n

8 Φ
pnq
R

� YpnqAd�n

R
� Apnq

R̄

!
AT
R̄

AR
)⊛�n

9 vec
�

ApnqT
R

	 � nqp�I In b ΓpnqR , vec
�
Φ
pnqT
R

		
10 until all componentsapnqr are updated
11 end
12 until a stopping criterion is met
13 end

3.5 Rank-K Update QALS Algorithms

This section aims to derive learning rule to update a subset of R̃ components (1¤ R̃ ¤ R).

Assume thatR � trk : 1 ¤ rk ¤ R, k � 1, 2, . . . , R̃u is a set ofR̃ indices of components

Apnq
R

� �
apnqr1

apnqr2
� � � apnqrR̃

� P RIn�R̃� to be estimated. In order to derive the update rule forApnq
R

,

we split the CP model (1.11) into two parts:

• A tensor consists of all rank-one tensors in which the componentsApnq
R

, pn� 1, 2, . . . ,Nq do not

involveY p�Rq � °
r<R ap1qr � ap2qr � � � � � apNqr .

• Another part consists of all rank-one tensors which are constructed from the componentsApnq
R

(�n): Y p�Rq � °
rPR ap1qr � ap2qr � � � � � apNqr � I � tARu.

We consider a residual tensorỸ
p�Rq � Y � Yp�Rq � Y p�Rq � E � I � tARu � E, which is

approximated bỹR componentsApnq
R

along the mode-n. The cost function (2.1) is rewritten as a cost

function of the factorsAn
R

as follows

Dp�Rq � 1
2
}Ỹ p�Rq �Y p�Rq}2

F� 1
2
}Ỹ p�Rq}2

F � 1
2
}Apnq
R

Ad�n T
R

}2
F � xỸp�Rqpnq ,Apnq

R
Ad�n T
R

y� 1
2
}Ỹ p�Rq}2

F � 1
2

vec
�

ApnqT
R

	T �
I In b ΓpnqR 	

vec
�

ApnqT
R

	� vec
�
Φ
pnqT
R

	T
vec

�
ApnqT
R

	
,

(3.25)
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whereΓpnq
R

� tAT
R
ARu⊛�n P RR�R, andΦpnq

R
� Ỹp�Rqpnq tAud�n

R
P RIn�R. While fixing the components

apnqr pr < R, n � 1, 2, . . . ,Nq during the estimation process of factorsApnq
R

, the first term in (3.25)}Ỹ}2
F is considered as constant, hence it can be ignored. The last two terms in (3.25) formulate a

minimization problem in the form of Problem3.1:

min f
�
apnq	 � 1

2
apnqT

Γapnq � vec
�
Φ
pnqT
R

	T
apnq , (3.26)

s.t. apnq ¥ 0.

whereΓ � I In b ΓpnqR P RInR�InR, andapnq � vec
�

ApnqT
R

	
. Construction of the residual tensorỸ

pRq
could demand large-scale temporary extra-storage for the tensorYp�Rq, and also high computational

cost due to Khatri-Rao products. To significantly reduce thecomplexity, the matrixΦpnq is constructed

without building up the tensors̃Y
p�Rq

as well asY p�Rq as follows

Φ
pnq
R

� YpnqAd�n

R
� Apnq

R̄

!
AT
R̄

AR
)⊛�n

, (3.27)

whereR̄ � t1 : RuzR, Apnq
R̄

is a subset of the factorApnq ignored the componentsApnq
R

.

All the componentsApnq
R

will be updated using Algorithm3.1. Such procedure will be replicated

for different subsetsR until each componentapnqr �n,�r should be updated at least once. Pseudo-code

of the proposed algorithm is listed in Algorithm3.6. The functionnqp refers to as Algorithm3.1. We

note that wheñR � 1, the proposed algorithm becomes the HALS algorithm presented in Chapter 1

which updates one componentapnqr .

In each loop to estimate the factorApnq (Steps5-10), a set of column indicesR will be selected

in Step6. Normally, this selection step will be replicated until allthe components should be updated

at least one time. A subsetR is anR̃-subset onR elements. Therefore, there are in totalCR̃
R possible

combinations of selectionR. A simple approach is to proceed the estimation over all the subsets

R. This procedure demands high computational cost, but couldimprove the performance. Dividing

the set ofR indicest1, 2, . . . ,Ru into subsetsR with empty intersections or as least as possible is a

suggested strategy which has low computational cost. we canselectR̃ highly correlated components.

An alternative strategy is that for each component indexr, we sequentially selectK � minpR̃,R� R̃q
consecutive indicesR � tr, r � 1, . . . , r � K � 1u.
3.6 Summary

Novel algorithms for NTF and NTD have been proposed in this chapter based on recursively solving

the nonnegative quadratic programming problems. A variation of the proposed algorithm which is

suitable for low memory or parallel computing is also presented. Moreover, we derived an flexible

algorithm (rK-QALS) which sequentially updates a subset of 1¤ R̃¤ R components of factors. For
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R̃ � 1, the rK-QALS algorithm simplifies to the HALS algorithm37. Adaptive choice behavior of

the number of components being updated in the rK-QALS algorithm is a possible future work. The

performances of the proposed algorithm are verified for difficult synthetic benchmarks and also for

clustering and classification problems in Chapter 6. Our algorithm not only works well for dense data,

but also for sparse data without any additional regularization parameter as other algorithms. Especially,

the proposed algorithm copes with highly collinear factors. The proposed algorithm for NQP can be

applied to any applications involving nonnegative least squares approximation.



Chapter 4

All-at-Once Algorithms for Tensor
Decompositions

4.1 All-at-Once Algorithms for CP

Chapter 2 presented the ALS algorithm and proposed a variantof this algorithm which updates com-

ponents sequentially. We call it the HALS algorithm which can work for CP with and without non-

negative and other constraints. However, alternating least squares algorithms often fail for data with

different magnitudes of factors143, or collinearity of factors, such as bottleneck when two or more

components are collinear51;77;171, or swamps in which a bottleneck exists in all modes25;51;127;172.

Alternative least squares (ALS) algorithms with line searches, regularization, rotation can improve

performance, but they do not completely solve the problems.All-at-once algorithms which simultane-

ously update all the factorsApnq instead of the alternating least square methods are expected to cope

with this problem4;142;143;176;196;202;203. Nevertheless, those algorithms are computationally demand-

ing due to construction of gradients and Hessians with respect to all the entries of the factors. Acaret

al.4 presented the OPT algorithm in the Matlab Tensor toolbox17 which fits a CP model to a tensor via

optimization. The OPT algorithm4;17 employs the nonlinear conjugate gradient (NCG) method with

Fletcher-Reeves, Polak-Ribière, and Hestenes-Stiefel updates185,

a� a� η BDBa , (4.1)

wherea is vectorization of all factorsApnq defined in (1.25), η is the step size.

An alternative approach to minimize the cost function is thedamped Gauss-Newton (dGN) method

with update rule given by

a� a� �
JT J� µIRT

��1
JT

�
y� ŷ	 , (4.2)

wherey � vecpYq, ŷ � vec
�
Ŷ

	
, J P Rp±n Inq� pRTq pT � °

n Inq is the Jacobian of vec
�
Ŷ

	
with

respect toa, and the damping parameterµ ¡ 0. Paatero143 emphasized advantage of dGN compared

with ALS when dealing with problems regarding swamps, different magnitudes of factors. We note

that the approximate HessianH � JT J is rank-deficient143;144;200;203. To deal with this problem and

to improve convergence and stability of the algorithm, the Jacobian can be forced to be full rank by
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adding additional rows as proposed by Bini and Boito22. An alternative approach is to employ the

dGN iteration with a damping parameterµ.

The Gauss-Newton algorithm can be derived from Newton’s method. Hence, the rate of conver-

gence of the update rule (4.2) is at most quadratic. However, these methods face problemsinvolving

the large-scale Jacobian and large-scale inverse of the approximate HessianH � JT J P RRT�RT,T �°
n In. In order to eliminate the Jacobian, Paatero143 established explicit expressions for submatrices

of H. We note that inverse ofH is the largest workload of the GN algorithm with a complexityof order

OpN3R3I3q for factorization of a tensor withIn � I ,�n. Paatero143 solved the inverse problemH�1 by

Cholesky decomposition of the approximate Hessian and backsubstitution. However, the algorithm is

of orderOp10{3R3I3q for 3-way symmetric tensor factorizationIn � I ,�n, and still computationally

demanding. Tomasi200 extended Paatero’s results143, and derived a convenient method to construct

H and the gradient forN-way tensor without using the Jacobian. In order to cope withinverse of

H, Tomasi201 used QR decomposition. However, existing dGN algorithms are still not sufficiently

efficient for the large-scale inverse problemH�1.

Recently, Tichavský and Koldovský196 have proposed a novel method to compute inverse of Hes-

sian based on 3R2 � 3R2 dimensional matrices. For low-rank approximationR! In,�n, this method

dramatically improves the running time. However, the algorithms still demand significant temporary

extra-storage, and high computational cost due to employment of Kronecker products, and it is re-

stricted for third-order tensors.

Another approach is to consider the CP decomposition as a joint diagonalization prob-

lem56;111;117;173. However, the method will not be discused in this chapter.

This chapter will derive a suite of low cost algorithms to factorize real and complex-valued tensors

with/without nonnegative constraints based on damped Gauss-Newton (dGN or LM) iterations with

convenient computations for the approximate Hessian and gradients. Especially, for low-rank tensor

approximation, we introduce fast dGN algorithms without building up huge approximate Hessians,

and also with elimination of Kronecker products which are often used in CP algorithms. The pro-

posed algorithms are verified to overwhelmingly outperform“state-of-the-art” algorithms for difficult

benchmarks with bottlenecks, swamps for both real and complex-valued tensors.

4.2 Damped Gauss-Newton Algorithm

In this section, we will derive a fast dGN algorithm for low-rank approximation of tensors with arbi-

trary dimensions. The most important challenge of the update rule (4.2) is to reduce the computational

cost for evaluation of the approximate HessianH and its inverse. We derive a low rank adjustment for

the approximate Hessian and employ the binomial inverse theorem94 to inverse anNR2 � NR2 ma-
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Figure 4.1: Illustration of the approximate Hessian for a 5-D tensor which can be expressed as a low
rank adjustmentH � G� Z K Z T as in Theorem4.1. Green dots indicate nonzero elements.

trix which is much smaller thanH P RR
°

n In�R
°

n In. This result allows formulating a low complexity

update rule equivalent to the dGN rule (4.2).

4.2.1 Low-Rank Adjustment for Approximate Hessian

Theorem 4.1(Low rank Adjustment for approximate HessianH). The approximate HessianH can be
decomposed as

H � G� Z K Z T , (4.3)

whereG is an invertible block diagonal matrix,Z is a block diagonal matrix consisting of N R2

columns, and kernel matrixK is an N� N block of matricesK pn,mq
G � blkdiag

�
Γ
pn,nq b I In

	N

n�1
, (4.4)

Z � blkdiag

�
IRb Apnq	N

n�1
, (4.5)

K pn,mq � p1� δn,mqPR,R diag
�

vec
�
Γ
pn,mq		 , (4.6)

whereδn,m is the Kronecker delta. The permutation matrixPR,R is defined for an R� R matrix (see
AppendixA4.1), andΓpn,mq are symmetric matrices defined as

Γ
pn,mq � �

Γ
pn,mq�T � �

Γ
pm,nq�T � ⊛

k,n,m
Cpkq , Cpnq � ApnqTApnq. (4.7)

Proof of Theorem4.1follows from Theorems presented in the subsequent sections. In Figure 4.1,

we illustrate an example of the approximate Hessian for a 3�4�5�6�7 dimensional tensor composed

by 5 factors of 3 components. The approximate Hessian in the left hand side of Figure4.1consists ofpNpN � 1qqR2 rank-one matrices andNR2 diagonal matrices located along the main diagonal ofH.

In order to prove Theorem4.1, we seek for explicit expressions for the Jacobian and the approxi-

mate Hessian. Partial or similar results have been shown by Paatero144 and Tomasi200. However, our

purpose and those of Paatero144 and Tomasi200 are quite different. Both Paatero144 and Tomasi200

introduced explicit expressions for submatrices of sizeIn� Im or In� In of the approximate Hessian in
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order to bypass the large-scale JacobianJ and to establish fast computation ofH, but they have not suc-

cessfully solved the large-scale inverse problemH�1. In this section, our aim is to deal with this hard

problem. Moreover, due to different vectorization of factors and to the chapter being self-contained,

the results for the approximate Hessian and the Jacobian need to be reinvestigated.

4.2.1.1 Explicit Expression for Approximate Hessian

In order to compute the JacobianJ, andH, we consider the commutation matrixPn of size
±N

n�1 In �±N
n�1 In mapping vecpYq � Pn vec

�
Ypnq� and defined in Lemma4.1. This definition is related to the

commutation matrix defined by Magnus and Neudecker120, and considered by Tomasi in200. However,

they are not the same. Moreover, explicit expression ofPn is presented in AppendixA4.2.

From (1.24) and Lemma4.1, the gradient of the vector̂y with respect to each componentapnqr , for

n� 1, 2, . . . ,N andr � 1, 2, . . . ,R is computed asBŷBapnqr

� B vec
�
Ŷ

	Bapnqr

� Pn
B vec

�
Ŷpnq�Bapnqr

� Pn

B Ŗ

r�1

apnqr

�ä
k,n

apkqr

�TBapnqr

� Pn

�ä
k,n

apkqr b I In

�
, (4.8)

whereI In is anIn � In identity matrix. As a consequence, the Jacobian matrixJ has a form of143;202

J� BŷBa � �� BŷBap1q1

� � � BŷBap1qR

� � � BŷBapnq1

� � � BŷBapnqR

� � � BŷBapNq1

� � � BŷBapNqR

��� �
P1

��ä
k,1

Apkq�b I I1

� � � � Pn

��ä
k,n

Apkq�b I In

� � � � PN

��ä
k,N

Apkq�b I IN

��
.(4.9)

We express the approximate HessianH as anN � N block matrix, and establish the explicit ex-

pression forH

H � ���������Hp1,1q � � � Hp1,mq � � � Hp1,Nq
...
. . .

...
. . .

...

Hpn,1q � � � Hpn,mq � � � Hpn,Nq
...
. . .

...
. . .

...

HpN,1q � � � HpN,mq � � � HpN,Nq
��������� ,with Hpn,mq � ����������Hpn,mq

1,1 � � � Hpn,mq
r,1 � � � Hpn,mq

R,1
...
. . .

...
. . .

...

Hpn,mq
1,s � � � Hpn,mq

r,s � � � Hpn,mq
r,s

...
. . .

...
. . .

...

Hpn,mq
1,R � � � Hpn,mq

r,R � � � Hpn,mq
R,R

���������� , (4.10)

where blocksHpn,mq
r,s P RRIn�RIm is defined as

Hpn,mq
r,s � � BŷBapnqr

�T � BŷBapmqs

�
, pn,m� 1, 2, . . . ,N, r, s� 1, 2, . . . ,Rq . (4.11)

The purpose herein is to establish the explicit expressionsfor block matricesHpn,mq
r,s , for �n,�m,

and�r,�s.
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Theorem 4.2. A submatrixHpn,mq
r,s is a rank-one or diagonal matrix given by

Hpn,mq
r,s � δn,mγpn,nqrs I In � p1� δn,mq γpn,mqr s apnqr apmqT

s , (4.12)

whereγpn,mqrs is thepr, sq entry of the symmetric matrixΓpn,mq defined in (4.7).

Proof. From (4.8) and (4.11), submatricesHpn,nq
r,s can be quickly expressed as

Hpn,nq
r,s � ���ä

k,n

apkqr

�T b I In

�
PT
n Pn

�ä
k,n

apkqs b I In

� � �¹
k,n

apkq T
r apkqs

�
I In � γpn,nqrs I In.

The gradient in (4.8) can be rewritten as concatenation of Kronecker products given byBŷBapnqr

� Pn

�ä
k,n

apkqr b epnq1

ä
k,n

apkqr b epnq2 � � � ä
k,n

apkqr b epnqIn

� � �
Pn

�ä
k,n

apkqr b epnqin

��In

in�1

,

where unit vectorepnqin
for in � 1, 2, . . . , In is thein-th column of the identity matrixI In P RIn�In.

Based on Theorem4.13, anpin, imq entry of a sub matrixHpn,mq
r,s for n , m and in � 1, 2, . . . , In,

andim � 1, 2, . . . , Im is calculated by�
Hpn,mq

r,s

�
in,im

� � BŷBapnqr

�T

in

� BŷBapmqs

�
im

� ���ä
k,n

apkqr

�T b epnqT
in

�
PT
n Pm

�ä
k,m

apkqs b epmqim

�� �
apNqT

r b � � � b apn�1qT
r b epnq T

in
b apn�1qT

r b � � � b ap1qT
r

	�
apNqs b � � � b apm�1q

s b epmqim
b apm�1q

s b � � � b ap1qs

	� � ¹
k,n,m

�
apkqT

r apkqs

	���
apmqT

r epmqim

	b �
epnqT

in
apnqs

		 � γpn,mqr s apmqim r apnqin s . (4.13)

This leads to a compact formula of a block matrixHpn,mq
r,s for n , mgiven in (4.12). �

The result in Theorem4.2is somewhat similar to those introduced by Paatero143 for 3-way tensors,

and by Tomasi200 for N-way tensors. Both Paatero143 and Tomasi200 introduced the results for the fast

computation of the approximate Hessian and to bypass the large-scale JacobianJ, but they have not

employed these structures of the approximate Hessian to overcome the problem of large-scale inverse

problem. We reinvestigated the results in Theorem4.2 in order to establish an explicit expression for

the whole approximate Hessian as a low rank adjustment givenin Theorem4.1.

Theorem 4.3. A submatrixHpn,mq p�n,�mq has an explicit expression given by

Hpn,mq � δn,m �
Γ
pn,nq b I In

	� �
IRb Apnq	 K pn,mq �IRb ApmqT

	
. (4.14)
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Proof. From (4.12), a diagonal block matrixHpn,nq is expressed as

Hpn,nq � ��������� γ
pn,nq
1,1 I In � � � γpn,nqr,1 I In � � � γpn,nqR,1 I In

...
. . .

...
. . .

...

γ
pn,nq
1,s I In � � � γpn,nqr,s I In � � � γpn,nqr,s I In

...
. . .

...
. . .

...

γ
pn,nq
1,R I In � � � γpn,nqr,R I In � � � γpn,nqR,R I In

��������� � Γpn,nq b I In . (4.15)

From (4.12), by employing (4.95), we vertically concatenate allHpn,mq
r,s (n , m) which have the same

index r in the same column, then horizontally concatenate the resulting blocks by using (4.98). The
final expression for thepn,mq block matrixHpn,mq can be written as

Hpn,mq � ��������� γ
pn,mq
1,1 apnq1 apmqT

1 � � � γpn,mqr,1 apnqr apmqT
1 � � � γpn,mqR,s apnqR apmqT

1
...

. . .
...

. . .
...

γ
pn,mq
1,s apnq1 apmqT

s � � � γpn,mqr,s apnqr apmqT
s � � � γpn,mqR,s apnqR apmqT

s
...

. . .
...

. . .
...

γ
pn,mq
1,R apnq1 apmqT

R � � � γpn,mqr,R apnqr apmqT
R � � � γpn,mqR,R apnqR apmqT

R

���������� � �
IRb apnq1

	
Dpn,mq

1 ApnqT � � � �IRb apnqr

	
Dpn,mq

r ApnqT � � � �IRb apnqR

	
Dpn,mq

R ApnqT
�� � �

IRb apnq1

	 � � � �
IRb apnqr

	 � � � �
IRb apnqR

	 �
Dpn,mq �IRb ApmqT

	� �
IRb Apnq	 PR,R Dpn,mq �IRb ApmqT

	
, (4.16)

whereDpn,mq
r � diag

�
γ
pn,mq
r

	
is a diagonal matrix whose diagonal entries are ther-th row of Γpn,mq,

andDpn,mq � diag
�

vec
�
Γ
pn,mq		. �

By establishing expressions for submatricesHpn,mq, we can straightforwardly prove Theorem4.1.

Proof. (Theorem4.1) From (4.14), we construct a sparse matrixG consisting all block matricesHpn,nq
locating along the diagonal of the approximate Hessian (4.10), that is

G � blkdiag

�
Hpn,nq	N

n�1
� blkdiag�Γpn,nq b I In

	N

n�1
. (4.17)

From Theorem4.3, and by using the product of block matrices, the differenceH � G can be
straightforwardly decomposed into three matrices defined in Theorem4.1as

H �G � Z K Z T . (4.18)

This completes the proof of Theorem4.1. �
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4.2.2 Fast Inverse of the Approximate Hessian H

Theorem4.1allows inversion of the large approximate Hessian via a muchsmaller matrix94

H�1
µ � pH � µ ITq�1 � �

Gµ � Z K Z T
��1 � G�1

µ �G�1
µ ZBµ ZT G�1

µ , (4.19)

with

Bµ � �
K�1 � ZT Gµ�1 Z

��1
, (4.20)

if K is invertible, or in an alternative form

Bµ � K
�
I NR2 � ZT G�1

µ Z K
��1
, (4.21)

whereGµ � G � µ IT � blkdiag��Γpn,nq � µ IR

	b I In

	N

n�1
, and its inverse can be efficiently

computed fromrΓpn,nqµ � Γpn,nqµ

�1 � �
Γ
pn,nq � µ IR

	�1rGµ � G�1
µ � blkdiag

�rΓpn,nqµ b I In

	N

n�1
. (4.22)

The following results are used to inverse the approximate Hessian in (4.19)

Lµ � G�1
µ Z � blkdiag�rΓpn,nqµ b Apnq	N

n�1
, (4.23)

Ψ � ZT G�1
µ Z � blkdiag�rΓpn,nqµ bCpnq	N

n�1
. (4.24)

The matrixK can also be expressed as a product of the permutation matrixPR,R and a partitioned

matrix of matricesDpn,mq � p1� δn,mqdiag
�

vec
�
Γ
pn,mq		

K � pI N b PR,Rq �Dpn,mq�
n,m
. (4.25)

If all the entriesγpn,mqr,s are non-zeros, the matrixD is invertible, and its inverse is also a partitioned

matrix comprising diagonal matrices. Proof is briefly described in AppendixA4.3.

4.2.3 Fast dGN Algorithm

From dGN rule (4.2), we can replaceH�1
µ by those in (4.19) to formulate the fast dGN algorithm

a� a� rGµJT
�
y� ŷ	� Lµ Bµ LT

µ JT
�
y� ŷ	 . (4.26)

The Jacobian still exists in the update rule (4.26), and it could demand high computational cost. We

also note thatBµ is inverse of anNR2�NR2 matrix given in (4.20) or (4.21), andLµ is a block diagonal

matrix of N Kronecker products
�rΓpn,nqµ b Apnq	 P RRIn�R2

given in (4.23). Construction ofLµ might

have a computational complexity of orderO
�
T R3

�
, and requires an extra-storage ofO

�
TR3

�
. In order

to completely bypass the JacobianJ in (4.26), avoid building up the matrixLµ, we seek for convenient

methods for computingrGµJT
�
y� ŷ	, w� LT

µ JT
�
y� ŷ	, and productLµ Bµw.
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4.2.3.1 Elimination of Jacobian

From (4.9), (4.22), projection ofE � Y � Ŷ onto the matrixGµ�1 JT can be expressed as�rGµ JT vecpEq	T � �
vecpEqT Pn

���ä
k,n

Apkq� rΓpn,nqµ

�b I In

��N

n�1���vec

�
Epnq�ä

k,n

Apkq�rΓpn,nqµ

�T
��N

n�1���vec

��Ypnq �ä
k,n

Apkq� rΓpn,nqµ � Apnq �ä
k,n

Apkq�T �ä
k,n

Apkq� rΓpn,nqµ

�
T��N

n�1���vec

�
Ypnq �ä

k,n

Apkq� rΓpn,nqµ � Apnq
Γ
pn,nq rΓpn,nqµ

�T
��N

n�1� �
vec

�
Apnq

ALS� Âpnq
ALS

	T
�N

n�1
, (4.27)

where factorsApnq
ALS � Ypnq �ä

k,n

Apkq� rΓpn,nqµ , andÂpnq
ALS � Apnq

Γ
pn,nq rΓpn,nqµ are results of the damped

rule (2.5)51 for the tensorsY andŶ obtained from factorsApnq. Similarly, we have derived a conve-

nient formula to compute the following projection

w� ZT Gµ�1 JT vecpEq � �
vec

�
ApnqT

�
Apnq

ALS� Âpnq
ALS

		T
�N

n�1

T� vec

��
ApnqTApnq

ALS� Γ rΓpn,nqµ

�N

n�1



, (4.28)

whereΓ �⊛N
n�1 Cpnq.

4.2.3.2 Elimination of Kronecker Products and Large-scaleExtra-storage for Lµ

This section copes with computational issues regarding to the Kronecker products in (4.23), and the

matrix productLµ f in which f � Bµw. We denote a 3-D tensorF P RR�R�N whose vectorization is

the vectorf P RNR2
, that is

vecpF q � f � Bµw , (4.29)

or eachR� R frontal sliceFn P RR�R is given by: vecpFnq � �
fpn�1qR�1 � � � fnR�1 � � � fnR2

�T
,

n� 1, 2, . . . ,N. Noting that
�rΓpn,nqµ b Apnq	 vecpFnq � vec

�
Apnq Fn rΓpn,nqµ

	
, we obtain
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Lµ f � ������������
vec

�
Ap1q F1 rΓp1,1qµ

	
...

vec
�

Apnq Fn rΓpn,nqµ

	
...

vec
�

ApNq FN rΓpN,Nqµ

	
������������ . (4.30)

Each product inside (4.30) has a complexity ofO
�
In R2 � R3

�
. As a consequence,Lµ f in (4.30) has

a complexity ofO
�
TR2 � NR3

� � O
�
TR2

�
which is significantly lower thanO

�
2TR3

�
for building

up Lµ and direct computationLµ f . Furthermore, this fast computation does not use any significant

temporary extra-storage.

4.2.3.3 Fast dGN Algorithm

ReplacingrGµJT
�
y� ŷ	, LT

µ JT
�
y� ŷ	, andLµBµw in (4.26) by those in (4.27), (4.28) and (4.30)

reformulates a compact update rule expressed for each factor Apnq, n� 1, 2, . . . ,N

Apnq � Apnq
ALS� Apnq �IR� �

Fn � Γpn,nq	 rΓpn,nqµ

	
, (4.31)

with Fn are frontal slices ofF and f � vecpF q is solution of the inverse problem

f � K pI NR2 �ΨKq�1 w, (4.32)

or

f � �
K�1 �Ψ��1

w , (4.33)

for invertibleK , wherew is given in (4.28).

We note that both linear systems (4.32) and (4.33) have computational complexity of order

OpN3 R6q if we discard the sparsity and symmetric structures of matricesΦ1 � I NR2 � ΨK and

Φ2 � K�1 � Ψ, while pH � µ Iq�1 has a computational complexity of orderOpR3p°n Inq3q or

OpN3 R3 I3q for a tensor withI1 � I2 � � � � � IN � I . As a consequence, solving an inverse problem

f � K Φ�1
1 w in (4.32) or f � Φ�1

2 w in (4.33) is much less expensive than solving the inverse prob-

lem pH � µIq�1 JT e. Moreover, the update rule (4.31) does not employ the approximate HessianH

and the JacobianJ. Hence, they are significantly faster than the standard dGN algorithms143;200.

Pseudo code of the proposed algorithm based the update rule (4.31) is given in Algorithm4.1.

If components ofApnq are mutually non-orthogonal,K is invertible, and its inverse can be efficiently

computed as in AppendixA4.3. In this case, Step8 is replaced by (4.104). Although normalization

for factorsApnqpn , Nq is not explicitly shown in Algorithm4.1, it is always needed after Step23 in
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Algorithm 4.1: Fast Algorithm for Low-Rank Approximation
Input : Y : input data of sizeI1 � I2 � � � � � IN,
R: number of basis components
Output : N factorsApnq P RIn�R such that the cost function (2.1) is minimized.

1 begin
33 Random or SVD initialization forApnq,�n
4 repeat
5 for n� 1 to N do
6 for m� n� 1 to N do // K in Eq. (4.6)

88 K pn,mq � K pm,nq � PR,R vec
�
Γ
pn,mq	 // Γpn,mq � ⊛

k,n,m
Cpkq,Cpnq � ApnqTApnq

9 end

1111 rΓpn,nqµ � �
Γ
pn,nq � µ IR

	�1

1313 Apnq
ALS � Ypnq �ä

k,n

Apkq� rΓpn,nqµ // damped ALS factor in (2.5)

1515 wn � vec
�

ApnqT Apnq
ALS� Γ rΓpn,nqµ

	
// Eq. (4.28), W � rwns

1717 Ψ
pn,nq � rΓpn,nqµ b Cpnq // Ψ � blkdiag�Ψpn,nq	 in Eq. (4.24)

18 end

2020 f � �
K�1 �Ψ��1

vecpWq // or f � K pI �ΨK q�1 vecpWq in Eq. (4.32)
21 for n� 1 to N do // Update Apnq using Eq. (4.31)
2323 Apnq � Apnq

ALS� Apnq �IR� �
Fn � Γpn,nq	 rΓpn,nqµ

	
// vecpF q � f

24 end
2626 Updateµ
27 until a stopping criterion is met
28 end

Algorithm 4.1. A practical normalization is that the energy of the components is equally distributed in

all modes. The method often enhances the convergence speed of the LM iteration203.

4.2.3.4 Two Variants of the Fast dGN Algorithm

From (4.32), (4.33), we present two variants of the fast dGN algorithm which solve the corresponding

inverse problemΦ�1w.

(a) fLM a. For problem (4.32), Φ , Φ1 comprisesN diagonal matricesIR2, andN pN � 1q block

matrices
�
Γ
pn,nq�1 b Cpnq	 PR,RDpn,mq, for n , mgiven by

Φ1 � I NR2 �ΨK . (4.34)

Note thatΦ1 is not symmetric, and its density is given by

dΦ1 � N pN � 1qR4 � N R2

N2 R4
� pN � 1qR2 � 1

NR2
. (4.35)
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For 3-D tensor factorizations, the fast dGN algorithm in which Step20 solves (4.33) simplifies

into the LM-1 algorithm in196.

(b) fLM b. For problem (4.32), we have a sparse and symmetric matrixΦ2 of sizeNR2�NR2 derived

from (4.6) and (4.24)

Φ2 � K�1 � Ψ. (4.36)

AppendixA4.3presents an explicit form ofK�1 which is a partitioned matrix ofpR2�R2q diagonal

matrices (see Theorem4.14). Hence, it has onlyN2 R2 non-zero entries. The block diagonal matrix

Ψ (4.24) is diagonally constructed fromN pR2�R2q sub-matrices. As a consequence, the density

of the sparse matrixΦ2 P RNR2�NR2
is

dΦ2 � N2 R2 � N R4 � N R2

N2 R4
� R2 � N� 1

N R2
. (4.37)

BecauseΦ1 in (4.34) is not symmetric and less sparse thanΦ2, solving the linear system in (4.32)

involvingΦ1 could be more time consuming than that in (4.33) withΦ2. Inverse ofK is not expensive

and has explicit expression given in Theorem4.14. However, when factor matrices have mutually

orthogonal columns,K has collinear columns and rows, and is singular. We can switch between two

variants by verifying whetherΓpn,mq consists of any zero or close-to-zero entries. In Figure4.2, we

illustrate structures and properties of the two matricesΦ1 andΦ2 for a 3� 4� 5� 6� 7 dimensional

tensor composed byR � 3 rank-one tensors. We can reduce computational cost of inverse problems

(4.32), (4.33) by employing sparsity and symmetric structures ofΦ1 andΦ2.

4.2.3.5 Complexity of the Fast dGN Algorithm

For simplicity, complexity of Algorithm4.1 is evaluated for anN-D tensor withIn � I ,�n.

Step8 computesΓpn,nq with complexityO
�pN � 2qR2

�
. Hence, building upK demands a complexity

O
�

1
2NpN � 1qpN � 2qR2

� � O
�

1
2N3R2

�
.

Step11 has a cost ofO
�
NR3

�
.

Step13 computes the damped factorsApnq at a cost ofO
�
NIN�1R

�
, and is one of the most expen-

sive step in the fast dGN algorithm. We note that the large workload Ypnqä
k,n

Apkq is used for

evaluation of gradient, and exists in all CP algorithms suchas ALS, OPT.

Step17 builds up the block diagonal matrixΨ with a complexityO
�
NR4

�
.

Step20 solves the inverse problem (4.32) or (4.33) with a cost ofO
�
N3R6

�
. This step is much faster

than inverse of the approximate HessianO
�
N3R3I3

�
due toR! In � I or NR  °

n In.
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Figure 4.2: Illustration of structure ofNR2 � NR2 sparse matricesΦ1 andΦ2 for a 3� 4� 5� 6� 7
dimensional tensor composed byR� 3 rank-one tensors. The matrixΦ1 is less sparse than the matrix
Φ2. Blue dots denote nonzero entries.

The total expense of the fast dGN algorithm per one iterationto update all the factorsApnq is

approximatelyO
�
NIN�1R� N3R6

�
. For N ¡ 7, the proposed algorithm has the same order of com-

plexity as that of ALS. However, fast dGN requires less iterations than ALS. Hence, it converges faster

than ALS.

4.2.4 Damping Parameter in LM Algorithm

The choice of damping parameterµ in the fast dGN algorithms (4.31) affects the direction and the step

size∆a � H�1
µ g in the update rule (4.2): a� a�∆a136. In this chapter, the damping parameterµ is

updated using the efficient strategy proposed by Nielsen136:

µ � $&%2 max

"
1
3
, 1� p2ρ� 1q3* , ρ ¡ 0,

2µ, otherwise,
, (4.38)

ρ � }et�1}2
2 � }et}2

2

∆aT pg� µ∆aq , (4.39)

g � JT py� ŷq � ���������� vec

�
Yp1q �ä

k,1

Apkq� � Ap1q
Γ
p1,1q�

...

vec

�
YpNq �ä

k,N

Apkq� � ApNq
Γ
pN,Nq�

���������� P RR
°N

n�1 In . (4.40)
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whereet � vec
�
Y � Ŷ t

	
, the gradientg can be straightforwardly derived as in (4.27) or in200;202.

The factorsApnq will be updated unless the new approximate error (2.1) is lower than the previous one:}et}2   }et�1}2. The algorithm can stop whenµ increases to a sufficiently large value (e.g. 1030). In

practice, factorsApnq are often initialized usingR leading left singular vectors of the tensor unfoldings

along the corresponding mode47;60;106, then run over ALS (2.2) after few iterations. According to the

CP model (1.21), all the componentsapnqr pn , Nq except ones of the last factor are unit-length vectors.

The initial value of the damping parameterµ is chosen as the maximum diagonal entry ofH as

µ0 � τmaxtdiagpHuq � τmax
!

diag
�
Γ
p1,1q	 � � � diag

�
Γ
pn,nq	 � � � diag

�
Γ
pN,Nq	)� τmax

!
1, diag

�
CpNq	) , (4.41)

whereτ is typically in the ranger10�8, 1s.
4.3 Damped Gauss-Newton Algorithm for NTF

This section extends the dGN algorithm for CP to NTF. Paatero143 proposed the PMF3 algorithm for

NTF which minimizes the cost function (2.1) with a logarithmic penalty function to prevent factors

Apnq reaching zeros. In order to derive the fast dGN algorithm forNTF, we consider a similar cost

function (2.1) with additional penalty termsPl andPs to enforce nonnegativity and sparsity constraints

on factorsApnq, respectively,

D� � DpY , tApnquq � PlptApnquq � PsptApnquq , (4.42)

Pl � � Ņ

n�1

αn

Iņ

in�1

Ŗ

r�1

logpapnqinr q, Ps � Ņ

n�1

βn

���Apnq���
1
, (4.43)

where parametersαn ¡ 0 andβn ¡ 0 for n � 1, 2, . . . ,N. The update rule derived from the cost

function (4.42) simultaneously updates all the factorsApnq based on the damped GN iteration (4.2)143,

and can be expressed in a common formula as

a� a� pH � µIq�1 g, (4.44)

whereaT � �
vec

�
Apnq�T

�N

n�1
, µ ¡ 0 is the damping parameter. The gradientg and the approximate

HessianH are given by

g � JTpŷ� yq � BPlBa � BPsBa � JTpŷ� yq � ��
αn vec

�
Apnq	
r�1s � βn


T
�N

n�1

T

, (4.45)

H � JT J� B2PlBa2
� B2PsBa2

� JT J� Nà
n�1

diag

"
αn vec

�
Apnq	
r�2s*

, (4.46)
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J � �
P1 ptAud�1 b I1q � � � PN ptAud�N b I Nq �

, (4.47)

where “
à

” denotes a direct sum:A ` B � diagtA,Bu, andrxs
rps denotes element-wise powers. In

the sequence, we present more efficient computation methods for the learning rule (4.44) for NTF.

4.3.1 Fast Computation of the Gradient g

From (4.40), by denotingFpnq � YpnqtAud�n � Apnq
Γ
pn,nq, the gradient (4.45) can be expressed as a

concatenation vector without using the JacobianJ

gT � �
vec

��Fpnq � αn

�
Apnq	
r�1s � βn


T
�N

n�1

. (4.48)

4.3.2 Construction and Inverse of Approximate Hessian H

The approximate HessianHµ � H�µI can be expressed as the concatenation ofR In�R Im dimensional

block matricesHpn,mq
µ asH � µI � �

Hpn,mq
µ

�
.

Theorem 4.4(Expression of block matrixHpn,mq
µ ). A diagonal block matrixHpn,nq

µ can be expressed by

Hpn,nq
µ � Γpn,nq b I In � diag

"
αn vec

�
Apnq	
r�2s � µ* , (4.49)

and a block matrixHpn,mq
µ for n , m is given by

Hpn,mq
µ � pIRb ApnqqPR,R diagpvecpΓpn,mqqqpIRb ApmqTq, (4.50)

whereΓpn,mq � æ
k,m,n

ApkqT Apkq, andPR,R is a permutation matrix ofX: vecpXq � PR,Rvec
�
XT

�
.

Proof. Proof is directly derived from (4.47) and (4.46) and Theorem4.3. �

Theorem 4.5(Low rank Adjustment for the approximate HessianHµ). The approximate HessianHµ
can be decomposed under the form as

Hµ � G� Z K Z T . (4.51)

whereK is defined in (4.6), and matricesG P RTR�TR andZ P RTR�R2
are given by

G� P

�
Nà

n�1

Inà
in�1

�
Γ
pn,nq � diagtαnapnqin:


r�2s � µu
�PT , (4.52)

Z � Nà
n�1

�
IRb Apnq	 , (4.53)

in whichP� Nà
n�1

PR,In, PR,In is a permutation matrix,vecpXq � PR,In vec
�
XT

�
.
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Proof. Proof is derived from Theorem4.4and Theorem4.1. �

Theorem4.5allows to inverse the large approximate Hessian via the binomial inverse theorem94

Hµ�1 � G�1 �G�1 Z
�
K�1 � ZT G�1 Z

��1
ZT G�1 . (4.54)

We note thatG�1 can be efficiently computed as

G�1 � P

�
Nà

n�1

Inà
in�1

Θ
pnq
in

�
PT , (4.55)

whereΘpnqin
� �
Γ
pn,nq � diag

"
αnapnqin:


r�2s � µ*
�1

. The inverse of the partitioned matrixK has an

explicit expression given in Theorem4.14167.

Products of matrices in (4.54) can be computed as

L � G�1 ZT � P

�
Nà

n�1

Υ
pnq� pI N b PR,Rq , (4.56)

ZT G�1 Z � pI N b PR,Rq Nà
n�1

Wpnq pI N b PR,Rq , (4.57)

whereΥpnqT � �
apnqTin: bΘpnqT

in

�In

in�1
, and Wpnq � �

Wpnq
r,s

�
is a partitioned matrix of sub-matrices

Wpnq
r,s � °In

in�1Θ
pnq
in

apnqin,r
apnqin,s

, for r � 1, 2, . . . ,R ands� 1, 2, . . . ,R.

From (4.48), (4.54), (4.55), (4.56), (4.57) and Theorem4.14, the update rule (4.44) is formulated

in a more efficient form as follows

a� a�G�1 g� L Φ�1 �LT g
�
, (4.58)

whereΦ � K�1 � ZT G�1 Z P RNR2�NR2
. We note that for low rank approximationR! In,�n, the

matrixΦ is much smaller than the approximate HessianH P RRT�RT. Inverses of the matrixΦ requires

computational complexity of orderOpN3 R6q, while pH � µ Iq�1 has a computational complexity of

orderOpR3T3q orOpN3 R3 I3q for a symmetric tensorI1 � � � � � IN � I . As a consequence, solving an

inverse problemw � Φ�1ψ, ψ � LT g in the update rule (4.58) is much less expensive than solving

the problempH � µIq�1 g in the update rule (4.44). Moreover, because the learning rule (4.58) does

not need to construct the approximate HessianH and the JacobianJ, this update rule is significantly

faster than the rule (4.44).

4.3.3 Selection of Barrier and Sparse Parameters

Paatero143 suggested an heuristic approach to control the barrier parameterα � αn,�n. The parameter

α should be initialized by a large enough value, then slowly descends down to near-zero after each 10
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iterations. This strategy is efficient in almost all cases. However, we cannot control the convergence

speed. An alternative approach is to adaptively select regularization parameters based on the Karush-

Kuhn-Tucker (KKT) condition. In this direction, Rojas and Steihaug updated barrier parameter at

each iteration174. Ding et al. derived an optimal formula for regularization parameters in orthogonal

NMF65. The sparsity parametersβn are often fixed to a small enough value. By employing this method,

regularization parametersαn andβn (�n) are selected based on the KKT slackness condition

a ¥ 0 , a ⊛ g� 0 , g¥ 0 . (4.59)

From conditions (4.59), and the gradient (4.48), we obtain

Apnq
⊛

�
Fpnq � αn

�
Apnq	
r�1s � βn


 � 0 , �n, (4.60)

Fpnq � αn

�
Apnq	.r�1s � βn ¤ 0 , �n. (4.61)

This leads to solve a constrained LS problem

min
x
}Bpnqx� upnq}2

2 such that

#
Bpnq x ¤ upnq,
x � rαn βnsT ¥ 0,

�n, (4.62)

whereBpnq � �
1 vec

��Apnq��, andupnq � vec
��Apnq ⊛ Fpnq�.

For NTF without the penalty termPs, conditions (4.59) lead to the resultApnq ⊛Fpnq�αn ¤ 0,�n.

The parametersαn can be chosen as

αn � max
�

0,min
�

vec
��Apnq

⊛ Fpnq			 , �n. (4.63)

4.4 Complex-valued Tensor Factorization

This section aims to extend the dGN algorithms to complex-valued tensors. Although a real-valued

tensor is considered as a complex-valued tensor with zero imaginary part, for simplicity algorithms

for real- and complex-valued tensors are introduced into separate sections. For the complex case, CP

model is to find complex-valued factorsApnq P CIn�R.

The damped Gauss-Newton-like update rule (4.2) is rewritten to update complex-valued fac-

tors76;189

a� a� �
JH J� µI��1

JH
�
y� ŷ	 , (4.64)

where symbol “H” denotes the Hermitian transpose, and the JacobianJ is given in (4.9). The ap-

proximate HessianH � JH J slightly changes from that for the real-valued tensors in (4.10). A fast

and efficient computation method for the complex-valued HessianH will be presented so that the final
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update rule does not employ both of the Jacobian and the approximate Hessian. The explicit expres-

sion of the approximate HessianH is deduced from the following theorems which can be derived in a

similar manner presented in the previous sections.

Theorem 4.6(Block matricesHpn,mq
r,s ). Block matricesHpn,mq

r,s of the approximate HessianH are diag-
onal or rank-one matrices given by

Hpn,mq
r,s � δn,mγpn,nqr,s I In � p1� δn,mq γpn,mqr,s apnqr apmqH

s , (4.65)

whereγpn,nqr,s are thepr, sq entries of the Hermitian matricesΓpn,mq � ⊛
k,n,m

ApkqH Apkq.
Theorem 4.7(Block matricesHpn,mq). Block matricesHpn,mq of the approximate HessianH are ex-
pressed in an explicit form as

Hpn,mq � δn,mΓpn,nq b I In � �
IRb Apnq	 K pn,mq �IRb ApmqH

	
, (4.66)

whereK is defined as in (4.6).

Theorem 4.8(Low-Rank Adjustment). The approximate HessianH � JH J can be expressed as a
low-rank adjustment given by

H � G� Z K Z H , (4.67)

where sparse matricesG, Z andK are defined as in (4.4), (4.5) and (4.6).

The damped Gauss-Newton algorithms for complex-valued tensor factorization are stated in fol-

lowing theorems:

Theorem 4.9(damped GN algorithm for complex-valued tensor factorizations). The factorsApnq are
updated using the rule given by

a � a� pH � µ Iq�1 g , (4.68)

where the approximate HessianH is defined in Theorems4.6 or 4.7, and the gradientg P CRT is
computed as

g� ��vec

�
Ypnq �ä

k,n

Apkq��� Apnq
Γ
pn,nqT�T

��N

n�1

T

, (4.69)

where symbol ‘*’ denotes the complex conjugate.

Theorem 4.10(Learning rule for low rank approximation). For NR  T, the factorsApnq are updated
using the fast update rule given by

a � a� aALS� âALS� Lµ Bµw , (4.70)

whereBµ � �
K�1 � ZH G�1

µ Z
��1

if K is invertible, orBµ � K
�
I � ZHG�1

µ Z K
��1

, Lµ is defined
in (4.23), and an Levenberg-Marquardt regularization parameterµ, and vectorw is computed from

damped ALS factorsApnq
ALS and Âpnq

ALS



68 Chapter 4. All-at-Once Algorithms for Tensor Decompositions

w � vec

��
ApnqH

�
Apnq

ALS� Âpnq
ALS

	�N

n�1



, (4.71)

Apnq
ALS � Ypnq�ä

k,n

Apkq���
Γ
pn,nqT � µ I

	�1
, (4.72)

Âpnq
ALS � Apnq

Γ
pn,nqT �

Γ
pn,nqT � µ I

	�1
. (4.73)

We note that ALS for complex-valued CP with damping parameter µ is given by

Apnq
ALS � Ypnq�ä

k,n

Apkq���
Γ
pn,nqT � µ I

	�1
. (4.74)

The update rule (4.70) can be reformulated for each factorApnq as

Apnq � Apnq
ALS� Apnq�IR� �

Fn � Γpn,nqT	 �
Γ
pn,nqT � µ IR

	�1


, (4.75)

whereFn is defined in (4.29). Kronecker product has been eliminated in building upLµ.

4.5 Damped Gauss-Newton Algorithm for Tucker Decomposition

Most algorithms for Tucker decomposition minimize the costfunction

DpY}G� tApnquq � }Y �G� tAu}2
F , (4.76)

via alternating optimization which often accompanies update rules with low computational cost, but

face problems of slow convergence. For NTD, the multiplicative algorithms47;103;131 are based on min-

imization of the squared Euclidean distance (Frobenius norm) and the Kullback-Leibler divergence.

All-at-once algorithms which simultaneously update all the factors cope with such problems. For

Tucker decomposition and NTD, due to high computational cost of Kronecker products and consump-

tion of extremely large temporary extra-storage, the dGN method has not yet been considered.

In this section, an all-at-once algorithm with low complexity will be derived for Tucker decompo-

sition with/without nonnegative constraints based on the damped Gauss-Newton (dGN) iteration. A

logarithmic barrier penalty term has been imposed on the cost function (4.76) to enforce nonnegativity

constraints. The proposed algorithm is verified to overwhelmingly outperform “state-of-the-art” NTD

algorithms for difficult benchmarks.

The proposed algorithm minimizes the cost function (4.76) with a logarithmic penalty function to

prevent factorsApnq and the core tensorG reaching zeros.

D� � DpY}G� tApnquq � αPlptApnqu,Gq , (4.77)

Pl � Ņ

n�1

Iņ

in�1

Rņ

r�1

logpapnqinr q � ¸
r�rr1,r2,...,rNs logpgrq , (4.78)
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whereα ¡ 0, apnqinr andgr � gr1r2���rN are elements of factorsApnq and core tensorG, respectively. The

update rule derived from (4.77) simultaneously updates all the factorsApnq and the core tensorG based

on the damped GN iteration143 given by

a� a� pH � µIq�1 g, (4.79)

whereaT � �
vec

�
Ap1q�T

, � � � , vec
�
ApNq�T

, vecpGqT�, µ ¡ 0 is the damping parameter, andI is the

identity matrix. The gradientg and the approximate HessianH are given by

g � JTpŷ � yq � α BPlBa � JTpŷ� yq � α a
r�1s, (4.80)

H � JT J� α B2PlBa2
� JT J� α diagta
r�2su, (4.81)

J � �
J1 J2 � � � JN JN�1

�
, (4.82)

Jn � #
PT

n

�tAub�nGpnqT b I In

�
, n� 1, 2, . . . ,N,tAub, n� N� 1,

(4.83)

The Jacobian matrixJ P Rp± Inq� p°N
n�1 RnInq can be directly utilized in the learning rule (4.79). How-

ever, this demands high computational cost for construction of the approximate HessianpH � µIq due

to high computational cost of Kronecker products. In the sequence, we present more efficient compu-

tation methods for the learning rule (4.79).

4.5.1 Fast Computation of the Gradient

From (4.83), for n� 1, 2, . . . ,N, we have the following result

JT
n

�
y� ŷ	 � �tAub�n TGpnq b In

�
PT

n vec
�
Y � Ŷ	� vec

��
Ypnq � Ŷpnq� tAub�n T Gpnq�� vec

�xY ��n tATu �G��n tATAu,Gy�n
�
, (4.84)

wherexY , Ŷy�n denotes contracted product betweenY , Ŷ along all their modes except mode-n. Ten-

sor productsY ��n tATu andG ��n tATAu are defined in (1.4) and can be efficiently calculated

over a hierarchical stage of tensor-matrix multiplications. This avoids Kronecker products which are

often computationally demanding, and consume significant temporary extra-storage. For example,

Kronecker productstAub�n produce large-scale matrices of size
±

k,n Ik �±
k,n Rk. Therefore, ten-

sor productsY ��n tATu andG��n tATAu are much less computationally expensive than products

Ypnq tAub�n T , Ŷpnq tAub�n T . Moreover, we don’t need to build up the tensorŶ in (4.84).

Similarly, we have

JT
N�1

�
y� ŷ	 � vec

�
Y � tATu �G� tATAu� . (4.85)
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From (4.84) and (4.85), we established a fast computation for the gradientg without computing the

JacobianJ.

4.5.2 Construction of Approximate Hessian H

This section presents a low computational cost method to build up the approximate Hessian given in

(4.81). For simplicity, we construct the approximate HessianH � JTJ without the regularization

term which can be expressed as concatenation ofpN � 1q2 block matricesHpn,mq � Hpm,nqT ,m, n �
1, 2, . . . ,N � 1 as

H � ��� Hp1,1q � � � Hp1,N�1q
...

. . .
...

HpN�1,1q � � � HpN�1,N�1q ��� . (4.86)

4.5.2.1 Off-Diagonal Block Matrices Hpn,mqpn , m)

Without loss of generality, we consider submatricesHpn,mq, for 1 ¤ n   m ¤ N. From (4.83), for

n� 1, 2, . . . ,N, we have

JT
n � PRn,In

�
I In b Gpnq tAub�nT

�
PIn,Kn Pn� PRn,In

�
I In b Gpnq� �I In b tAub�nT

�
PIn,Kn Pn� PRn,In

�
I In bGpnq� �PIn,Rn�1:N b IR1:n�1

�� Nâ
k�n�1

ApkqT b I In b n�1â
k�1

ApkqT� , (4.87)

whereKn �±
k,n Ik, Rn�1:N �±N

k�n�1 Rk, R1:n�1 �±n�1
k�1 Rk, I J is anJ�J identity matrix. Permuta-

tion matricesPRn,In, PIn,Kn andPIn,Rn�1:N are defined in AppendixA4.1: vecpX I�Jq � PI ,J vec
�

XT
I�J

	
.

Let Qpnq denote the matrix product in (4.87)

Qpnq � �
I In bGpnq� �PIn,Rn�1:N b IR1:n�1

� � ���� G̃pn1qpnq
...

G̃pnInqpnq ���� , (4.88)

where G̃pninqpnq pin � 1, 2, . . . , In, n � 1, 2, . . . ,Nq are the mode-n matricized versions ofpN � 1q-
dimensional tensors̃G

pninq of sizeR1 � R2 � � � � � Rn � In � Rn�1 � � � � � RN in which the tensorG

is a subtensor obtained from the tensorG̃
pninq by fixing thepn� 1q-th index toin, and other entries are

set to zeros, that is

G̃pninqpn�1q � ��� 0pin�1q�±N
k�1 Rk

vecpGqT
0pIn�inq�±N

k�1 Rk

��� . (4.89)
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For each pair of indicespn,mq, we define a set ofpN � 1q matricesBpkq given by

Bpkq � $''''''&''''''%Apkq TApkq, 1¤ k ¤ n,

ApnqT , k � n� 1,

Apk�1q TApk�1q, n� 2¤ k ¤ m,

Apmq, k � m� 1,

Apk�1q TApk�1q, m� 2¤ k ¤ N � 1.

Note that for simplicity, indicesn,m are omitted in matricesBpkq. We have the following expression

for 1¤ n  m¤ N

G̃pninqpnq �tBub�n
�T G̃pmimqTpmq � �

G̃��� n
n�1
m�1


 tBu �m�1 Apmq �n�1 ApnqT

�pnq G̃pmimqTpmq� �
Wpn,mq�̄m�1 apmqTim: �n�1 apnqT

in:

	pnq GTpmq, (4.90)

whereWpn,mq � Ĝ��� n
n�1
m�1


 tBu, andĜ is an augmented version of the tensorG of sizeR1 � � � � �
Rn � 1� Rn�1 � � � � � RN. We note that vec

�
Ĝ
� � vecpGq.

From (4.83), (4.87), submatricesHpn,mq � JT
n Jm, n  m can be expressed as follows

PT
Rn,In

Hpn,mq PRm,Im � G̃pninqpnq ��
Nâ

k�m�1

ApkqTApkq�b ApmqTb�
m�1â

k�n�1

ApkqTApkq�b Apnq b�
n�1â
k�1

ApkqTApkq�� G̃pmimqTpmq� Qpnq ttBub�n TuQpmqT� �
G̃pninqpnq ttBub�n Tu G̃pmimqTpmq �

in�1,2,...,In
im�1,2,...,Im� �xWpn,mq�̄m�1apmqTim: �n�1 apnqT
in: ,Gy�n,�m

�
in�1,2,...,In
im�1,2,...,Im

, (4.91)

wherexY ,Gy�n,�m denotes the contracted product along all modes except mode-n for tensorY , and

except mode-m for the tensorG. Similarly, we straighforwardly express submatricesHpn,N�1q �
JT

n JN�1 as follows

Hpn,N�1q � PRn,In

����������
�
Zpnq �n�1 apnqT

1:

	pnq...�
Zpnq �n�1 apnqT

in:

	pnq...�
Zpnq �n�1 apnqT

In:

	pnq
���������� , (4.92)

whereZpnq � Ĝ��p n,
n�1q tATAu.
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4.5.2.2 Diagonal Block Matrices Hpn,nq
A diagonal block matrixHpn,nq � JT

n Jn can be expressed by

Hpn,nq � #xG��n tATAu,Gy�n b I In , n , N � 1,tAT Aub , n� N � 1.
(4.93)

From (4.91), (4.92), and (4.93), the approximate HessianH � JTJ is fully expressed by products

of tensors and contracted products. We note that matricesApnqTApnq have size ofRn � Rn, and much

smaller than matricesApnq due toRn ! In. This construction avoids computing large-scale JacobianJ,

and Kronecker products of large-scale matrices such astAub�n or tAub.

Finally, from Sections (4.3.1) and (4.5.2) we completely bypass the Jacobian and establish a much

faster computation for the approximate Hessian and the gradient than their conventional approach

given in (4.81) and (4.80). Moreover, the proposed method does not demand significanttemporary

extra-storage. Selection of the regularization parameterα and the damping parameterµ can employ

methods presented in Sections4.2.4, 4.3.3167;169. For nonnegative Tucker composition, the gradient

and the diagonal of the Hessian are modified as in (4.80) and (4.81).

4.6 Summary

Most CP and Tucker algorithms incorporated with line-search techniques work well for general data,

but often fail for highly collinear data with bottlenecks orswamps. In this chapter, a suit of robust

all-at-once algorithms has been proposed based on the Gauss-Newton iteration. However, because the

approximate Hessian matrices are rank-deficient, the damped GN (or LM) method has been applied.

The proposed algorithms can work with complex-valued tensors, and especially are robust for highly

collinear tensors. Extensive experiments for tensor factorizations and in CDMA application in Chapter

6 showed that our algorithms overwhelmingly outperform “state-of-the-art” algorithms for difficult

benchmarks with bottlenecks, swamps for both real and complex-valued tensors.

A4.1 Appendix: Permutation Matrix

Vectorization of anI � J matrix X can be arranged from its transpose matrixXT by an IJ � IJ

permutation matrixPI ,J: vecpXq � PI ,J vec
�
XT

�
with PJ,I � PT

I ,J � P�1
I ,J

95. The following properties

are frequently employed in this chapter.

Theorem 4.11(Interchange in Kronecker product95). Consider the permutation matricesPI ,P and
PJ,Q, andA P RI�J andB P RP�Q. Then

A b B � PT
I ,P pBb Aq PJ,Q . (4.94)
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Theorem 4.12 (Concatenation of Kronecker products). Concatenation of the Kronecker products
forms a Kronecker product of the concatenation matrixrA b C Db Cs � rA Ds b C , (4.95)rA b B A b Cs � pA b rB Csq P , (4.96)

whereA P RI�J, B P RP�Q, C P RP�R andD P RI�K andP denotes a permutation matrix.

Proof. Proof of (4.95) is directly derived from the definition of the Kronecker productrA b C Db Cs � �
a1 b C � � � aJ b C d1 b C � � � dK b C

�� �
a1 � � � aJ d1 � � � dK

�bC � �
A D

�bC . (4.97)

By employing Theorem4.11, the second concatenation (4.96) is proved as followsrA b B A b Cs � �
PT

P,I pBb Aq PQ,J PT
P,I pCb Aq PR,J

� � PT
P,I prB Cs b Aq � PQ,J

PR,J

�� PT
P,I PP,I pA b rB Csq PT

Q�R,J

�
PQ,J

PR,J

� � pA b rB Csq P .

Hence,P� PT
Q�R,J blkdiagtPQ,J,PR,Ju. �

Theorem4.12can be generalized to concatenate multiple Kronecker products. For a special case

in which the second terms in the Kronecker products are vectors, we have the following expression�
A b b1 � � � A b bq � � � A b bQ

� � pA b Bq PJ,Q . (4.98)

A4.2 Appendix: Commutation matrix Pn

This appendix presents connection between vectorizationsof tensor unfoldings via a permutation ma-

trix. The commutation matrixPn often exists in construction of the JacobianJ and the approximate

HessianH in dGN algorithms for CP, NTF and Tucker decompositions168;169.

Lemma 4.1. (mode-n to mode-1 unfolding) Commutation matrixPn mapsvec
�
Ap1q� � vecpAq �

Pn vec
�
Apnq�, given by

Pn � I In�1:N b PIn,I1:n�1, with Ii: j � j¹
k�i

Ik. (4.99)

Theorem 4.13(Permutation in a Kronecker product). Multiplication of Pn with a Kronecker product
of N vectorsapnq P RIn, pn� 1, 2, . . . ,Nq will move the n-th itemapnq to the last location, that is�

apNq b � � � b ap2q b ap1q	 � Pn

�
apNq b � � � b apn�1q b apn�1q b � � � b ap1q b apnq	 . (4.100)
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Proof. We assume a rank-one tensorX composed byN componentsapnq, for n � 1, 2, . . . ,N. Noting
that vec

�
Xp1q� � Pn vec

�
Xpnq�, we have

vec
�
Xpnq� � vec

�
apnq �apNq b � � � b apn�1q b apn�1q b � � � b ap1q	T


� apNq b � � � b apn�1q b apn�1q b � � � b ap1q b apnq (4.101)� PT
n vec

�
Xp1q� � PT

n papNq b � � � b apn�1q b apnq b apn�1q b � � � b ap1qq .(4.102)

The proof follows directly from (4.101) and (4.102). �

A4.3 Appendix: Inverse of the Kernel Matrix K

Lemma 4.2. Inverse of a sparse block matrixV � �
Vpn,mq�

n,m, Vpn,mq � p1� δn,mq IR2 is an N� N

block matrixrV with rVpn,mq � �
1

N � 1
� δn,m
 IR2 . (4.103)

Proof. It is straighforward to prove that
Ņ

l�1

rVpn,lq Vpl,mq � Ņ

l�1

�
1

N � 1
� δn,l
 p1 � δl,mq IR2 �

δn,m IR2 . �

Theorem 4.14. Inverse ofK defined in (4.6) is a partitioned matrixrK � K�1 whose blocksrK pn,mq,
for n� 1, . . . ,N,m� 1, . . . ,N are given byrK pn,mq � �

1
N � 1

� δn,m
 diag
�

vec
�

Cpnq ⊛ Cpmq m Γ		 PR,R. (4.104)

Proof. Each blockK pn,mq � p1� δn,mqPR,R diag
�

vec
�
Γ
pn,mq		 in (4.6) can be rewritten as

K pn,mq � p1� δn,mqPR,R diagpγq diag
�

1m vec
�

Cpnq		 diag
�

1m vec
�

Cpmq		 ,
whereCpnq � ApnqT Apnq, Γ � tCu⊛, γ � vecpΓq. Therefore, this matrixK can be decomposed into
product of matrices

K � pI N b pPR,R diagpγqqq diagpβqV diagpβq (4.105)

whereV is the partitioned matrix defined in Theorem4.2, andβ � 1m �
vec

�
Cpnq�T

�N

n�1

T

. Hence,

inverse ofK is given byrK � K�1 � diagpβq�1 V�1 diagpβq�1 pI N b pdiagp1m γqPR,Rqq . (4.106)

By replacingV�1 given in Lemma4.2 to that in (4.106), we obtainrK pn,mq � diag
�

vec
�

Cpnq		 rVpn,mq diag
�

vec
�

Cpmq		 diagp1m γqPR,R� �
1

N� 1
� δn,m
 diag

�
vec

�
Cpnq ⊛ Cpmq m Γ		 PR,R. (4.107)

�



Chapter 5

Large-Scale Tensor Factorization

5.1 Introduction and Problem Statement

This chapter presents CP factorization suitable for large-scale problems and fast parallel implemen-

tation. The proposed model and algorithms solve till now intractable problem for arbitrary high di-

mension and large-scale tensors. We divide a given data tensor into a grid of multiple sub-tensors (see

Figure5.2). We factorize all the sub-tensors independently by using efficient CP algorithms in parallel

mode and next integrate partial results for the whole tensorto estimate desired factors.

The developed model is referred here to as the grid-tensor factorization (gTF). The simplest case

of the gTF is factorization for a large-scale tensor partitioned only into two sub-tensors. If one sub-

tensor is considered as a new data coming and expanding the current (actual) data along a single mode

(usually time), the problem is referred to as the dynamic tensor analysis (DTA) or dynamic tensor

factorization190;191. This problem also often arises in factorization of a training dataset.

Tensor factorizations can be used as dimensionality reduction methods in multiway classification,

and factors are bases to project a tensor data onto the feature subspace. In practice the training data

is often augmented with some new samples, hence the basis factors for the expanded training tensor

need to be updated. A simple way is to factorize the new whole training tensor again. However, this

approach demands high computational cost. A convenient wayis that we update the old bases with

factors of the new coming data.

The proposed algorithm calculates Hadamard products, multiplication of small matrices, and

avoids Khatri-Rao products. Especially, this new algorithm opens new perspectives to find nonnega-

tive factors for the very large-scale nonnegative tensors that is potentially useful in many applications,

such as those in neuroscience and data mining. For specific data, such as spectral data, images, chem-

ical concentrations, in order to provide meaningful representation and clear physical interpretation,

sparsity and nonnegative constraints are often imposed on the hidden factors. The extracted basis com-

ponents are part-based representations of the nonnegativedata. However, the constrained nonnegative

CP, also called Nonnegative Tensor Factorization (NTF) is not guaranteed to converge to a stationary

point. Hence, the NTF often needs to be analyzed with many trials, and different regularized values

to choose the desired solutions. This demands high computational cost due to often accessing to the

input data. In practice, a large data tensor can be well explained by CP factors, then it is more efficient
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Figure 5.1: Illustration of the dynamic tensor factorization for two sub-tensors. The purpose is to find
the common factors for the concatenated tensorY constructed from two sub-tensorsY p1q andY p2q.
to store the hidden factors, and process them instead of the whole data tensor. The ALS CP algorithm

is a “work-horse” algorithm33;106;203. However, it is not suitable for very large-scale problems.By

using the estimated factors by the modified ALS, we develop the very fast algorithm to retrieve the

nonnegative factor hidden from a data tensor.

An important key factor for large-scale factorization is evaluation of stopping criteria to control

convergence. The cost function value or the fit error is oftenused. However, for a large-scale tensor,

an explicit computation of the cost function value is impossible due to so much memory requirement

to build up the approximate tensorŶ . We derive a simple low complexity formula for stopping criteria

applied to the grid tensor factorizations.

5.2 Dynamic Tensor Factorization

For simplicity of explanation of our basic concept, we shallfirst consider the grid CP for a three

dimensional tensor partitioned into only two sub-tensors.This model can be also considered as a

Dynamic Tensor Analysis (Factorization) in which data is augmented along a single mode.

Problem 5.1(Dynamic Tensor Factorization)
Consider two data tensorsY p1q P RI�J�K1,Yp2q P RI�J�K2 with their approximated CP models:

Y pkq � I �1 Apkq �2 Bpkq �3 Cpkq, k � 1, 2, (5.1)

whereApkq P RI�Rk, Bpkq P RJ�Rk and Cpkq P RKk�Rk.The problem is to find CP factors for the
concatenated tensorY P RI�J�K (with K � K1 � K2q:

Y � I �1 A �2 B�3 C, (5.2)

without repeating all computation from the beginning, but using already known partial results (factors).
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The easiest way is that we factorize the concatenation tensor again. This method provides accurate

results. However, for large-scale data, this is not a suitable solution due to high computational cost. In

this section, we present three methods to deal with this problem159. The final learning rules of all the

methods are identical.

1. By minimizing the cost function for the concatenated tensor.

2. By adopting or modifying the ALS algorithm for the concatenated tensor represented by block

matrices.

3. By concatenating factors of sub-tensors and then reducing the number of components.

5.2.1 Approach 1: By Directly Minimizing a Cost Function

Assume that the concatenation tensorY can be factorized byR components:A P RI�R, B P RJ�R

andC P RK�R. If we split the factorC into two matricesC � �
CTp1q CTp2q�T

, Cp1q P RK1�R, and

Cp2q P RK2�R, the subtensorsY p1q andY p2q are now approximated via their common factors as

Y p1q � I �1 A �2 B�3 Cp1q , (5.3)

Y p2q � I �1 A �2 B�3 Cp2q . (5.4)

Generally, a tensor factorization can be solved by minimizing a cost function of the concatenation

tensor and its approximation, that is

D � 1
2
}Y � I �1 A �2 B�3 C}2

F � 1
2

2̧

k�1

}Ypkq � I �1 A �2 B�3 Cpkq}2
F� 1

2

2̧

k�1

}Ypkqp1q � A
�
Cpkq d B

�T }2
F . (5.5)

In order to find the learning rule for factorA, we formulate the cost function in the mode-1 matriciza-

tion (5.5), and compute its gradient with respect toA

∇AD � 2̧

k�1

��Ypkqp1q �Cpkq d B
�� A

�
Cpkq d B

�T �Cpkq d B
�	� 2̧

k�1

��Ypkqp1q �Cpkq d B
�� A

�
CTpkqCpkq	 ⊛ �BTB

�	� 2̧

k�1

�Ypkqp1q �Cpkq d B
�� A

�
CTC

�
⊛
�
BTB

�
. (5.6)

By replacingY p1q andY p2q in (5.6) by their approximations in (5.1), and setting (5.6) to zero, we

obtain an update rule forA
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A � �
2̧

k�1

Ypkqp1q �Cpkq d B
����

CTC
�
⊛
�
BTB

���1� �
2̧

k�1

Apkq �Cpkq d Bpkq	T �
Cpkq d B

����
CTC

�
⊛
�
BTB

���1� �
2̧

k�1

Apkq �Ppkq m �
ApkqTA

		��
Qm �

ATA
���1

, (5.7)

where

Ppkq � �
ApkqTA

	
⊛

�
BpkqTB

	
⊛

�
CpkqTC

	
, (5.8)

Q � �
ATA

�
⊛
�
BTB

�
⊛
�
CTC

�
. (5.9)

Similarly, learning rule forB is given by

B � �
2̧

k�1

Bpkq �Ppkq m �
BpkqTB

		��
Qm �

BTB
���1

. (5.10)

FactorC is estimated via partially updatingCp1q, andCp2q. The ALS learning rule to updateCpkq from

the tensorY pkq is given by

Cpkq � Ypkqp3q pBd Aq ��BTB
�
⊛
�
ATA

���1 � Cpkq �Bpkq d Apkq	T pBd Aq ��BTB
�
⊛
�
ATA

���1� Cpkq �Ppkq m �
CpkqTC

		 �
Qm �

CTC
���1

. (5.11)

We note that matricesPpkq P RRk�R andQ P RR�R are relatively small size. Hence, the learning rules

(5.7), (5.10) and (5.11) are low computational cost.

5.2.2 Approach 2: By Modifying the ALS Learning Rule

FactorsA, B andC can be estimated by using the ALS algorithm (2.2) for the concatenation tensorY

A � Yp1q pCd Bq ��CTC
�
⊛
�
BTB

���1
. (5.12)

By using the following relation, we can convert the ALS update rule to one given in (5.7)

Yp1q pCd Bq � �
Yp1qp1q Yp2qp1q� ��

Cp1q
Cp2q �d B


 � �
Yp1qp1q Yp2qp1q� �

Cp1q d B
Cp2q d B

�� 2̧

k�1

Apkq �Cpkq d Bpkq	T �
Cpkq d B

� � 2̧

k�1

Apkq ��CpkqTCpkq	 ⊛ �BpkqTB
		
.
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5.2.3 Approach 3: By Concatenating Sub-factors

Another method to find factors of the concatenation tensorY is that we build up a factorization from

concatenation factors. The following lemma will show this factorization.

Lemma 5.1(Concatenation of factors). TensorY is factorized by factors of̃R� R1�R2 components

Ã � �
Ap1q Ap2q �

, B̃ � �
Bp1q Bp2q �

, C̃ � �
Cp1q

Cp2q �
, (5.13)

that is

Y � I �1 Ã �2 B̃ �3 C̃. (5.14)

Proof. We consider the mode-1 matricized version of the concatenation tensorY

Yp1q � �
Yp1qp1q Yp2qp1q � � �

Ap1q �Cp1q d Bp1q�T
Ap2q �Cp2q d Bp2q�T

�� �
Ap1q Ap2q � ��Cp1q d Bp1q�T �

Cp2q d Bp2q�T

�� �
Ap1q Ap2q� � ��

Cp1q
0

�d Bp1q
 ��
0

Cp2q�d Bp2q
 �T� �
Ap1q Ap2q� � �

Cp1q
Cp2q�d �

Bp1q Bp2q � �T � Ã
�
C̃d B̃

�T
. (5.15)

This leads to a tensor factorization ofÃ, B̃ andC̃ for the tensorY given in (5.14). �

Lemma5.1 ensures that any large-scale tensor can be factorized by concatenating factors of sub-

tensors. However, the combined factors often have higher rank than that we need. The next update

rule will help us to findRcomponential factors from factors̃A, B̃, C̃.

FactorA can be updated by using the ALS learning rule (2.2) for tensorY as

A � Yp1q pCd Bq ��CTC
�
⊛
�
BTB

���1 � Ã
�
C̃d B̃

�T pCd Bq ��CTC
�
⊛
�
BTB

���1� Ã
��

C̃TC
�
⊛
�
B̃TB

�� ��
CTC

�
⊛
�
BTB

���1� Ã
�
Pm �

ÃTA
�� �

Qm �
ATA

���1
, (5.16)

where

P� �
ÃTA

�
⊛
�
B̃TB

�
⊛
�
C̃TC

�
. (5.17)

We note that the learning rules (5.7), (5.16) are identical due to the following relations

C̃TC � �
C̃p1q

C̃p2q�T �
Cp1q
Cp2q� � �

C̃p1qT Cp1q
C̃p2qT Cp2q �

,

B̃TB � �
B̃p1q B̃p2q�T

B � �
B̃p1qT B
B̃p2qT B

�
,
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Figure 5.2: Illustration for the standard CP (dash arrow), and grid CP for large-scale tensors (solid
arrows) in two stages

and

Ã
��

C̃TC
�
⊛
�
B̃TB

�� � 2̧

k�1

Apkq �C̃pkqTCpkq	 ⊛ �B̃pkqTB
	
.

5.3 Grid CP

We consider a tensorY is divided into a grid of multiple sub-tensorsY pkq of sizeIk1 � Ik2 � � � � � IkN ,°Kn
kn�1 Ikn � In, where vectork � rk1, k2, . . . , kNs indicates sub-tensor index, 1¤ kn ¤ Kn, andKn

is the number of subtensors along the mode-n (see Figure5.2). We factorize all the subtensors by CP

sub-factorsUpnqpkq in parallel mode. Finally, the full factorsApnq for the whole tensor will be estimated

from these sub-factors with fast learning rules and parallel computing.

5.3.1 ALS Algorithm for Grid CP

Assuming that the tensorY can be approximated byN factorsApnq, we split each factorApnq into Kn

parts

Apnq � rApnqTp1q ApnqTp2q . . . ApnqTpKnq sT , (5.18)

where sub-factorApnqpknq P RIkn�R, kn � 1, 2, . . . ,Kn.

Lemma 5.2. A sub-tensorY pkq, k � rk1, k2, . . . , kNs can be factorized by a set of N sub-factorstApkqu � tAp1qpk1q, Ap2qpk2q, . . . ,ApNqpkNqu:
Ypkq � I �1 Ap1qpk1q �2 Ap2qpk2q � � � �N ApNqpkNq � ~tApkqu� . (5.19)
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Proof. Proof of this lemma is directly derived from definition of CP model for each entryyi , i �ri1, i2, . . . , iNs, °kn�1
l�1 Ikl   in   °kn

l�1 Ikl , i.e.,yi � ap1qi1
ap2qi2

� � � apNqiN
. �

The ALS algorithm for grid CP minimizes the standard Euclidean distance for all the sub-tensors

D � 1
2
}Y � I �1 Ap1q �2 Ap2q � � � �N ApNq}2

F � 1
2

K1̧

k1�1

� � � KŅ

kN�1

}Y pkq � ~tApkqu�}2
F� 1

2

Ķ̧̧̧̧̧̧̧

k�1

}Ypkqpnq � Apnqpknq tApkqud�n T}2
F , (5.20)

whereK � rK1,K2, . . . ,KNs.
Gradients of (5.20) with respect to sub-factorApnqpknq are given by

∇
ApnqpknqD � ¸̧̧̧̧̧̧̧t j| jn�knu ��Yp jqpnq tAp jqud�n � Apnqpknq tAp jqud�n T tAp jqud�n

	� ¸̧̧̧̧̧̧̧t j| jn�knu ��Yp jqpnq tAp jqud�n � Apnqpknq !ATp jq Ap jq)⊛�n


, (5.21)

where j � r j1, . . . , jNs, and jn � kn. This leads to the learning rule for sub-factorApnqpknq
Apnqpknq � �� ¸̧̧̧̧̧̧̧t j| jn�knu Yp jqpnq tAp jqud�n

�
�� ¸̧̧̧̧̧̧̧t j| jn�knu !ATp jq Ap jq)⊛�n

�
�1

. (5.22)

Due to relatively small sizes of subtensors, computation ofYp jqpnq tApkqud�n,
!

ATpkq Apkq)⊛�n

can be

quickly executed on parallel workers (labs) or sequentially on a single computer. Moreover, we can

eliminate the sub-tensors involving in estimation of sub-factorsApnqpknq to those built up from tubes

sampled by the CUR decomposition. We note that subtensors inthe grid model don’t need to have

consecutive tubes. We do not provide a detailed descriptionbecause this research is beyond the scope

of this chapter.

The next section presents optimized algorithm which avoidstApkqud�n in (5.22).

5.3.2 Optimized ALS Learning Rules

For sub-tensorY pkq, we factorize this tensor using the ALS algorithm (2.2) for CP withRk components

Y pkq � I �1 Up1qpkq �2 Up2qpkq � � � �N UpNqpkq . (5.23)

The number of rank-one tensorsRk should be chosen so that factorsUpnqpkq explain as much as possible

the sub-tensorYpkq. Because sub-tensorY pkq has small-size, this factorization can easily achieve high

fitness. For a subtensor, we have

Ypkqpnq tApkqud�n � Upnqpkq tUpkqud�nT tApkqud�n � Upnqpkq �Ppkq m �
UpnqTpkq Apnqpknq		 , (5.24)
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wherePpkq � !
UTpkq Apkq)⊛ P RRk�R. Let Qpkq � !

ATpkq Apkq)⊛ P RR�R, from (5.22) and (5.24), we

obtain the fast update rule for the sub-factorsApnqpknq
Apnqpknq� �� ¸̧̧̧̧̧̧̧t j| jn�knu Upnqp jq �Pp jq m �

UpnqTp jq Apnqpknq		�
���� ¸̧̧̧̧̧̧̧t j| jn�knu Qp jq�
m �
ApnqTpknq Apnqpknq	�
�1� T S�1 . (5.25)

where matricesT andSare computed for specific subfactorsApnqpknq
T � ¸̧̧̧̧̧̧̧t j| jn�knu Upnqp jq �Pp jq m �

UpnqTp jq Apnqpknq		 , (5.26)

S � �� ¸̧̧̧̧̧̧̧t j| jn�knu Qp jq�
m �
ApnqTpknq Apnqpknq	 . (5.27)

Each term of the two summations in (5.26) and (5.27) calculates Hadamard divisions, and performs

on small-sized matrices, instead of Khatri-Rao products for tall matrices. MatricesPpkq P RRk�R and

Qpkq P RR�R can be calculated only once time, and can be quickly updated after estimating the sub-

factorsApnq
kn

. Moreover, the matricesT andS can be calculated through a parallel loop.

The pseudo-code of the new ALS algorithm is given in Algorithm 5.1. The normalization of

components to unit-length vectors are not explicitly displayed in Algorithm5.1. Parallel FOR-loop

denoted by “parfor ” loop is available with the Matlab Parallel Computing Toolbox.

5.4 Grid CP with Nonnegative Constraints

Factorization of nonnegative tensors such as spectral data, images, data in social networks, email

surveillance requires nonnegative factors to provide meaningful components, and physical interpre-

tation. Many efficient algorithms have been proposed or generalized from algorithms for nonnega-

tive matrix factorization (NMF). The ALS47, HALS37;152 or multiplicative LS (least squares) algo-

rithms47;132 can be directly derived from the Frobenius cost function (5.20). However, most efficient

algorithms for nonnegative tensor factorization cannot deal with very large-scale data. In this section,

we extend grid CP for nonnegative factors, and proposed algorithms based on minimizing the same

cost function in (5.20). Sub-tensors are factorized by CP models, then nonnegative factors for the full

tensor will be estimated from factors of sub-tensors154. We note that if the number of subtensors is only

one, the proposed method becomes the two-stage approximation for NTF155. That is approximation

of tensor by CP first, then estimation of nonnegative components follows.
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Algorithm 5.1: Grid CP
Input : Y : input data of sizeI1 � I2 � � � � � IN,
R: number of basis components
Output : N factorsApnq P RIn�R such that the cost functions (5.20) are minimized.

1 begin
2 initialize Apnqpknq,�n,�kn

3 parfor sub-tensorY pkq do
4 rUp1qpkq, . . . ,UpNqpkq s � approx_CPpY pkq,Rkq
5 Ppkq � �

UpNqTpkq ApNqpkNq	 ⊛ � � � ⊛ �Up1qTpkq Ap1qpk1q	
6 Qpkq � �

ApNqTpkNq ApNqpkNq	 ⊛ � � � ⊛ �Ap1qTpk1q Ap1qpk1q	
7 endfor
8

9 repeat
10 for n� 1 to N do
11 for kn � 1 to Kn do
12 T � 0, S� 0
13 parfor rksn � kn do

14 Ppkq � Ppkq m �
UpnqTpkq Apnqpknq	

15 T � T � UpnqpkqPpkq
16 Qpkq � Qpkq m �

ApnqTpknq Apnqpknq	
17 S� S�Qpkq
18 endfor

19 Apnqpknq � T S�1 // Update Apnqpknq
20 end
21 parfor eachk do

22 Ppkq � Ppkq ⊛ �UpnqTpkq Apnqpknq	
23 Qpkq � Qpkq ⊛ �ApnqTpknq Apnqpknq	
24 endfor
25 end
26 until a stopping criterion is met
27 end

5.4.1 ALS Algorithm for Grid NTF

A simple extension is that we enforce nonnegativity or strictly speaking positive constraints for factors

updated by the ALS algorithm (5.25)

Apnqpknq ������ ¸̧̧̧̧̧̧̧t j| jn�knuUpnqp jq �Pp jq m �
UpnqTp jq Apnqpknq		�
���� ¸̧̧̧̧̧̧̧t j| jn�knuQp jq�
m �

ApnqTpknq Apnqpknq	�
�1
���� . (5.28)



84 Chapter 5. Large-Scale Tensor Factorization

Some extended ALS algorithms were applied the Levenberg-Marquardt approach with the regulariza-

tion parameterλ

Apnqpknq � �
T pS� λ Iq�1

�� . (5.29)

However, for real-world data, a proper selection ofλ decides the performance of the final result.

5.4.2 Multiplicative Algorithm for Grid NTF

From the gradients (5.21), we apply a similar method to derive the multiplicative LS algorithm for

NMF55;63;67;110;113 to obtain the update rule

Apnqpknq � Apnqpknq ⊛ rTs� m pApnqpknqSq (5.30)

where matricesT andSare defined in (5.26) and (5.27), and computed through a parallel loop in Steps

15and17of Algorithm 5.1. Replacing Step19by the expression in (5.30) gives us pseudo-code of the

multiplicative algorithm for grid NTF.

The multiplicative algorithms have a relative low complexity but they are characterized by rather

slow convergence and they sometimes converge to spurious local minima.

5.4.3 Hierarchical ALS Algorithm for Grid NTF

By taking into account that if the tensorY in (5.22) is approximated by a rank-one tensor, that means

factorsApnq have only one component, matrix inverse simplifies into scalar division, and the ALS

algorithm (5.22) to update a partk of a factorn is given by

apnqpknq � ¸̧̧̧̧̧̧̧t j| jn�knu Yp jqpnq tapknqud�n¸̧̧̧̧̧̧̧t j| jn�knu !aTp jq ap jq)⊛�n
. (5.31)

Therefore, if we formulate an ALS update rule for a componentof the sub-factorApnqpknq, this learning

rule does not require matrix inverse, and hence reduces computational cost, and is more stable.

Assume that, we estimate ther-th component of the sub-factorApnqpknq denoted as
�
Apnqpknq�r

� apknq
r ,

n � 1, 2, . . . ,N, kn � 1, 2, . . . ,Kn, r � 1, 2, . . . ,R. This component only exists in factorizations of

sub-tensorsY k with kn be then-th entry of the sub-tensor indexk � r j1, . . . , jn�1, kn, jn�1, . . . , jNs,
jm � 1, . . . ,Km. We split the approximation of sub-tensorsY k, rksn � kn into two parts:

• one consists of all rank-one tensors in which the specific componentapknq
r is not involved

Y
pkqp�rq �

j̧,r

apk1q
j � apk2q

j � � � � � apkNq
j . (5.32)
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• And a rank-one tensor built up fromapknq
r

Y
pkqp�rq � apk1q

r � apk2q
r � � � � � apkNq

r . (5.33)

The approximation for each sub-tensorY pkq is now rewritten as

Ypkq � Y
pkq�r �Y pkqp�rq � E . (5.34)

To exploit the learning rule (5.31), we define a new residual tensor which is approximated by the

rank-one tensorY pkqp�r q̃
Y

pkqp�rq � Y pkq �Y pkqp�rq � apk1q
r � apk2q

r � � � � � apkNq
r � E . (5.35)

Learning rule to update the componentapknq
r is given by

apknq
r � ¸̧̧̧̧̧̧̧t j| jn�knu Ỹ p jqp�rq �̄�n

!
ap jq

r

)¸̧̧̧̧̧̧̧t j| jn�knu !ap jqT
r ap jq

r

)⊛�n
, (5.36)

where
!

apkqr

) � !
apk1q

r , a
pk2q
r , . . . , a

pkNq
r

)
.

Each term in the numerator in (5.36) is rewritten as

Ỹ
pkqp�rq �̄�n

!
apkqr

) � �
Ypkq � Ŷ pkq �Y pkqp�rq	 �̄�n

!
apkqr

)� �
Upnqpkq tUpkqud�nT � Apnqpknq tApkqud�nT � apknq

r

!
apkqr

)d�nT

 !

apkqr

)d�n� Upnqpkq �!UTpkq Apkq)⊛�n
�

r
� Apnqpknq �!ATpkq Apkq)⊛�n

�
r
� apknq

r

!
apkqTr apkqr

)⊛�n� Upnqpkq �Ppkq m �
UpnqTpkq Apnqpkq	�r

� Apnqpknq �Qpkq m �
ApnqTpknq Apnqpknq	�r

� apknq
r

!
apkqTr apkqr

)⊛�n

,

whererAsr � ar denotes ther-th column vector of matrixA. Learning rule (5.36) can be expressed in

the compact form

apknq
r �apknq

r � 1
wkn

¸̧̧̧̧̧̧̧t j| jn�knu Upnqp jq �Pp jq m �
UpnqTp jq Apnqp jq	�r

� 1
wkn

¸̧̧̧̧̧̧̧t j| jn�knu Apnqpknq �Qp jq m �
ApnqTpknq Apnqpknq	�r�apknq

r � 1
wkn

tr � 1
wkn

Apnq sr , (5.37)

where the scalar weightwkn � ¸̧̧̧̧̧̧̧t j| jn�knu !ap jqT
r ap jq

r

)⊛�n

, andT andS are defined in (5.26) and (5.27),

respectively.

Finally, the equation given in (5.37) is the update rule for a component of a subfactorApnqpknq. By

replacing Step19 in Algorithm 5.1 by (5.37), we obtain the pseudo-code for the Hierarchical ALS

algorithm for grid NTF.
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5.5 Stopping Criterion

Stopping criterion takes an important role in identification of convergence of a factorization. For

simplicity, the cost function value (2.1) is usually used as stopping criterion. The FIT rate (FIT(%)�
1� }Y�Ŷ}2

F}Y}2
F

) can also be used. However, due to similar computation, we only mention the Frobenius

norm. For a large tensor, an explicit computation of the costfunction value (2.1) is impossible due to

so much memory requirement to build up the approximate tensor Ŷ . In this section, we derive a fast

computation for stopping criterion applied to the grid CP. The Frobenius norm of a raw sub-tensor and

its approximation is given by

Dpkq � }Y pkq � Ŷ pkq}2
F � }Y pkq}2

F � }Ŷpkq}2
F � 2xY pkq, Ŷ pkqy (5.38)

wherexY , Ŷy is the inner product of two same-sized tensorsxYpkq, Ŷ pkqy � I̧̧̧̧̧̧̧̧

i�1

ypkqi1���iN pypkqi1���iN � vec
�

YpkqpNq	T
vec

�pYpkqpNq	 . (5.39)

Each terms in the expression (5.38) can be computed as follows}Ŷ pkq}2
F � } vec

�pYpkq	 }2
2 � }tApkqud 1}2

2 � 1T tATpkqApkqu⊛ 1� 1T Qpkq 1, (5.40)xY pkq, Ŷ pkqy � 1TtUpkqudT tApkqud 1� 1T
!

UTpkqApkq)⊛ 1� 1T Ppkq 1 . (5.41)

From (5.38), (5.40) and (5.41), we obtain a convenient and fast computing for the cost function

D � 1
2

¸̧̧̧̧̧̧̧
k

Dpkq � 1
2

¸̧̧̧̧̧̧̧
k

�}Ypkq}2
F � 1T Qpkq 1� 21T Ppkq 1

	� 1
2
}Y}2

F � 1
2

¸̧̧̧̧̧̧̧
k

�
1T Qpkq 1� 21T Ppkq 1

�
. (5.42)

The first term}Y}2
F is constant, hence can be neglected. The rest terms are additions of all the entries

of matricesQpkq, andPpkq.
5.6 Communication Cost and Practical Considerations

This section analyzes the communication cost of grid algorithms, and discusses some practical issues

on implementation of the grid factorization. Techniques are introduced to deal with small-subtensors,

or with the large number of sub-tensors.

5.6.1 Communication Cost

The communication cost of algorithms for grid CP and grid NTFcan be evaluated as the total data

transferred between labs and the server in a parallel systemduring the factorization. For illustration,
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we will compute the communication cost for the ALS algorithm. The value can be roughly measured

as the total data received and sent in all steps in Algorithm5.1.

For all the grid algorithms, the communication cost mostly concentrates on computing matricesT

andS to update the sub-factorsApnq
kn

. At Step14, to update a matrixPpkq, a lab requires anRk � R

matrixPpkq, theIkn�Rk sub-factorUpnqpkq and theIkn�Rsub-factorApnqpknq, then send anRk�Rdata to the

server. Through Steps14-17, the total transferred data isIkn pRk�3Rq�2Rkn R�4R2 or 4Ikn R�6R2

under the assumption that sub-tensors are approximated with the same number of components of their

full tensors, that meansR � Rk. For all the sub-tensors, the total transferred data in the “parfor ”

loop in Step18 is
�

4R
°

n
In
Kn
� 6R2

	 ±
n Kn, or 4R KN�1 °

n In�6R2 KN, with an assumption that

K1 � K2 � . . . � KN � K. Hence, the total data transferred inside the “repeat” loop (in Step9) is

6R KN�1 °
n In � 10R2 KN. For a specific data tensor, the communication cost of the ALSalgorithm

(5.25) increases as the number of sub-tensorsKN increases. The smaller the number of sub-tensors,

the lower the communication cost. However, the sub-tensor’s size is limited by the configuration of

its working lab, such as memory, operating system. For 32-bit system, tensor size should not exceed

3GB. Relatively small sub-tensors can be easily factorizedwith high fitness. When the number of sub-

tensorsKn along the modes-n are exactly the tensor size, that meansKn � In, for n � 3, . . . ,N, the

sub-tensors simplify into matrices. Factorizations of these sub-tensors will becomes Singular Value

Decompositions which can always explain 100% of the data. However, reconstruction of the full

factors demands very high communication cost due to the large number of subtensors.

As a consequence, a large-scale tensor should be divided to have a minimum number of sub-

tensors. Dividing the large-scale tensor into small sub-tensors could increase the risk of nearly collinear

factors which cannot be approximated by the standard ALS algorithm in (2.2). In order to cope with

the problem, we can use some modifications such as Compression9 and Line Search25;171. The com-

pression technique compresses the data into a smaller tensor using the TUCKER model. Next, an CP

model is fitted to the core tensor of the TUCKER model. The CP for the original data are represented

as products of estimated factors.

5.6.2 Multistage Reconstruction for Grid Decomposition

Reconstruction of the full factors from all sub-factors might have high communication cost of the

orderOpKNq. This section is devoted to speeding up the reconstruction.A multi-stage reconstruction

is recommended for this problem. At each stage, we constructfactors for the concatenated tensors

which are built up from neighbor subtensors; hence this reduces the number of subtensors for the next

step.

ThepN�1q-stage paradigm illustrated in Figure5.3(a)is an example. Assuming the tensor is split

into a K1 � K2 � � � � � KN grid of subtensors. At the first stage, we estimate the two factors from
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Stage 1 Stage 2

(a)

Stage 1 Stage 2

(b)

Figure 5.3: Illustration of multistage reconstruction forgrid CP.

all sub-factors along the mode-1 and mode-2. That means the grid ALS algorithm will be employed

with a grid ofK1 � K2 � 1� � � � � 1. This reconstruction demands a cost ofOpK2q, and there are in

total K3� � � � � KN separate factorizations processed in parallel. For the second stage, the data can be

considered as a concatenation of 1� 1� K3 � � � � � KN sub-tensors. We reconstruct the third factor

using the grid ALS algorithm with a grid of 1�1�K3�1�� � ��1. The next stage estimates the fourth

factor, and so on, until the last mode. This paradigm requires pN�1q stages, and dramatically reduces

the communication cost. However, this technique faces a trade-off between accuracy and processing

speed. For a 3-D tensor, we need two reconstruction stages asdisplayed in Figure5.3(a).

Another multistage paradigm is illustrated in Figure5.3(b).

5.7 Grid CP for Complex Tensors

CP for complex-valued tensor was proposed and investigatedin some real applications such as for DS-

CDMA signals3;139;186, and for MIMO system214. This section will extend the proposed algorithms

for complex-valued data tensor. The ALS algorithm for complex-valued CP model is extended from

the learning rule in (2.2) and given by

Apnq � Ypnq tA�ud�n

� 
ATA�(⊛�n

	�1
, pn� 1, 2, . . . ,Nq, (5.43)

where symbol “*” denotes the complex conjugate operator, and H is the Hermitian transpose. For

3-D complex-valued tensor, this learning rule simplifies into the COMplex parallel FACtor analysis

(COMFAC) approach186.

The ALS algorithm for the grid CP to update a sub-factorApnqpknq is given by

Apnqpknq � T S�1 . (5.44)
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where matricesT andSare computed for specific subfactorsApnqpknq
T � ¸̧̧̧̧̧̧̧t j| jn�knu Upnqp jq �Pp jq m �

UpnqTp jq Apnq�pknq 		 , (5.45)

S � �� ¸̧̧̧̧̧̧̧t j| jn�knu Qp jq�
m �
ApnqTpknq Apnq�pknq 	 , (5.46)

based on matrices

Ppkq � !
UTpkq A�pkq)⊛ P RRk�R, (5.47)

Qpkq � !
ATpkq A�pkq)⊛ P RR�R . (5.48)

5.8 Experiments

5.8.1 Grid Decomposition with Different Grid Size

In the first set of simulations, we considered a 1000� 1000� 1000 dimensional tensor composed

from three factorsApnq P R1000�10 which were randomly selected from basic sparse and smooth signals

such as half-wave rectified sine, cosine, chirp and sawtoothwaveforms as illustrated in Figure5.4(a).

This tensor consists of 109 entries, and could consume 8GB RAM. We split the tensor into agrid

of K � K � K sub-tensors, forK � 2, 4, 5, 8, 10. That means sub-tensors have 500, 250, 200, 125,

100 entries along each mode, respectively. To evaluate the performance, we employ the Signal-to-

Interference Ratio (SIR (dB)) between the estimated and original components. The grid CP and grid

NTF achieved almost perfect performance (¡ 40 dB) as shown in Table5.1. The results were averaged

over 100 runs. The performance almost did not change when varying the grid size.

This tensor was next degraded by an additive Gaussian noise with 10 dB. The grid CP achieved

good performance with SIR� 35 dB for different grid sizeK � 2, 4, 5, 8, 10. While the grid NTF

achieved SIR� 46 dB. We cannot see the effect of the grid size on the accuracy.

The noise intensities were increased so that SNR= 0 dB. Both the grid CP and grid NTF also

obtained good performance with a small grid sizeK � 2, 4. However, the performance decreased as

the subtensor’s size decreased. The algorithms achieved only 20 dB for the gridsizeK � 20, or the

sub-tensor’s size 50� 50� 50. Small sub-tensors could not capture the hidden components due to

their structures distorted by heavy noise. The comparison of SIR indices for such kind of data are

illustrated in Figure5.4(b). We also analyzed the multistage reconstructions for the grid CP and grid

NTF, and the conversion model of CP to NTF factors. Multistage reconstruction achieved slightly

lower performance. For example, with a grid size ofK � 5, the grid CP achieved 29.39 dB, and its

multistage factorization achieved 26.85 dB. The grid NTF and its multistage obtained 35.11 dB and
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Figure 5.4: Illustration of Example 1:(a) components to build up the tensor;(b) comparison of SIR
indices obtained by grid CP, grid NTF, multistage grid factorizations, and the conversion model of CP
to NTF for different grid sizes. The tensor was degraded by a Gaussian noisewith SNR= 0 dB.

32.97 dB, respectively. The performance of the multistage paradigm could be degraded up to 2 dB, but

this technique speeded up the processing time. The comparison of processing speed between models

is given in Table5.1. With the same grid size, the multistage reconstructions were always much faster

than the grid models. For example, the grid CP approximated the full factors from 512� 83 sub-

tensors in 1131 seconds, and achieved SIR= 25.08 dB, whereas the reconstruction with 3 stages took

place in 172 seconds and achieved 23.95 dB.

As analyzed in Section5.6.1, communication cost of the reconstruction strongly depends on the

total number of sub-tensors or the grid size. The larger the number of sub-tensors, the slower the

processing speed. The grid CP completed the reconstructionfrom 4 sub-tensors in 18.65 seconds,

and in 249 seconds for 125 subtensorsK � 5, and in 29,310 seconds for 8,000 sub-tensorsK � 20.

A similar effect of the grid size on the processing speed for the grid NTF, and the multistage grid

factorizations.

We replicated this experiment but for a 4-D synthetic tensorX P R1000�1000�1000�1000 composed

from the similar components. The tensor was also degraded bya Gaussian noise with SNR= 10 dB.

The noisy dense tensor consisted of 1012 entries, and could consumed 4TB RAM with single precision

format. The grid CP and grid NTF factorized the noisy tensor with a 7�7�7�7 dimensional grid of

sub-tensors. That means there were in total 2,401 sub-tensors. Factorizations of all the subtensors took

place in 19,156 seconds in a parallel system consisting of 4 nodes and 16 cores. The approximation

time will decrease when using more nodes. The reconstructions of factors took 842 seconds using
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Table 5.1: Comparison of SIR (dB) indices and running time (second) for grid tensor factorization
with different grid size for the synthetic tensor 1000� 1000� 1000.

SIR (dB) Running time (second)
Grid size (K � K � K) Grid size (K � K � K)

Algorithms 2 4 5 8 10 20 2 4 5 8 10 20
Clean tensors

gridCP 41.81 42.54 42.02 42.53 42.21
gridNTF 75.30 76.72 77.77 77.27 76.60

10dB Gaussian noises
gridCP 34.85 35.1135.75 35.42 35.12 24.70 191 337 925 3178
gridNTF 46.82 46.52 46.92 46.35 46.50 46.82 46.5246.92 46.35 46.50
mgridCP 33.75 32.63 35.72 32.78 34.45 12.53 68.90 98.10 356.30 1395

0dB Gaussian noises
Approximation 208 176 536 754 1,335 8,160
gridCP 31.10 25.11 29.39 25.08 23.90 21.00 18.65 71.12 249 1131 2,606 29,310
gridNTF 35.99 35.92 35.11 29.84 27.70 23.71 18.05 98.07 169 592 1102 8,113
mgridCP 27.31 25.08 26.85 23.95 22.44 19.07 14.67 29.39 52.64 172 362 3,437
mgridNTF 33.67 30.97 32.97 29.03 27.03 23.25 14.08 33.54 57.69 178 370 3,456
CP2NTF 25.15 25.16 24.83 23.52 22.82 20.27 0.27 0.20 0.23 0.23 0.29 0.23

mgridCP multistage grid CP
mgridNTF multistage grid NTF
CP2NTF conversion of CP factors to NTF factors

the grid CP, and 3911 seconds using the grid NTF. By using thepN � 2q-stage paradigm presented in

Section5.6.2, and illustrated in Figure5.3(b), the grid CP and grid NTF completed the reconstructions

in 167 seconds and 165 seconds, respectively. The performance of the experiment is shown in Table

5.2(b). All the algorithms achieved very good performance¡ 40 dB.

5.8.2 Synthetic Benchmark

In the next example, we factorized the synthetic tensorY P R5000�5000�5000 built up from 15 non-

negative components (shown in Figure5.5(a)), and next degraded by an additive Gaussian noise with

SNR= 0 dB. The standard deviation of noise was quickly calculatedfrom synthetic factors based on

lemma1.1 in Chapter 1. A partial data with 200 samples along each dimension is illustrated in Fig-

ure 5.5(b), the 45-th slice of this noisy tensor is also given in Figure5.5(c). This dense tensor with

125 billions of entries could consume 500 GB of memory. Factorizing such tensor using existing CP

algorithms is impossible because of large tensor size. However, the proposed algorithm can quickly

deal with this problem. In the approximate step, we divided this tensor into 8000 sub-tensors of size

250�250�250, and simultaneously factorized them withRa = 25 CP components in a parallel system

with 16 labs to obtain 8000 sub-factorsUpnqpkq P R250�25, n � 1, 2, 3, k � rk1, k2, k3s, kn � 1, . . . , 20.

The experiment was run on MATLAB ver 2008b and its Distributed Computing Server and Parallel

Computing toolboxes.
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Figure 5.5: Illustration for Example 2 with a noisy dense tensor of size 5000�5000� 5000 (only 200
samples for each dimensions are shown).(c)-(d) Noisy slice and its reconstruction for Example 2.

The full factors were estimated in two stages to reduce inter-communication between labs. In the

first stage, 16 groups of 500 consecutive sub-factors in sub-tensors of size 1250� 1250� 5000 were

used to simultaneously estimate 16 sets of sub-factors. Then from these sub-factors, we built up the full

factors for tensor 5000�5000�5000. The whole step 2 took 56.51 seconds. With these estimated CP

factors, we can quickly retrieve the nonnegative factors under the data by applying the NTF algorithms.

This step only took 2.78 seconds. The 15 estimated factors achieved high SIR indices in a range ofr43.64, 54.97s dB, and are depicted in Figure5.5(a). Figure5.5(d)illustrates the reconstruction of the

noisy slice in Figure5.5(c).
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Figure 5.6: (a)-(b) Illustration of 6 nonnegative components estimated from 10CP components for
the Graz benchmark.(c) Topographic maps of 6 spatial components for Example5.8.4extracted by
the grid multiplicative algorithm

5.8.3 Graz EEG Dataset for BCI

The Graz dataset27 contains EEG signals involving left hand, right hand, foot,tongue imagery move-

ments acquired from 60 channels (with sampling frequency 250 Hz) in a duration of 7 seconds (4

seconds after trigger). The dataset is recorded from 3 subjects, and has 840 trials. All the EEG signals

were transformed into the time-frequency domain using the complex Morlet wavelet, to have a spectral

tensor 60 channels� 25 frequency bins (6-30 Hz)� 250 time frames� 840 trials. Due to meaningful

factorization, the hidden factors under this EEG spectral tensor require nonnegative constraints, and

are considered as useful features for successful EEG classification132. Therefore, we firstly estimated

CP factors of this tensor, then extract nonnegative factors. This dense tensor has a total of 315 millions

of entries, and consumes 1.26 GB of memory. Factorization ofthis full tensor with 10 components

took 3900 seconds on a quad core computer (2.67 GHz, 8 GB memory), and achieved FIT= 78.95%.

However, the grid ALS algorithm for a grid of 16 sub-tensors divided from the EEG tensor along the

4-th dimension (trials) took only 112 seconds to extract thesame number components with FIT=

78.55%. The nonnegative factors quickly derived from both approaches only took 0.41 seconds, and

respectively explain 77.08 % and 77.07% of the raw tensor forthe full and grid processing. The com-

ponents of the two spectral and temporal factors are shown inFigure5.6. In Table.5.2(a), we compare

performances of multiplicative LS, KL, HALS, grid multiplicative LS algorithms.

5.8.4 Visual and Auditory EEG Signals

We illustrate an example with the EEG benchmarkEEG_AV_stimuli47 recorded during the 3 stimuli:

auditory stimulus; visual stimulus; both the auditory and the visual stimuli simultaneously. EEG

signals were recorded from 61 channels during 1.5 seconds after stimulus presentation at a sampling

rate of 1 kHz. The observed tensorY consists of the EEG spectra in the time-frequency domain using



94 Chapter 5. Large-Scale Tensor Factorization

Table 5.2: Comparison of performance for grid CP models and algorithms.

(a) Grid CP for 4-D noisy tensor in Example5.8.1.

Model SIR (dB) Time (sec)
Subtensor Approx. 19,156
gridCP 75.15 842
gridNTF 87.72 3,911
mgridCP 77.01 167.02
mgridNTF 78.29 164.94
CP2NTF 43.00 0.06

(b) NTF and grid NTF

Algorithms Example5.8.3 Example5.8.4
Fit (%) Time (sec) Fit (%) Time (sec)

LS 76.93 20,599 79.40 1,237.4
KL 76.53 29,595 79.30 2,823.7

HALS 76.71 4,820 79.44 417.3
gridLS 77.08 112.2 79.37 68.3

the complex Morlet wavelet of size 61 channels� 31 frequency bins (10� 40 Hz)� 126 time frames

(0� 500 ms)� 25 trials� 3 classes. The multiplicative LS, KL and HALS algorithms37;47 factorized

this tensor with 6 nonnegative components in 1237.4 seconds, 2823.7 seconds and 417.3 seconds with

fitness values 79.40%, 79.30% 79.44%, respectively.

We applied the grid NTF for 75 subtensors of size 61� 31� 126 divided from the full data along

the 4-th and 5-th dimensions. The approximate step took place in 18 seconds, and the construction

step took 50.3 seconds. The running time for the whole factorization was only 68.3 seconds. The full

factors explain 79.37% of the original variance. In Figure5.6(c), we display topographic maps of 6

spatial components. The component 1 relates to the visual stimulus, whereas the components 3 and

4 reflect activations by the auditory stimulus. Comparison of performance of algorithms is given in

Table.5.2(a)

5.8.5 Classification of Handwritten Digits

We factorized and classified the MNIST data set of images of handwritten digits (0-9)112. This data

set is composed 60,000 training images and 10,000 testing images. Each image is a 28� 28 grayscale

(0-255) labeled representation of an individual digit. Some samples of this dataset are displayed in

Figure7.5(a).

In the training step, we simultaneously factorized 10 sub-tensors corresponding to ten classes (dig-

its) into Rk � 28 CP components. This step took place in 185.42 seconds. Then the full nonnegative

factors were built from 10 sets of the sub-factors. The two factorsAp1q, Ap2q were used as basis vectors

to extract feature of an imageYn: f n � vecpYnqT pAp2q d Ap1qq ��Ap2qTAp2q� ⊛ �pAp1qTAp1qq���1
.

The number of features is exactly the number of NTF components R.

An example for the 36027-th sample (digit six) in the training database is illustrated in Figure5.7.

Training feature of this digit is a vectors which consists ofR entries. A pair of basis vectorsap1qj , ap2qj

forms a basis imageap1qj ap2qTj . A reconstructed sample of a digit was a linear composition of basis
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(a) Digit 6 and reconstructions by 10, 15, 20
features.
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(c) t-SNE visualization for CP features.

Figure 5.7: Feature extraction for digits using CP features: (a) a training digit and its reconstructions
by using 10, 15 and 20 features with corresponding bases in(b). (c) Visualization of CP features using
the t-SNE components

images in which scaling coefficients were features. In Figure5.7(b), we displayed basis images which

were ranked in the descending order of 20 largest features. Feature coefficients were annotated in their

corresponding bases. Superimposes of 10, 15, 20 basis images resulted reconstruction images of this

digit shown in Figure5.7(a), respectively.

We used thek-nearest neighbor classifier (KNN withk � 3) for this experiment, and verified the

classification accuracy with 10 different numbers of features:R � 20, 21, . . . , 28. Both two classi-

fications based on gNTF and NTF returned quite similar accuracy given in Table5.3. However, the

gNTF-based method significantly reduces the running time. Especially, this method provides a conve-

nient and fast way for Monte Carlo analysis. To build 9 sets ofnonnegative factors in this experiment,

the total running time for gNTF is 185.42�232.59� 418.01 seconds, whereas that for NTF is 3340.68

seconds.

From the extracted features, the dataset is visualized via two t-SNE components207 in Figure5.7(c).

Classification of this benchmark can be performed using the Tucker decomposition180.
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Table 5.3: Comparison of grid NTF and NTF for the digit dataset.

No. Running Time (seconds) Accuracy (%)
Features gNTF NTF gNTF NTF

20 17.38 394.31 95.60 95.86
21 25.26 400.67 96.12 96.00
22 26.28 313.37 96.02 96.40
23 19.71 357.08 96.43 96.18
24 24.91 479.83 96.24 96.21
25 38.96 520.47 96.51 96.56
26 24.03 271.90 96.74 96.78
27 29.95 349.11 96.73 96.84
28 26.11 253.94 96.95 96.62

Total 418.01 3340.68

5.9 Summary

We presented the new fast and robust ALS algorithms for large-scale CP. The validity and high perfor-

mance of the proposed algorithm have been confirmed even for noisy data, and also for the large-scale

BCI benchmark, and image classification. The new fast stopping criterion is proposed for this algo-

rithm. Variations of the ALS algorithm for CP with regularized terms such as total variation, sparsity,

smoothness, nonnegativity, orthogonality constraints can be applied to the grid CP with some modifi-

cations on the learning rule (5.25). Strategy for grid division of a tensor can affect to the performance

of factorization, and the running time of parallel computing. Basically, sub-tensors’ sizes should sat-

isfy unique conditions of CP106. Moreover, sub-tensor should have maximum possible numberof

entries in its working lab. Increasing the number of sub-tensors from the original tensors increases the

communication cost of the algorithms. To deal with this, we can estimate the full factors in multistage

as illustrated in Examples5.8.1, 5.8.2.



Chapter 6

Simulations and Results for Algorithms
for CP and Tucker Decompositions

The proposed algorithms have be verified and compared with existing algorithms in a variety of bench-

marks including real-world data or randomly generated tensors with dense or sparse factors, or fac-

tors with bias, factors with collinear components. For CP, our algorithms including HALS (Algo-

rithm 2.1), (fast) dGN or LM (Algorithm4.1)167 are compared with ALS, OPT4. For NTF, we com-

pared HALS (Algorithm2.1)37;152, QALS (Algorithms3.2, 3.3)160;166, rK-QALS (Algorithm 3.6)161,

LM� (4.58)169 with ALS and multiplicative algorithms. The multiplicative KL (mKL) and LS (mLS)

algorithms132 are based on gradient descent approach applied to the Kullback-Leiber divergence, the

Frobenius distance, respectively. For (nonnegative) Tucker decomposition, the algorithms HALS (Al-

gorithm2.2), LM (Section4.5)168, QALS (Algorithm 3.5) are verified. For sparse tensors, the HALS

algorithm with regularization term controlling sparseness was tested. Algorithms used in this chapter

are listed in Table6.1.

All the algorithms were initialized using the same method. For low rank approximations, that is

leading singular vectors ofxY ,Yy�n which can be computed as in the HOSVD algorithm58. For

large-scale tensor and relatively highR, random initialization is employed.

Stopping criteria are based on differences of successive relative errors which is lower than 10�10,

that is

ε � }Y � Ŷ}F}Y}F
  10�10 , (6.1)

or when the maximum number of iterations (e.g. 2000) is exceeded.

In order to evaluate the estimation accuracy, the SIR index was calculated for the true and estimated

components after permutation matching and normalization

S IR� �20 log10
}apnqr � âpnqr }2}apnqr }2

dB . (6.2)

In addition, we compute Mean Square Angular Error (MSAE) between orginal and estimated compo-

nentsapnqr , papnqr after matching order of components defined in Section6.1.1108;197;198.
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Table 6.1: List of tested algorithms for tensor decompositions and sections in which they are intro-
duced.

Algorithm CP NTF Tucker NTD
ALS X 2.1 X 2.1
HALS X 2.3 X 2.3 X 2.8 X 2.8
QALS X 3.2 X 3.3
rK-QALS X3.5 X 3.5
LM or dGN X 4.2 X 4.3 X 4.5 X 4.5
mLS47;131 X X

mKL 47;131 X X

OPT4 X

HOSVD,HOOI58;60 X

gridCP X 5.3 X 5.4

6.1 Simulations for CP

The dGN algorithm has been successfully confirmed for difficult data (such as collinearity of fac-

tors, different magnitudes of factors) by Paatero143. Later, the dGN has been validated again by

Tomasi199;200;201;203. A variation of the dGN algorithm for three way data is the INDAFAC algo-

rithm199 which computes the approximate Hessian, and gradient, and employs Cholesky decomposi-

tion to deal with inverse problemsH�1. Therefore, it is straightforward to see that INDAFAC demands

much higher computational cost than that of our fast dGN algorithm for three-way data. Moreover,

with the same initial values and damping parameters, the dGNand fast dGN algorithms should return

similar results. The major difference between the fast dGN algorithm and common dGN algorithms

is complexity. However, this task is equivalent to determining how much inverse of an
�
NR2 � NR2

�
matrix in our fast algorithm is faster than inverse of an

�
R

ņ

In � R
ņ

In

�
matrix (R! In) in other

dGN algorithms. Therefore, we do not intend to compare running time between dGN algorithms.

In this section, we analyze the CP algorithms for difficult data with collinear factors in all modes

(swamp). Collinearity degree of factors is controlled by mutual angles between components. Or-

thonormal factorsUpnq were first randomly generated from the normal distribution,then converted to

collinear factorsApnq by a simple modification

apnqr � upnq1 � ν upnqr , ν P p0, 1s,�n,�r , 1 . (6.3)

Mutual anglesθq,r between componentsapnqq andapnqr , q , r are in a range ofp0, 60os for ν P p0, 1s,
and have

tanpθq,rq � #
ν, q� 1,

ν
?
ν2 � 2, q , 1, r.

(6.4)
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For example,ν � 0.1, 0.2, . . . , 1 yield θ1,r � 6o, 11o, 17o, 22o, 27o, 31o, 35o, 39o, 42o, 45o, andθq,r �
8o, 16o, 23o, 30o, 37o, 43o, 48o, 52o, 56o, 60o, q , 1, q , r, respectively. For highν such asν � 2,

θ1,r � 63o andθq,r � 78o, and tensor can be quickly factorized by CP algorithms. The higher the

parameterν, the lower the collinearity of factors. It is more difficult to factorize tensors with lower

ν (e.g. ν = 0.1, 0.2). However,ν ¡ 3 arises another issue involving a large difference in magnitude

between components. The tensors are still difficult to factorize even thought collinearity of factors is

low (θ1,r ¡ 71o). In addition to (1.21), CP tensors in our simulations can also be expressed as

Y � Ŗ

r�1

λr ap1qr � ap2qr � � � � � apNqr , (6.5)

where}apnqr }2 � 1,�r, andλ1 � 1, andλr � p1� ν2qN{2,�r ¡ 1. Therefore, forν � 3, 4, 5 and

N � 3,λr � 31.6, 70.1, 132.6,�r , 1, respectively. That means factors havepR�1q large components

compared with the first component.

The OPT algorithm has been tested for collinear data with thesame mutual anglesθq,r � 26o and

60o, �q , r in4. In our experiments,θ1,r andθq,r , q ¡ 1 are different,θ1,r   θq,r , and are in a wider

ranger6o, 60os. We analyze synthetic tensors for two cases: error-free andnoisy data with additive

white Gaussian noise at SNR= 20 dB, 30 dB or 40 dB.

The proposed algorithms have been extensively verified and compared with the ALS, ALS plus

line seach (LS), and OPT algorithms for large-scale, high dimensional tensors with/without Gaussian

noises. All the algorithms are analyzed under the same experimental conditions. Those are leading sin-

gular values for initialization, iteration until 10 differences of successive relative errorsε � }Y � Ŷ}F}Y}F

are lower than 10�12, or the maximum number of iterations (5000) is exceeded. TheALS algorithm

is adapted from the Tensor toolbox16;17 to accompany with line search and enhanced line search. The

line search algorithm was adapted from25;200 to run with synthetic and high dimensional tensors. For

ELS171, although its published version50 can support arbitrary dimension, this algorithm is in practice

computational demanding. Moreover, results of ELS in our simulations are not significantly different

from those of LS. Therefore, we skip ELS in the simulation.

The OPT algorithm4 provided in the Tensor toolbox17 was set to run with Hestenes-Stiefel (HS)

updates, and adapted to factorize noiseless large-scale tensors and to have the same stopping criteria

as other algorithms. Parameter “MaxFuncEvals” was set to�8, while other parameters of OPT were

set to their default values. The fast dGN algorithm with its two variations fLMa and fLMb in Section

4.2.3.4is denoted by fLM. We note that the two variations are equivalent in the sense of performance.

In order to roughly compare complexity of algorithms, we provide the average execution time per

iteration for algorithms in addition to their number of iterations. Running time does not reflect appro-

priate complexity of an algorithm. It mostly depends on programming skills (memory management,
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code optimization), and programming language. All algorithms are implemented in Matlab which is

relatively slow for doing large number of “for” loops. Moreover, due to huge workload for the whole

simulations, we run experiments in parallel system in whichworkers do not have the same configura-

tion (CPU, memory). We note that speed of an algorithm is proportional to its computational cost for

one iteration and the number of iterations in one run. We denote a task in which all factors have been

updated once as one iteration. The cost of ALS per one iteration is approximatelyOpNIN�1R� NR3q
for a tensor withI � I1 � . . . � IN. OPT has a cost ofOpNIN�1Rq per gradient evaluation. However,

its cost per one iteration is much higher due to repetition ofgradient evaluation for optimization of step

size. The fast dGN (fLM) algorithm has a cost ofOpNIN�1R� N3R6q.
6.1.1 Mean Squares Angular Errors and Cramér-Rao Induced Bound

In order to evaluate performance of factorizations, in additional to the relative error, we compute Mean

Square Angular Error (MSAE) between orginal and estimated componentsapnqr , papnqr after matching

order of components defined as108;197;198

MSAEpapnqr , papnqr q � E

�
arccos2

apnqHr papnqr}apnqr }2}papnqr }2

�
. (6.6)

Cramér-Rao Induced Bound (CRIB) on the MSAE ofpapnqr is computed as in108;197. The average

MSAEs for all the estimated components are compared againstthe average CRIB. Figure6.1(a)illus-

trates the angular CRIB versusν given in (6.3) at SNR= 30 dB for various sizesR and dimensions

N. Legend describes factor sizesIn � R and dimension of tensorsN. CRIB for the same tensors at

other SNR can be straightforwardly deduced from those in Figure6.1(a). For example, CRIB at SNR

= 20 dB or 40 dB is shifted up or down 10 dB from that at SNR= 30 dB. CRIB for the test case of

N � 3, In � 50, R� 20 and at SNR= 20 dB deduced from that at SNR= 30 dB (dark-yellow line)

is above -30 dB. We also have CRIB for the test case ofN � 3, In � 50, R � 5 and SNR= 40 dB

deduced from that at SNR= 30 dB (pink line) is lower than -30 dB. It is important to note that an

MSAE lower than -30 dB, -26 dB or -20 dB means two components are different by an mutual angle

less than 2o, 3o and 6o, respectively. This gives us a rough evaluation of a rather good approximation

in which MSAE  �30 dB. As seen in Figure6.1(a), the angular CRIB for the test case ofIn � 50,

R� 5, N � 3 and SNR= 30 dB is lower than -30 dB forν � 0.2, 0.3, . . . , 1. That means we can ob-

tain a good approximate in which mutual angles of componentsare less than 2o. Practical simulations

show that MSAE is hard to reach a CRIB¥ -30 dB, since collinearity of factors has been destroyed

by noise. Discussion on effects of noise on collinear data in AppendixA6.1 gives us insight into when

CP algorithms are not stable, and when they succeed in retrieving collinear factors from noisy tensors.

Figure6.1(a)also reveals that we cannot retrieve collinearity components from factorization of 3-D
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tensors of rankR � 15, 20 at SNR= 20 dB forν   0.5. Therefore, we will not analyze simulations

having CRIB¥ -26 dB.

6.1.2 Factorization of Real-Valued Highly Collinear Tensors

We analyze tensors of sizeIn � 50, various dimensionsN � 3, 4, 6 and ranksR� 5, 10, 15, 20, and at

differentν � 0.1, 0.2, . . . , 1. MSAE is computed from 100 runs for each combination.

For noiseless tensor factorizations, the average MSAEs of algorithms are compared in Fig-

ures6.1(e), 6.2(e), 6.3, 6.4(a), (c). For 3-D tensors of rankR � 5 (in Figure6.1(e)), ALS, LS and

OPT obtained MSAE= -27 dB, -33 dB and -29 dB for high collinearityν � 0.1, respectively. That

means original and approximate components are different by an angle� 2o. The algorithms achieved

better MSAE forν ¡ 0.5. We note that CP algorithms are expected to retrieve the exact collinear

factors from noiseless tensors. This can be obtained only bydGN (fLM) with perfect MSAE  -100

dB, �ν.
LS improved performance of ALS for 3-D noiseless tensors as illustrated in Figures6.2(e), 6.4(a),

(c), and for 6-D noiseless tensors in Figures6.3. However, the improvement is not sufficient for exper-

iments withν � 0.1. OPT might still get stuck in local minima, or its updates orchosen parameters

were not suitable for the simulations. For some runs, OPT explained the data tensors and achieved

low MSAE. However, its performance for the whole analysis reflects the algorithm is not stable in our

experiments.

MSAE for factorizations of noisy tensors at SNR= 20 dB, 30 dB and 40 dB are illustrated in

Figures6.1-6.3. CRIB at SNR= 20 dB and 40 dB are shifted� 10 dB from that at SNR= 30 dB

plotted in Figure6.1(a).

For 3-D tensors of rankR� 5 at SNR= 20 dB, MSAEs of ALS and LS reach CRIB forν ¥ 0.4

as illustrated in Figure6.1(b), whereas OPT’s MSAEs approach CRIB forν ¥ 0.5. MSAEs of fLM

are always close to CRIB even forν � 0.3. At SNR= 30 dB, algorithms mostly converged to solution

for ν ¥ 0.2. However, ALS, LS and OPT failed to retrieve collinear factors in some runs asν � 0.2.

Hence, their average MSAEs are still far from CRIB (see in Figure 6.1(c)). At SNR = 40 dB, CP

algorithms obtained high MSAE comparable to CRIB for mostν. MSAEs of LS are better than those

of ALS and OPT, and are identical to those of fLM forν ¥ 0.2 as shown in Figure6.1(d). We note

that CP algorithms are not stable forν � 0.1 in spite of CRIB= -33 dB. Explanation for this test case

is discussed in AppendixA6.1 and illustrated in Figure6.19(b). For this test case, condition number

of the approximate Hessian with respect to solutions is 1 dueto large damping parameterν ¡ 1030.

In Figure6.2, we compare algorithms for higher rankR� 10. It should be noted that factorization

becomes more difficult for higher rankR. The angular CRIB forR� 10 is lower than that forR� 5 as

seen in Figure6.1(a). fLM’s MSAEs always approach CRIB at various SNR levels in Figures6.2(a)-
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(b) 3-D tensors,Apnq P R50�5, SNR= 20 dB.
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(c) 3-D tensors,Apnq P R50�5, SNR= 30 dB.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−55

−50

−45

−40

−35

−30

−25

−20

−15

n

 

 

ν

M
S

A
E

(d
B

)
CRIB
ALS
LS
OPT
fLM

(d) 3-D tensors,Apnq P R50�5, SNR= 40 dB.
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(e) 3-D tensors,Apnq P R50�5, SNR= �8 dB.
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(f) 4-D tensors,Apnq P R50�5, SNR= 40 dB.

Figure 6.1:(a) angular CRIB at SNR= 30 dB for various sizes and ranks. Legend describes factor
sizesIn � R and dimensions of tensorsN. (b)-(e) the average MSAE for factorization of 3-D tensors
with In � 50, rankR� 5 at SNR= 20 dB, 30 dB, 40 dB and�8 dB (noiseless tensor). Algorithms
run until reaching a derivative of successive relative errors of 10�12 or 5000 iterations.(f) MSAE for
factorization of 4-D tensors withIn � 50, R � 5 at SNR= 40 dB evaluated as algorithms reach a
derivative of successive relative error of 10�8 or 1000 iterations.
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(c). LS seems more stable than ALS and OPT, and sometimes its performances (MSAE) reach CRIB,

e.g.,ν � 0.7, 0.8, 0.9, 1 at SNR= 20 dB (Figure6.2(a)), ν � 0.8, 0.9, 1 at SNR= 40 dB (Figure6.2(c)).

Both ALS and OPT are not stable, or have not yet converged under two stopping criteria. In addition

to the average MSAE in Figure6.2(c), Figure6.2(d) illustrates median MSAE of algorithms which

are comparable to CRIB. That means ALS, LS and OPT sometimes achieved good MSAE by 5000

iterations. However, in some runs, they have not yet converged to the solution, and might need more

iterations. Figures6.2(c)-(d) also indicate that ALS, LS and OPT are less stable than fLM. Wenote that

the performance of algorithms might depend on the stopping criteria, and they all should be similar

if we increase the number of iterations and discard all otherstopping criteria (such as difference of

relative errors).

MSAEs of 3-D tensors of the same size but higher ranksR = 15 and 20 at SNR= 40 dB are

illustrated in Figures6.4(b), (d). The higher the tensor rankR, the more difficult the approximation. As

seen in Figure6.1(a)and also in Figures6.4(b), (d), CRIB increases (worse performance) as increasing

rank R. Therefore, forR � 20, we cannot obtain accurately collinear components forν � 0.1, 0.2

despite high SNR= 40 dB. Once again, in this analysis, fLM gives the best performance (MSAE)

which is comparable to CRIB.

Additional results shown in Figures6.1(f), 6.2(f)are for 4-D tensors with rankR= 5 and 10 at SNR

= 40 dB. For these simulations, algorithms run until differences of successive relative errors are lower

than 10�8, or the number of iterations exceeds 1000. MSAE of fLM validates that fLM is superior to

other algorithms in our simulations.

In order to compare complexity of algorithms, Figure6.6 shows the average execution time (mil-

liseconds) per iteration of algorithms for factorization of 3-D tensors withR = 5, 10, 15, 20. The

running time was measured in Matlab on two separate computers. The first one (PC1) is a PC that has

a Core 2 Duo 2.4 GHz processor, and 2GB memory. The second one is a computing server (PC2) that

has 2 quadcore 3.33 GHz processors and 64 GB memory. The running time per iteration for ALS is

less than those of other algorithms on PC1. However, OPT’s complexity seems less (on average) than

that of ALS for high rankR= 15, 20 on the computing server. For fLM, the running time per iteration

are often higher than those for ALS and OPT, and increases asν increases. For example, in order to

to factorize 3-D tensors of rankR� 20 for ν � 0.2, 1, fLM consumes 406 msecs and 583 msecs (per

iteration) on PC1 respectively, whereas it take 125 msecs and 168 msecs on PC2.

Running time of an algorithm over the whole factorization isproportional to its number of itera-

tions and execution time/iteration. In addition to Figure6.6, we illustrate the number of iterations of

algorithms in Figures6.5, 6.7. For 3-D tensorsIn � 50 andR� 5 andν � 0.2 at SNR= 40 dB, ALS,

LS, OPT consumed 99 secs, 185 secs, 151 secs (on average) to finish on PC2, while fLM consumed

only 3 secs on the same computer. For 3-D tensors of the sameIn, ν � 0.2, SNR= 40 dB butR� 10,
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(a) 3-D tensors,Apnq P R50�10, SNR= 20 dB.
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(b) 3-D tensors,Apnq P R50�10, SNR= 30 dB.
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(c) 3-D tensors,Apnq P R50�10, SNR= 40 dB.
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(d) median MSAE,Apnq P R50�10, SNR= 40 dB.
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(e) 3-D tensors,Apnq P R50�10, SNR= �8 dB.
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(f) 4-D tensors,Apnq P R50�10, SNR= 40 dB.

Figure 6.2: (a)-(e) Average or median MSAE for factorization of 50� 50� 50 dimensional tensors
with rank R � 10 at SNR= 20 dB, 30 dB, 40 dB and�8 dB (noiseless tensor).(f) MSAE for
factorization of 4-D tensors with the same factor size at SNR= 40 dB.

ALS, LS and OPT took 143 secs, 258 secs and 182 secs, respectively, while fLM took only 76 secs

on PC2. We can evaluate speed ratio between fLM and ALS for differentν. For 3-D tensors of rank

R� 5 at SNR= 40 dB, the speed ratios forν � 0.2, 04, 0.6, 0.8, 1 are approximately 15.3, 9.6, 4.4, 2.6,
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(a) 6-D tensors,Apnq P R50�5, SNR= �8 dB.
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(b) 6-D tensors,Apnq P R50�10, SNR= �8 dB.

Figure 6.3: Average MSAE for factorization of 6-D noiselesstensors with sizeIn � 50. Algorithms
run until reaching a derivative of successive relative errors of 10�12 or 5000 iterations.
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(a) 3-D tensors,Apnq P R50�15, SNR= �8 dB.
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(b) 3-D tensors,Apnq P R50�15, SNR= 40 dB.
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(c) 3-D tensors,Apnq P R50�20, SNR= �8 dB.
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(d) 3-D tensors,Apnq P R50�20, SNR= 40 dB.
Figure 6.4: Average MSAE for factorization of 3-D tensors with size In � 50 and ranksR = 15
and 20 at SNR= 40 dB and�8 dB (noiseless tensor). Algorithms run until reaching a derivative of
successive relative errors of 10�12 or the number of iterations of 5000.
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(a) 3-D tensors,Apnq P R50�5.
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(b) 3-D tensors,Apnq P R50�10.
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(c) 3-D tensors,Apnq P R50�15.

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1 40

50

100

300

500

1000

2000

3000

5000

 

SNR [dB]

 

ν

N
o.

Ite
ra

tio
ns

ALS

LS

OPT

fLM

�8
(d) 3-D tensors,Apnq P R50�20.

Figure 6.5: Number of iterations of CP algorithms as they reach a relative error of 10�12 for approxi-
mation of 3-D tensors with sizeIn � 50 and ranksR � 5, 10, 15, 20 at SNR= 20 dB, 30 dB, 40 dB,
and�8 dB.

2.7 times measured on PC2. That means fLM is often faster thanALS if they are run under the same

conditions. The ratios are 1.9, 10.9 7.8, 6.7 and 5.1 times for factorization of 3-D tensors ofR� 10 at

SNR= 40 dB, and are 2.5, 2.4, 1.6, 1.9, 3.5 times forR� 15.

Figures6.5, 6.7 also reveal that LS is quite effective for ALS. The number of iterations of LS is

always lower than that of ALS. That means LS stops at an earlier iteration. However, we cannot ensure

it converges to the desired solution, and LS speeds up ALS because LS has higher complexity per

one iteration than that of ALS (see in Figure6.6). If LS runs 5000 iterations, ALS in LS runs 5000
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(a) Core 2 Duo, 2.4 GHz.
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(b) 2 Quadcores, 3.33 GHz.

Figure 6.6: Running time (miliseconds) per iteration of CP algorithms for factorization of 3-D tensors
with size In � 50, ranksR � 5, 10, 15, 20. (a) measured on a PC with an Intel Core 2 Duo 2.4 GHz
processor, 2 GB memory.(b) measured on computing server that has 2 quadcore 3.33 GHz processors
and 64 GB memory.
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(a) 6-D tensors,Apnq P R50�5, SNR= �8 dB.
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(b) 6-D tensors,Apnq P R50�10, SNR= �8 dB.

Figure 6.7: Number of iterations of CP algorithms as they reach a relative error of 10�12 for approxi-
mation of 4-D and 6-D tensors with sizeIn � 50 and ranksR� 5, 10.

iterations and its line search runs 2500 iterations. Therefore, it is not clear LS is faster than ALS unless

the number of iterations of LS is significant less than that ofALS. For example, speed ratios between

LS and ALS are 0.5, 1.2, 0.8, 0.7, 1.1 times forν � 0.2, 0.4, 0.6, 0.8, 1 when factorizing 3-D tensors

with R= 15 at SNR= 40 dB.

For higher dimensional tensors (N ¥ 6), fLM’s complexity is at the same order of those of other

algorithms. Hence, fLM might be faster than other algorithms. Number of iterations of fLM is often

lower than those of ALS and LS for high collinearity degree asillustrated in Figure6.7. This ensures

that fLM converges faster than other algorithms for such difficult benchmarks even though complexity
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Table 6.2: Description of structured matrices of sizen� n69;87;88;122.
Matrix type Description
1. binomial Multiple of involutory matrix. Ann-by-n matrix with integer entries:A2 � 2pn�1q In

2. Cauchy An n-by-n positive matrix,Cpi, jq � 1{pi � jq, detpCq � 0
3. Chebspec Chebyshev spectral differentiation matrix of order n.

C is nilpotentpCn � 0q, and has the null vector1n

4. ChebVand Vandermonde-like matrix for the Chebyshev polynomials
4. Chow Singular Toeplitz lower Hessenberg matrix:A � Hp1q hasrn{2s zero

eigenvalues and the remain eigenvalues are equal to 4 cospkπ{pn� 2qq2.
6. Circulant Toeplitz matrix whose first row is the vector 1 :n.
7. dramadah Toeplitz matrix of zeros and ones,|detpAq| � 1. Inverse has large integer entries.
8. gcdmat Greatest common divisor matrixApi, jq � gcdpi, jq.
9. Hilbert Hilbert matrix is a poorly conditioned matrix:Hpi, jq � 1{pi � j � 1q69.
10. Lehmer Symmetric positive definite matrix such thatApi, jq � i{ j, j ¡� i
11. Lotkin Lotkin matrix is Hilbert matrix with its first row altered to all ones.

The Lotkin matrix A is nonsymmetric, ill-conditioned, and
has many negative eigenvalues of small magnitude.

12. minij Symmetric positive definite matrix:Api, jq � minpi, jq
13. pei-α Pei matrix is a symmetric matrixαIn � 1n�n.
14. triw Upper triangular matrix
15. randsvd A banded (multidiagonal) random matrix with condpAq � a

1{ε
and singular values from geometric distribution.

16. tridiag Tridiagonal matrix (sparse)
the Toeplitz tridiagonal matrix with subdiagonal and superdiagonal elements -1,
diagonal elements 2.

of fLM per iteration is higher than those of others.

6.1.3 Structured Factors

This section considers difficult benchmarks with structured matrices which can be sparse, highly

collinear, or ill-condition. The list of structured matrices is given in Table6.2. Factors are leading

left columns of structured matrices of the same size. That isin order to construct a factor of size

50� 10 from the Hilbert matrix69, a full Hilbert matrix of order-50 is generated, then 10 leftcolumns

of this matrix is picked up to form the factor. All the tensorswere constructed withλ1 � . . . � λN � 1.

For pei matrix,α can be one of four values -2, -1, 1, 2. Hence, there might be in total 21 structured

matrices. We verified only 3-D tensors withIn � 50 or In � 100, and factors can consist of 5, 10, 15

or 20 components.

Factorization results were evaluated through SIR indices between estimated and original compo-

nents. ForIn � 50, R � 5 andR � 10, SIR indices are given in Table6.3, whereas for higher rank

approximationsR � 15, In � 50 andR � 20, In � 100, SIRs are in Table6.4. Relative errors for

these experiments are given in Table6.5. The results show that the ALS algorithm fail in most cases.
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Table 6.3: Comparison of SIR indices for algorithms in Example 6.1.3. Tensors were composed from
structured factors. A good algorithm provides high SIR between original and estimated components.
Factor type ALS LS ELS HALS OPT fLM

R� 5, In � 50

minij 10.85� 8.96 10.84� 8.95 10.84� 8.95 10.82� 8.89 9.21� 7.79 12.19� 8.64
Hilbert 20.88� 6.33 23.08� 9.86 20.88� 6.32 20.14� 7.96 24.36� 5.91 25.62� 8.95
Lotkin 23.50� 6.83 23.34� 6.36 23.23� 5.86 23.70� 7.68 28.07� 8.59 28.88� 9.21
Cauchy 25.28� 8.21 24.68� 5.88 24.06� 5.69 23.49� 4.64 30.68� 11.29 29.52� 9.23
Chow 5.17� 7.02 8.02� 10.16 5.46� 8.78 4.58� 6.62 3.57� 6.18 30.46� 55.84
Circulant 12.30� 3.34 12.84� 6.79 12.30� 3.34 11.95� 4.59 16.47� 4.39 119.26� 4.96
Chebspec 34.49� 17.71 39.63� 18.49 34.49� 17.71 43.45� 19.08 24.74� 15.21 134.60� 18.22
ChebVand 9.13� 5.98 19.46� 10.53 9.13� 5.98 16.38� 7.11 19.86� 9.43 150.83� 42.56
pei-1 10.17� 2.58 13.21� 2.51 10.16� 2.58 9.91� 2.55 11.75� 2.58 164.97� 54.87
Lehmer 17.65� 6.65 38.71� 19.06 17.65� 6.65 11.99� 5.55 23.37� 10.82 169.55� 82.75
pei1 9.87� 2.59 12.73� 2.52 9.89� 2.58 9.71� 2.56 13.79� 2.52 186.19� 71.08
pei2 21.04� 2.40 81.71� 2.31 21.04� 2.40 18.93� 2.19 54.53� 2.80 196.88� 75.50
pei-2 24.72� 2.36 98.85� 2.29 24.75� 2.36 22.02� 1.92 84.27� 2.22 197.07� 75.35
gcdmat 35.17� 27.54 60.64� 41.63 35.17� 27.54 24.93� 22.26 30.32� 23.38 200.54� 123.06
dramadah 26.38� 9.93 51.62� 12.72 26.38� 9.93 18.65� 1.94 54.67� 14.98 201.05� 72.45
triw 61.54� 9.07 123.57� 8.99 61.54� 9.07 121.68� 9.02 99.17� 7.33 269.28� 63.60
randsvd 177.49� 63.72 230.63� 76.80 164.41� 55.49 163.72� 55.67 137.59� 9.33 280.87� 50.48
binomial 34.97� 25.12 98.60� 100.36 34.95� 25.10 71.97� 63.50 48.86� 36.29 300.00� 0.00
tridiag 106.70� 5.68 126.58� 5.70 106.70� 5.68 125.25� 5.98 9.02� 9.22 300.00� 0.00

R� 10, In � 50

minij 11.21� 6.86 11.76� 6.92 12.37� 7.01 10.43� 6.70 10.29� 7.18 16.04� 9.23
ChebVand 7.62� 4.14 11.43� 6.20 11.23� 5.57 16.87� 9.23 13.39� 5.09 18.10� 10.73
Cauchy 22.02� 6.61 21.60� 6.13 22.48� 6.29 21.68� 6.04 27.01� 8.42 27.37� 8.09
Lotkin 22.50� 5.69 21.88� 6.47 22.17� 6.33 22.70� 6.34 27.17� 8.87 28.43� 9.96
Hilbert 18.99� 5.64 18.78� 5.80 17.94� 5.55 19.48� 5.17 24.51� 6.21 30.54� 11.06
binomial 13.96� 7.59 17.25� 10.72 15.45� 9.13 14.53� 8.82 18.14� 9.30 31.85� 19.20
Chebspec 30.06� 18.59 30.07� 18.59 30.37� 18.54 28.01� 19.00 34.90� 23.71 35.46� 23.73
Lehmer 10.80� 3.57 13.14� 5.38 13.97� 5.97 9.10� 4.38 16.87� 7.98 65.59� 47.36
Chow 6.84� 5.66 6.85� 5.36 5.91� 5.07 5.28� 5.72 7.03� 5.86 73.39� 58.45
pei1 12.15� 2.97 16.35� 2.82 14.25� 2.88 10.97� 3.01 11.17� 3.09 110.96� 2.65
Circulant 10.12� 3.65 13.07� 5.30 11.63� 5.02 8.00� 4.08 11.56� 1.99 131.18� 2.15
pei-1 12.38� 2.96 14.65� 2.87 14.63� 2.87 11.12� 3.01 9.82� 3.61 167.02� 53.17
pei-2 21.47� 2.73 76.18� 2.58 40.32� 2.60 17.58� 2.65 57.33� 3.20 172.03� 58.30
tridiag 18.10� 8.10 21.47� 9.06 58.50� 6.66 134.22� 5.22 12.63� 13.39 173.34� 64.49
dramadah 14.65� 7.96 14.12� 6.62 14.16� 6.96 20.87� 6.97 14.27� 5.18 203.51� 74.85
pei2 19.50� 2.77 56.88� 2.60 31.94� 2.64 16.22� 2.74 33.19� 2.61 212.57� 77.85
randsvd 32.39� 8.36 123.21� 9.45 116.41� 9.00 116.28� 9.99 17.30� 6.66 214.98� 75.75
gcdmat 13.57� 15.34 14.56� 16.03 14.65� 16.08 15.64� 15.47 17.83� 15.27 215.33� 102.09
triw 60.37� 15.62 90.19� 15.65 90.12� 15.55 118.82� 15.76 46.01� 24.74 238.74� 76.32

In Tables6.3and 6.4, successful factorizations with high SIR> 20 dB are emphasized in blue.

For R� 5, In � 50, ALS achieved good performances for matrices:triw, randsvd, tridiag. Line

search can improve the ALS for some experiments, but not all.Although ELS was designed to be better

than LS, this algorithm could not reveal its ability for these difficult benchmarks. The performances of

ELS were not better than those of LS. The HALS algorithm facesthe same problem for the difficult

benchmarks. HALS did not explain the data well. However, HALS with linesearch can achieve quite
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Table 6.4: Comparison of SIR indices for algorithms in Example 6.1.3. Tensors were composed from
structured factors. A good algorithm provides high SIR between original and estimated components.
Factor type ALS LS ELS HALS OPT fLM

R� 15, In � 50

minij 12.46� 6.19 12.08� 5.62 12.46� 6.19 10.64� 5.91 12.13� 6.44 16.08� 6.73
ChebVand 11.40� 6.75 12.17� 6.91 9.52� 6.08 11.75� 4.36 14.30� 8.74 18.09� 11.42
Cauchy 20.58� 6.68 22.83� 6.04 22.76� 6.88 21.35� 5.66 27.00� 9.76 26.69� 8.07
Hilbert 21.71� 5.98 20.96� 6.82 21.36� 5.03 19.01� 4.71 24.25� 6.16 27.44� 8.07
Lotkin 23.61� 7.65 26.04� 8.13 24.78� 6.68 23.35� 5.82 27.74� 8.08 29.36� 9.92
Lehmer 10.94� 5.11 13.17� 8.53 10.94� 5.11 8.71� 5.17 16.06� 8.15 63.88� 75.39
pei1 13.77� 2.91 17.89� 2.73 13.79� 2.91 12.08� 5.24 11.57� 3.77 108.70� 2.53
Chow 7.15� 5.03 8.19� 5.84 6.69� 5.11 6.65� 4.72 7.98� 5.24 110.02� 81.36
pei-1 13.99� 2.90 17.56� 2.74 13.99� 2.90 12.54� 3.03 8.35� 5.52 123.03� 2.52
Circulant 9.88� 3.36 11.30� 3.93 10.41� 4.43 7.69� 4.49 9.81� 1.80 125.87� 6.24
pei2 19.88� 2.69 28.24� 2.55 19.87� 2.69 16.69� 7.06 20.11� 8.57 130.68� 2.50
pei-2 21.35� 2.65 33.94� 2.51 21.35� 2.65 17.00� 7.28 30.41� 2.57 139.65� 2.41
gcdmat 20.79� 12.05 26.15� 14.50 20.79� 12.05 17.24� 15.42 18.62� 14.29 203.94� 91.36
Chebspec 19.49� 13.38 18.16� 13.48 19.49� 13.38 50.35� 28.50 58.31� 20.48 227.22� 79.27
triw 75.50� 23.12 102.62� 20.51 75.50� 23.12 107.71� 19.61 55.17� 24.15 233.18� 75.59
dramadah 26.65� 11.54 29.92� 14.93 26.65� 11.54 23.73� 11.60 28.46� 11.88 237.80� 73.61
randsvd 9.26� 4.54 11.21� 5.36 9.26� 4.54 37.65� 8.80 8.11� 4.23 267.44� 61.61
binomial 14.69� 7.50 14.83� 7.44 14.69� 7.50 11.74� 5.98 20.23� 10.29 300.00� 0.00
tridiag 45.68� 11.08 109.10� 6.88 45.68� 11.08 120.50� 7.52 7.81� 4.31 300.00� 0.00

R� 20, In � 100

minij 11.12� 5.76 11.12� 5.49 13.07� 6.44 10.73� 5.44 12.35� 6.02 15.64� 6.00
ChebVand 8.30� 5.24 12.19� 7.17 12.63� 6.88 11.55� 4.23 12.36� 4.38 17.58� 12.21
tridiag 19.85� 12.69 19.67� 12.74 19.43� 12.70 24.37� 20.35 12.09� 9.37 18.38� 12.11
Hilbert 21.60� 6.28 20.21� 5.62 19.78� 6.73 19.79� 4.79 27.05� 9.75 23.87� 6.11
Lotkin 24.21� 7.39 26.45� 6.72 23.78� 6.92 22.98� 5.86 28.45� 9.48 26.35� 7.47
binomial 15.41� 6.56 15.19� 8.02 13.99� 5.91 12.68� 6.01 20.74� 8.20 26.83� 17.26
Cauchy 21.29� 6.03 26.10� 5.54 25.06� 7.14 20.73� 5.28 26.56� 6.53 28.43� 8.07
dramadah 16.30� 8.19 21.20� 9.27 18.44� 10.21 15.31� 5.88 19.62� 3.81 48.20� 18.59
Chow 6.30� 4.84 8.30� 6.66 7.50� 5.02 6.07� 4.25 8.56� 4.94 74.44� 43.00
Lehmer 10.20� 4.66 12.25� 7.28 10.74� 5.98 9.43� 4.87 17.70� 6.86 82.31� 89.57
triw 86.52� 61.83 77.79� 44.69 76.71� 43.59 51.46� 31.69 49.88� 24.89 84.49� 55.61
pei-1 14.11� 2.84 17.17� 2.75 15.52� 2.79 12.38� 3.10 11.95� 4.97 91.89� 2.61
pei1 14.02� 2.84 16.71� 2.76 15.41� 2.80 12.37� 3.05 14.19� 2.82 92.04� 2.61
Circulant 10.59� 4.26 12.88� 4.72 12.81� 5.05 7.03� 1.99 11.63� 1.99 126.83� 8.63
pei-2 18.94� 2.73 30.86� 2.62 23.79� 2.66 14.55� 2.87 21.41� 2.69 132.11� 2.52
pei2 18.51� 2.73 28.59� 2.63 22.90� 2.67 14.36� 2.89 21.21� 2.68 156.97� 48.24
gcdmat 22.61� 20.34 32.37� 25.51 25.35� 21.51 23.07� 20.13 21.18� 15.21 187.29� 84.00
Chebspec 23.13� 15.78 52.07� 27.19 50.96� 26.64 49.98� 25.92 84.60� 29.62 230.27� 78.29
randsvd 150.11� 35.44 196.67� 71.11 138.55� 22.50 141.79� 7.08 111.40� 5.95 248.73� 70.48

good performances for some benchmarks such as matricesChebspec, triw, randsvd, tridiag.

The OPT seems better than ALS and HALS algorithms due to update all the entries simultaneously.

For low rankR� 5, OPT easily outperformed (H)ALS algorithms. For example,for pei2, per-2, and

dramadahmatrices, OPT estimated components with averaged SIR= 54 dB, 84.27 dB and 54 dB

respectively. However, for higher rankR � 10, 15 with higher number of entries to be updated,

the performances of OPT were reduced. For example, SIRs forpei2, per-2anddramadahmatrices
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Table 6.5: Fitness comparison for algorithms in Example6.1.3.
Factor type ALS LS ELS HALS OPT fLM ALS LS ELS HALS OPT fLM

R� 5, In � 50 R� 10, In � 50

minij 1.83e-4 1.83e-4 1.83e-4 1.83e-4 3.90e-49.90e-6 7.85e-5 7.33e-5 7.24e-5 7.13e-5 6.34e-48.15e-6
Hilbert 1.78e-4 7.63e-5 1.78e-4 8.67e-5 4.67e-41.29e-6 2.32e-5 2.42e-5 5.45e-6 6.63e-7 1.67e-38.76e-8
Lotkin 3.82e-5 2.33e-6 6.72e-5 1.33e-5 8.42e-56.16e-7 3.99e-6 4.84e-5 5.62e-6 5.14e-7 4.32e-44.24e-8
Cauchy 1.73e-5 1.20e-5 1.78e-5 1.38e-5 1.13e-45.16e-7 3.88e-6 2.28e-6 6.56e-7 3.95e-7 6.50e-47.98e-8
Chow 4.01e-4 2.85e-4 5.24e-4 5.52e-4 1.14e-3 0 2.12e-3 2.07e-3 2.07e-3 2.07e-3 1.82e-3 0
Circulant 6.16e-3 6.05e-3 6.16e-3 6.14e-3 1.86e-3 0 5.11e-3 3.31e-3 5.78e-3 6.40e-3 3.82e-3 0
Chebspec 2.36e-3 1.25e-3 2.36e-3 8.29e-4 6.85e-3 0 4.01e-2 4.01e-2 4.01e-2 4.01e-2 3.04e-21.90e-2
ChebVand 1.94e-2 8.49e-4 1.94e-2 1.33e-3 8.63e-4 0 1.94e-2 4.41e-3 6.55e-3 5.20e-4 7.75e-31.16e-5
pei-1 1.23e-3 7.42e-4 1.23e-3 1.31e-3 9.61e-43.86e-8 8.70e-4 5.48e-4 5.50e-4 1.26e-3 9.76e-45.48e-8
Lehmer 3.28e-3 2.83e-4 3.28e-3 8.14e-3 3.04e-3 0 1.63e-3 1.33e-3 1.40e-3 2.29e-3 3.60e-31.08e-4
pei1 1.16e-3 7.06e-4 1.15e-3 1.22e-3 6.16e-4 0 8.19e-4 3.72e-4 5.22e-4 1.17e-3 8.77e-4 0
pei2 1.87e-3 1.86e-6 1.87e-3 2.45e-3 3.70e-5 0 1.84e-3 3.01e-5 4.85e-4 2.92e-3 4.25e-4 0
pei-2 1.57e-3 3.27e-7 1.56e-3 2.17e-3 1.73e-6 0 1.86e-3 4.14e-6 2.47e-4 3.08e-3 3.54e-54.21e-8
gcdmat 1.17e-3 5.58e-5 1.17e-3 6.74e-3 2.43e-3 0 7.98e-3 7.40e-3 7.41e-3 7.61e-3 6.20e-3 0
dramadah 2.18e-2 1.00e-3 2.18e-2 1.51e-2 9.46e-4 0 2.75e-2 2.71e-2 2.71e-2 1.31e-2 2.18e-2 0
triw 2.02e-4 1.87e-7 2.02e-4 1.99e-7 7.02e-6 0 4.30e-4 1.38e-5 1.38e-5 5.17e-7 1.08e-1 0
randsvd 1.71e-8 1.71e-8 4.19e-8 3.83e-8 1.03e-7 0 6.02e-3 1.84e-7 3.42e-7 4.32e-7 4.95e-2 0
binomial 1.10e-3 1.38e-4 1.10e-3 3.97e-4 4.50e-4 0 1.50e-3 8.53e-4 8.97e-4 2.87e-3 4.62e-32.61e-5
tridiag 1.33e-6 1.35e-7 1.33e-6 1.61e-7 3.28e-1 0 2.96e-2 2.50e-2 2.63e-4 6.84e-8 4.05e-1 0

R� 15, In � 50 R� 20, In � 100

minij 3.99e-5 3.69e-5 3.99e-5 2.29e-5 7.35e-44.26e-6 1.57e-5 1.54e-5 1.54e-5 1.06e-5 4.19e-41.24e-6
ChebVand 3.83e-3 2.27e-3 5.84e-3 7.83e-4 1.17e-29.87e-6 6.32e-3 1.13e-3 2.64e-3 6.73e-4 5.98e-32.18e-6
Cauchy 4.19e-7 3.37e-6 2.74e-6 2.88e-7 1.03e-3 0 1.86e-6 3.02e-6 1.58e-6 6.19e-7 1.01e-3 0
Hilbert 1.93e-5 1.44e-5 2.87e-6 2.38e-6 2.20e-3 0 4.20e-6 1.83e-6 2.59e-6 2.39e-6 3.21e-4 0
Lotkin 6.03e-7 1.52e-6 1.95e-6 1.53e-6 6.01e-4 0 1.74e-6 4.90e-7 6.49e-8 1.92e-7 6.71e-4 0
Lehmer 1.25e-3 7.64e-4 1.25e-3 7.11e-4 3.46e-32.18e-5 8.75e-4 4.81e-4 7.92e-4 5.94e-4 2.26e-36.74e-6
pei1 6.57e-4 2.79e-4 6.53e-4 2.41e-3 7.29e-4 0 2.57e-4 1.24e-4 1.68e-4 5.73e-4 2.40e-4 0
Chow 2.04e-3 1.66e-3 2.36e-3 2.08e-3 2.71e-3 0 1.03e-3 9.00e-4 1.02e-3 9.17e-4 1.20e-32.51e-8
pei-1 6.97e-4 3.32e-4 6.95e-4 1.15e-3 9.06e-46.75e-8 2.65e-4 1.19e-4 1.73e-4 5.98e-4 2.94e-4 0
Circulant 4.65e-3 4.54e-3 4.61e-3 5.72e-3 7.89e-3 0 2.46e-3 2.26e-3 2.03e-3 2.86e-3 2.87e-3 0
pei2 1.57e-3 6.38e-4 1.57e-3 8.86e-3 8.68e-3 0 6.78e-4 2.10e-4 3.74e-4 1.82e-3 4.58e-4 0
pei-2 1.67e-3 4.55e-4 1.67e-3 1.03e-2 6.65e-4 0 7.12e-4 1.90e-4 3.82e-4 1.92e-3 5.04e-4 0
gcdmat 3.06e-3 1.99e-3 3.06e-3 9.60e-3 7.84e-3 0 6.39e-3 1.79e-3 3.90e-3 5.88e-3 9.53e-3 0
Chebspec 2.94e-1 2.93e-1 2.94e-1 1.50e-2 1.40e-3 0 2.50e-1 2.63e-2 2.64e-2 2.64e-2 4.30e-4 0
triw 2.15e-4 7.28e-6 2.15e-4 3.75e-6 4.35e-2 0 2.27e-2 2.27e-2 2.27e-2 3.36e-2 8.54e-2 0
dramadah 1.24e-2 1.23e-2 1.24e-2 1.25e-2 1.27e-2 0 1.24e-2 8.99e-3 1.05e-2 9.81e-3 3.71e-3 0
randsvd 4.10e-2 2.51e-2 4.10e-2 1.98e-3 9.96e-2 0 3.54e-8 4.33e-8 7.30e-8 5.31e-8 1.41e-6 0
binomial 2.08e-3 1.60e-3 2.08e-3 5.85e-4 3.78e-36.49e-6 7.99e-4 9.52e-4 8.02e-4 1.52e-4 1.84e-38.52e-7
tridiag 2.05e-3 7.20e-7 2.05e-3 2.04e-7 3.52e-1 0 2.16e-1 2.16e-1 2.16e-1 2.16e-1 3.05e-12.13e-1

estimated by OPT are 33 dB, 57 dB 33 dB forR � 10 and 20 dB, 30 dB and 28 dB forR � 15.

However, OPT did not succeed in factorizing other structured tensors such as chow, circulant, tridiag

matrices.

For all the experiments, the fLM algorithms always achievedthe best performances, and suc-

cessfully estimated components for most structured matrices. The fLM algorithms overwhelmingly

outperformed all the other algorithms. Figure6.8 illustrates SIR indices for CP algorithms.

In a further example, we incorporated 20dB Gaussian noises to structured tensors. CP algorithms
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Figure 6.8: SIR indices for CP algorithms in Example6.1.3for different rankR and dimensionIn.

Table 6.6: Comparison of SIR indices for algorithms factorizing noisy structured tensors in Example
6.1.3. Tensors were composed from structured factors. A good algorithm provides high SIR between
original and estimated components.
Factor type ALS LS ELS HALS OPT fLM

R� 15, In � 50

Cauchy 22.86� 5.11 23.23� 4.48 22.86� 5.11 23.02� 5.13 26.98� 4.84 26.97� 4.81
Chebspec 32.07� 14.77 35.05� 14.06 32.07� 14.77 36.91� 12.76 20.58� 15.02 41.58� 9.19
dramadah 26.44� 9.93 33.85� 10.12 26.44� 9.93 19.50� 4.91 38.46� 3.77 38.45� 3.72
Lehmer 16.73� 9.19 17.71� 9.41 16.73� 9.19 12.50� 6.44 24.30� 8.24 24.38� 8.43
Lotkin 22.85� 5.45 24.53� 5.64 22.85� 5.45 22.48� 5.90 26.69� 6.45 26.66� 6.41
orthog 42.82� 10.41 43.54� 9.31 42.82� 10.41 45.62� 3.18 42.02� 11.63 45.62� 3.18
triw 46.23� 2.29 46.22� 2.33 46.22� 2.34 46.22� 2.33 43.01� 10.75 46.22� 2.30
Hilbert 18.66� 5.50 19.37� 5.84 18.66� 5.50 18.94� 5.61 24.95� 7.21 24.95� 7.20
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factorized the noisy tensors, and SIR indices were evaluated for the estimated factors. The results

are given in Table6.6. For some benchmarks such asCauchy, dramadah, Lehmer, Lotkin, Hilbert,

the performances of OPT and fLM are almost similar. However,for benchmarkschebsepc, orthog,

triw, OPT’s performances are even worse than (H)-ALS algorithms. The results also show that fLM

outperformed other algorithms for noisy tensors.

6.1.4 Factorization of Complex-valued Tensors

In the next set of simulations, we considered factorizationof complex-valued tensors. FactorsApnq P
C

50�R were generated in the same manner as for experiments in the previous section. However, they

had random real and imaginary parts. In addition to collinearity degreesν � 0.1, 0.2, . . . , 0.5, we

consideredν � 0.05 for mutual anglesθ1,r � 3o, r , 1, andν � 3, 4, 5. We note that although

collinearity of factors is low for highν � 3, 4, 5 (θ1,r ¡ 71o), the tensors are still difficult to factorize.

Normally, the CP algorithms can straightforwardly extended to handle complex-valued tensors.

However, due to missing extensions of the ELS, OPT algorithms, we only compared ALS, LS and

fLM algorithms. Algorithms were stopped as differences between successive relative errors are lower

than 10�8, or maximum number of iterations (2000) is exceeded.

In Figures6.9(a)-(b), we illustrate the average MSAE of all factors for 50� 50� 50 dimensional

tensors with ranksR� 5 and 15 over 100 runs. ALS and LS achieved good performance atν � 0.3,

and excellent MSAE atν = 0.4 and 0.5. However, for highν = 3, 4 and 5, ALS completely fails as for

ν = 0.05, 0.1 and 0.2. LS seems better forR� 5, but it is not efficient forR� 10. The fLM algorithm

achieved perfect estimations for all test cases. Figures6.9(c)-(d) indicate that the number of iterations

of ALS and LS tends to decrease gradually asν increases from 0.05 to 0.5 and even to 1. However,

ALS and LS still need at least 1000 iterations in order to successfully factorize 3-D tensors of rank

R� 5. Forν = 3, 4 and 5, the number of iterations of ALS and LS increases again, and quickly passes

over the maximum value of 2000 while they still get stuck in local minima. For rankR� 10, both ALS

and LS stopped after tens of iterations because there is not any significant change in the relative error.

Figures6.9(c)-(d) also reveals that fLM requires less iterations for higherν. Difference in magnitude

between components does not affect to fLM. For tensors withR� 15,ν � 5, the number of iterations

of fLM is rather high. It can be caused by initial value of damping parameter.

6.2 Simulations for NTF

6.2.1 Random Data

We constructed 3-D synthetic tensorsY with I1 � I2 � I3 � 100 composed from random factors

comprisingR � 10 components. The components were forced to be collinear with others. All the
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Figure 6.9: Illustration for MSAE for factorization of 3-D complex-valued tensors with sizeIn � 50
and ranksR � 5, 15. Algorithms stop as they reach a derivative of successiverelative errors of 10�8

or 2000 iterations.

algorithms were initialized using leading singular components, and stopped when difference of the

consecutive relative errorsε was lower than 10�10, or the maximum number of iterations (200) was

exceeded. Comparison of performances of various algorithms averaged over 100 runs is given as Ex-

ample 1a in Table6.8. The proposed algorithm achieved almost perfect performances withε � 2.87e-9

after only 67 (averaged) iterations. The other algorithms could not estimate hidden components in 200

iterations. To analyze their convergences, we set new stopping criterion with one million iterations,

andε ¤ 10�10. Most algorithms except the KL algorithm converged to the desired results with aver-

aged SIRs¡ 30 dB (given in the 3-rd row in Example 1a of Table6.8). Figure6.10illustrates relative

errors as functions of iterations for NTF algorithms for oneMC run. The fLM� converged after 104

iterations, whereas the QALS stopped after 50K iterations.To yield comparable performances to that

of the fLM� algorithm, the other algorithms need much more iterations.Moreover, in general the
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other algorithms often achieve a different solution because the optimization problem is hard andthe

algorithms get stacked in a side local minimum more frequently than fLM�.

Next, we constructed 5-D synthetic tensorsY with In � 100, pn � 1, . . . ,Nq. Factors compris-

ing R � 20 components were drawn from uniform distribution, or sparse uniform distribution with a

density of 0.3. Factors were forced to be collinear with others by the modification in (6.3). All the algo-

rithms were analyzed under the same experimental conditions. Comparison of performances of various

algorithms averaged over 100 runs is given in Table6.8. For all the MC runs, the QALS algorithm

achieved perfect factorizations with the lowest relative errors ε   10�8 after 500 or 1000 iterations.

Factors estimated by the QALS algorithm have the highest SIRvalues for factorizations of dense

and sparse tensors compared to those by other algorithms. For the same experiments, we analyzed

the convergence after 25.000 iterations, the mLS algorithmachieved relative errors of 7.67 10�7 and

9.91 10�7 for dense and sparse tensors, respectively, whereas the HALS algorithm achieved 5.83 10�7

and 6.95 10�7. That means to explain a tensor at an equivalent relative error, the other algorithms need

much more iterations than the QALS algorithm. Figs6.11(a)-6.11(c)illustrate convergences of NTF

algorithms for experiments 1-3 in Table6.8.

In another experiment, we decomposed 1000�1000�1000 dimensional sparse tensors composed

by R� 100 collinear components. The proposed algorithm still overwhelmingly outperformed all the

other algorithms. The HALS algorithm achieved better performances than those of the multiplicative

KL and LS algorithms. A more intuitive visualization for convergences of algorithms is shown in

Figure6.11(d). The proposed algorithm explained the large-scale tensor well, while other algorithms

were stacked in local minima, and did not improve the performance after 60 iterations.

In order to illustrate the rK-QALS algorithms, we analyzed a similar experiment in which5-D

synthetic tensorsY with In � 100, pn � 1, . . . ,Nq were composed by factors ofR � 10 sparse

random components which were forced to be collinear (6.3). Comparison of performances (relative

error and SIR index) of various algorithms averaged over 100runs is given in Table6.7. Figure6.10(b)

illustrates convergences of the analyzed algorithms. The mLS algorithm converged very slowly, while

the ALS algorithm stopped after 100 iterations. The QALS algorithm returned perfect results with SIR

= 67.5dB. With various approximation ranksR̃� 1, 2, . . . ,R, the proposed method outperformed the

mLS and ALS algorithms. And with suitable ranksR̃, the rK-QALS converged faster than the QALS

algorithm. Although the HALS algorithm with̃R� 1 achieved much better performance than the mLS

and ALS algorithms, its performance was still lower than that of the proposed algorithm with higher

approximation ranks such asR̃� 4, 7, 10. We note that the r10-QALS algorithm in this experiment is

different to the QALS algorithm due to strategy of component selection.
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Table 6.7: Performance comparison for various algorithms for Example6.2.1.
Algorithm Error Iteration SIR (dB)
mLS (2.11� 0.47) 10�4 1000� 0 29�8
ALS (4.32� 0.52) 10�5 76.5� 15 41� 10
QALS (5.35� 0.20) 10�9 410� 17 67�7
r1-QALS (2.11� 1.17) 10�7 1000� 244 51� 11
r4-HQALS (4.84� 0.38) 10�9 464� 53 68� 7
r7-HQALS (4.22� 0.59) 10�9 356�18 68� 7
r10-HQALS (4.87� 0.79) 10�9 331� 21 68� 7
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Figure 6.10: Convergence of NTF algorithms for experimentsin Section6.2.1.

6.2.2 Structured Factors

We considered factorsApnq P R100�50, n � 1, 2, 3 whose components are the firstR� 50 columns of

100� 100 structured matrices such as the Circulant matrix, the Frank matrix, the Helmert matrix, the

Hilbert matrix, the Lehmer matrix, the Lotkin matrix69;87;88;122.

Results of factorizations of such tensors are numbered consecutively from experiments 5 to 10

as given in Table6.8. Convergence of algorithms for some experiments is illustrated as function of

iterations in Figures6.11(e)-6.11(h). For all the experiments, the QALS always factorized the data

tensors well, and converged quicker than all the other algorithms. In order to compare the original

factors with those estimated by NTF algorithms, we visualized them as 2-D matrices in Figure6.12.

Figure6.12(a)shows the circulant factors. The corresponding factors estimated by QALS and shown in

Figure6.12(b)are similar to the source ones, with the averaged SIR= 21.28 dB. The factors estimated

by HALS shown in Figure6.12(c)cannot reveal the circulant matrix structure. The distribution of SIR

indices for this experiment is shown in Figure6.12(d).

Another visualization for the Helmert factors is shown in Figures6.12(e)-6.12(h). The verification

results here strongly confirm that the proposed algorithm doindeed provide significant improvement
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Table 6.8: Performance comparison for various algorithms.The relative errors are expressed in logarithmic scale, SIRindices are in dB unit,
and accuracies are given in percentage. A successful algorithm is with low relative error and high SIR index. For experiments 5-10, the numbers
of iterations are in side brackets.
Description Measure mKL mLS ALS HALS QALS fLM�
1a.

N � 3, In � 100,R� 10,
200 iters., dense, collinear

Error (1.56� 0.39)e-3 (1.02� 0.17)e-4 (7.83� 0.62)e-6 (10.5� 0.83)e-6 (15.0� 7.26)e-7 (2.87� 20.2)e-9
SIR 5� 5 14� 2 18� 4 14� 3 20� 2 97� 16

1a�. (100000 iterations) SIR� 13� 3 33� 6 63� 37 57� 5 140� 73 150� 23

1b.
N � 3, In � 100,R� 20,
25.000 iters., dense, collinear

Error (7.67� 9.61)e-7 (5.83� 7.36)e-7
SIR 45.13� 10.65 38.36� 4.52

2a.
N � 3, In � 100,R� 20,
500 iters., sparse, collinear

Error (7.44� 0.28)e-4 (11.9� 0.64)e-4 (19.5� 0.87)e-4 (14.3� 0.71)e-5 ( 3.37� 0.51)e-9 (2.77� 12.4)e-7
SIR 24.53� 11.09 10.91� 2.83 8.31� 1.72 17.84� 4.09 58.45� 5.43 125.25� 28.35

2b.
N � 3, In � 100,R� 20,
25.000 iters., sparse, collinear

Error (9.91� 0.14)e-7 (6.95� 0.87)e-7
SIR 44.46� 10.91 37.51� 4.77

3.
N � 5, In � 100,R� 10,
1000 iters., sparse, collinear

Error (6.69� 0.54)e-2 (1.23� 0.07)e-2 (5.81� 20)e-6 (0.89� 1.43)e-8 (0.23� 0.52)e-9
SIR 28.15� 7.5 35.11� 9.08 50.81� 11.56 204.9� 8.80 142.76� 23.07

4.
N � 3, In � 1.000,R� 100,
500 iters., sparse, collinear

Error (7.77� 0.54)e-4 (6.45� 0.07)e-4 (6.34� 20)e-5 (3.84� 1.43)e-9 3.95e-12 (54)
SIR 7.66� 1.09 6.96� 1.29 11.91� 2.04 67.43� 4.25 105.25� 5.98

5.
Circulant matrix
N � 3, In � 100,R� 50

Error 1.85e-4 (500) 2.27e-5 (500) 1.50e-5 (500) 2.12e-8 (207) 6.83e-10 (139)
SIR 10.59� 1.22 15.61� 2.27 14.19� 2.53 21.28� 7.57 40.30� 8.08

6.
Frank matrix
N � 3, In � 100,R� 50

Error 1.62e-3 (500) 4.92e-4 (500) 3.38e-4 (500) 5.37e-5 (500) 5.37e-6 (205)
SIR 10.86� 1.95 12.86� 3.02 12.52� 3.61 21.74� 15.64 95.47� 51.20

7.
Helmert matrix
N � 3, In � 100,R� 50

Error 9.1e-5(500) 1.5e-5(500) 2.92e-5(500) 6.11e-7(500)1.99e-7 (356)
SIR 16.36� 10.40 17.99� 8.11 17.34�10.10 30.39� 15.98 94.57� 34.80

8.
Hilbert matrix
N � 3, In � 100,R� 50

Error 6.13e-5 (500) 1 (500) 2.5e-7(500) 7.92e-9 (47) 4.1e-12 (40)
SIR 11.92� 2.06 0 20.45� 5.64 38.81� 6.84 25.78� 5.68

9.
Lehmer matrix
N � 3, In � 100,R� 50

Error 7.1e-4 (500) 1.49e-5 (500) 8.07e-10 (500)2.91e-10 (63)
SIR 11.75� 2.35 10.23� 2.66 25.25� 9.04 22.41� 3.57

10.
Lotkin matrix
N � 3, In � 100,R� 50

Error 3.89e-6 (500) 3.38e-4 (87) 5.37e-5 (44) 1.86e-10 (30)
SIR 22.87� 2.53 27.77� 5.8 32.63� 8.06 31.11� 8.35
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Figure 6.11: Performance comparison of NTF algorithms for factorization of synthetic tensors.
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Figure 6.12: Illustration of the source and estimated factors by NTF algorithms and theirs SIR indices for Experiments 5and 7.
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for nonnegative tensor factorizations in the terms of performance and convergence compared to the

other algorithms.

6.2.3 Analysis of Number of Recursive Iterations in QALS Algorithms

This sections aims to show upper bound for the number of recursive iterations in NQP algorithms used

in Algorithms3.2and3.3. Experiments are similar to those in Section6.2.1. However, the number of

recursive iterations and dimensions of matricesQ in the NQP function were measured. We composed

3-D and 5-D synthetic tensors from random factors which can be dense, or sparse and collinear with

In � 100, 300, 500 or 1000 andR= 10, 20, 80, 100, 200 or 600 components. Figure6.13 illustrates

occurrence rates for the number of recursive iterations in the NQP function (Algorithm3.1) for various

tensor factorizations. Description of tensor factorizations appearing in legend are given in the order:

R, In,N. The occurrence rates are normalized in [0 1] and also give inTable6.9. The results show that

NQP function repeated only few iterations even for large-scale tensors such asR� 600 andIn � 1000.

The number of recursive iterations did not exceedplog2pRq�1q. Dense tensors were quickly factorized

with fewer iterations than sparse and collinear tensors. Statistical results also reveal the difference

between ALS and QALS algorthms. That is the NQP function in QALS algorithms almost needed at

least two iterations as convergence was achieved (Figure6.13(a)), and higher iterations for collinear

data (Figure6.13(b)). For tensors withR � 80, 200 or 600 collinear components, QALS required

4 recursive NQP loops. Note that ALS employs the NQP functionwith only one iteration, but it is

extremely slow for collinear data, or cannot fit such data satisfactorily due to possible trapping in local

minima. It also explains why QALS outperforms ALS.

6.3 Simulations for NTD

We compared performance of the LM� algorithm with the multiplicative LS (mLS)131, HALS156;158.

Synthetic tensorsY with In � 100, N � 3, 4 were composed from uniformly distributed random

factors comprisingR � 5 or R � 3 components. In some experiments, factors were forced to be

sparse with density of 30%. Algorithms were initialized using the HOSVD algorithm58, and stopped

when difference between consecutive relative errorsε � }Y�Ŷ}F}Y}F
¤ 10�8, or the maximum number of

iterations was exceeded. Comparison of performances of various algorithms averaged over 100 runs is

given in Table6.10. Although the HALS algorithm achieved better performance than the multiplicative

LS algorithm especially for sparse tensors, both theses algorithms could not decompose the random

tensors with small error (� 10�5) in 500 iterations. Their relative errors for decomposition of dense

tensors were greater than 10�3, and slightly better for sparse tensors. Whereas, the proposed algorithm

achieved almost perfect performances withε ¤ 10�5 after only few iterations, even for large-scale
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Table 6.9: Occurrence rates for number of recursive NQP loops in QALS algorithms for factorization
of random tensors in Section6.2.3.
Experiment Number of recursive loops
R, In,N 1 2 3 4 5 6

Dense factors

10, 100, 3 2.88 93.36 3.75 0.01
20, 100, 3 1.18 93.52 5.27 0.04
80, 100, 3 0.28 91.23 8.30 0.18
80, 100, 5 1.64 91.70 6.59 0.07
100, 300, 3 0.23 92.59 7.06 0.12
200, 500, 3 0.16 90.66 9.02 0.16
100, 1000, 3 0.26 93.90 5.80 0.04
600, 1000, 3 0.26 67.78 31.02 0.93

Sparse and collinear factors

10, 100, 3 41.73 53.61 4.56 0.10
20, 100, 3 0.01 35.00 58.67 6.00 0.30 0.02
80, 100, 3 0.41 2.13 42.45 52.08 2.91 0.02
80, 100, 5 0.76 32.95 62.79 3.49 0.01
100, 300, 3 0.38 47.17 47.84 4.33 0.27 0.01
200, 500, 3 0.31 1.94 10.96 73.58 13.02 0.19
600, 1000, 3 2.90 2.52 74.14 20.39 0.04
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Figure 6.13: Statistical analysis on number of recursive iterations in the NQP function for random
tensors with different sizesIn and N, different number of componentsR and structures of factors:
dense or sparse, collinear factors. Description of tensor factorizations appearing in legend is given in
the order:R, In,N. Tensors with sparse and collinear factors are harder to factorize than those with
dense factors. The number of recursive loops does not exceedplog2pRq � 1q.
tensor (In � 100,N � 4). In Figure6.14, we compared the relative errors of algorithms as functionsof

iterations for one run of decomposition of a 100� 100� 100 dimensional tensor. After few iterations

to seek the damping parameterµ and the regularization parameterα, LM� quickly explained the data

tensor in� 69 iterations. The mLS and HALS algorithms could not explainthe benchmarks even if
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Table 6.10: Performance comparison for various algorithmsfor decomposition of synthetic tensors.
Experiment Error No. iterations
(In,N,R) mLS HALS LM� mLS HALS LM�

(50, 3, 5) (1.62� 0.18)e-2 (1.15� 0.12)e-2 (1.52� 6.39)e-7 500 500 47
(100, 3, 5) (1.76� 0.15)e-2 (1.28� 0.12)e-2 (7.27� 10.26)e-9 500 500 69
(100, 3, 5), sparse (8.26� 1.21)e-2 (1.49� 0.86)e-2 (1.70� 4.28)e-8 500 500 77
(100, 4, 3) (2.04� 0.23)e-2 (2.01� 0.83)e-3 (1.10� 2.31)e-8 5000 5000 55
(100, 4, 3), sparse (1.82� 1.01)e-2 (0.49� 1.38)e-4 (3.46� 9.57)e-6 2000 218 59
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Figure 6.14: Convergence of NTD algorithms for decomposition of 3-D synthetic tensor.

they were run for 2000 or 5000 iterations.

6.4 Applications

6.4.1 Analysis, Clustering and Classification of EEG Dataset

This example illustrates the analysis of real-world EEG data132 which consists 28 inter-trial phase

coherence (ITPC) measurements194 of EEG signals of 14 subjects during a proprioceptive pull ofthe

left and right hands, and gives a 4-way tensor of 64 channels� 72 time frames� 61 frequency bins

(15 to 75 Hz)� 28 measurements. This dataset was analyzed by CP and Tucker components with

nonnegative constraints compared with components extracted by NMF and ICA130. For the right hand

stimuli, the ITPC maxima were observed in the left frontal-parietal central region. On the contrary,

for the left hand stimuli, the activities occur on the right central region. Generally, the right hand

and left hand stimuli activate similar rhythms which shouldoccur after similar latency periods but

distribute over two different regions. That means factorization of such nonnegative tensor will give
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collinear spectral and temporal components. In this section, we show that the proposed algorithm not

only extracts highly collinear components as expected, butalso outperforms the other algorithms, and

achieves the highest clustering and classification accuracies.

The ITPC tensor was factorized intoR � 6 rank-one tensors. Exemplary illustrative results are

shown in Figure6.15 with scalp topographic maps and their corresponding temporal and spectral

components, whereas the performance comparisons (relative errors and number of iterations) are given

in Table6.11. The estimated components by mKL, ALS, HALS, r3-QALS and QALS are shown in

Figures6.15(a)-6.15(f). The rK-QALS resulted almost similar components with differentR̃. For the

factors estimated by QALS, the 3rd components distribute over the left frontal-parietal central region

(visualized by the 3rd spatial component), reveal the gammarhythm with the peak frequency of 37Hz

(the 3rd spectral component), and with a latency of 56ms (the3rd temporal component). The 2nd

components also distribute over the same region, but present the beta rhythm between 15-25 Hz with a

latency of 87ms. That means an activity caused by right hand stimulation mainly pertains beta rhythm

with a latency of 87ms (component 2), and 37Hz gamma rhythm with a latency of 56ms (component 3).

Similarly, an activity caused by left hand stimulation can be characterized by beta rhythm with a latency

of 83ms (component 4), and 42Hz gamma rhythm with a latency of56ms (component 5). Temporal

components 3 and 5, 2 and 4 are respectively almost identical. Moreover, spectral components 2 and

4 are collinear, spectral components 3 and 5 are shifted in frequency. The other algorithms (mLS,

mKL and ALS) did not successfully retrieve both collinear beta and gamma rhythms. The spectral and

temporal components corresponding to spatial components distributing over the right or left parietal

regions for the ALS are intuitively illustrated in Figure6.15(c).

In the next step, we performed clustering for selected features corresponding to components which

distribute over the right or left parietal regions. We factorized matrices of projected featuresF P R28�4�
into 2 factorsA P R28�2� andX P R4�2� : F � A XT. A cluster label of a measurement was specified

by the column index consisting of the maximum weight in the corresponding row of the matrixA.

The clustering accuracies are given in Table6.11. Figure6.16 illustrates scatter plots discriminative

features extracted from NTF features for the ALS, HALS, mKL and QALS algorithms. The proposed

algorithm achieved an accuracy of 92.86%, and there are only2 misclassified measurements. The

performances for the mKL, mLS and ALS, HALS algorithms are respectively 85.71%, 78.57% and

82.14% and 82.14%. The same performances can be obtained using the K-means clustering.

Another application for this dataset is classification. Each subject was characterized by 6 features

and assigned to a label corresponding to the left or right class. The leave-one-out crossvalidation was

employed to evaluate the feature extraction by NTF algorithm, and classification. We selected only

two significant features based on the Fisher scores. A QDA classifier was trained for training features.

Classification accuracies for algorithms are given in Table6.11. Classification using features extracted
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Table 6.11: Performance comparison for various algorithmsfor Example6.4.1.
Algorithms mKL mLS ALS HALS r3-HQALS QALS
Error 0.412 0.376 0.378 0.370 0.369 0.369
No.Iters 100 100 100 100 59 61
Clustering Accuracy (%) 85.71 78.57 82.14 82.14 92.86 92.86
Classification Accuracy (%) 75.71 92.86 75 75 96.43

by the proposed algorithm achieved the highest accuracy of 96.43%, that means there was only one

subject misclassified.

6.4.2 Clustering of the ORL Face Database

This example considers the ORL face database178 consisting of 400 faces for 40 subjects. A common

way to process this dataset is that faces are vectorized, forexample in Fisherface114, ICA18, Wavelet+

RBF123. In the first analysis, 100 faces from the first 10 subjects were down-sampled, then vectorized

to give ap400� 100q matrix Y. We applied NMF to findR� 20 features for each face, and used the

K-means algorithm to cluster them. The accuracy (%) and normalized mutual information (NMI) for

algorithms are given in Table6.12. The proposed algorithm explained data with a lowest relative error

and achieved a higher clustering accuracy than the other algorithms. Especially, LM� with sparsity

constraints (LM�s) successfully clustered the selected faces.

Next, we constructed 32 Gabor feature tensors of 8 orientations at 4 scales which were then down-

sampled to 16� 16� 32� 400 dimensional tensorY . That means we have a 4-D tensorY . Because

of low correlation or rare common parts between Gabor features which are not in the same levels

(orientations and scales), we found common basesApnlq P R16�Rl , n � 1, 2 for 3-D sub-tensors

Y l � Yp:, :, l, :q P R16�16�400 (l � 1, 2, . . . , 32) along the two first dimensions

Y l � I l �1 Ap1lq �2 Ap2lq �3 Ap3lq. (6.7)

Rows of the factorsAp3lq represent compressed features of the samplesY pkq � Y :,:,:,k at levell. From

L � 32 decompositions (6.7) for all levels, we obtainedL � 32 sets of basesAp1lq andAp2lq. Features

of each sample (face) at a levell � 1, 2, . . . , 32 can be found via projected filters built up from basis

factors of the same level. Concatenation of features in all the levels will form the whole compressed

features of a sample after tensor factorizations.

In this experiment, we setRl � 8,�l. Hence, a sample (face) had 256 (= 8 � 32) features com-

pressed from 8192 (= 16 � 16 � 32) Gabor features. In the second stage, the matrix of features

X P R400�256 was factorized to reduce the number of features to the numberof classes. Finally, the

data was clustered using the K-means algorithm. In Table6.12, we compare clustering performances

for various algorithms. For clustering of faces for the first30 subjects, LM� achieved 99% accuracy,
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(a) Basis components obtained by the mKL algorithm
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(b) Basis components obtained by the mLS algorithm
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(c) Basis components obtained by the ALS algorithm
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(d) Basis components obtained by the HALS algorithm
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(e) Basis components obtained by the r3-QALS algorithm
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(f) Basis components obtained by the QALS algorithm

Figure 6.15: Visualization of components retrieved from the ITPC tensor using the mKL, ALS, HALS,
and QALS algorithms. A successful algorithm results collinear spectral and temporal components
which reveal the beta and gamma rhythms as in Figure6.15(f).
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(a) Features extracted by ALS.
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(b) Features extracted by HALS.
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(c) Features extracted by mKL.
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(d) Features extracted by QALS.

Figure 6.16: Scatter plots illustrate discriminative features for clustering for Example6.4.1.

outperformed the other algorithms. The LM� algorithm with sparsity constraints (LM�s) slightly

improved performance up to an accuracy of 99.67%. Increasing the number of classes to 35 or 40

subjects, LM�s always gave the highest performances.

We also can extract nonnegative features for faces from Gabor tensors using NTD157. The data

tensorY was reorganized to be a 5-D tensor of size 16� 16� 8� 4� 100 (for 100 faces). The data

tensorY was decomposed along the first 4 modes to give core tensor’s size of 3�3�2�2�100. Hence,

a face had 36 features compressed from 8192 Gabor features. Finally, the data was clustered using the

K-means algorithm. The accuracy (%) and normalized mutual information (NMI) for algorithms are

given in Table6.12. The LM� algorithm achieved 92% accuracy. Increasing number of features to

72� 3�3� 4� 2, our algorithm achieved 99% accuracy. For both cases, the obtained accuracies for

the mLS algorithm were 91% and 98%, respectively. The presented results also confirm the superiority
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Table 6.12: Accuracies (Acc) and normalized mutual information (NMI) for various algorithms for
Example6.4.2.

(a) NTF model

Algorithm
10 classes 30 classes 40 classes

Error Acc (%) NMI Acc (%) NMI Acc (%) NMI
KL 4.51e-2 80 8.64e-1 92.67 9.49e-1 82.25 9.08e-1
LS 1.27e-2 88 9.06e-1 96.33 9.75e-1 85.75 9.42e-1
ALS 6.79e-2 93 9.20e-1 95.33 9.71e-1 85.50 9.30e-1
HALS 1.17e-2 91 9.10e-1 97 9.76e-1 86.25 9.47e-1
QALS 1.18e-2 92 9.21e-1 98.33 9.84e-1 88 9.50e-1
fLM� 1.17e-2 94 9.44e-1 99 9.90e-1 87.25 9.44e-1
fLM�s 1.24e-2 100 1 99.67 9.97e-1 92.75 9.69e-1

(b) NTD model

Algorithm
10 classes, 36 features 10 classes, 72 features

Error No. iters. Acc (%) NMI Error No.iters. Acc (%) NMI
mLS 0.4768 300 91 89.65 0.4430 300 98 97.09
HALS 0.4745 300 92 91.45 0.4369 300 96 94.76
LM� 0.4745 68 92 91.45 0.4368 86 99 98.54

of features extracted by NTD over features by NTF.

6.4.3 BSS in DS-CMDA Systems

This section aims to illustrate an application of factorization of complex-valued tensors of received

signals in direct sequence code division multiple access (DS-CDMA) system. Consider a DS-CDMA

system ofR users andK antennas over a flat Rayleigh fading, each information sequence of userr

sr P CP is spread using a codecm P CQ before transmission over fading channels. At the receiver

side, an array ofK antennas is employed to receive and decode the signals. Sidiropouloset al.186

established the model of wireless transmission as a three-way diversity tensorX P CK�P�Q whose an

entry xk,p,q denotes the baseband output of thek-th antenna, for symbolp and chipq

xk,p,q � Ŗ

r�1

ak,r sp,r cq,r , (6.8)

whereak,r fading/gain between userr and antenna elementk. This model can be expressed as compo-

sition of 3 factors given by

X � I �1 A �2 S�3 C � E, (6.9)

whereE is tensor of additive Gaussian noise,A P CK�R denotes the compound flat fading/array re-

sponse pattern,S P CP�R is the information bearing signal matrix, andC P CQ�R is the spreading code

matrix186. Approximation of the output of antennas returns the signalmatrix Ŝ. Then with an appro-

priate demodulation for each column ˆsr , the user information sequences will be retrieved. The com-

pression technique using the ALS and LS algorithms was recommended to factorize complex-valued
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tensors186. However, it’s worth noting that when two or more user sequences are closely identical, or

antenna responses are collinear, the ALS algorithm will fail to retrieve accurate signals.

In our experiments, user signals were modulated by M-DPSK (M � 2, 4, 8), then spread with

Hadamard(64) codes. In order to solve the sign (scaling) andpermutation ambiguities, all the user

sequences were augmented by 1 sign-correction bit, andI � rlog2pRqs user ID bits. That means each

user signal consisted ofpP � I � 1q bits. An alternative method is to use the greedy least squares

matching algorithm186. However, this method is only useful to evaluate the performance.

The compression version of the LM algorithm was compared with algorithms cALS, cLS. In Table

6.13, we present performances for different DS-CDMA systems over 100 MC runs and different white

noise levels. For DS-CMDA system withR� 15 users,K � 10 antennas, we considered a particular

case in which array responsesar were set to be collinear so that their mutual angles were about θ � 6o.

R � 15 different spreading codes were randomly chosen from Hadamard(64) basesC P C64�15. For

SNR¡ 10 dB, we received exact user signals using the LM algorithm,with BER = 0. The ALS

algorithm completely failed to decode the signals even for clean systems (without noise). The LS

technique improved the ALS performance. However, its performances were rather unstable. Note that

the analyzed DS-CMDA system had number of users more than number of antennas.

For DS-CDMA system withK � 20 receivers (antennas) andR� 20 users, user sequences were

modulated by DQPSK. The performance index BER was evaluatedvarying the SNR at the receiver

inputS NR� 0, 2, 4, . . . , 20, 30 dB. The cLS algorithm almost gave the same results to thoseof the LM

algorithm. However, the LM algorithm converged after a considerable smaller number of iterations. In

Figure6.17, we illustrate the constellations at the receiver output with additive white Gaussian noise

SNR= 10 dB decomposed by cALS, cLS and cLM for one MC run. Sequencesestimated by cALS

algorithm were still overlapped and not separated from eachother (Figure6.17(a)). The corresponding

error rate was BER= 0.0747. Both cLS and cLM returned quite similar results, andachieved high

performances without any error (BER= 0).

Additional results are also given in Table6.13for DS-CDMA system using 8-DPSK modulation.

For all the experiments, the proposed LM algorithm for complex-valued tensor factorization achieved

the best performance with the smallest number of iterations.

6.4.4 Estimation of System MIMO Responses Using the Fourth-Order Statistics

We considered anNo � Ni MIMO system withNi � 20 inputs andNo � 20 outputs. The system

output is modeled as:

X � L�1̧

l�0

H l

l�
S �W , (6.10)
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Figure 6.17: Illustration of signal constellation for outputs obtained by cALS, cLS and cLM algo-
rithms in a DS-CDMA system withR� 20 users,K � 20 antennas, and Hadamard(64) codes. User
sequences were modulated using DQPSK.

Table 6.13: Performance comparison for decoding user sequences modulated by D-MPSK in DS-
CDMA systems for Example6.4.3.

SNR (dB)
Algorithm 0 4 10 20 30

10� 100� 64,R� 15 users,θ � 6o, DBPSK

BER
cALS 2.47e-1 (5e-2) 6.48e-2 (6.99e-2) 4.30e-3 (1.28e-2) 8.80e-3 (2.48e-2) 3.00e-3 (1.08e-2)
cLS 2.15e-1 (7e-2) 1.05e-2 (3.17e-2) 0 (0) 1.80e-3 (8.05e-3) 0 (0)
cLM 2.07e-1 (8e-2) 4.63e-3 (7.79e-3) 0 (0) 0 (0) 0 (0)

Error
cALS 1.59e-1 (3.17e-3) 1.03e-1 (1.76e-3) 5.14e-2 (1.36e-3) 1.89e-2 (4.31e-3) 5.51e-3 (6.44e-3)
cLS 1.56e-1 (2.99e-3) 1.01e-1 (1.30e-3) 5.12e-2 (7.06e-4)1.62e-2 (3.74e-4) 5.13e-3 (6.52e-5)
cLM 1.56e-1 (2.98e-3) 1.01e-1 (1.34e-3) 5.12e-2 (7.06e-4) 1.62e-2 (1.97e-4) 5.13e-3 (6.52e-5)

Iteration
cALS 2000 (0) 2000 (89) 2000 (182) 2000 (0) 2000 (106)
cLS 2000 (0) 675 (469) 192 (87) 170 (439) 164 (251)
cLM 895 (394) 180 (198) 75 (21) 73 (24) 66 (38)

20� 100� 64,R� 20 users,θ � 6o, DQPSK

BER
cALS 4.57e-1 (1e-2) 2.25e-1 (1.87e-1) 5.83e-2 (1.18e-1) 1.29e-2 (3.78e-2) 2.41e-2 (5.37e-2)
cLS 4.08e-1 (1e-1) 8.71e-2 (1.11e-1)1.25e-5 (5.59e-5) 0 (0) 0 (0)
cLM 4.00e-1 (1e-1) 8.29e-2 (1.08e-1) 1.25e-5 (5.59e-5) 0 (0) 0 (0)

Error
cALS 2.27e-1 (2.85e-3) 1.45e-1 (1.38e-3) 7.34e-2 (1.15e-3) 2.32e-2 (1.20e-3) 7.38e-3 (4.06e-3)
cLS 2.24e-1 (2.29e-3) 1.44e-1 (9.87e-4) 7.29e-2 (5.57e-4) 2.31e-2 (1.73e-4) 7.31e-3 (4.73e-5)
cLM 2.24e-1 (2.33e-3) 1.44e-1 (9.87e-4) 7.29e-2 (5.57e-4) 2.31e-2 (1.73e-4) 7.31e-3 (4.73e-5)

Iteration
cALS 2000 (0) 2000 (0) 2000 (21) 2000 (13) 2000 (0)
cLS 2000 (22) 340 (212) 153 (103) 141 (94) 148 (233)
cLM 2000 (515) 176 (98) 65 (13) 46 (12) 50 (29)

20� 100� 64,R� 20 users,θ � 6o, 8-DPSK

BER
cALS 4.57e-1 (2e-2) 3.56e-1 (1.42e-1) 1.25e-1 (1.49e-1) 3.73e-2 (7.42e-2) 1.00e-1 (1.60e-1)
cLS 4.47e-1 (3e-2) 2.77e-1 (1.43e-1)1.63e-2 (1.71e-2) 4.61e-3 (2.06e-2) 0 (0)
cLM 4.46e-1 (3e-2) 2.60e-1 (1.42e-1) 1.63e-2 (1.71e-2) 0 (0) 0 (0)

Error
cALS 1.60e-1 (3.31e-3) 1.03e-1 (1.90e-3) 5.22e-2 (2.05e-3) 1.64e-2 (4.55e-3) 5.20e-3 (9.64e-3)
cLS 1.57e-1 (3.43e-3) 1.01e-1 (1.61e-3) 5.11e-2 (5.42e-4)1.62e-2 (9.65e-4) 5.14e-3 (6.26e-5)
cLM 1.56e-1 (3.60e-3) 1.01e-1 (1.59e-3) 5.11e-2 (5.42e-4) 1.62e-2 (1.41e-4) 5.14e-3 (6.26e-5)

Iteration
cALS 2000 (0) 2000 (1.55e+2) 2000 (1.16e+1) 2000 (8.94e-1) 2000 (2.73e+1)
cLS 2000 (492) 519 (708) 177 (131) 173 (418) 172 (143)
cLM 1118 (569) 167 (131) 83 (29) 73 (16) 58 (21)
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whereH l P CNo�Ni , for l � 0, 1, . . . , L � 1 is the MIMO system impulse response matrix,S P CNi�T

contains the input signals,X P CNi�T is a given output data matrix,
l�
S denotes thel positions (columns)

shifting operator to the left, with the columns shifted in from outside the matrix set to zero,
�0
S � S.

W is the observation noise.

The inputssj , j � 1, 2, . . . ,Ni were taken to be i.i.d. BPSK signals. The channel length was

L � 20. The purpose is to estimate theH̃ i, j,: pNo � Niq be theNf -point Discrete Fourier Transform

(DFT) of H i, j,:, with Nf � 128, then recover the impulse responses.

We computed the discretized 4-th order cross-spectrums, defined as theK � 1 dimensional DFT

of the 4th-order cross cumulants. Concatenation of all the cross-spectrum tensors formed a 5-D tensor

C̃ P CNo�No�No�No�Nf . Factorization of this tensor withNo components allow to retrieve the system

frequency responsẽH

C̃ � I �1 Ap1q �2 Ap2q �3 Ap3q �4 Ap4q �5 Ap5q (6.11)

with the conditionAp1q � Ap2q� � Ap3q. The tensor of frequency responsesH̃ is computed as

H̃ � I �1 Ap1q �3 Ap5q . (6.12)

Yu and Petropulu214 suggested to factorize only one of cross-spectrum tensors by the 4-D CP

model. Hence, for large scale systems with large numbers of inputs and outputs, this technique cannot

provide a good solution. Experiments were analyzed by Yu andPetropulu214 for very small MIMO

system with few numbers of outputs and inputs such as 2, 3, 4. In this section, we will emphasize

the grid CP for such kind of application with large system. The performance index used here is the

overall normalized mean-square error (ONMSE)214. ForNo � 20, andNf � 128, the observed tensor

consisted of 20.48 millions of entries. Factorization of the whole tensor to find 5 factors took59665

seconds, and achieved an ONMSE= 0.1810. We applied the grid CP with a grid of 128�1�1�1�1.

That means all the cross-spectrum tensors were independently factorized in a parallel system. The

reconstruction factors took placed only 247 seconds, and achieved a performance of ONMSE= 0.1792.

Although Yu and Petropulu’ s method214 processed the data only in 346 seconds, its estimated impulse

responses were distorted from the original responses as illustrated in Figure6.18(c)and6.18(f). This

method provided an ONMSE= 0.4485. The grid CP significantly outperformed the other methods.

In Figure6.18, we displayed some selected responses for some first inputs and outputs. The phase,

constant permutation and scalar ambiguities were corrected to match with the original responses. In

each plot, the original magnitude or phase responses were represented by dot lines, the estimated

responses were shown by dashed lines.
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(a) Magnitude response obtained by
5-D CP
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(b) Magnitude response obtained by
the grid CP
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(c) Magnitude response obtained by
Yu and Petropulu’s method214
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(d) Phase response obtained by 5-D
CP
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(e) Phase response obtained by the
grid CP
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(f) Phase response obtained by Yu
and Petropulu’s method214

Figure 6.18: Illustration of frequency responses of the 20� 20 MIMO system for Example 6.(a)-(c)
magnitude responses of the original and estimated impulse functions obtained the 5-D CP, the grid
CP and Yu and Petropulu’s method214. (d)-(f) phase responses of the original and estimated impulse
functions for different methods. For each plot, the x-axis denotes the frequency points, and the y-axis
represents the intensity. We displayed only some responsesfor the first three inputs and outputs.

6.5 Summary

Novel algorithms for tensor decompositions with/without constraints have been proposed, and verified

for difficult benchmarks, and real-world applications. Especially, the proposed algorithm copes with

highly collinear factors. For general data, the HALS algorithm can give satisfied results compatible

with ALS but it should be faster due to low computational cost. HALS faces the same problem for

collinear data as ALS. Although linesearch or rotation methods for ALS can be employed for HALS,

its performance is often lower than that of ALS. The proposedfast dGN/LM algorithms works well for

all the dataset. For tensor decompositions with nonnegative constraints, QALS based on the recursive

algorithm for the nonnegative quadratic programming problem is proved to be a robust ALS algorithm

which can work well for collinear and ill-conditioned factors. A variation of QALS is rK-QALS which

sequentially updates a subset of 1¤ R̃¤ Rcomponents of factors. ForR̃� 1, the rK-QALS algorithm

simplifies to the HALS algorithm37. The rK-QALS algorithm has been experimentally confirmed its

validity and high performance for difficult data, and real-world EEG dataset. Adaptive choice of the
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number of components being updated is a possible future work. Our algorithms not only works well

for dense data, but also for sparse data without any additional regularization parameter as other NTF

algorithms. The fLM� algorithm outperforms the multiplicative and (H)ALS algorithms, and even the

QALS algorithm.

A6.1 Appendix: Effects of Noise on Collinear Data

This section discusses briefly effects of noise on factorization of collinear tensor generated by the

modification (6.3). Consider matrix factorization of the mode-n tensor unfolding

Ypnq � Apnq�ä
k,n

Apkq�T � Epnq, (6.13)

leading left singular components ofYpnq are good initialization forApnq 59;60;106. Moreover, analysis of

singular values ofYpnq or eigenvalues ofYpnq YTpnq allow predicting whether factorization succeeds in

retrieving collinear factors from noisy tensors. This alsogives insight into when CP algorithms are not

stable, and yield non-unique solution.

The modification (6.3) can be expressed asApnq � Upnq Q, whereQ � �
1 1T

R�1
0R�1 ν IR�1

� P RR�R.

In theory, for noisy tensorsY with In � I ,�n, we have

Ypnq YTpnq � Apnq
Γ
pn,nq ApnqT � Epnq ETpnq � Upnq

ΣUpnqT � σ2 I N�1 I In . (6.14)

whereΣ � Q
�
QT Q

�
rN�1s
QT, rAs
rps denotes element-wise power, and

σ2 � }Y}2
F

10SNR{10 I N
� R2 � pR� 1q xy� 1

10SNR{10 I N
, x� 1� ν2, y� xN�1. (6.15)

It is straightforward to prove thatΣ � �
R2 � pR� 1q py� 1q ν pR� y� 1q1T

R�1
ν pR� y� 1q1R�1 px� 1q �1R�1 1T

R�1 � py� 1qIR�1
��

haspR� 2q identical eigenvaluesλr � px� 1qpy� 1q, r � 2, . . . ,R� 1, and its largest and smallest

eigenvaluesλ1 ¡ λr ¡ λR are solutions of a quadratic equation

λ1 � λR � xy� pR� 2q pR� x� yq � 3, (6.16)

λ1 λR � px� 1qpy� 1q � λr , 2¤ r ¤ R� 1 . (6.17)

Figure 6.19(a)illustratesλr pr � 1, . . . ,Rq for 3-D noiseless tensors withI � 50 andR � 5

compared with the noise levelsσ2 I N�1 at SNR= 20 dB, 30 dB and 40 dB. The higher the collinearity

degree of factor, the smaller the eigenvaluesλr . If eigenvaluesλr are considerably lower than the noise

levelσ2 I N�1, the factorization becomes infeasible, e.g., asν ¤ 0.3 at SNR= 20 dB,ν ¤ 0.2 at SNR

= 30 dB.
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BecauseUpnq are orthonormal,Ypnq YTpnq hasR leading eigenvalues̃λr � λr � σ2I pN�1q, r �
1, . . . ,R, andpI�Rq eigenvalues̃λi � σ2I pN�1q, i � R�1, . . . , I . In Figure6.19(b), we plot eigenvalues

λ̃i for noisy tensors having the same dimension as that of tensors illustrated in Figure6.19(a). The

largest eigenvaluẽλ1 significantly exceeds the noise levels. Whereasλ̃R is quite close to the noise level

at SNR= 20 dB forν ¤ 0.3, or at SNR= 30 dB forν ¤ 0.2.

Practical simulations show thatEpnq ETpnq is not a scale multiple of the identity matrix due to variable

length I N�1 not large enough. However, it can be approximated as a diagonal matrix 1
IN�1 Epnq ETpnq �

σ2 diagtρ1, . . . , ρIu, in whichρi � Np1, ρ2q, andρ depends onI N�1. For 3-D tensors,ρ � 0.145, 0.01,

0.032, 0.011, 0.007 forI = 50, 100, 1000, 10000, 20000. Therefore, eigenvaluesλ̃i (i ¥ R�1) are not

completely identical, they mostly fluctuate aroundσ2I N�1 within a variation range of�2ρσ2I N�1.

In Figure6.19(b), the variation range is illustrated by green shading. As a consequence, eigenvalues

λ̃i which correspond to the signals can drop down into the noise region (green shading). In this case,

leading eigenvectors might reflect noise, not the signals, and the factorization can yield undesired

solutions in which some components explain noise. This alsocauses unstable performance when some

leading eigenvalues are equal to the noise level such asλ̃R � λ̃R�1. Factorization of such tensor

by only R components tends to give non-unique solution even if discarding the permutation and scale

ambiguities. Component of factors might be different over runs, and depend on the initial values which

are often eigenvectors ofYpnq YTpnq. We note that due tõλR � λ̃R�1, we can have multiple (at least two)

selections ofR leading eigenvectors. Some selections can yield components which explain noise, while

some can lead to the appropriate solution.

As seen in Figure6.19(b), at SNR= 20 dB andν � 0.1, all eigenvalues exceptλ̃1 are in the noise

zone. Hence, we cannot retrieve exactly all collinear components from such noisy tensors. We note

that the average angular CRIB for this case is around -12.5 dBas seen in Figure6.1(a). Even for

ν � 0.2, it is still hard to approach CRIB= -23 dB becauseλR is in the noise zone. At SNR= 30 dB,

due to the same reason, CP algorithms often fail to estimate factors forν � 0.1 in spite of CRIB= -22

dB.

Some techniques are suggested to improve performance for such difficult data. We compute eigen-

valuesλ̃i of the mode-n tensor unfolding. If the firstR eigenvalues are clearly different to the rest

onesλ̃R " λ̃R�1, the factorization is feasible, we can obtain appropriate solution by using leading

eigenvectors.

If λ̃R is approximately close to adjacent ones,λ̃R�1 " λ̃R � λ̃R�1, one eigenvalue related to

signal λ̃rR is hidden under the noise level. That isλ̃rR . λ̃R, with rR ¥ R. The tensor factorization

becomes difficult. Approximation of the data tensor by rank-R tensors is not stable, and can yield

component which reflects noise. As mentioned previously, wehave multiple selections ofR leading

eigenvectors chosen fromI components. Each initialization comprisespR� 1q leading eigenvectors
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Figure 6.19: Analysis of eigenvalues ofYpnq YTpnq for 3-D tensors of sizeIn � 50 and rankR� 5. R

leading eigenvaluesλr for noiseless tensors andλ̃rpr � 1, . . . ,Rq for noisy tensors are compared with
noise levels (green shading) at SNR= 20 dB, 30 dB and 40 dB. The more the eigenvalues are in the
noise zone, the more difficult the factorization of noisy tensors to retrieve collinear factors become.

and one corresponding tõλi with i � R,R� 1, . . . , I . There may exist one initialization (or more)

which can lead to the desired solution. However we don’t knowwhich one to select. A possible

method is that we initialize factors by a selection ofR leading eigenvectors. If resulting factors do not

satisfy prior knowledge of the solution such as the number ofcollinear components, we replace that

last column of the initial factor by the adjacent eigenvector, then factorize data again. This process

stops when factors satisfy the collinearity condition. We can also factorize data simultaneously using

all or some potential selections ofR leading eigenvectors. Among the solutions, we can select the

suitable solution. Even if we don’t know the number of collinear components, components related to

noise can be straightforwardly identified, and its solutioncan be ignored. The feasible solutions should

have the highest number of collinear components.

An alternative technique is that we approximate the data tensor by rankR̃ ¡ R because the data

tensor no longer has rankR. IncreasingR̃ until a feasible solution is achieved. It is also possible to

combine both of the methods.



Chapter 7

Applications for Feature Extraction and
Classification

7.1 Introduction - Problem Formulation

Supervised and un-supervised dimensionality reduction and feature extraction methods with tensor

representation have recently attracted great interest47;106;192;195. Given that many real-world data

(e.g., brain signals, images, videos) are conveniently represented by tensors, traditional algorithms

such as PCA, LDA, and ICA could treat the data as matrices or vectors71;72;92;93;96;97;98;99;124, and are

often not efficient. Since the curse of high dimensionality is often a major cause of limitation of many

practical methods, dimensionality reduction is a prerequisite to practical applications in classification,

data mining, vision and pattern recognitions fields.

In classification and pattern recognition problems, there are three main stages: feature extraction,

feature selection, and classifier design. The key issue is toextract and select statistically significant

features, which allow us to discriminate different classes or clusters. Classifier design involves choos-

ing an appropriate method such as Fisher discriminant analysis, k-nearest neighbor (KNN) rule, or

support vector machines (SVM). In a nutshell, the classifiercomputes distance or similarity among

extracted features for training and test data in order to assign the test data to specific class.

In this chapter we propose a suite of algorithms for feature extraction and classification, especially

suitable for large scale problems. In our approach, we first decompose multi-way data under the

TUCKER decomposition with/without constraints to retrieve basis factors and significant features from

the core tensors. In addition, by revisiting the TUCKER decomposition, we have developed family

of algorithms referred to as Higher Order Discriminant Analysis (HODA). Examples in this chapter

especially ones for BCI can be found in the NFEA toolbox150.

7.2 Feature Extraction for 2-D Samples via Approximative Simultane-
ous Matrix Factorizations

We shall first illustrate the basic concept of feature extraction on a set of large-scale sample matrices.

The problem of feature extraction for a set of 2-D training samples can be described as follows

Problem 7.1(Feature extraction for 2-D samples illustrated in Figure7.1(a))
Consider a set of K data matrices (2-D samples)Xpkq P RI1�I2, pk � 1, . . . ,Kq that belong to C
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different data/sample classes. In order to perform model reduction and extract the features for all the
training samples we apply simultaneous (approximative) matrix factorizations:

Xpkq � Ap1q Fpkq Ap2qT , pk � 1, 2, . . . ,Kq, (7.1)

where the two common factors (basis matrices)Ap1q P RI1�R1 and Ap2q P RI2�R2, Rn ¤ In code
(explain) each sampleXpkq simultaneously along the horizontal and vertical dimensions. The extracted
features are represented by matricesFpkq P RR1�R2, typically with R1    I1 and R2    I2.

The common method to solve simultaneous matrix factorizations is to minimize the cost functions||Xpkq � Ap1q Fpkq Ap2qT ||2F, �k sequentially with respect to all the factor matrices. To introduce an

alternative and more effective method to deal with the simultaneous matrix factorization problem, we

first perform concatenation of all the samplesXpkq along the third dimension to form anI1 � I2 � K

dimensional data tensorX. In other words, the frontal slices of the concatenation tensor are built up

from the training matricesXpkq (see Figure7.1(b)). The mode-1 matricization of the concatenation

tensor is expressed by the following matrix factorization:

Xp1q � �
Xp1q Xp2q � � � XpKq � � Ap1q � Fp1q Fp2q � � � FpKq � �

I K b Ap2q	T� Ap1q Fp1q �I K b Ap2q	T
, (7.2)

and similarly, for mode-2 matricization we have

Xp2q � Ap2q � Fp1qT Fp2qT � � � FpKqT
� �

I K b Ap1q	T � Ap2q Fp2q �I K b Ap1q	T
, (7.3)

whereFp1q andFp2q are mode-1 and mode-2 matricized versions of the concatenation core tensorF

comprising the feature matricesFpkq. Simultaneous matrix factorizations (7.1) can now be expressed

as a decomposition of a 3-D tensor into two factors and a core tensor as the TUCKER-2 decomposi-

tion205;206 illustrated in Figure7.1(b)

X � F �1 Ap1q �2 Ap2q . (7.4)

In a particular case whereFpkq areR� R diagonal matrices, that is,Fpkq � diagt f pkqu (for R1 �
R2 � R), the matricization of the concatenation tensorX is given by

Xp1q � �
Xp1q� � �XpKq� � Ap1q�diagt f p1quAp2qT � � �diagt f pKquAp2qT�� Ap1q�� f p1qT d Ap2q	T

. . .

�
f pKqT d Ap2q	T� � Ap1q �Fd Ap2q	T

, (7.5)

whereF � �
f p1q, f p2q , . . . , f pKq�T P RK�R. This result enables us to rewrite Problem7.1as a factor-

ization of the concatenation tensorX into three factorsAp1q,Ap2q, andF

X � I �1 Ap1q �2 Ap2q �3 F , (7.6)
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Figure 7.1: Simultaneous matrix factorizations are equivalent to a TUCKER-2 decomposition of a 3-D
tensor into a core tensorF (representing features) and two basis factorsAp1q andAp2q.
whereI P RR�R�R is an identity tensor. The approximation (7.6) is referred to as the CP model82. It

should be emphasized that such tensor decomposition and equivalent simultaneous matrix factoriza-

tions are quite flexible, and we can impose various constraints.

• If the feature matricesFpkq are positive definite diagonal matrices and factorsApnq are orthogonal,

then, the model corresponds to HOSVD or multi-way PCA58.

• If the factorsApnq are orthogonal and the feature matricesFpkq are dense, approximation (7.1)

corresponds to a model called DEDICOM (Decomposition into Directional COMponents)14.

• If the factorsApnq are nonnegative, then, (7.1) corresponds Tri Nonnegative Matrix Factoriza-

tion of dataXpkq. Such a problem arises, for example, in bio-informatics if we combine gene

expression and transcription factor regulation12;32.

• It is important to note that ifXpkq are positive-definite covariance or cumulant matrices, Problem

7.1becomes closely related to Joint Diagonalization often arising in ICA, whereAp1q � Ap2q �
A corresponds to mixing matrix of ICA model. This leads to a newapproach and algorithm for

approximative Joint Diagonalization via a symmetric CP with orthogonal factors, given by

X � I �1 A �2 A �3 F . (7.7)



138 Chapter 7. Applications for Feature Extraction and Classification

Although this model is related to the model given in (7.6) and (7.4), the topics of ICA and

multi-way ICA are out of the scope of this chapter.

Note that generally, dimensionality reduction or feature extraction of set of matrices can be effect-

ively and elegantly solved by tensor decompositions, especially using TUCKER-2, TUCKER-3, or CP

models. By exploiting existing algorithms for tensor decompositions, it is relatively straightforward to

retrieve common factors within the whole data. In the sequence, our aim is to generalize Problem7.1

to make it applicable to higher dimensional data, and to develop new algorithms for finding reduced

features and hidden basis factors.

7.3 General Model for High Dimensional Classification

Assume a set of multidimensional tensorsXpkq P RI1�I2�����IN for k � 1, 2, . . . ,K, representing train-

ing data coming fromC classes. Each training sampleXpkq is given a labelck indicating the category

(class) to which it belongs. We shall formulate the following classification problem (every step will be

addressed in a separate section).

Problem 7.2(Classification for multidimensional datasets)
Consider a set of K training samplesXpkq P RI1�I2�����IN , pk � 1, 2, . . . ,Kq corresponding to C

categories, and a set of test datåX
ptq P RI1�I2�����IN , pt � 1, 2, . . . ,Tq. The challenge is to find

appropriate labels for the test data. The classification paradigm can be generally performed in the
following steps

1. Find the set of basis matrices and corresponding featuresfor the training dataXpkq;
2. Performfeature extractionfor test samples̊X

ptq
using the basis factors found for the training

data (using a suitably designed projected filter);

3. Performclassificationby comparing the test features with the training features.

In general, a sample (object) is explained byN basis matricesApnq � rapnq1 , a
pnq
2 , . . . , a

pnq
Rn
s P

R
In�Rn, pn� 1, 2, . . . ,Nq giving features represented by core tensors. We can assume thatApnq contains

Rn components. The relation of a sampleXpkq andN basis factorsApnq can be expressed as

Xpkq � Gpkq �1 Ap1q �2 Ap2q � � � �N ApNq � E , pk � 1, 2, . . . ,Kq, (7.8)

where the compressed core tensorGpkq P RR1�R2�����RN representing features is of a much lower di-

mension than the raw data tensorXpkq. In other words, the reduced core tensorGpkq consists of features

of the sampleXpkq in the subspace ofApnq. Each entrygpkqr1,r2,...,rN
of the core tensorGpkq is an individ-

ual feature, and expresses the strength of interaction among basis componentsap1qr1
, ap2qr2
, . . . , apNqrN

in

different factors. We call this the interactive bases.



7.3. General Model for High Dimensional Classification 139

In a particular case for the CP model, the core tensorGpkq simplifies into a diagonal tensor. In

this case, a component of factorApnq P RIn�R has only one combination with components in the

same order as in the other factors. We call it the non-interactive bases. SampleXpkq is reduced to

R� R1 � � � � � RN features which are super-diagonal entries ofGpkq.
7.3.1 Estimation of Bases and Corresponding Features

Consider a training dataset containingK data samplesXpkq P RI1�I2�����IN . The purpose of the first

training step is to find a set ofN basis factors (matrices)Apnq, pn � 1, 2, . . . ,Nq which explain the

training data along their corresponding dimensions, and feature core tensorsGpkq. This problem is

illustrated in Figure7.2(a), and is formulated as follows:

Problem 7.3(Estimation of basis matrices and corresponding features)
Find N common factorsApnq P RIn�Rn, pn � 1, 2, . . . ,Nq from K simultaneous decompositions of K
sample tensorsXpkq P RI1�I2�����IN

Xpkq � Gpkq �1 Ap1q � � � �N ApNq, pk � 1, 2, . . . ,Kq, (7.9)

where Rn   In are the number of components (columns) of the factorsApnq, andGpkq P RR1�R2�����RN

consist of features of the data tensorsXpkq.
From (7.9), it is clear that tensor decompositions perform sample reduction by projecting the ten-

sorsXpkq to smaller dimension core tensorsGpkq, where entriesgr1,r2,...,rN of the core tensorGpkq are

features of the training dataXpkq in the feature space spanned by factorsApnq. In total, we have

L � R1 � R2 � � � � �RN features which are vectorization of the core tensorsGpkq.
To solve Problem7.3, we can design cost functions for allK simultaneous decompositions (7.9);

one such example is

arg mintAp1q ,��� ,ApNqu Ķ

k�1

}Xpkq �Gpkq �1 Ap1q � � � �N ApNq}2
F , (7.10)

whereas, in principle, this method allows to find the common factorsApnq and corresponding features,

but it is quite complicated. We can considerably simplify Problem7.3by concatenating all the training

dataXpkq and converting the problem into that of a single tensor decomposition, possibly with some

constraints imposed on factor matrices.

Since the projection in (7.9) is a TUCKER decomposition ofXpkq, its vectorized version becomes

vec
�
Xpkq	 � �

ApNq b � � � b Ap2q b Ap1q	 vec
�
Gpkq	 � �tAub� vec

�
Gpkq	 . (7.11)

By concatenating all vec
�
Xpkq	 for k � 1, 2, . . . ,K, we obtain a matrix factorization given by�

vec
�
Xp1q	 vec

�
Xp2q	 � � � vec

�
XpKq	�T��vec

�
Gp1q	 vec

�
Gp2q	 � � � vec

�
GpKq	�T �tAub�T

.(7.12)
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Figure 7.2: (a) Illustration of feature extraction from multi-way samples, and (b) the conceptual dia-
gram illustrating a classification procedure based on the TUCKER decomposition of the concatenated
tensor of all sampling training data. Reduced features are obtained by projecting the data tensor onto
the feature subspace spanned by basis factors (bases).

For simplicity, denote the left side of Eq. (7.12) by a matrixXpN�1q P RK�pI1 I2���INq; then, we can write

XpN�1q � �
vec

�
Xp1q	 vec

�
Xp2q	 � � � vec

�
XpKq	 �T

. (7.13)

Now, it is easy to prove that the matrixXpN�1q is the mode-pN � 1q matricized version of anpN� 1q-
way concatenated tensorX P RI1�I2����IN�K obtained by concatenating all the data tensorsXpkq along

the modepN� 1q. This can be formulated as

X � catpN � 1,Xp1q,Xp2q, . . . ,XpKqq, (7.14)

where the sub-tensors are obtained by fixing thepN � 1q-th index at a valuek

Xp:
1
, :

2
, . . . , :

N
, k

N�1
q � Xpkq , (7.15)

or alternatively it can be expressed asXpkq � XiN�1�k � Xk.

Similarly, the concatenation matrixrvec
�
Gpkq	sKk�1 � rvec

�
Gp1q	 , vec

�
Gp2q	 , . . . , vec

�
GpKq	s

represents a matricization of anpN � 1q order core tensorG P RR1�R2�����RN�K along the modepN� 1q with its k-th sub-tensor, i.e.,Gp:
1
, :

2
, . . . , :

N
, k

N�1
q � Gpkq. Thus, Eq. (7.12) can be rewritten in a

compact matrix form

XpN�1q � GpN�1q �tAub�T
, (7.16)

or equivalently in the form of tensor products

X � G �1 Ap1q �2 Ap2q � � � �N ApNq , (7.17)
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which illustrates that the approximative simultaneous decomposition of a set of the training data tensors

(7.9) is equivalent to decomposing thepN�1q-order concatenated tensorX via the TUCKER-N model.

This provides a simple and elegant way to convert Problem7.3to the problem of decomposition of the

concatenated data tensorX consisting of all data samples.

Problem 7.4(Global TUCKER decomposition)
The N common bases of K samplesXpkq P RI1�I2�����INpk � 1, 2, . . . ,Kq in Problem7.3 are exactly
the factorsApnq P RIn�Rn, for n � 1, . . . ,N in the TUCKER-N decomposition of the concatenation
tensor along the mode-(N+1), that is

X � G �1 Ap1q �2 Ap2q � � � �N ApNq, (7.18)

whereX � catpN � 1,Xp1q,Xp2q, . . . ,XpKqq and the core tensorG represents extracted features for
the training samples.

Note that the features of a specific training dataXpkq are represented by thek-th row of the

mode-pN � 1q matricized version ofG. Problem7.4is illustrated as the training step in Figure7.2(b).

7.3.2 Orthogonal Interactive Bases

Interactive bases are estimated as factors of the TUCKER decomposition of the concatenation tensor

X. In order to avoid any confusion, orthogonal basis factors are denoted byUpnq. To develop algorithm,

we first assume that the matricesUpnq are known or have been estimated at a given step. So, the core

tensor can be obtained as58;60

G � X�1 Up1q T �2 Up2q T � � � �N UpNq T . (7.19)

Therefore, we can maximize the cost function58;60;62 to find factorsUpnq (n� 1, 2, . . . ,N)

JpUp1q,Up2q, . . . ,UpNqq � ���X�1 Up1q T �2 Up2q T � � � �N UpNq T
���2

F
, (7.20)

where only the orthogonal basis matricesUpnq are unknown. WithUp1q, . . . ,Upn�1q, Upn�1q, . . . , UpNq
fixed, we can project tensorX onto the subspace defined as

Wp�nq � X�1 Up1q T � � � �n�1 Upn�1q T �n�1 Upn�1q T � � � �N UpNq T � X ��pn,N�1q tUTu ,(7.21)

and then the orthogonal matrixUpnq can be estimated asRn leading left singular vectors of the mode-n

matricized versionWp�nqpnq . This leads to the Higher Order Orthogonal Iteration (HOOI)algorithm

introduced by De Lathauwer, De Moor, and Vandewalle60. The pseudo-code of the algorithm for

estimatingN common bases is described in detail in Algorithm7.1. In this algorithm,svds refers to

as the Matlab SVD function which computes a few leading singular values and vectors.
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Algorithm 7.1: HOOI Algorithm (Orthogonal TUCKER) for Feat ures Extraction
Input : X: concatenation tensor of all training samplesI1 � I2 � � � � � IN � K,

R1,R2, . . . ,RN: number of basis components for factors
Output : N orthogonal factorsUpnq P RIn�Rn and a core tensorG P RR1�R2�����RN�K .

1 begin
2 HOSVD or random initialization for all factorsUpnq
3 repeat
4 for n� 1 to N do
5 Wp�nq � X��pn,N�1q tUTu
6 rUpnq,Σpnq,Vpnqs � svdspWp�nqpnq ,Rn, ‘LM’ q // Wp�nqpnq � Upnq

Σ
pnqVpnq T

7 end
8 until a stopping criterion is met

9 G �Wp�Nq �N UpNqT
10 end

7.3.3 Nonnegative Interactive Bases

A nonnegative object can be expressed as a linear combination of its sparse parts which are considered

as basis components. The weights of this combination can be used as features of this object in a

reduced dimension subspace. Therefore, for nonnegative datasets, NTD can be applied to find basis

factors and to extract features, and Problem7.4becomes the NTD withN factors.

7.4 Discriminant Analysis Approach for Multi-way Features

The training features obtained by non-interactive bases (CP) or by interactive bases (Tucker model)

can be directly used for classification. However, they do notcontain any category (label of a class)

information which is often useful to model the difference between classes of data. To exploit such in-

formation, we should find discriminant bases to project the training featuresGpkq onto the discriminant

subspaces. Since entriesgpkqr1,r2,...,rN can be considered as independent features, and metrics comparing

two multidimensional samples are the same as when evaluating of their vectorizations (e.g. Euclidean

distance, Kullback-Leibler divergence), we can vectorizefeature tensorsGpkq, and apply any 1-D dis-

criminant methods for the training features.

An alternative approach is that discriminant projections are directly searched for the raw dataset,

and the feature tensorsGpkq are coordinate values of these projections. The basis factors are derived

either from the Fisher discriminant criterion, or from the cost functions which are incorporated dis-

criminant constraints.

Recently, a number of algorithms have been proposed for discriminant analysis with high dimen-

sional representations. Heet al.85 have first proposed algorithm to find the discriminant bases for
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2-D samples. Yanet al.213 proposed a discriminant analysis for tensor representation based on Fisher

score. Zhanget al.218 estimated discriminant bases via Laplacian score. Feipinget al.135 found bases

exploiting local scatter by defining local weight matrices.However, those methods are different and

are not directly related to TUCKER decompositions. In our models and algorithms, the bases can be

easily estimated from tensor decompositions, especially the TUCKER decomposition. Moreover, the

proposed algorithms can flexibly switch between the orthonormal and discriminant bases with a regu-

larization parameter. The HOOI algorithm once again has been confirmed as a “work-horse” algorithm

in dimensionality reduction, feature extraction and classification.

7.4.1 Discriminant Analysis of Features

ConsiderL features obtained by a multiway decomposition. For interactive bases (TUCKER model),

L � R1R2 � � �RN is the dimension of the core feature tensorsGpkq. The training features of thek-th

sample are denoted bygpkq � rgpkql s � vec
�
Gpkq	 P RL andgpkql , for l � 1, 2, . . . , L is the l-th entry

(feature) of the vectorized version of the core tensorGpkq.
This section will present a simple LDA method to find the discriminant projection matrixΨ P

R
L�F , pF ! Lq for the featuresgpkq, that is (in fact, we can apply any LDA method28;29)

f pkq � ΨT vec
�
Gpkq	 , (7.22)

where f pkq P RF are the discriminant features. We shall denote the average vectors for each class by

ḡpcqpc� 1, 2, . . . ,Cq and the corresponding average for the whole set of samples by¯̄g, that is

ḡpcq � 1
Kc ķPIc

gpkq, ¯̄g� 1
K

Ķ

k�1

gpkq, (7.23)

whereIc is the subset of indicesk which indicates the samplesk belong to classc, andKc is the

number of training samples in thec-th class.

The average core tensor corresponding to the average features ḡpcq is denoted bȳGpcq, and given by

Ḡ
pcq � �

ķPIc

Gpkq� {Kc pc� 1, 2, . . . ,Cq. (7.24)

By removing the averages̄G
pckq for all the samples̄G

pkq
, a new set of centered tensorsG̃

pkq
is defined as

G̃
pkq � Gpkq � Ḡpckq . (7.25)

Concatenation of all the core tensorsG̃
pkq

forms anpN � 1q-D tensorG̃ so that:G̃k � G̃pkq. To avoid

any confusion in notation regarding the concatenation tensor of average tensors̄G
pcq

, the average tensor

for all the data tensor is denoted bȳ̄G with its vectorization form given bȳ̄g� vec
�

¯̄G
	

¯̄G � �
Ķ

k�1

Gpkq� {K . (7.26)
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We can also remove the average part for all the samplesḠ
pcq

to form a new set of tensoršG
pcq

Ǧ
pcq � a

Kc

�
Ḡ
pcq � ¯̄G

	
, (7.27)

which are parts of the concatenation tensorǦ, i.e: Ǧc � Ǧpcq.
The corresponding discriminant features are therefore given by

f̄ pcq � ΨT ḡpcq, ¯̄f � ΨT ¯̄g, (7.28)

whereas the discriminant projection matrixΨ can be found by maximizing the Fisher discriminant

criterion2;125 defined as

Ψ�arg max
Ψ

ϕpΨq � arg max
Ψ

Ç

c�1

Kc } f̄ pcq � ¯̄f }2
2

Ķ

k�1

} f pkq � f̄ pckq}2
2

� arg max
Ψ

Ç

c�1

Kc }ΨT ḡpcq �ΨT ¯̄g}2
2

Ķ

k�1

}ΨT gpkq �ΨT ḡpckq}2
2

, (7.29)

whereck indicates the category of samplek.

By defining the within-class scatter matrixSw and the between-class scatter matrixSb for the

featuresgpkq as2;125

Sw � Ķ

k�1

pgpkq � ḡpckqqpgpkq � ḡpckqqT � Ķ

k�1

g̃pkq g̃pkq T� G̃TpN�1q G̃pN�1q � xG̃, G̃y�pN�1q , (7.30)

Sb � Ç

c�1

Kc p ḡpcq � ¯̄gqp ḡpcq � ¯̄gqT � Ç

c�1

ǧpcq ǧpcq T� xǦ, Ǧy�pN�1q , (7.31)

it can be shown that expression (7.29) is equivalent to the trace ratio problem2;125

Ψ � arg max
Ψ

ϕpΨq � arg max
Ψ

tr
�
Ψ

T SbΨ
�

tr rΨT SwΨs , (7.32)

or the simpler inexact problem

Ψ � arg max
Ψ

tr
�
Ψ

T S�1
w SbΨ

�
, (7.33)

which can be solved by the generalized eigenvalue decomposition (GEVD)

Sbψ � τSwψ. (7.34)

The projection matrixΨ is composed by the leading eigenvectorsψ of (7.34).
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Algorithm 7.2: Discriminant Algorithm for Reduced Multidi mensional Features
input : G: tensor ofK training featurespR1 � � � � � RN � Kq

I: set of indices or labels indicating categories of samples.
output: Ψ: discriminant projection matrixpL� Fq

F: matrix of discriminant features (F � K)
1 begin

2
¯̄G � � Ķ

k�1

Gpkq� {K // average tensor for all training features

3 foreach class cdo

4 Ḡ
pcq � �

ķPIc

Gpkq� {Kc // average feature tensor for class c

5 foreach k P Ic do G̃
pkq � Gpkq � Ḡpcq // centralize

6 Ḡ
pcq � ?

Kc

�
Ḡ
pcq � ¯̄G

	
7 end
8 Sw � xG̃, G̃y�pN�1q // within-class scatter matrix

9 Sb � xḠ, Ḡy�pN�1q // between-class scatter matrix

10 rΨ,Λs � eigspSb,Sw, F, ‘LM’ q // initialize

11 repeat

12 ϕ � trace �ΨT SbΨ
�

trace
�
Ψ

T SwΨ
�

13 rΨ,Λs � eigspSb � ϕSw, F, ‘LM’ q // or compute GEVD (7.34)

14 rΨ,Λs � eigspΨΨTSwΨΨ
T , F, ‘LM’ q

15 until a criterion is met
16 F � ΨT GTpN�1q
17 end

An efficient method to solve the trace ratio problem (7.32) is to iteratively solve a trace difference

problem209

Ψ � arg max
Ψ

tr
�
Ψ

T pSb � ϕSwq Ψ� . (7.35)

The pseudocode of this method is summarized in Algorithm7.2.

Note that the feature vectors are obtained by the linear transformation

f pkq � ΨT vec
�
Gpkq	 , (7.36)

or equivalently, the matrix of training featuresF � r f ks P RF�K is given byF � ΨT GTpN�1q .

7.4.2 High Order Discriminant Analysis using Orthogonal Tucker Decomposition

An alternative approach to exploit the discriminant information for TUCKER features is that the core

feature tensorsGpkq are directly projected on the discriminant bases.
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In general, we can maximize the Fisher ratio between the coretensorsGpkq to find the orthogonal

basis factorsUpnq
ϕ � arg max

Up1q,...,UpNq Ç

c�1

Kc

���Ḡpcq � ¯̄G
���2

F

Ķ

k

���Gpkq � Ḡpckq���2

F

, (7.37)

whereḠ
pcq

is the mean tensor of thec-th class consisting ofKc training samples,ck denotes the class

to which thek-th training sampleXpkq belongs, and̄̄G is the mean tensor of the whole training features.

This technique provides a generalization of the 1-D Linear Discriminant Analysis to multilinear one.

In a similar way to the HOOI algorithm presented in Section7.3.2, the learning rule for the factor

Upnq is derived with the assumption that all the other factors arefixed. Taking into account that the

basis factors are orthogonal, we can express the denominator of (7.37) via the trace of the within class

scatter matrix:
Ķ

k�1

���Gpkq � Ḡpckq���2

F
� Ķ

k�1

����Xpkq ��n tUTu	�n UpnqT � �
X̄
pckq ��n tUTu	�n UpnqT

���2

F� Ķ

k�1

����Xpkq � X̄pckq	��n tUTu �n UpnqT
���2

F
� Ķ

k�1

����Z̃pkq�n �n UpnqT

����2

F� Ķ

k�1

tr

�
UpnqT xZ̃pkq�n, Z̃

pkq�ny�n Upnq� � tr

�
UpnqT

�
Ķ

k�1

xZ̃pkq�n, Z̃
pkq�ny�n

�
Upnq�� tr

�
UpnqT S�n

w Upnq� , (7.38)

whereZ̃
pkq�n � X̃pkq ��n tUTu are thek-part of the concatenation tensorZ̃

�n
, i.e. Z̃

�n
k � Z̃pkq�n, and

X̃
pkq � Xpkq � X̄pckq

, Z̃
�n � X̃��pn,N�1q tUTu , (7.39)

and the within-class scatter matrixS�n
w is defined as

S�n
w � Ķ

k�1

xZ̃pkq�n, Z̃
pkq�ny�n � xZ̃�n

, Z̃
�ny�n . (7.40)

Similarly, the between-class scatter is expressed as traceof the between class scatter matrix:

Ç

c�1

Kc

���Ḡpcq � ¯̄G
���2

F
� Ç

c�1

Kc

����X̄pcq ��n tUTu	�n UpnqT � �
¯̄X��n tUTu	�n UpnqT

���2

F� Ç

c�1

Kc

����X̄pcq � ¯̄X
	��n tUTu �n UpnqT

���2

F
� Ç

c�1

����Žpcq�n �n UpnqT

����2

F� Ç

c�1

tr

�
UpnqT xŽpcq�n, Ž

pcq�ny�n Upnq� � tr

�
UpnqT

�
Ç

c�1

xŽpcq�n, Ž
pcq�ny�n

�
Upnq�� tr

�
UpnqT S�n

b Upnq� , (7.41)
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Algorithm 7.3: HODA Algorithm for Feature Extraction
input : X: Concanated tensor ofK training samplesI1 � I2 � � � � � IN � K
output: Upnq: N orthogonal basis factorsIn � Rn (n� 1, 2, . . . ,N)

G: Training feature tensorsR1 � R2 � � � � � RN � K.
1 begin
2 Initialize Upnq
3 CalculateX̃, andX̌ according to (7.39) and (7.42)
4 repeat
5 for n� 1 to N do
6 Z̃ � X̃��pn,N�1q tUTu
7 S�n

w � xZ̃, Z̃y�n // within-class scatter matrix

8 Ž � X̌��pn,N�1q tUTu
9 S�n

b � xŽ, Žy�n // between-class scatter matrix

10 ϕ � tracepUpnqT S�n
b Upnqq

tracepUpnqT S�n
w Upnqq

11 rUpnq,Λs � eigspS�n
b � ϕS�n

w ,Rn, ‘LM’ q // orrUpnq,Λs � eigspS�n
b , S

�n
w ,Rn, ‘LM’q

12 rUpnq,Λs � eigspUpnqUpnqT xX,Xy�n UpnqUpnqT ,Rn, ‘LM’ q
13 end
14 until a criterion is met

15 G � X��pN�1q tUuT

16 end

whereŽ
pcq�n � X̌pcq ��n tUTu are thec-part of the concatenation tensorŽ

�n
, i.e.,Ž

�n
c � Žpcq�n,

X̌
pcq � a

Kc

�
X̄
pcq � ¯̄X

	
, (7.42)

Ž
�n � X̌��pn,N�1q tUTu , (7.43)

and the between-class scatter matrixS�n
b is defined as

S�n
b � Ç

c�1

xŽpcq�n, Ž
pcq�ny�n � xŽ�n

, Ž
�ny�n . (7.44)

By substituting (7.38) and (7.41) into the cost function (7.37), the discriminant factorUpnq can be

found via maximizing the following trace ratio

ϕ � arg max
Upnq tr

�
UpnqT S�n

b Upnq�
tr
�
UpnqT S�n

w Upnq� � arg max
Upnq tr rSbs

tr rSws , pn� 1, 2, . . . ,Nq. (7.45)

This can be used to solve problem (7.32), where the factorsUpnq can be found asRn leading left

generalized eigenvectors of the generalized eigenvalue decompositionSwUpnq � λSb Upnq or Rn leading

eigenvector of matrixpSb � ϕSwq. Alternating estimation of factorsUpnq gives us the High Order
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Discriminant Analysis algorithm (HODA). The pseudocode ofthis algorithm is given in Algorithm7.3.

We note that although generalized eigenvectorsUpnq from the decompositionSwUpnq � λSb Upnq are

not orthogonal, features can also be extracted using the approximate projection given in (7.19).

SinceSw can be very ill-conditioned, especially in early updates, the system (7.45) may have no

solution or can have infinite solutions (the linear equations system is underdetermined)74. Thus, to

avoid the breakdown of iterations some sort of regularization is essential, for instance,

ϕ � arg max
Upnq tr rSbs

tr rSw � α I s , (7.46)

whereI is the identity matrix andα ¥ 0 is the regularization parameter.

We note that seeking the optimal projective orthogonal basesUpnq in the feature space is equivalent

to solving the following optimization problem

ϕ � arg max
Upnq tr rSbs

tr rSws � arg max
Upnq tr rSts

tr rSws , (7.47)

where the total scatter matrixSt � Sb � Sw and trace of this matrix is given by

tr rSts � tr rSb � Sws � Ķ

k�1

���Gpkq � ¯̄G
���2

F
. (7.48)

Hence, an alternative regularization form can be established as

ϕ � arg max
Upnq tr rSts

tr rαSw � p1� αq I s , (7.49)

where 0¤ α ¤ 1. The basis factorsUpnq areRn leading left eigenvectors of matricesppαSw � p1�
αq Iq�1Sbq or pSb � ϕ pαSw � p1� αq Iqq. The choice of parameterα can be crucial to yield a good

performance. We note that the typical value ofα is 0 or 1.

• Forα � 1, the optimization problem (7.49) simplifies into the problem given in (7.45), i.e. we

obtain the HODA algorithm without regularization.

• Forα � 0, the optimization problem (7.49) simplifies the maximization of (7.48). In fact, this

problem is equivalent to the TUCKER decomposition of the training samples after centering

(7.20) with orthogonality constraints and solved by the HOOI algorithm (see Section7.3.2).

7.4.3 Discriminant Analysis for NTD

This section discusses ways of finding discriminant basis factors for nonnegative TUCKER decom-

position. The method is based on simultaneously solving twooptimization problems:

1. Minimize the Frobenius norm (2.51) of the raw data and its approximation to find interpretable

basis factors;
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2. Maximize the Fisher score of the projected features (7.37) onto the subspace of the estimated

factors.

For this purpose, a new global cost function with penalty terms is designed as

DF pX}G, tAuq � 1
2
}X�G��pN�1qtAu}2

F�1
2
λo

Ņ

n�1 ŗ,p

apnqTr apnqp �1
2
λw tr rSws�1

2
λb tr rSbs . (7.50)

The second regularization term enforces (as much as possible) the orthogonality of basis components

apnqr , that is, componentsapnqr should be as sparse as possible. The within-class and between-class

scatter matricesSw andSb are defined in (7.38) and (7.41). The last two regularization terms require

tr rSws to be as small as possible, while trrSbs should be as large as possible.

In order to estimate the nonnegative basis factors, we need to compute the gradients of regulariza-

tion terms with respect toApnq given byB�°N
n�1

°
r,p apnqTr apnqp

	BApnq � Apnq �1 1T � I
�
. (7.51)

Using a gradient descent approach47;103;131 we can derive a multiplicative learning rule forApnq as

Apnq � Apnq ⊛ xX��pn,N�1q tATu,Gy�n
m �

ApnqxG,G��pn,N�1q tATAuy�n
� λoApnq�11T � I

�	
.

(7.52)

To derive the learning rule for the core tensorG we shall assume that all the factorsApnq are fixed.

Then, the gradients of the 3-rd and 4-th regularization terms in (7.50) with respect toGpkq are given byBtr rSwsBGpkq � B Ķ

k�1

���Gpkq � Ḡpckq���2

FBGpkq � 2
�
Gpkq � Ḡpckq	 , (7.53)Btr rSbsBGpkq � B Ç

c�1

Kc

���Ḡpcq � ¯̄G
���2

FBGpkq � 2
�
Ḡ
pckq � ¯̄G

	
, (7.54)

and the multiplicative update rule forG47;103;131;157 is modified to update rule a sampleGpkq as

Gpkq � Gpkq ⊛ �Xpkq � tATu � pλw � λbq Ḡpckq	m �
Gpkq � tATAu � λwG

pkq � λb
¯̄G
	
. (7.55)

This update rule can be rewritten for the whole concatenatedcore tensor of features as

G� G ⊛ �X��pN�1q tATu � pλw � λbq Ḡ��m �
G��pN�1q tATAu � λwG� λb

¯̄G�	 , (7.56)

whereḠ� is anpN�1q-way tensor whose each partḠ�k is the average tensor corresponding to classck

Ḡ
�
k � Ḡpckq (7.57)
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Algorithm 7.4: Multiplicative Discriminant Analysis for N TD
input : X: tensor ofK training samplesI1 � I2 � � � � � IN � K

λo, λw andλb: regularization parameters.
output: Apnq: N nonnegative factorsIn � Rn

G: nonnegative training feature core tensorsR1 � R2 � � � � � RN � K.
1 begin
2 Initialize Apnq
3 repeat
4 for n� 1 to N do
5 Apnq � Apnq ⊛ xX��pn,N�1q tATu,Gy�n

m�
Apnq xG,G��pn,N�1q tAT Auy�n

� λo Apnq �1 1T � I
�	
,

6 end
7 ¯̄G � 1

K

°
kG

pkq
8 foreach c� 1 to C do Ḡpcq � 1

Kc

°
kPIc
Gpkq

9 G� G ⊛ �X��pN�1q tATu � pλw � λbqḠ��m �
G��pN�1q tATAu � λwG� λb

¯̄G�	
10 until a criterion is met

11 end

and the tensor̄̄G� is a replication of the average tensor¯̄G along the modeN� 1, that means̄̄G�k � ¯̄G .

Combination of the learning rules (7.52) and (7.56) gives us the new multiplicative algorithm for

finding discriminant basis factorsApnq and featuresG; the pseudo-code of this algorithm is given in

Algorithm 7.4. Note that, factorsApnq always need to be normalized to unit-length vectors, but is not

explicitly listed in this algorithm.

An alternative approach to find the discriminant basis factors is to regularize factorsApnq by the

between-class and within-class scatter matrices. It is interesting to note that the features to classify

objects can be obtained by a simple projection:

F pkq � Xpkq �1 Ap1qT �2 Ap2qT � � � �N ApNqT � Xpkq � tATu. (7.58)

In the case of orthogonal bases (with HOOI or HODA algorithms), feature tensorsF pkq are exactly the

core tensorsGpkq. However, this kind of projection can also be applied for nonnegative bases.

For such case, the two regularization terms for the discriminant in the cost function (7.50) are now

computed based onF pkq instead ofGpkq. By taking into consideration that the scatter matricesSw and

Sb are not constants with respect to factorsApnq, and their relation to factorsApnq is given by (7.45),

their partial derivatives are given byBtr rSwsBApnq � Btr
�
ApnqT S�n

w Apnq �BApnq � 2S�n
w Apnq , (7.59)Btr rSbsBApnq � Btr

�
ApnqT S�n

b Apnq �BApnq � 2S�n
b Apnq , (7.60)
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where the symmetric scatter matricesS�n
w andS�n

b are expressed via tensor contracted products

S�n
w � xX̃��pn,N�1q tATu, X̃��pn,N�1q tATuy�n

, (7.61)

S�n
b � xX̌��pn,N�1q tATu, X̌��pn,N�1q tATuy�n

. (7.62)

With the tensorsX̃ and X̌ given in (7.39) and (7.42), based on the multiplicative learning rule for

Apnq 47;103;131;157 a new learning rule forApnq can be derived as

Apnq � Apnq
⊛

�xX��pn,N�1q tATu,Gy�n
� λb S�n

b Apnq	m�
Apnq xG,G��pn,N�1q tAT Auy�n

� λo Apnq �1 1T � I
�� λw S�n

w Apnq	 . (7.63)

To reduce the computational complexity, the scatter matricesS�n
w andS�n

b should be derived from the

tensor contractionX��pn,N�1qtATu. The core tensorG is updated using the multiplicative rule (7.56).

7.5 Feature Ranking and Selection

The number of featuresL of a multiway sample in a classification problem strongly depends on the

number of basis componentsRn of the factorsApnq P RIn�Rn in tensor decomposition. The smaller the

valuesRn, the smaller the number of features. The number of components Rn for factor Apnq can be

defined by the number of dominant eigenvalues of the contracted productXpnqXTpnq � UΛUT P RIn�In,

whereΛ � diagpλ1, λ2, . . . , λINq, andλ1 ¥ λ2 ¥ � � � ¥ λRn ¥ � � � ¥ λIN are eigenvalues. The factors

should explain the whole training data at least above the threshold fitnessθ (typical valueθ � 95%)

arg min
Rn

°Rn
r�1λr°In
r�1λr

¡ θ. (7.64)

For the TUCKER decomposition, we can findRn by using the heuristic rule in (7.64), for each

factor in each mode (see Algorithm7.5).

For interactive bases methods, the total number of featuresis L � R1 � R2 � � � � � RN. Although

the number of features is reduced and is much smaller than thenumber of samples of the raw data,

its value is still large and dramatically increases with thedata dimension. For example, for images of

size of 100�100 pixels, which are compressed by two interactive factorsof 10 columns, their reduced

versions have size of 10� 10, and hence have still 100 features.

In practice, we do not need to use all the features from the core tensors but only some significant

features, without sacrificing the accuracy via some information ranking criteria such as correlation

score, minimum-redundancy-maximum-relevance selection, Fisher score, Laplacian score, and en-

tropy97. Information indices for all the features are calculated, and then sorted in a descending order.

Significant features corresponding to the largest indices should be chosen first. Features with small

score indices can be neglected without affecting the performance.
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Algorithm 7.5: Initialization for Basis Factors
input : X: tensor ofK training samplesI1 � I2 � � � � � IN � K
output: Apnq: N factorsIn � Rn

1 begin
2 parfor n� 1 to N do // parallel loop

3 rApnq,Λs = eig (xX,Xy�n)
4 rλ, ζs � sortpdiagpΛqq // sort λ in descending order

5 Rn � arg min
°Rn

r�1 λr°In
r�1 λr

¡ θ
6 Apnq � Apnq

ζ1:Rn

7 endfor
8 end

Using validation data, we can analyze the effect of the number of features on the achieved accuracy.

The number of dominant features can be found so that the desired accuracy changes according to an

acceptance tolerance during the validation. As a consequence, this step removes redundant features.

For TUCKER decompositions, we note that a major featuregr1,r2,...,rN is the coordinate value of the

tensor data explained by the base vectorsap1qr1 , a
p2q
r2 , . . . , apNqrN . Thus, the components which are not

involved in any major features can be ignored in order to to reduce the factor dimensions.

A convenient method to rank a feature is based on the Fisher ratios (scores) of features defined as

ϕpiq � °C
c�1 Kc pḡpcqi � ¯̄giq2°K
k�1 pgpkqi � ḡpckq

i q2 , pi � 1, 2, . . . , Lq, (7.65)

wheregpkqi is thei-th entry (feature) of the vectorized version of the core tensorGpkq, ck � 1, 2, . . . ,C

denotes the class to which the training sampleXpkq belongs, andKc is the number of training samples

in thec-th class. Thec-th class mean sample of thet-th feature ¯gpcqi , i � 1, . . . , L, c� 1, . . . ,C, and the

total mean featurē̄gi are respectively defined as

ḡpcqi � 1
Kc ķPI1

gpkqi ,
¯̄gi � 1

K

Ņ

k�1

gpkqi . (7.66)

After ranking the features in a descending order of their Fisher scores, significant features should be

chosen to classify the sample.

7.6 Feature Extraction

Feature extraction corresponds to projecting the data sample X̊
ptq P RI1�I2����IN onto a feature subspace

spanned by an available set of basis factorsApnq or Upnq . In a general case, this problem is stated as

follows.
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Problem 7.5(Feature extraction)

Feature extraction of a tensor̊X
ptq P RI1�I2�����IN with a set of given basesApnq P RIn�Rn is to find the

core tensorG̊
ptq P RR1�R2�����RN in the TUCKER decomposition

X̊
ptq � G̊ptq �1 Ap1q �2 Ap2q � � � �N ApNq. (7.67)

For general basesApnq, Problem (7.5) can be explicitly solved by products of matrix inverses

G̊
ptq � X̊ptq �1 Ap1q: �2 Ap2q: � � � �N ApNq:. (7.68)

For orthogonal basesApnq � Upnq, with UpnqTUpnq � I , a core tensor̊G
ptq

is easily obtained

G̊
ptq � X̊ptq �1 Ap1qT �2 Ap2qT � � � �N ApNqT . (7.69)

For nonnegative basesApnq, the core tensor̊G
ptq

can be estimated by applying iterative (multiplicative)

learning rule for the core tensor. Such iterations often converge quickly after few iterations.

Although these methods are quite different, both approaches (7.68) and (7.69) in practice can also

be used to retrieve the features for nonnegative bases. Of course, the features of the training data and

the test data must be extracted by the same approach.

7.7 Image Classification - Dataset COIL20

In the first set of simulations, we considered the Columbia University Image Library (COIL-20)

dataset134 consists of 1,420 grayscale images of 20 objects (72 images per object) with a wide va-

riety of complex geometric and reflectance characteristics. Each image was downsampled to 32� 32

grayscale (0-255). Figure7.3(a)shows some sample images of this dataset. The dataset was randomly

divided into two separate sets with 720 training and 700 testimages. The results were averaged over

100 trials. The training data was constructed as a 3-D tensorof size 32� 32� 720 images. We applied

three methods to find basis factors with orthogonality (Algorithm 7.1), discriminant (Algorithm7.3)

and nonnegativity (Algorithm7.4) constraints from the training tensor. For all the methods,Ap1q and

Ap2q were fixed to 10 components, hence, there were totallyF � 100 features for each sample.

To classify the data, we trained an SVM classifier using the Gaussian Radial Basis Function ker-

nel31. With the same hold/out ratio of 50%, NTD, Orthogonal TUCKER-2 and HODA-2 had almost

perfect performance as shown in Table7.1. The discriminant factors were estimated by solving the

trace difference problem209. Orthonormal factors achieved the highest accuracy of 99.96%.

The hold/out ratio was next verified at 3 additional levels of 80%, 90% and 95%. As the hold/out

ratio was 90%, there were 160 samples for training: 8 samplesper class, and 1260 samples for test.

Classification with nonnegative factors obtained an average accuracy of 94.78%. HODA with trace-

ratio method (HODA-T) achieved 96.26% accuracy, whereas bysolving the ratio trace problem with
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(a) Randomly selected samples of the COIL-20
dataset.
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(b) Visualization of some selected objects from the COIL-20.

Figure 7.3: Visualization of the COIL-20 dataset and distribution of its features by t-SNE components.
Digits represent different classes of objects

Table 7.1: Classification Performance for The COIL-20 Dataset. Comparison of accuracy of methods
using the SVM classifier for different hold/out ratios. Feature core tensors had size of 10� 10.
Method 50% 80% 90% 95%

Test Nf Test Nf Test Nf Test Nf

NTD-2 99.94�0.22 36 98.27�0.81 68 94.78�1.38 68
Orth. TUCKER-2 99.96�0.13 20 99.03�0.65 32 97.18�1.09 32 91.76�1.96 36
HODA-T 99.90�0.19 21 98.65�0.69 24 96.26�1.09 24 89.77�2.33 24
HODA-G (GEVD,α � 0.001) 97.12�1.18 36 91.41�2.03 32
HODA-G (GEVD,α � 1) 82.05�2.11 46 74.35�3.11 40

GEVD this algorithm (HODA-G) achieved only 82.05% accuracy. The regularized HODA algorithm

(7.49) with α � 0.001 achieved much better accuracy of 97.12%. We note that forthe regularization

parameterα � 0, HODA simplifies to HOOI, which gave the highest average accuracy of 97.18%.

The detailed results are listed in Table7.1.

The nonnegative components explain the data as common partsover the samples, the orthonormal

factors try to explain the data at a highest fitness, whereas the discriminant factors focus on differences

between the samples. Due to different physical meanings of decomposition, the number of necessary

significant features for the three approaches are quite different. It is obvious that classification with

nonnegative factors requires more components than those ofthe other methods. For the same accuracy

level, the discriminant factors often need less significantfeatures than those of others. For the hold/out

ratio of 50%, classification with nonnegative factors required 36 significant features to achieve the

highest performance of 99.94%, while that with orthogonal factors needed 20 significant features. For

the hold/out ratio of 80%, the number of selected significant featuresfor nonnegative, orthogonal, and

discriminant bases are 68, 32 and 24, respectively.
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From the extracted features, the dataset was visualized viatwo t-SNE components207 shown in

Figure 7.3(b) illustrating good separation. Objects that have a high similarity are located in close

proximity to each other in the scatter plot, such as classes 5and 9, classes 3, 6 and 19, whereas objects

that have low similarity are located far from each other, forexample classes 13, 14, 17, 20.

7.8 Classification of Handwritten Digits

In the second set of simulations, we factorized and classified the MNIST data set of images of hand-

written digits (0-9)112. This data set is composed 60,000 training images and 10,000testing images.

Each image is a 28� 28 grayscale (0-255) labeled representation of an individual digit. In Fig-

ure 7.5(a), we present 100 randomly selected handwritten digits. Someefficient methods can process

this large data such as Jianget al.99, Horio and Yamakawa93. In this example, we selected a small

subset of digits to illustrate our models and algorithms.

In the training stage, we decomposed the data to find two TUCKER basis factors. Orthonormal and

discriminant factors were set to explain 99.9% of the training tensor, whereas both nonnegative factors

had 10 components. Nonnegative factors gave a classification accuracy of 97.66%, with 78 significant

features. Those features were coefficients of 48 compositions of basis components. Each composition

of two components formed a basis image, that is, a digit imagewas considered as a summation of basis

images. Figure7.4(a)displayed the first 40 nonnegative basis images. A basis image expresses a part

of a digit in which grey pixel denotes positive value and zeroby bright one.

In Figure 7.4(b), we displayed 40 basis images generated by discriminant components. With

those bases, the dataset was classified with 98.39% accuracyusing the SVM classifier. Discriminant

basis images are rank-one matrices with particular structures. Grey parts correspond to zeros, whereas

negative and positive values for dark and bright elements respectively.

Table 7.2(a) shows the performance of our methods. Orthonormal factors achieved a 97.32%

accuracy with 30 significant features. All performances were verified with the KNN-3 classifier,

except the last method using SVM. There was not much difference between these two classifiers.

In order to illustrate more clearly the classification ratesof digits, in Figure7.5(b), we show the

Hinton graph of the confusion matrix using the KNN-3 classifier. The volume of box is pro-

portional to the intensity of a corresponding prediction rate. A diagonal coefficient indicates the

classification accuracy for each digit. Whereas other entries express the misclassification (error)

rates. For example, digits 0 and 1 were classified with high accuracies (¡ 99%). A digit 3 may

be potentially misclassified as one of digits 5, 7, 8, 9. In Figure 7.5(c), we show test samples

418, 1232, 2151, 3248, 4389, 5549, 6067, 7059, 8197, 9390 misclassified as other ones using the

KNN-3 classifier.
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(a) Forty dominant basis images composed of nonnegative
factors.

(b) Basis images of discriminant factors for 200 digit
images.

Figure 7.4: Visualization of basis images for the hand-written digit images.

(a) Randomly selected handwritten digits from
the MNIST dataset.
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(b) Confusion matrix for the classification with
ten digit categories.
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(c) Some misclassified
digits.

Figure 7.5: Visualization of classification of ten digit classes:(a) 100 handwritten digits randomly
selected from the dataset;(b) Hinton graph of the confusion matrix using the KNN-3 classifier; (c) ten
digits for ten classes were misclassified as other digits using the KNN-3 classifier.

An alternative efficient approach for this problem is to classify the Gabor features of digit images.

We computed 24 Gabor features for each image consisting of 8 orientations at 3 scales. That means

2-D samples (images) were augmented dimensionality to become 3-D tensors. Gabor features were

down-sampled to 16� 16� 24 dimensional sample tensorsXpkq. Hence, both the training and test data

were 4-D tensors. To illustrate the performance of this approach, we chose only 20 first samples for

each digit for both training and test data. For classification of the raw data (images), both orthonormal

and discriminant factors provide 89.50% accuracy with 24 and 14 significant features, respectively

(see in Table7.2(b)). For the Gabor tensor, we decomposed the training tensor into 3 factors with sizes

16� 10, 16� 10, and 24� 23. Classification of a set of 41 significant features on the subspace of

orthonormal factors (TUCKER-3) with the SVM classifier achieved an accuracy of 93%. The same

procedure with 32 discriminant significant features provided an accuracy of 94.50%; the results are

given in Table7.2(b). The values corresponding to highest performance are givenin brackets.



7.8. Classification of Handwritten Digits 157

(1)
I

L

( )K

A
(1) A

(2) T

1
1

1

A
(1) A

(2) T

L
L

L

L

(:,:, )1
1

(:,:, )1
l

(:,:, )1
L

(:,:, )K
1

(:,:, )K
l

(:,:, )K
L

Gabor Training Features Tucker-2 Decompositions for Gabor LevelsL Training Features

(1)

( )K

L

1

1

I2

I
1

I2

I    I     K
1 2

´ ´

I    I     K
1 2

´ ´

1 2
´ ´

L L

1 2
´ ´

1 1

X

X

X

X

G

G

G
G

G

G
G

G

G

G

� �� �� �
R R K

R R K

Figure 7.6: Conceptual model illustrating feature extractions for handwritten digit images using Gabor
filters and multiple projection filters based on simultaneous TUCKER-2 decompositions.

The classification accuracy can be considerably improved bytaking into account that there is low

correlation among them, or rare common parts between Gabor features which are not in the same levels

(orientations and scales). Hence, instead of decomposition of the Gabor training tensors along all the

three modes, we should find common bases only for the two first dimensions. Due to this reason, we

split the training tensorX into 24 3-D sub-tensorsXl � Xp:, :, l, :q P R16�16�K (l � 1, 2, . . . , 24)

which contain thel-th frontal slices of tensorsXpkq for k � 1, 2, . . . ,K with K � 200 training samples.

For each specific Gabor level (orientation and scale)pl � 1, 2, . . . , 24q, we found two basis factors

Ap1lq P R16�R1l , andAp2lq P R16�R2l via a TUCKER-2 decomposition

Xl � Gl �1 Ap1lq �2 Ap2lq, pl � 1, 2, . . . , Lq (7.70)

in whichGl is anR1l � R2l � K dimensional tensor whosek-th frontal slices represent compressed

features of the samplesXpkq at levell.

From L � 24 decompositions (7.70) for all the levels, we obtainedL � 24 sets of basesAp1lq
andAp2lq, andL � 24 core tensorsGl , l � 1, 2, . . . , L. Therefore, features of the multiway training

sampleXpkq are represented by 32k-th frontal slices of the core tensorsGl that can be expressed as a

concanated vectorgk of
°L�32

l�1 R1l R2l entries

gpkq � rvecpG1p:, :, kqq ; vecpG2p:, :, kqq ; . . . ; vecpGLp:, :, kqqs . (7.71)

The whole training procedure is illustrated in Figure7.6. Features of a test sampleX̊
ptq P R16�16�24

(t � 1, 2, . . . , 200) can be obtained by projecting each frontal sliceX̊ptq
l of this tensor onto the corre-

sponding feature subspace spanned by basesAp1lq andAp2lq, for l � 1, 2, . . . , L, described as

G̊ptq
l � X̊ptq

l �1 Ap1lqT �2 Ap2lqT � Ap1lqT X̊ptq
l Ap2lq, pl � 1, 2, . . . , Lq . (7.72)
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Figure 7.7: Classification accuracy for the hand-written digit dataset achieved with multiple projection
filters for Gabor levels.

Table 7.2: Comparison of classification performance for thehand-written digit dataset. For Gabor
samples, only first 20 samples for each digit were taken for both training and test data.

(a) Samples are raw images.

Method Accuracy Nf

NTD-2 97.66 78
Orth. TUCKER-2 97.32 30
HODA-2 97.71 52
HODA-2 98.39(SVM) 40

(b) Samples are 3-D Gabor features.

Method Raw data Gabor features
Accuracy Nf Accuracy Nf

NTD 90 50
TUCKER 89.50 24 93 41
HODA 89.50 14 94.50 32 (26)

Those features can also be expressed in the vector form as

g̊ptq � �
vec

�
G̊ptq

1

	
; vec

�
G̊ptq

2

	
; . . . ; vec

�
G̊ptq

24

	�
. (7.73)

For the model of multiple projection filters, we employed theHODA algorithm, and set the number

of basis components to 12. The classification accuracy achieved 98.5% for 252 significant features.

Accuracies and Fisher scores of 300 significant features areshown in Figure7.8.

The paradigm given in Figure7.6 can be applied for classification of other image datasets. For

example, for the ORL face database121, we constructed Gabor feature tensors of 8 orientations at 4

scalesXpkq P R16�16�32. With a hold/out ratio of 50%, classification of such tensors achieved an

average accuracy of 99.32%, 99.29%, and 99.27% over 100 runsusing the HODA-G, HODA-T, and

HOOI algorithms, respectively.

7.9 Scenes Classification

Recognition of the scene implies providing information about the semantic category and the function of

the environment. This problem has an important role in modern digital cameras, and robot vision. For
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automatic imaging system, scene information helps to achieve more accurate autofocus, auto exposure

and auto white balance control prior to capture. The Scene Recognition System integrated in the Nikon

D3 and D300 digital SLR cameras138 uses information from the 1,005-pixel RGB sensor to recognize

a subject or scene, that enables highly precise exposure control utilizing color information. Intelligent

Scene Recognition that features on SONY Cyber-shot models takes the guesswork out of adjusting

digital camera’s settings for beautiful results in a range of common shooting situations.

In computational vision, some experimental studies have suggested that recognition of real world

scenes may be initiated from the encoding of the global configuration, ignoring most of the details and

object information20;21. The primary semantic representation appears to be built ona low resolution

spatial configuration. In this direction, Oliva and Torralba141 proposed Spatial Envelope to express

“shape of a scene” using a few perceptual dimensions . Scene structure can be characterized by global

features which are often constructed from Gabor features inmultiple orientations and scales. A set

of features in specific orientations and scales indeed represent a matrix. Hence, Gabor features for an

image establish a 3-D tensor.

We use the same dataset analyzed by Oliva and Torralba141, available at website

http://people.csail.mit.edu/torralba/code/spatialenvelope. There are 2.600 color im-

ages of 256x256 pixels classified into 8 outdoor scene categories: coast, mountain, forest, open coun-

try, street, inside city, tall buildings and highways. Oliva and Torralba141 proposed to use global fea-

tures to classify this dataset. In fact, we disregard chrominance channels, employ only the luminance

channel of images. Global features are constructed from Gabor features consisting of 8 orientations

at 4 scales. That means 2-D samples (images) are augmented dimensionality to become 3-D tensors

whose each frontal slice consists of Gabor features at a specific orientation and level. Figure7.8 il-

lustrates Gabor features for some sample images. Gabor features are down-sampled to 16� 16 �
32 dimensional tensors before extracting discriminant features. Training data consists of 100 samples

per class randomly selected from the whole data. Test data are the rest samples. We denote the 4-D

training data byX P RI1�I2�I3�K , I1 � 16, I2 � 16, I3 � 32 which consists ofK � 800 3-D samples

Xpkq P R16�16�32 for k � 1, 2, . . . , 800.

A common method to deal with high dimensional data is to treatthem as 1-D samples. In this

direction, Oliva and Torralba141 vectorized all global featuresXpkq, and converted data tensors to a

matrix Xp4q of 800 scences� 8,192 features. Linear Discriminant Analysis can be applied to seek

discriminant projection for this 2-D data.

We employ the similar diagram in the previous example for this dataset. Instead of decomposition

along all the three modes, we find common bases only for the first two dimensions. We split the

training tensorX into 32 three dimensional sub-tensorsXl � Xp:, :, l, :q P RI1�I2�K (l � 1, 2, . . . , 32)

which consist ofl-th frontal slices of tensorsXpkq for k � 1, 2, . . . ,K, and extract features as in (7.70),

http://people.csail.mit.edu/torralba/code/spatialenvelope
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(a) Coast scene

(b) Urban space

(c) Forest scene

Figure 7.8: Visualization of some randomly chosen scenes from the dataset with their Gabor features
in the 3 first orientations.

(7.71), (7.73)163.

The classification paradigm can be generally described in Figure7.6. We verified the classification

performance with feature extraction using the Linear Discriminant Analysis for the vectorized Gabor

training features, and using the multiway decomposition. All the nonnegative factors were set to have

6 components. The results were averaged over 100 trials, andare given in Table7.9(b). All the

methods used the SVM classifier with the Gaussian Radial Basis Function kernel31. The multiway-

based approaches achieved an average accuracy of 85.06% with discriminant bases, and 84.92% with

nonnegative bases. Those results were improved by at least 2.4% compared with the LDA approach.

The confusion matrix shows the average classification results for the HODA algorithm in Table

7.9(a). The classification accuracy is also illustrated using Hinton diagram of the confusion matrix in

Figure 7.9. Each blob at a specified position (m, n), for 1 ¤ m, n ¤ 8 in the Hinton diagram has its
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Category 1 2 3 4 5 6 7 8

1. Tall buildings 87.05 7.09 1.48 0.17 0.38 0.36 1.75 1.72
2. Inside city 6.7384.78 4.05 1.00 1.06 1.57 0.21 0.60
3. Street 1.24 4.3789.55 2.37 0.01 0.73 1.05 0.68
4. Highway 0.59 2.28 1.3985.24 5.20 2.78 2.26 0.26
5. Coast 0.03 0.06 0.01 5.6583.77 8.65 1.16 0.67
6. Open country 0.46 1.00 1.70 4.07 12.9671.84 4.81 3.15
7. Mountain 1.03 0.11 0.75 1.05 1.36 5.9286.13 3.65
8. Forest 0.86 0.23 0.70 0.18 0.07 1.60 4.2192.14

(a) Confusion Matrix for HODA method

Method LDA NTD-2 HODA-2
Accuracy (%) 82.64� 0.80 84.92� 0.71 85.06� 0.75

(b) Comparison of the classification methods.
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(c) Hinton diagram of the confusion matrix.

Figure 7.9: Confusion Matrix and its Hinton diagram show theaccuracy of scene classification.

size proportional to the rate in which classm is classified into classn. Dominant entries which are

mostly on the diagonal of the confusion matrix indicate the validity of the classification.

7.10 BCI Motor Imagery Classification

In the next set of simulations, we considered the classification and single trial recognition for BCI EEG

data involving left/right motor imagery (MI) movements. Exemplary process shown in Figure7.10

illustrates how to organize brain wave into tensor and decompose multidimensional training data tensor

into factor matrices and core tensor representing reduced features and the process of feature extraction

for test data40;157;165. EEG signals should be first passed over preprocesing stagessuch as artifact

removal, bandpass filters, then transformed into spectral tensors uses bank of band pass filters, wavelets

transforms. The tranforming stage could ultisize two or more different wavelets or alternative time

frequency transforms. The training data tensor with a priori knowledge is constructed and tensor

decomposition is preformed using constrained Tucker decomposition. In the next step projected filter

is constructed and test data are projected to estimate reduced features. By comparison these features

with labeled features (for training data) classification isperformed. We performed experiments on

three different BCI datasets, and compare performances of our model tothat of the Common Spatial

Pattern method (CSP)149. Examples in this section are provided in the NFEA toolbox150.

7.10.1 Single Trial Recognition

The BCI EEG dataset analyzed in this section was recorded from 62 channels (with sampling frequency

500 Hz) with duration of 2 seconds with a 4 second break between the trials. The dataset68 was

recorded for 2 subjects and has 840 trials.
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Figure 7.10: Conceptual diagram for BCI recognition based on multiway feature extraction47.

For each subject, the data were collected over two sessions with a 15 minute break in between.

The first session was conducted without feedback, and the 60 trials (30 trials for each class) obtained

in this session were used for training and analysis. The second session consisted of 140 trials (70 trials

for each class) as testing data to give online feedbacks. In the data collection stage, each subject was

asked to sit in an armchair, keeping arms on the chair arms with two hands relaxing, and looking at a

computer monitor at approximately 1m in front of the subjectat eyes level. EEG signals were sampled

at 500 Hz and preprocessed by a bandpass filter with cutoff frequencies of 8 Hz and 30 Hz.

In the time domain each trial can be represented as a matrix of62 channels� 1000 samples. For

each subject the first 30 training trials belong to the left category and the rest training trials are for

the right class. Similarly, the first half of test trials is designed for the left category, and the rest is

assigned to the right class. The purpose was to find the labelscorresponding to left or right hand

imagery movements for all the test trials.

In preparation and imagination of movement the mu and beta rhythms are desynchronized over

the contralateral primary sensorimotor area147. This phenomenon is known as Event-Related Desyn-

chronization (ERD). In some subjects in addition to the contralateral ERD an ipsilateral Event-Related

Synchronization (ERS) or a contralateral beta ERS following the beta ERD is found147;148. By con-

vention, an ERD corresponds to a power decrease and an ERS to apower increase. For the right hand

imagery movement, an ERD distributes over the left hemisphere and an ERS over the right hemisphere.

On the contrary, for the left hand imagery movement the ERS/ERD phenomena occur on the left and

right hemisphere, respectively.

A popular classification method for such kind of dataset is the common spatial pattern method

(CSP) with suitable preprocessing149. The performance obtained by using CSP achieved 82.86% and

90% for subject 1 and subject 2, respectively. In this section, we will present methods which improve



7.10. BCI Motor Imagery Classification 163
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Figure 7.11: Visualization of some leading basis components obtained by orthogonal TUCKER-3
(HOOI algorithm) Example7.10.1. (a) Topographic map built on 4 spatial componentsUp1q. The first
two components (top) show the ERS/ERD cover strongly the motor cortex area indicated by blue and
red regions; the next two components (bottom) did not express clearly the ERS/ERD but can improve
the classification accuracy;(b) Spectral components indicate the most differences between two classes
concentrate on the mu band (8-12 Hz) and the beta band (14-30 Hz); (c) Oscillations of the spectral
component(b) were expressed by the temporal componentsUp3q.
dramatically the classification accuracy via tensor decompositions. Moreover, our approaches allow

us to interpret ERD/ERS by some dominant components.

The key point of the enhancement methods is that the samples (trials) are augmented to become

3-D or 4-D tensors with additional modes. Transformation ofEEG signals into the time-frequency

domain is a standard technique to augment dimensionality. All the EEG signals were transformed

into the time-frequency domain using the complex Morlet wavelets CMOR6-1 with the bandwidth

parameterfb � 6 Hz, and the wavelet center frequencyfc � 1 Hz. The data for each trial formed a

3-D spectral tensor with modes 62channels� 23 frequency bins(8-30 Hz)� 50 time frames. That

means the training dataX is a 4-dimensional tensor of 120 3-D sub-tensors for two subjects and two

classes: 62� 23� 50� 120. The first 60 sub-tensors are for subject 1 and the next 60 sub-tensors are

for subject 2. The test data were also organized in a similar way and consisted of 240 3-D sub-tensors

(70 tensors/class/subject): 62channels� 23 frequency bins� 50 time frames� 280 trials.
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Figure 7.12: Fisher scores of orthogonal TUCKER-3 featuresand the classification accuracy of 90.36%
with 35 significant features , 89.29% for subject 1 and 91.43%for subject 2.

7.10.1.1 Orthogonal Factors

Classification of the 3-D spectral tensors can be performed by the Orthogonal TUCKER-3 decompo-

sition as described in Section7.3.2. The HOOI algorithm was used to estimate 3 orthonormal factors

Upnq, for n� 1, 2, 3 with the number of components set to explain 99% of the training data tensor. The

decomposition resulted in the estimation of 3 factorsUpnq with sizes of 62� 25, 23� 11, and 50� 12,

respectively. Hence, there were in totalF � 25� 11� 12� 3,300 features compressed from 71,300

samples of the spectral tensors. This is a quite large numberfor classification of two categories.

In order to select a set of significant features, the featureswere ranked in a descending order of

Fisher scores. Figure7.10.1shows 100 significant features with their scores (solid line) normalized

so that the largest score became unity. We trained an SVM classifier using the Gaussian Radial Basis

Function kernel31. The method achieved an average accuracy of 90.36% for 35 significant features

(89.29% for subject 1, and 91.43 % for subject 2). This means we improved performance by 3.92%

compared with that of CSP. Figure7.10.1also illustrated the classification accuracy verified for dif-

ferent numbers of significant features (from 1 to 100) on the right axes. The accuracy increased with

the number significant features, then, decreased when usingexcessive number of features.

In Figure 7.11, we illustrated some dominant components that correspond to significant features.

The 4 leading spatial components shown in Figure7.11(a)indicate distributions of ERS/ERD phe-

nomena over channels C3 and C4. The distributions graduallydecreased for features with low scores.

The two leading spectral components are shown in Figure7.11(b). The first spectral component (solid

line) indicates the major rhythm in the frequency ranges of the mu rhythm [8-13] Hz, and the beta

rhythm [14-30] Hz.
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Figure 7.13: Visualization of the dominant nonnegative components for Example7.10.1: (a) two
spatial components separately express the power distributions of EEG signals over channels C3 and
C4. An event with high feature for the first component (channel C3) and low feature for the second
component (channel C4) relates to the right hand imagery movement. On the contrary, this event
relates to the left hand imagery movement;(b)-(c) Major rhythms are reflected by spectral components
in the frequency range of [12-20] Hz and [10-15] Hz, and by thetemporal componentsAp3q.
7.10.1.2 Nonnegative Factors

Since the EEG spectral tensor consists of nonnegative data,the decomposition of the spectral data

into nonnegative common parts can often help in the classification and interpretation. This method

is described in Sections7.3.3and7.4.3. In this experiment, we estimated three nonnegative factors

Apnq for the 4-D training tensor. For this decomposition, the factors were set to haveR1 � 10 spatial

components,R2 � 5 spectral components andR3 � 5 temporal components.

Classification of a set of 5 significant features achieved an average accuracy of 87.50% (85% for

subject 1 and 90% for subject 2). In Figure7.13, we illustrate basis components which related to the 5

significant features. Two spatial components in Figure7.13(a)indicated that EEG power distributions

over two channels C3 and C4 were separately decomposed. An event with high intensity for the first

leading component (reflecting the channel C3), and low intensity for the second leading component

(channel C4) relates to the right hand imagery movement. On the contrary, this event relates to the

left hand imagery movement. The two leading spectral components in Figure7.13(b)reflected main

rhythm on the channels C3 and C4 and in the frequency range of 12-20 Hz. We can also discriminate

the activations of these rhythms via temporal componentsAp3q shown in Figure7.13(c).

7.10.1.3 Discriminant Factors

In this section, we illustrate the classification using the discriminant factors approach. We note that the

training data is a 4-D tensor, therefore, the HODA algorithmwas set to find 3 discriminant basis factors

Upnq, for n � 1, 2, 3. To solve the trace ratio problem (7.45), we used the general EVD approach. The

number of components of factors set to explain 99% of the raw data returned the factorsUpnqpn �
1, 2, 3q with sizes of 62� 25, 23� 11, 50� 12, respectively.
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Figure 7.14: Visualization of the reduced discriminant basis factors for the BCI motor-imagery dataset.
Factors had only one component after a proper selection.(a)Topographic map built on the spatial factor
Up1q shows the BCI motor-imagery data cover strongly the motor cortex area indicated by blue and red
regions;(b) Spectral factor indicates the most differences between two classes on a frequency range of
10-15 Hz;(c) Oscillations of the spectral component(b) expressed by the temporal componentUp3q.

The first leading feature corresponds to the first three basiscomponentsup1q1 , up2q1 , up3q1 . With only

one leading feature, we obtained an average accuracy for single trial recognition of 93.57%, (90.71%

for subject 1, and 96.43% for subject 2). Both thek-nearest neighbor classifier (k � 3) and the SVM

classifier gave the same performance.

The three dominant basis components are illustrated in Figure 7.14(a)for the topographic map of

the spatial component, in Figure7.14(b)for the spectral component, and in Figure7.14(c)for the

temporal component. The main differences between the two classes were characterized by oscillations

in the frequency ranger10� 15s Hz that strongly cover the motor cortex areas indicated by blue and

red regions (channels C3 and C4) in Figure7.14(a).

With only one basis component for each factor, each tensor sample can be expressed by only one

feature. Hence, the training features form a vector of 120 entries, and the test features form a vector of

280 entries. Illustrations of two feature vectors are givenin Figure 7.15(a)- 7.15(b). The EEG power

for negative features was high for channel C3, and low for channel C4, hence, negative features were

assigned to the left class. Similarly, positive features whose EEG powers were low for channel C3 and

high for channel C4 should be assigned to the right class.

For this experiment, we need only one basis component for each factor to project the raw sample

onto the feature space. However, the basis factorsUpnq cannot be forced to be a vectorRn � 1, for

n� 1, 2, 3, or to explain the training data with a low threshold fitnessθ defined in (7.64). For example,

at θ � 80%, the numbers of components for three factors were 1, 2, 1 respectively, the classification

performance achieved only a 68.93% accuracy. A factorization of this spectral tensor with arank-

one tensor achieved an accuracy of 66.43%. In Table7.3, we analyzed the accuracy of the single trial

recognition with thresholdθ varying in the range of [80%, 99%]. The number of components increases

as the fitness rateθ increases. The accuracy was increased by high threshold fitnessθ.
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(a) Discriminant features of 120 training samples.
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(b) Discriminant features of 280 test samples.

Figure 7.15: Discriminant features of the BCI dataset usingonly one basis component for each factor.

7.10.1.4 Augmentation of Dimensionality with Multi-dictionaries

In the previous sections, we illustrated that our methods improved the performance by at least 4% and

up to 10.71% compared with the CSP method149. Although the nonnegative bases provided a slightly

lower accuracy, their nonnegative components can easily interpret ERD/ERD. In this section, we shall

introduce a technique to further improve the accuracy.

We note that a transformation of data with a dictionary aims to decorrelate the raw data and ex-

press them in a sparse domain. Different dictionaries (transforms) allow to obtain different sparse

representations with various sparsity profiles. The short-time Fourier transform (STFT) is often used

to determine the sinusoidal frequency and phase content of local sections of a signal as it changes over

time. Gabor filters represent data with different frequencies and orientations. For neuronal oscilla-

tions, the continuous Morlet wavelet transform are usuallyused to optimally identify stimulus-induced

amplitude modulations of oscillatory activities. By exploiting the differences of categories in different

domains, we can improve the classification accuracy.

For this dataset, we selected the continuous Morlet wavelettransforms with two different band-

width parametersfb � 1 Hz and fb � 6 Hz, but the same center frequencyfc � 1 Hz. This gave

us two dictionaries CMOR1-1 and CMOR6-1. Each dictionary formed a 4-D tensor including modes

channels� frequency bins� time frames� trials for both training and test data.

As a result, a trial became a 4-D tensor with 4 modes, and the training tensor had a size of 62

channels� 23 frequency bins� 50 time frames� 2 dictionaries� 120 trials. Training a 5-D tensor

needs 4 factors. We used the HODA algorithm to estimate the discriminant bases. Four significant

features were selected to classify the data, and returned anaverage accuracy of 95.71%, (94.29% for

subject 1 and 97.14% for subject 2).

To summarize, tensor decompositions with nonnegative, orthonormal, or discriminant bases im-
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Table 7.3: Analysis of the classification accuracy of discriminant factors with different training param-
eters for the BCI Motor Imagery Dataset.(a) the accuracy could be improved with significant features,
but decreased when using excessive number of features.(b) decomposition of the training data with
small core tensor could in general reduce the accuracy.(c) Comparison of performance of methods.
(a) ACC for different

number of features.
No.
Features

Accuracy (%)
Training Test

1 95.83 93.57
2 95.83 91.79
10 98.33 89.64
30 99.17 88.57
50 100 84.64

(b) ACC for different sizes of core
tensor.

θ (%) Core’s size Accuracy (%)
80 1�2�1 68.93
85 2�2�2 82.86
90 4�4�4 88.21
95 6�7�6 90.71
97 10�8�8 91.07
99 25�11�12 93.57

(c) Comparison of performance of methods.

Method Accuracy (%)
Subject 1 Subject 2 Average

CSP 82.86 90.00 86.43
NTD-3 85.00 90.00 87.50
HOOI 89.29 91.43 90.36
HODA (4-D) 90.71 96.43 93.57
HODA (5-D) 94.29 97.14 95.71

proved the classification accuracy for the BCI dataset by almost 10%. A comparison of all the methods

is given in Table7.3. Augmentation of dimensionality for samples with additional modes improved

the performance. An efficient augmentation approach exploits multiple dictionaries that explain data

with different sparsity profiles.

7.10.2 Crossvalidation for ABSP BCI Dataset

This example considers the BCI EEG dataset48. We compares our models with CSP methods for two

subjects: A and B.

Dataset“subA_6chan_2LR_s1”48 consists of 130 trials of BCI EEG motor imagery for subject A.

All EEG signals were recorded in a duration of 3 seconds at a sampling frequency of 256 Hz over 6

channels by a gTec amplifier. Each trial was assigned a label according to left or right hand motor

imagery. EEG signals first go through a bandpass filter (8-30 Hz). The 10-fold cross-validation is

employed for 10 runs to evaluate classification accuracy. For CSP, we estimated two projected (spatial)

filters for each class to extract spatial features and trained an LDA classifier to classify the test data.

That means there are four spatial filters for left- and righ-hand motor imageries to give 4 features for

EEG signals in a trial. The classification accuracy achievedby CSP is 88.46� 0.96%.

For the same signals, we extracted multiway features from spectral tensors which represent EEG

signals in each trial in the time-frequency domain using thecomplex Morlet wavelets CMOR 6-1, and

have size of 23 frequency bins (8-30 Hz)� 77 time frames (in 3 seconds)� 6 channels. The whole

data is a 4-D tensor of size 23� 77� 6� 130. For the same dataset and the same indices for 10-fold

crossvalidation, and LDA classifier, the result obtained inthis example is 90.77� 0.36% accuracy, and

improved 2%. The p-value associated with the significance testing is 1.25e-6.

Dataset“subB_6chan_2LR”48 consists of 162 trials of BCI EEG motor imagery for subject B.

All EEG signals were recorded in a duration of 4 seconds at a sampling frequency of 250 Hz over
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(b) BCI III motor imagery dataset66.

Figure 7.16: Comparison of performances for BCI datasets inExamples7.10.2and7.10.3between
CSP and HODA methods.

6 channels by a Neuroscan amplifier. By running 10-fold crossvalidation and using the CSP method

to extract 4 spatial features for EEG signals in a trial, we obtained an accuracy of 87.90� 1.4 %.

We employed tensor discriminant analysis on 3-D CMOR1-1 spectral tensors of 23 frequency bins

(8-30 Hz)� 100 time frames (in 4 seconds)� 6 channels. The whole data is a 4-D tensor of size 23� 100� 6 � 162. For the same 10-fold crossvalidation indices, and the LDA classifier, our model

with one leading Fisher feature achieved 92.41� 1.27% accuracy, and improved 5%. The p-value

associated with the significance testing is 7.84e-07. Distribution of accuracies for two subjects shown

in Figure7.16(a)reveals that classification using features extracted from spectral tensors is much more

stable and high performance than those by CSP.

7.10.3 Crossvalidation for BCI III Motor Imagery Dataset (Dataset IVb)

This section demonstrates classification of two classes forthe BCI III motor imagery competition

benchmark66. We selected only 7 channels (51-57) from 118 channels of thefull data to illustrate the

classification performance. EEG signals in trials were extracted from the continuous EEG signals, and

organzied into 3-D arrays of modes: 7 channels� 350 samples (in 3.5 seconds)� 280 trials211. For

multiway-features, EEG signals are first transformed into time-frequency domain using the complex

MORLET wavelets to form spectral tensors of size 23 frequency bins� 350 time frames� 7 channels� 280 trials. Classification accuracy was evaluated by 5-foldcrossvalidation. That means there were

224 3-D tensors for training and 56 3-D tensors for test. The tensor has temporal modes with large

number of time frames. A simple technique to deal with this problem is that the data is tensorized to

have additional modes. For example, folding the temporal mode of 350 time frames as 5� 2� 5� 7

dimensional tensor can yield a 6-D data tensor.
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Using CSP features, we obtained accuracies of 86.63� 1.31%, 90.87� 0.5% and 92.7� 0.49%

for subjectsaw, ay al, respectively. Whereas combination of CSP features and discriminant features

from spectral tensors (Common Spatial and Discriminant Projections) helped to achieve accuracies of

91.61� 1.15%, 93.81� 0.9%, 95.6� 0.21%. The performances were improved at least 3% accuracy.

Classification accuracies for methods are shown in Figure7.16(b).

7.11 Summary

In this chapter, we have proposed a general approach for model reduction, feature extraction and clas-

sification problems of high dimensional dataset. Revisiting the TUCKER models, we have developed

robust algorithms within a general framework, which generalizes or extends some existing approaches.

A family of flexible algorithms has been developed to find bases with different constraints such as or-

thogonality, nonnegativity, and discriminant projection. All of them have been verified by extensive

numerical experiments for real-world datasets. Through examples, factors with orthogonal compo-

nents often achieved highest performance (recognition rate) with an acceptable number of significant

features. Especially, such bases can be relatively quicklyestimated using the HOOI algorithm58;60

without any category information.

Employing category information to find discriminant bases (Algorithm 7.3) has been shown not

only to (slightly) improve the performance, but also to reduce the number of desired selected features.

However, complexity of a such algorithm increases and the fitness of approximations decreases.

For all the used datasets, although nonnegative bases did not usually provide the best performance,

their components could often help us to physically interpret the data, for example, the BCI EEG

datasets. A supervised training paradigm with discriminant criterion incorporated in the cost func-

tion has also been presented to find nonnegative factors. However, choosing optimal regularization

parameters is still an open problem. Furthermore, multiplicative learning rules for the estimation of

nonnegative bases are characterized by rather slow convergence, and frequent convergence to spurious

local minima. Therefore, in practice, the HOOI algorithm should be run first to give orthogonal bases

which can be then used as initialization for nonnegative bases.

Features can be extracted based on CP decompositions. In this case, samples are also organized in

the same way as Tucker decomposition, and the obtained features are rows of the last factors. Recently,

we received promising results in seeking discriminant features from EEG signals for healthy children

and children with attention deficit using Event-Related Potential52;53;54.

Finally, our methods and algorithms have shown to be effective for many practical problems. The

presented techniques are very perspective and useful in applications like model reduction, pattern

recognition, vision, classification, and multi-way clustering.
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Conclusions

The main objective of this thesis is to propose robust algorithms for CP and Tucker decompositions.

Rank-one update algorithms (HALS) have lower computational cost than the ALS algorithms, but

are compatible with this algorithm in the term of performance. The proposed algorithms can com-

bine multiple regularization terms such as smoothness, orthogonality, nonnegativity and discriminant

information.

We also investigated the NQP problem and proposed a recursive approach to solve this problem.

Based on the proposed technique, a family of QALS algorithmsfor nonnegative CP and Tucker de-

compositions is derived and confirmed as appropriate ALS algorithms for tensor decompositions. We

proposed a robust algorithm rK-QALS which can update arbitrary number of components 1¤ K ¤ R

instead of one component or all the components. The algorithm allows flexible control of tradeoff

between computational cost and performance of the QALS algorithm. That is the rK-QALS algorithm

should converge faster than the HALS algorithm, but has low computational cost than that of the QALS

algorithm.

All-at-once algorithms based on the damped Gauss-Newton iteration are proposed with low com-

plexity to build up the approximate Hessian and gradient, and also to inverse the approximate Hessian.

Especially for CP and NTF, the fast dGN (LM) algorithm has been derived to not only bypass com-

putation of Jacobian, Hessian and gradients but also inverse of the approximate Hessian. The LM

algorithms have been experimentally confirmed as the best algorithm for all experiments including

difficult benchmarks and real-world applications.

For large-scale tensor factorization, we propose the grid (block) model in which subtensors are first

factorized, then the factors for the whole data tensor are approximated from subfactors. Algorithms

for large-scale CP and NTF have been derived and confirmed by synthetic and real-wolrd data and

applications including EEG analysis and estimation of impulse responses in MIMO systems. The

model can be extended to Tucker decomposition.

Finally, we present the model for feature extraction for multiway data based on Tucker and CP

decomposition. Applications for BCI, object classification have been verified and confirmed high

performance of our model. Algorithms and paradigms in the thesis are demonstrated in the Matlab

NFEA toolbox150.
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