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CHAPTER 1

Introduction

1.1 Problem Formulation

Data in modern applications such as Brain Computer Interfzased on EEG signals often contain
multi-modes due to mechanism of data recording, e.g. sgredorded by multiple-sensors (elec-
trodes), in multiple trials, epochs, for multiple subjeatsl with diferent tasks, conditions. Moreover,
during processing and analysis, dimensionality of the datdd be augmented due to expression of
the data into sparse domain (time-frequency represenjdiiodiferent transforms such as Short Time
Fourier Transform (STFT), wavelets. That means data itselaturally a tensor, and has multilinear
structures. Standard approaches which analyze such da@nbidering them as vectors or matrices
such as such as PZaVD, ICA, NMF, and their variants might be not suitable dueis of losing
the covariance information among various modes. To digdoidelen multilinear structures, features
within the data, the analysis tools should reflect the nuiftiensional structure of the déta

Tensor decompositions and factorizations provide natgptesentations for multidimensional
data by capturing multi-linear and multi-aspect structtinea much lower dimensiga*”4%106_ Nowa-
days, tensor have been becoming increasingly importanpjtications across diverse disciplines,
especially signal processing, data mining, feature etitnac classification and multi-way cluster-
ing>47106116 " |n chemometrics, Appellof and Davidstnstudied excitation-emission fluorescence
data using the tensor model. Anderson and Bro developedvlag kolbox?, and provided excellent
examples and data. Vasilescu and Terzopddfasroposed the multilinear projection and Tensorfaces
for face recognition in which faces are modeled with mudtifactors relating to scene structure (i.e.,
the location and shapes of visible objects), illuminatioe. (the location and types of light sources),
and imaging (i.e., viewpoint, viewing direction and cameharacteristics). Sidiropoula. al.*®® es-
tablished the model of received signals in direct sequende division multiple access (DS-CDMA)
system as a three-way diversity tensor with modes: antesymabyol and chip. Later, Sidiropoulas.
al. 18 linked parallel factor analysis to multiple-invariancenser array processing. Yu and Petrop-
ulu?'4 estimated MIMO system responses using the fourth-ordéistita normally generated 5-D
tensors. Merup’® analyzed multi-channel EEG and MEG data in multiple modeh sis frequency,
time, space, trials and subjects. Tensor decompositiothsrautti-way analysis allow naturally to ex-
tract hidden (latent) components and to investigate caxmelationships among them, for example, in
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exploration of social networRe>105164 phart50 developed the tensor toolbox for feature extraction
and applications (NFEA), and provided demonstrations 16f.B

One of the most common tensor decompositions is the Tuckamdgosition which was first in-
troduced by Tucker in 1968°. Tucker decomposition is an interactive model in which deresor
provides relationship between two components via the Jate index®3. A particular case of the
constrained Tucker decomposition is the DEDICOM (DEcontmrsinto Directional COMponents)
model’®8 which allows to analyze asymmetric relationships betweenjgs (objects). In this direc-
tion, Harshman and Lund{ analyzed asymmetric measures of yearly trade (importstxpmong a
set of nations over a period of 10 years. Luradyal.18 presented an application of three-way DEDI-
COM to skew-symmetric data for paired preference ratingseatments for chronic back pain (with
additional constraints to obtain meaningful results). &ad al. analyzed email communications of
Enron company using the three-way DEDICOM mddéf.

PARAFAC or canonical polyadic decomposition (CF¥+818283 one of the most popular ten-
sor factorizations, allows approximating multiway datarbgpk-one tensors in model reduction. CP
can also be considered as a particular variation of the Tutd®mposition. Recent years have seen
a surge of interest in nonnegative and sparse njtrigor factorization and decompositions (NTF
and NTD) which provide physically meaningful latent (hidfleomponents or features with physical
or physiological meaning and interpretatiéfi$’''3. Nonnegative matrj%ensor factorization or de-
compositions are emerging techniques for data mining, di&oaality reduction, pattern recognition,
object detection, classification, gene clustering, spams®egative representation and coding, and
blind source separation (BSS)":8486:128129157184188 Eor example, NMANTF have already found
a wide spectrum of applications in positron emission toraphy (PET), spectroscopy, chemometrics
and environmental science where the matrices have cleaigathyneanings and some normalization
or constraints are imposed on th&th’ 7188,

The main objective of this thesis is to propose algorithmsB and Tucker decompositions and
present applications based on tensor decompositions.helestis divided into 7 major chapters. No-
tation and basic models are introduced in Chapter 1. Prdpalgerithms are represented in Chapters
2, 3, 4,5, and simulations to verify them are in Chapter 6.pBdva/ is particularly devoted to studying
in feature extraction for multiway data.

Chapter 2 introduces the ALS algorithms for tensor decoiitipas withywithout constraints. The
“work-horse” Alternating Least Squares (ALS) algorithmshaeen experimentally proved to work
very well on general daf4'8’. However, this algorithm can be relatively slow when da&rsearly
(multi)collinear or huge. The combination of ALS and lineaszh algorithm&>°%51 can improve the
performance, but they still demand considerable iterattmafore convergence for some collinear data.
For NTF and NTD, the ALS with a rectifier might not work for spardata. This chapter will present
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an dficient variation of the ALS algorithm with low computationebst. The proposed algorithms
convert the ALS algorithm for rank update to sequential rank-1 updates. That is we establish th
ALS update rule for each component of factor. The learnirig does not require matrix inverse, and
hence reduces computational cost. Moreover, this would dxe stable for ill-conditioned problems
and ensure relatively lower complexity even for large -sgabblems.

Chapter 3 presents a robust algorithm for nonnegative CHackkr decompositions. The “work-
horse” ALS algorithm can be adapted for use in nonnegativeatedecompositions including CP and
Tucker models by combining with the rectifix], = max(x,0). However, the modified algorithms
can be relatively slow for nearly collinear and sparse 8&t&°%21°. To improve performance and in-
crease convergence speed, several simple techniqueswposed for the ALS algorithm, such as the
weighted ALS incorporating a weighting matrix into the chsiction*’, the line-searcH%1’% or reg-
ularization terms controlling sparsity and orthogondft{#21215  Generally, these techniques help
ALS cope with collinear andr sparse factors. However, some other problems arise fooinagling
regularization parameters. The fact is that the ALS withnapéé rectifier might not be an appropriate
algorithm for NTF. To this end, we propose a recursive mefoodolving the nonnegative quadratic
programming (NQP). CP and Tucker decompositions can beulaited as NQP problems. Novel ALS
algorithms for nonnegative CP and Tucker decompositioaghan proposed based on solving NQP
problems. Moreover, they can be run on low memory machineqgrawallel computing system.

Chapter 4 introduces all-at-once algorithms for tensoodgaositions based on the Gauss-Newton
(GN) iteration. All-at-once or simultaneous update altjonis are expected to cope with the problem
of collinear dat4142143144167168196202203 ' Nevertheless, those algorithms are computationally de-
manding due to construction of gradients and Hessians w#hect to all the entries of the factors.
Moreover, in practical experiments, some algorithms fitle problems involving large-scale Jaco-
bians and large-scale inverses of the Hessians. The chaesents #icient ways to construct the
Hessian. Especially, for low-rank approximation, we idiwoe fast dGN algorithms without build-
ing up huge Hessians, and also with elimination of Kronegkeducts which are often used in CP
algorithms. A suite of low-cost algorithms to factorize qaex-valued tensors based on damped
Gauss-Newton (dGN or LM) iterations with convenient conapions for the approximate Hessian
and gradients. The proposed algorithms are verified to dwemingly outperform “state-of-the-art”
algorithms for dificult benchmarks with bottlenecks, swamps for both real amdptex-valued ten-
sors.

Chapter 5 presents approaches for tensor factorizatidabdeifor large-scale problems and fast
parallel implementation based on grid (or block) tensoodguosition (gTF). The proposed model and
algorithms solve till now intractable problem for arbitydrigh dimension and large-scale tensors. We
factorize all the sub-tensors (block) independently byg&Ticient algorithms in parallel mode and
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next integrate partial results for the whole tensor to esttndesired factors. For practical application
such as classification of multiway data, the training dataftisn augmented with some new samples,
hence the basis factors of the feature subspace for the deghdraining tensor need to be updated.
A simple way is to factorize the new whole training tensoriagdlowever, this approach demands
high computational cost. A convenient way is that we updagedld bases with factors of the new

coming data. A simple low complexity formula for stoppingteria is proposed to the grid tensor

factorizations.

Chapter 6 verifies and compares proposed algorithms withkmeilvn algorithms in a variety of
benchmarks including real-world data or random tensork ddtnse or sparse factors, or factors with
bias, factors with collinear components. For some experigyéactors are constructed from structured
matrices such as Hilbert matrix, Cauchy matrix, Lotkin mxatReal-world applications are also intro-
duced in this chapter to confirm our algorithms and reveat #islities in variety of applications such
as EEG analysis, clustering, face clustering and clasgditaBSS in CDMA systems or convolutive
MIMO systems.

Chapter 7 proposes a suite of model and algorithms for feaixiraction and classification, espe-
cially suitable for large scale problems. In our approach fivst decompose multi-way data under the
Tucker decomposition witlwithout constraints to retrieve basis factors and signiti¢aatures from
core tensors. In addition, by revisiting the Tucker decositm, we have developed family of algo-
rithms based on Higher Order Discriminant Analysis (HODM)e chapter also presents a wide range
of applications including object classification, handtten digit classification, scenes recognition,
BCI based on EEG motor imagery signals.

1.2 Tensor Notations and Multilinear Algebra Basics

A tensor is a multi-way array of data; for example a vector Is\may tensor and a matrix is 2-way
tensor. In general, we shall denote a tensor by bold cafiigedetters, e.g.A e R'1<!2xxIN ‘matrices
by bold capital letters, e.gA = [ay, &, ..., ar] € R'*R, and vectors by bold italic letters, e.g; or

| =[l1,l2,...,In]. For example, for a three-dimensional tendbe R'*J*K its frontal slice, lateral
slice, and horizontal slice are denoted respectivelY py= Y., Y:j., andYi..

Definition 1.1. TubeA tube (vector) at a positiofi, j) along the mode-3 is denoted By., and the

corresponding tubes along the mode-2 and mode-lygrand y:jk47. For an N-D tensorY , a tube
at a position(is, . ..,in-1,in+1,- - -, in) @long mode-n is an,lvector

ﬂ(lla R in—l, 19 in+l, R IN)
ﬂ(il,...,in_l,:,in+1,...,iN) = . (1.1)
ﬂ(ila .. -yin—l, In’ in+l, ) IN)
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Definition 1.2. Outer product The outer product of the tenso e R''*!2xxIn gnd X e
RJ1><JZ><"'><JM iS given b)z — yOX e RllxlgxmxlN><Jl><Jg><---><JM,

Zgigsningitsjzesiv = Yivizenin Xjtj2eenim (1.2)

Observe that, the tens@f contains all the possible combinations of pair-wise préslbetween
the elements a¥ andX. As special cases, the outer product of two vectoesR! andb e R yields
a rank-one matriA = ao b = ab’ € R'*J, and the outer product of three vectosse R', b € R?
andc € R? yields a third-order rank-one tensdr= ao bo ce R'*I*Q, z;, = a bj ¢,

Definition 1.3. (Kronecker product) The Kronecker product of two matricése R'*J andB € RT*R
is a matrix denoted a8 ® B € R'T ¥R and defined as (see the MATLAB functiaron):

anB a2B -+ ayB
a1B ap»B - ag] B

A®B = . . . = aa®b a®b - ay®bri a®br].
a|1B a|zB a|JB

It should be mentioned that, in general, the outer produstecfors yields a tensor whereas the
Kronecker product gives a vector. For example, for the thremmorsae R', be RT, ce RQ their
three-way outer produd¥ = ao bo c e R'*T*Q s a third-order tensor with the entrigg, = ajbicq,
while the three-way Kronecker product of the same vectoasvisctor ve€Y) = c@ b® ac R'TQ.
Notation 1.1. (Kronecker product of matrices)Given set of N matrice&(™ e R'n*Ra the following
notation denotes Kronecker products among them

(A}® = ®:‘=1A(”) AN g...0AM ... AW,
(A}®-n = ®k¢nA(k) AN @ ... A A1) ... .0AD,

Definition 1.4. (Hadamard product) The Hadamard product of two equal-size matrices is the
element-wise product denoted dyor .x for MATLAB notation) and defined as

ajp b1 appbiy -0 Ay by
apr b1 a0 apybyg

A®B = _ _ , , . (1.3)
a1 bip a2 b2 ay by

Notation 1.2. (Hadamard product of matrices)Given set of N matricea™ e R'*R, the following
notation denotes Hadamard products among them
(A}® = @r':‘zlA(n) AN g...oAMg...e AD,
{A}®—n = AW =AN g ..o AD g A D g...0 AD.

Definition 1.5. (Khatri-Rao product) For two matricesA = [ag, @p,...,a3] € R'*J andB =
[b, by,..., by] € RT*J, their Khatri-Rao product, denoted I, performs the following operation:

AOB = [aa®@b &a®b - ay®hb] (1.4)
[veqna]) veqhbyay) --- veqbyal)] e R'T*Y. (1.5)
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The following properties of the Khatri-Rao product are ofeanployed :
(A®B)T (A®B)=ATA @ BB, (1.6)
(AOB) =[(ATA) @ (B"B)] *(A®B)". (1.7)
These properties also hold true for complex-valued matdAce C'*?, andB e CT*J. In this case,
the transpose operators are replaced by the Hermitiarpwaes.

Notation 1.3. (Khatri-Rao product of matrices) Given set of N matrice&(™ e R'"*R the following
notation denotes Khatri-Rao products among them

(A}® = Q:I:lA(n) AN o...0AMe...0A0,
{A}O-n = ®k¢nA(k) AN o...oAD) A1) ... oaAD,
Corollary 1.1.
(AIFT{A}® = {ATAJ® = @ AMTAD,
(A} {A}O = (ATAYE = @ ANTAW),

{A}®T{A}® _ {ATA}®: :ﬂA(n)TA(n),

T
(A}OT (A} = {ATA}®—”=®k¢nA(k)TA(k).

Definition 1.6. (vectorization) Vectorization of an N-D tensafl € R'1*12XIN is to map an entry
a = A(iq, iz, ...,iN) to an entrya(ivedi, | )) of vectora, i.e.,

iVGC(i, |) =i+ (|2 — 1)|1 + (|3 — 1)|1|2 + -+ (IN — 1)|1--- IN—1. (18)

Definition 1.7. (unfolding or matricization of tensor) Mode-n unfolding of an N-D tensaA €
R'1xl2xxIn js to horizontally concatenate all tubes@f along mode-n to establish ap ([ Ty, Im)
matrix. The mode-n unfolding can be expressed via vectmizaf tensors as follows

Ay = [ vec(ﬂ(l’”)) vec(ﬂ('"*”)) ]T , (1.9)

whereA(™" is an (N — 1)-order subtensor afA whose the n-th index is fixed tp i

ACY (i1, in dingets o in) = Az i)

Notation 1.4. (moden tensor-matrix product) The product of a tensor and a matrix along the mode-
n is denoted as

Y=Gx,A, or Y(n) = AG(n). (1.10)

Multiplication in all possible modegn = 1,2,...,N) of a tensorg and a set of matrice&(" is
denoted as

G x{A} = Gx1AW x; A@ ... AN (1.11)
T
6 < (Al = AMGq [A(N)®---®A(”+1>®A<”*1)®---®A<1>] . (112



1.2. Tensor Notations and Multilinear Algebra Basics 11

Multiplication of a tensor with all except one or two modesié&noted as

G x_n{A} =G x1  AD o, A@ L AMED X il AT o g AN
G *x_(nm {A} =G ) AW s AMD A L AMD s AMED AN

Notation 1.5. (moden tensor-vector product) The mode-n multiplication of a tensQ¥ €
Rlixl2x-xIn by g vectora e R'" is denoted by

Z — y ;n ac R|1><---><|n,1><|n+1><---><|N’ (113)
and the tensor-vector product of a tensdrwith a set of N column vectora} = {a),a?, ...,
aM} is given by

Y ;{a} =Y ;1 a(l) ;2 a(z) cee ;N a(N) . (114)

Definition 1.8. (contraction between two tensors) The contracted product ofA €
RlpxxiuxdixxIn gnd B e RhxxImxKix-xKe glong the first M modes is a tensor of size
Jp x -+ x Iy x Ky x -+ x Kp, given by

I Im

<‘-ﬂaB>1 M:1 M(jla---a jvala“-’kP) = Z 2 ail ..... IMs J1ses N bi]_ ..... im.Ki,....kp+ (115)

=1  iy=1
The remaining modes are ordered such that those fformome before831%. The arguments
specifying the modes o and those ofB for contraction need not be consecutive. However, the
sizes of the corresponding dimensions must be éftiaFor example, the contracted tensor product
along the mode-2 of a tensofl € R34, and the mode-3 of a tens@ € R"*®** returns a tensor
C = (A,B)yz¢ R3x5x7x8.
The contracted tensor product.@f and 8B along the sam& modes simplifies to

<ﬂ’8>1 M;1 M:<~7LB>1 M > (1-16)

................

whereas the contracted product of tens@rs R'"™* >IN and B ¢ R1**N along all modes except
the moden is denoted as

(A,B)_,=AmB|

n € RIn*n, (Ik = k. Vk#n). (1.17)

In a special case d¥l = 0, the contracted product becomes the outer product of tmswts.
The contracted product of two three-way tens@¥s R'*7*K and8 e RP*Q*R along the mode-1
returns a four-way tensor defined as

C = (AB), eRVUR cuq = abig, (I =P),
i
and the contracted product along the two modes returns aprfatrexample:

F = <~7(,B>1’2 = <‘.7(,B>73 € RKXR, fir = Eaijkbijr, (| =PJ= Q)
i,
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(|3 X R)

~ M | [~ I A(2)|
Yt ~ 1A T

(RX |2)

(RxRxR)

I1 x 12 x 13 (i xR)

Figure 1.1: lllustration of a 3-D tensor factorization. The |, x I3 dimensional tensaV is explained
by the three factord®, A A®) along the three modes. Factors consist of the same number of
componentsR.

which can be expressed in a matrix multiplication fornfas A 3, B(T3). For two tensors of the same
dimension, the contracted product along all their modéesas tnner product

AB) . n = (AB). (1.18)
Definition 1.9. (partitioned matrix) A partitioned matrixU of N matricesU(™ along the mode-2
(horizontal) is denoted by

U= [u® g g™ [Um)]:‘zl, (1.19)

N,M

and a partitioned matri%/ of NM matrices/ (™™ along two modes is denoted Wy= [V(™™] .

Definition 1.10. (block diagonal matrix or direct sum) A block diagonal matrixB of N matrices
U™ is denoted by

U@ N N
B — = blkdiag (U(n)) — (_BU(”). (1.20)
uN)

n=1

1.3 Canonical Polyadic Decomposition

Definition 1.11. (Canonical polyadic decomposition or PARAAC (CP) ) “Factorize a given N-
th order data tensoy € R'1x!2xxIn into a set of N factors matrice&(™ = [ag”), ag”),...,ag”]

eR'"R (n=1,2,...,N) representing the common (loading) factof&®%89, that is,
R ~
¥y ~ YaPod?o...0aV =7, (1.21)
r=1

where symbol 8” means outer product, and we assume unit-length compodbﬁ"ﬂ%ﬂz = 1 for
n=2.2....N—1r=12,...,R(see Figurdl.l). TensorY is an approximation of the data tensor
Y.
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The CP model with nonnegative factok$™ is also known as Nonnegative Tensor Factorization
(NTF) which is an extension model of Nonnegative Matrix Bazation (NMF). Alternatively we can
describe the CP model using tensor notation givelfby

Y ~ T x1 AW x;, A@ oy AN, (1.22)

where7 is an identity tensor. The modematricizationY(n), n=12,...,N can be represented by

set of matrix factorizations:
-
Yo ~ A® (A<N>@...@A<n+1>®A<n—1> ...@Aa)) — AD (A)O-T(1.23)
or as a summation of rank-one approximations

(n+1)

Yin = Ear ( ® - ®a

(n-1)

® a

We denote concatenation of vectorizations of facfo8 by

o = [vec(A(l))T---vec(A(N))T]T:[agl)T...ag)T...agN)T...aI(?N)T]T. (1.25)

1.3.1 Basic Statistics for a Synthetic Tensor

This section presents some basic statistics for a synt@&itensoy. In simulation, we often build
up dense and large-scale tensors degraded by an additissi@&auwmoise. To generate random noise,
we need the standard deviation (#9. The following lemma helps us to quickly compute this statis
instead of manipulating on samplgs .

Lemma 1.1. The following properties hold for an N-dimensional tendbe= 7 x; AW ... xy AN,

1. Zy, = ({27 A}®) 1, wherei = [i1,iz,...,in], | = [I1, 12, .., In].

|

2. ) v =1" ({ATA}®) 1
i=1

The multi-index summation is defined for an index vebter [K1, Ko, ..., Ky] as

K Ki Kz

k=1 ki=lko=1

Proof. Summation of all the entries of the tensdris given by

(1.26)

H Mz

|
Sy o= 1T ved) = (1,01,,0--01,) (AVeAN Yo 0AD) 1

— ((1TA<N>) ® (1TA(N*1>) ® - ® (1TA(1>)) 1.
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|3><R3

£

y%Agm

R2><|2

R1XR2><R3

1 xR
|1><|2><|3 1 L

Figure 1.2: lllustration for a 3-way Tucker decomposititime objective here is to find factors (com-
ponent matricesh(" = [aﬁ”), ag”), e ag;)] e R'"*Rn (n = 1,2,3) and a core tens@ € RRtxRexRs,
typically R, « Iy,.

|
Frobenius norm of the tensdf is given by >’ y? = vedd)" ved¥) = 17 {A}®" {A}® 1 =
i—1
17 {ATA}" 1. o

1.4 Tucker Decomposition

Tucker decompositio62%, illustrated in Figurel.2 for a 3-way case, is a basic model for high
dimensional tensors which allowffectively to perform model reduction and feature extraction

Definition 1.12. (Tucker decomposition) Decomposition of a given N-th order tensdf e
R'1*12-%IN into a product of an unknown core tensgr € RRxRe xRy gnd a set of N unknown

factors (component matrices)(V) = [ag”), ag”),...,ag;)] eRMmRo(n=1,2 ..., N)26

Ri R Ry

Y = Z 2 2 Oitjoin (aﬁ)oag)o---oaﬂ:')) +&

f=1i=1 =1
=G x1 AW GAD L AN L E— G x (A} +E=Y +&, (1.27)

whereY is an approximation o, and& denotes the approximation error.

For three-dimensional data the basic Tucker-3 model ofsotedh is represented with three factors
A =AW B =A@ Cc=A® (see Figurd.?)

Y =G x1A x2B x3C. (1.28)

The above Tucker-3 model is readily reduced to the Tuckewe#eahby merging one factor with core
tensor, for example factdx® = Cand¥ = G x3Ctogive: ¥ = F x1 A x, B.

Note that the Tucker decomposition is in general non unidi@vever, in the special case where
the core tensor has nonzero elements only on the superdiagiom Tucker model is reduced uniquely
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to the PARAFAC under some mild conditidtls To obtain meaningful and unique representation by
the Tucker decomposition, orthogonality, sparsity andnegativity constraints are often imposed on
hidden factors and the core tensor of the Tucker decompoditi obtain meaningful and unique repre-
sentation$®3131, For convenience, orthogonal factors are denoted B, and nonnegative or general
factors byA(™. By imposing nonnegativity constraints for CP, we obtaia NTF (Nonnegative Ten-
sor Factorization) model, while for the Tucker models wita honnegativity constraints we obtain the
so called NTD (Nonnegative Tucker Decompoasition) model.FNahd NTD have been found many
potential applications in neuroscience, bioinformatidsemometrics and text minifg°313%, Fur-
thermore, by imposing orthogonality constraints on thédiamatrices we obtain a model referred to
as the HOSVD (Higher Order Singular Value Decompositiogpdathm or the HOOI (Higher Order
Orthogonal Iterations) algorithm, introduced first by Lakveret al, 5860,

1.5 Decomposition into Directional Components

DEDICOM (decomposition into directional components) isuafly of matrix and tree-way tensor de-
compositions introduced by Harshman in 187&r matrices and by Kiers in 1993 for 3D tenstt%
and investigated by many researchers, Bader, Kolda, Aesgrie, Kiers and Sun et #1519, DEDI-
COM model is a particular case of the Tucker-2 decomposition is described as follows: “Given a
three-dimensional data tensdre R' <! XK the DEDICOM model of this tensor returns a factor matrix
A e R"™J of loadings or weights, a communication pattern maRix Ri“ that captures asymmetric
relationships, and a sparse core ter®oe R?*7*K with diagonal frontal slices giving the weights of
columns ofA for each slice in the third mode (see Figur8)

Yy = A diag{dy} R diag{d} AT, (k=1,...,K), (1.29)

wheredy is thek-th column of matrixD € RY*K. Matrix D is built up from diagonals of the frontal
slices of the core tensaD”.
Let G € R?*I*K be a core tensor whose frontal slices are represented as

Gk = diag{dy} R diag{dy}. (1.30)
This shows that DEDICOM is related to the particular (caaisted) Tucker-2 decomposition
YxGxiAxzA. (1.31)

DEDICOM can be employed in extracting some complex relatigqus in social networlest5105,
Harshman and Lundy analyzed asymmetric measures of yearly trade (importsgxpmong a set of
nations over a period of 10 years. Lunelyal.*8 presented an application of three-way DEDICOM to
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£ 3
o A

(AxIxK) (xJ) (Ix I xK) (I x1)

(1 x 1 xK) (I xJ)
(a) The three-way DEDICOM model

LV L& 7
A

(I x I xK)

IR

(I x 1 x K)
I xJ
(b) DEDICOM represented in compressed forgn via %he symmétcker-2 model whose core tengglis
defined by its frontal slicess, = diag{dy}R diag{ di}.

Figure 1.3: lllustration of the three-way DEDICOM model bktdata tenso¥ e R'*'*K, and its
relationship to the symmetric Tucker-2 decomposition.

skew-symmetric data for paired preference ratings ofrmeats for chronic back pain with additional
constraints to get meaningful results. In the context of Virdg interesting analysis was performed
by Koldaet al. in 20057 and Kolda and Bader in 208% by combining hyper-links and anchor
text information by representing web graph data as a sphrse-tvay tensor with modesieb-pages

x web-pagesx anchor text Baderet al. analyzed email communications of Enron company using
the three-way DEDICOM modé&f'4. Bader, Harshman, and Koltfarecently applied their DEDI-
COM algorithm to email communication graphs over time. la thost social network analysis, the
data are nonnegative tensors. For example, the Enron ematailcdn be constructed as a three-way
tensot>164170in which each entry expresses the number of emails sent from an employee
an employeg in a monthk. Or for the international trade d&f4 each entry of the three-way tensor
(country x country x year) provides the impgexport data among nations in a certain year. Nonneg-
ative constrains imposed on matricesD andR are necessity due to meaningful interpretation.



CHAPTER 2

Alternating Least Squares Algorithm and
Its Variations

2.1 ALS Algorithms for CP and NTF

This chapter presents basic algorithms for CP, which canrbigbktforwardly applied for NTF. Most
algorithms for the (nonnegative) matrix and tensor fagztiions are based on minimization of the
squared Euclidean distance (Frobenius ndh% used as the global cost function (subject to non-
negativity constraints), that is

R 1 -
DY) =5|Y - Y. (2.1)

A basic approach to the above formulated optimization nob@.1) is alternating minimization
and projection: the specified cost function is alternateilyimized with respect to sets of parameters,
each time optimizing one set of arguments while keeping thers fixed. It should be noted that
the cost function Z.1) for NTF is convex with respect to entries 8", but not all. Alternating
minimization of the cost functior2(1) leads to a nonnegative fixed point ALS algorithm which can be
described briefly as follows:

1. Initialize all A(™ randomly or by using the recursive application of Perroobnius theory to
SVD1923 or by selected fibers or structures from the Quta?*2.

2. EstimateA (™ from the approximation by solvin@(1)

min De(Y||Y) = %Hy — Y2, with fixedA(™, m # n,
A n

3. For nonnegative factors, set all negative elemen#s‘®fto zero or a small positive value
4. Estimate other factors until convergence.

The above ALS algorithm can be written in the following egitlform for A (") 10:24,33:81,187.188

A Y {A}O ({ATA}®—“) " on=12...N) (2.2)
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whereA T is the Moore-Penrose inverse Af Y (n) is the modea matricized version of tens@/, and
the Hadamard produ@™" = {ATA}®"is given by

e = ANTAN)) g ... @ (AMDTAMHD)) g (A(n—l)TA(n—l)) @ ALTAWL), (2.3)

A fast implementation of ALS for 3-way tens®f reduces the expensive computation of
Y ) Owen AWM. Unfortunately, this algorithm cannot be generalized ghbi orderd®. The ALS
algorithm and its variations pointed out®hare simple algorithms and can work well for general
dat2*187. For NTF, the ALS algorithm was modified to eliminate all négmentries by a rectifier

A [AX]BS]+ — max{s, A"}, (2.4)

e is a small constant (typically, 13) to enforce positive entries. Note thatx operator is performed
component-wise for entries of matrices. Various additimomstraints orA(" can be imposetf.

Computing the Khatri-Rao produ¢A }®—" requires(N — 1)RIN- multiplications (for simplicity,
dimensions are assumed to be identlgak- ... = Iy = 1). The matrix producY {A}Q‘n demands
RIN multiplications. Hadamard producfa ™ A}®— do not consume much multiplications. Hence, the
approximate number of multiplications required for thertésag rule @.2) is RIN 4+ (N — 1)RIN-L,

This technique was widely applied to employ algorithms f&¥ & NTF algorithms. However, for
practical experiments, ALS(4) may not converge to the solution without additional rega&tion
parameters. They may take many iterations to converge. dergthey are also not guaranteed
to converge to a global minimum or even a stationary point,dmly to a solution where the cost
functions cease to decrea®é%, ALS can face problems whdi™ is not full column rank, and it is
relatively slow for collinear (ill-conditioned) data wigwamp, bottle-neck or CP-degeneraétesio
improve performance and increase convergence speedaksivaple techniques were proposed for the
ALS algorithm, such as the weighted ALS incorporating a \gitgg matrix into the cost functidH,
the linesearch extrapolation methd@&>81:1401715171200 yotation method*>146, compressioff101,
regularization terms controlling sparsity and orthogipél: /8219215 applying the iterated Tikhonov
regularizatiort®317°, the damped Newton iteratid#, the projected gradient methdds or simply
adding a small diagonal matrjx g into ['(™" 51

A Y {A}O (rm”) 4l R) - (2.5)
However, for real-world data, a proper selection of par@metinfluences performance of the final
result. Further modifications were discussed in Chaptér 4

The fact is that ALS algorithm faces (pseudo-) inverse wisih be ill-conditioned for real-world
data, and also time consuming to calculate reliablyA® has only one componem = 1, that
is the tensorY is approximated by a rank-one tensor, the Hadamard prof€A}° " in (2.2)
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returns a scalar, matrix inverse will become a division bycalar. Therefore, if we form an ALS
update rule for each componemff’) of the factorA(", this learning rule does not require matrix in-
verse, and hence reduces computational cost. Moreoveryvthild be more stable for ill-conditioned
problems and ensure relatively lower complexity even faogda-scale problems. Based on this
idea a new algorithm is proposed in this chapter as followsteiad of estimating the whole factor
A® = &P gV al) e r"R we sequentially estimate componeg{d 3738394447

2.2 Line Search Techniques for ALS Algorithm

Harshmafi! and Bro'%2° proposed the line search method to predict the fadétsfrom theirs pre-
vious estimations by a simple linear regression

A(n)

O =A" 4yaA®, n=12..N, (2.6)

wheret denotes the iteration indesAM™ = A" — At@l and stepsize@ is iteratively searched so that
the LS criterion 2.1) is reduced by substituting the step size- a i, wherea is a suitable constant.
The LS method can find a suitable step value but it is quitecdlt to find an optimal step. To this
end, the Exact Line Search (ELSY% or the Enhanced Line Search (ELX8)was proposed to find
optimalz at every even iteration by minimizing the modified cost fioof (2.1) with fixed A(™

D(Y||Y) = % ly -1 {a® 4 nAA(”)}Hi .

An optimal stepsize is a root of a polynomig(r) of degree (R — 1) which yields the smallest cost
function value or the highest fitness. ELS alleviates bodtés more ficiently than LS!. However,
the technique demands high computational cost due to hgilaid and solvingo(z) 2.

2.3 Hierarchical ALS Algorithm Using Squared Euclidean Digances

This section presents a variation of the ALS algorithm wtdelyuentially updates components of the
factors. Bro introduced column-wise formulation for the S\algorithm in his thesf®. Heiser and
Kroonenberg®® also suggested a triadic update for 3-way CP in which thddiasting vectors in every
mode are first estimated, then the second etc. Cichetckal.** introduced the HALS algorithm for
NMF in 2007. Hoet. al.>®°! later analyzed convergence of the Rank-one Residue tiaratgorithm
exploiting a similar idea to update one component instedtdefactor. However, these algorithms are
highly computational due to computation of residual teashuring iterations, and limited to matrix
and 3-way tensor. Phan and Cichoiproposed the optimized algorithm for CP and NTF in which
residue tensors were bypassed. Moreover, the algorithtreigistforwardly derived as a special case
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of the ALS algorithnt°6158 The algorithm was later extended to the alpha- and betarginced’.
For NTF, Pharet. al. extended the rank-one update algorithm to rénipdate algorithrL,

To estimate a componera{”), we assume all other components are fixed. The approximation
tensory is split into two parts as follows

e Arank-one tensoy(r) is built up from componentaE ) to be estimated
y(r) = aEl) o aEZ) 0---0 aEN). (2.7)

(1. (n)

V= d Al a |

e Arank-(R-1) CP tensod' ' is composed by factorsA(_r

Y= NaPoqPo.0aM = 1 AD xAR L AN (28)

k#r

According to the approximatioy = ﬂ(fr) + fl(r) + & by Rcomponentsaf )r=1...,Rn=
1,...,N, we consider the residual tensﬂlm which is approximated by the rank-one tengfdp

vy -y e (2.9)

Hence, the update rule fcaf”) is deduced fromZ4.2) as follows

(n) {af}® " ﬂ(r ;—n{ar}

{ala}"" oo

e T e (N (2.10)

where\?(r) is the moden unfolding tensor of/, {a,} = {afl), a?, ... afN)}, and scaling cd@icient

(n)
( ) is computed as follows:

(\N)T (N)
M _ T () a & n#N 211
W= {dal" = {da)’/ (aa") - {1, T e
Due to normalizatiora™ = & /|al™ |, forn = 1,2,...N — 1 after each iteration step, scaling factor

( ) can be omitted and the learning ru X0 is S|mpI|f|ed as

asn) — (y_y(ir)) >?—n{ar} :y;—n{ar}_IXnA(_nr);—n {Azrar}
= Yx o{a}-AD (AT, a1}, (2.12)

where {AT a} = {A(lr)T aﬁ”,...,AE“PT af(N)}. ProductyY x , {a} is sequentially calculated
as (N — 1) tensor-vector multiplications along all modes, but modeA/e note that a tensor-vector
productY x ask) results ar{N — 1)-dimensional tensor and require$ multiplications, that means it
reduces dimension of the resulted tensor by 1. TherefooeluptY x _,, {a;} needs in total a number
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Algorithm 2.1: HALS Algorithm for CP and NTF
Input: Y: input data of sizéd; x I, x --- x Iy,
R: number of basis components
Output: N factorsA(M ¢ RInxR

1 begin
2 | Initialize all AM and normalize alb{™ to unit length
3 repeat
4 forn=1to Ndo // Update A(M
5 for r = 1to Rdo
6 aV — ¥ x n{a}-A" {AT, &}
7 (M [aﬁ”)] // Retrieve nonnegative entries
+
8 if n# N then // Normalize and fix scaling
o ‘ Ny _ a™ ™ ) _ _a™
la™iz la™ 2
10 end
11 end
12 end
13 until a stopping criterion is met
14 end
of multiplications ofiN + [N"1 + ... 412 = - (IN — 1) . In comparison with that of the ALS rule

RIN + (N — 2)RIN-L, the update rule2(12 is at leastR times less expensive than ALS.9). This

is valid because2(12 updates only one component wherea2)updatesk components, Moreover,
by employing the cascade calculation, the update r2l#2 does not demand significant temporal
storage. It is necessary to bear in mind that the ALS r@l&) (computes the Khatri-Rao product
{A}©-n which may result a large-scale mattfx—! x R.

Pseudo-code of this algorithm is described in AlgoritBr. For NTF, a rectifier is applied to
the update rule2.12) as an additional step to retrieve nonnegative componawrshin Step7. In
addition, normalizatiomﬁ”) to unit-length vector is also included. In stead of usingréwifier, this
method can be extended for use in compressed sensing byratiohiwith shrinkage ruld$162179,

2.4 HALS Algorithm with Constraints for NTF

Natural constraints such as sparseness, smoothness aralateniness (orthogonality) can be im-
posed on the factors. In this section, we derive the regddrHALS algorithm with such constraints.
Generally, the cost functior2(2) can be incorporated additional penalty terms as

DL (Y7 x {A}) = De(YIZ x {A}) + Y andy. (2.19)
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whereJ, ) are suitably designed regularization terms for fac#i8, and regularization parameters
an > 0 control the amount of regularization. Each facdP) can have independent parametgr

2.4.1 Sparseness Constraints

The following penalty term is often used to impose sparsenes

%P
Sp _ Sp n _ .Sp
3P = §n:an JA®]|y, NI (2.14)

2.4.2 Orthogonality Constraints

The regularization term which enforces (as much as po3sibleogonality of basis componemé”)

is introduced in the cost functior2 (L3 as
JCr
= o Y ay = o AR 1. (2.15)

0
Jﬁr _ aﬁr Z ag‘)T a1(n)’
pl aagn) p#£r

That also means componerﬂg‘) should be as sparse as possible. From the learning2ul@(we
obtain the new learning rule with uncorrelatedness coimsrgiven by

o Y atad —AT AT a " raf AT 1e |
a" . (2.16)

¥

2.4.3 Smoothness Constraints
To measure the smoothness of componeﬁl)s we employ the penalty term defined'as
3" = ag" e (L &™), (2.17)

wherelL is a suitably designed matrix (the Laplace operator) whictasares the smoothness (by
estimating the diferences between neighboring sampleaf?)’r)l andy : R — R is an edge-preserving
function applied componentwise. Although this edge-pngsg nonlinear function may take various

forms!37:
o) = [t|"e, l<ea<2 (2.18)
ot) = Va+t? (2.19)
e(t) = 14 |t|/a—log(l+ |t|/a), a >0, (2.20)

1In the special case fdr = I,, andy(t) = [t|, the smoothness regularization term becomes sparsity term
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we restrict ourself to simple cases, whex#) = |t|*/a for @ = 1 or 2, andL is the derivative operator
of the first or second order. For example, the first order dévie operatot with I, points can take
the form:

L= L : (2.21)

and the cost function2(13 becomes similar to the total-variation (TV) regularipatiwhich is often
used in signal and image recové&ry):

In—1
DE(YIZ x {A}) = Dr(Y|Z x {A}) + asm ), laf — 8y, |- (2.22)
k=1

Another important case assumes théh = 3|t|> andL is the second order derivative operator with
points®. In such a case, we obtain the Tikhonov-like regularization

1
D (Y12 x {A}) = De(W|Z x {A}) + S asm Lo (2.23)
In such a case the update rule fiﬁP) is given by:
M P+ aemL L) HY x_n{a} — A" {AT, & }°"). (2.24)

Bro?® considered a particular case in whithis the second-order smoothing operator. The learn-
ing rule @2.24) is robust to noise. However, it involves a rather high cotaponal cost due to the
calculation of an inverse of a large matrix in each iteratidbm circumvent this problem and to consid-
erably reduce the complexity of the algorithm we presentcarsé-order smoothing operatbrin the
following form:

-2 2
1 -2 1
L = ..
1 -2 1
2 =2
-2 0 2
-2 10 1
= + ',.
-2 1 01
-2 2 0
= -2l +2S (2.25)
However, instead of computing direcil m_ _2 af”) + ZSaE”), in the second term we can approxi-

)

matea,n) by its estimatiors; * obtained from the previous update. Hence, the smoothingaggation
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term with(t) = |t|?/8 takes a simplified and computationallffieient form:

B - S g3 (2.26)
2 ’ '

aJsm

_aaﬁn”) — ofma” —agmsa". (2.27)

Finally, the learning rule for the regularized (smoothed)Lt$ algorithm takes the following form:

o Y5 na) AT (AT a} " painsal|
oy

+
. (2.28)
A+ agm

2.5 Flexible HALS Using Alpha Divergence

The algorithms derived in previous sections can be extemdedore robust algorithms by apply-
ing a family of generalized Alpha and Beta divergences. Wesicker a simple approximative NMF
modef”47 to illustrate the basic idea of the proposed algorithm foste decomposition

R
Y ~ABT = ) abf, (2.29)
r=1

whereY € R'JFXT is a data matrix and the desired nonnegative matrices anessgd asA =
[a]_, a,..., aR] € R:_XR andB = [bl, bo,..., bR] € RI_XR.
We define the Alpha divergence as follotfig84546:

( (r) VAN M _ "
> A _ (i> g 2B Tk ) 4 10, (2.30a)
=\ a(a+1) yi(li) a+1
(r)
D" ([Y(r)]+ I arbrT) =4 (@ﬁ:)) In (%) — 20 +yi(r)> , a=0, (2.30b)
ik Yie
vy
2, (yﬁ:) In (%) +7 — yﬁ?) ; a=-1, (2.30c)
[ K Z,

Whereyﬁ:) = Yik = X per Aipbkp and;(kr) =arbyforr=212....R

The choice of parameter € R depends on statistical distributions of noise and data.hén t
special cases of the Alpha divergencedo {1, —0.5, —2}, we obtain respectively the Pearson’s chi
squared, Hellinger's, and Neyman’s chi-square distandekevior the cases = 0 anda = —1, the
divergence has to be defined by the limits 2309 asa — 0 anda — —1, respectively. When these
limits are evaluated for — 0 we obtain the generalized Kullback-Leibler divergencingel by Eq.

(2.30h whereas fow — —1 we have the dual generalized Kullback-Leibler divergegigen in Eq.
(2_30@8;42;45;46_
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The gradient of the Alpha divergenc2 80 for « # —1 with respect t@;, andby, can be expressed

Q) M\«
aDa 1 Zik
B T al® [(W) 1]’ e
oy 1 AN
A = EZ bk,[(% —1. (2.32)
J

By equating the gradients to zero, we obtain a new multipliedocal a-HALS algorithm:

o[1/e] o[1/a]
vy T o[a] a v (©) o[a] b
by (% Ca — ¢ , (2.33)

in a compact form as:

a;l' af‘ o] b;— br. o]

where the “rise to the power” operations[®) are performed componentwise. The above algorithm
can be generalized to the following form

by — p—1 (M) a — -1 (M) (2.34)

al ¥(a) b/ ¥(by)

where¥(x) is suitable chosen function, for exampléx) = x *[], componentwisg
In a similar way, the learning rules for ti-order NTF problem can be derived. For this purpose,
we consider th@-mode matricized (unfolded) version of the tendbr

Y &AM (AT, (2.35)

Actually, this can be considered as an NMF model witl= AW andB = A®—, b, = [A®-1], =
{a,}©". Applying directly the learning rule(34) to the model 2.35) gives

v([v0)] ) o

(n) -1

U’ «— ¥ 2.36
r by w(br) (2.3

where\?g])) is ann-mode matricized version @(r)
\?8 = Yy =Y +a"b =Y — Y +a"” {a )0 (2.37)

For a specific nonlinear functiof(-) (¥(x) = x%)

¥(b) = ¥({a)®) =ra")o -ovE")orE" ") - ov@Er)

= {¥(a)}°, (2.38)

2Fora = 0 instead ofd(x) = x* we usedb(x) = In(x) 3.
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and the denominator ir2(36) can be simplified as

bl P(br) = {a}® " {¥(a)}®" = {8/ ¥(a)}® ", (2.39)

this completes the derivation of a flexible Alpha-HALS NTFRdage rule, which in the tensor form is
given by?’

al" « -1 (2.40)

v (W"],) o fa)
{al¥(a)}™ .

where all nonlinear operations are componentiise

2.6 Flexible HALS Using Beta Divergence

Beta divergence can be considered as a flexible and complamerost function to the Alpha di-
vergence. In order to obtain local NMF algorithms we introglthe following definition of the Beta
divergencé®45126:

( (B (NB (MNB+1 () p+1
o Dl —ac” dlE T =3
- (([y,k ]+) ﬂ ﬂ 1 s ﬂ > 0, (241a)
)
DY ([YO], [ abl) = < (([yfk”m In (”: ]*> VT, + 2 ) B=0, (2.41b)
ik K
r
( ( A ) + [y"‘ ]+ - 1> : B=-1, (2.41c)
[ ik ylk] Zik

whereyﬁ:) = Yik — 2psr Aipbkp andq(kr) = ayby forr = 1,2,...,R The choice of the real-valued

parametep < —1 depends on the statistical distribution of data and the Biergence corresponds
to Tweedie modef&4546:126 For example, if we consider the Maximum Likelihood (ML) apach
(with no a priori assumptions) the optimal estimation cstssof minimization of the Beta Divergence
measure when noise is Gaussian wWite= 1. For the Gamma distributiof = —1, for the Poisson
distribution3 = 0, and for the compound Poisspne (—1,0). However, the ML estimation is
not optimal in the sense of a Bayesian approach where a mforimation of sources and mixing
matrix (sparsity, honnegativity) can be imposed. It isiiegéing to note that the Beta divergence as
special cases includes the standard squared Euclideanahsffors = 1), the Itakura-Saito distance
(8 = —1), and the generalized Kullback-Leibler divergenge= 0).

%In practice, instead of half-wave rectifying we often usfedent transformations, e.g., real part¥fx) or adaptive
nonnegative shrinkage function with gradually decreattimgshold till variance of noise?

noise’
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In order to derive a local learning algorithm, we compute dhedient of 2.41), with respect to
elements tdy,, a:

")
b Z(%r)ﬁ (1) 2077 & (2.42)
abkr k k ros
5D(r)
a;r = ;( = (10207 b (2.43)

By equating the gradient components to zero, we obtain & s@hple HALS updating rules referred
to as the Beta-HALS algorithfd:

by (2.44)
‘ Z| 16€+1 26€

ar S bBH Z (2.45)

The above update rules can be written in a generalized cdmeeior form as

(YO )% (ar) a (Y1) ¥(br)
Y(al)a W(bf) br

where¥(b) is a suitably chosen convex function (e¥j(b) = b */’l) and the nonlinear operations are

br , (2.46)

performed element-wise.
The above learning rules could be generalized forNherder NTF problem (using the similar
approach as for the Alpha-HALS NTF):

)
— , 2.47
w (o) by (247
whereb, = {a,}©, and\?gf) is defined in 2.37).
By taking into account4.38), the learning ruleZ.47) can be written as follows
(V1) (¥@1I (50, %
OB _ WY < {(F(a)} (2.48)

{¥(ar)}onT {a}on {¥(ar)T a}e-n
Actually, the update rule2(48 can be simplified to reduce computational cost by normtdinaof

(n)

vectorsa;  forn=1,...,N — 1 to unit length vectors after each iteration step:

o [¥ 5wy o a” < d/1d", (2.49)
Once again, this algorithm can be rewritten in the fast fosnfolows
o Y n (@)} - AT {rA) T} (2.50)

The HALS NTF algorithm is a special case @t§0 with ¥(x) =
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2.7 ALS Algorithm for Tucker Decomposition

The general Tucker model does not impose any constraintabor§&and a core tensor. In many appli-
cations such as dimensionality reduction and feature itrg several existing Tucker decomposition
algorithms consider orthogonality of factors, such as tligher-Order Singular Value Decomposi-
tion (HOSVD) and Higher Order Orthogonal Iteration (HOO@ithms> /586061 For Nonnegative
Tucker Decomposition (NTD), the multiplicative algoritsfi#193131151 gare natural extensions of mul-
tiplicative Nonnegative Matrix Factorization (NMF) alginms based on minimization of the squared
Euclidean distance (Frobenius norm) and the Kullbackdeeilivergence. Mgrup, Hansen, and Arn-
fred'3! extended multiplicative NMF (Nonnegative Matrix Factatipns) algorithms for sparse Non-
negative Tucker Decompositions (NTD), and also released=eRPWAVELAB toolboxX° for anal-
ysis of multi-channel EEG and MEG data. These cost functim& been recently generalized and
extended using the Bregman, Csiszar, and Alpha- and Beterggince®4764103, The multiplicative
algorithms have a relatively low complexity but they arereleterized by rather slow convergence and
they sometimes converge to spurious local minima.

We consider the squared Euclidean distance (Frobenius)#é?A1°610° subject to nonnegativity
constraints, that is

DY 116 % (A}) = 5 |¥ ~ G 1AW oA® oy a® ] = Sy H [ @s

or its variation in the matricized form given by

1 2
Dr(Y 116 % {A}) = 5| Y —APGHAST| . (2.52)
A simple ALS update rule foA(™ can be straightforwardly obtained from.52)
. ®-n -1
AD Y ua®al (G, (ATA)*" G ) (2.53)
= Y= {AT16) (6 x n{ATALG) (2.54)

where(X,Y)_, = X(n)Y(Tn) denotes contraction betweghand along all modes except moate-A
variation of the update rule(54) for NTD is combined with a rectifier, i.eA™ « [A(M], .

For an NTD model with nonnegative factors and nonnegative amsor the ALS algorithms may
not converge to a stable solution. Although Bro and Andef3trave applied the ALS algorithm to
find the nonnegative factors, their algorithm does not allownpose nonnegativity constraints for a
core tensor. In fact, the learning ru2.%4) is not employed to decompose real-world data due to slow
convergence and high computational cost. An alternaticevesil-known ALS algorithm for Tucker
decomposition is the HOOI algorithifi®C. This section does not aim to introduce the ALS r@e),

but to derive an ALS algorithm for NTD with low complexity. €hdea of the new algorithm for
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Tucker decomposition and NTD is quite similar to that useddnve the HALS algorithm for CP and
NTF in previous sections.

If A has only one componef, = 1, the contracted product under the matrix inverse2i64)
returns a scalar, matrix inverse will become a division bgaas. This allows to establish an update
rule for each componemﬁf) of the factorA(™ which does not require matrix inverse.

2.8 Hierarchical ALS Algorithm for Tucker Decomposition

The proposed algorithm for nonnegative Tucker decompusitonsists of two parts:

e Derive update rule for each (nonnegative) component (v)ae!fﬁ), forn = 1,2,...,N and
rn = 172,---,Rn1

e Derive update rule for the core tenggr

With some adjustments of the basic cost functidgrb) and the standard ALS algorithn2.64),
we establish local learning rules for (honnegative) congpds and for the core tensor.

2.8.1 Learning Rule for Factors A™

In order to estimataﬁ:) (¥n, Vry) we split the Tucker modell(27) into two parts:

e A tensor consists of all rank-one tensors with which the 'rtinercomponentaf ) e R'j is not

involved
Yo = 3 ga) oad o oay) =6 1, x (A} AT
{Klkn#rn}
wherek = [ki.ka,....ky] is the index vectod < k < R = [Ry,Re,....Ru], {klkn # rn}

denotes a set of vectoksin which k, # rp, A(fr)n is a version ofA(" without aE ) Subtensors

G_ ., of G do not consist of any entrigf, . k,_,.rnke1,...ky With km = 1,2,...,Rn,m# n.

.....

e Another part consists of all rank-one tensors which cortmmomponenasf)

Y = T gD o odT Y oal) o dT Voo d = G, x o (A xnall)
{Klkn=rn}

whereg, € RR” Ra-1xbxRacn xR s 5 subtensor of the core tenggrobtained by fixing

the n-th index tor,. Moden matricized version of tens@,, is exactly ther-th row of moden

matricized version of the core tensgr i.e.,[Gr, |(n) = [G(n)]rn: .
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Using the above notations, we can rewrite the decompos(tlo2?) of the data tensoy =
Y+ L y(=™) | g We consider a residual tenstf™

Y™ o Yyt —ytm L g g %, (A} xpa" 1 &, (2.55)

which is approximated by only one componeﬁf along moden. Hence, the ALS learning rul@ (54

(n)

to estimate the vectax,’ from the tensorfl(r”) can be expressed in a relatively simple form as

asn) - <g(fn) X—n {AT}ygrn>,n
" <grn X _n {ATA}’ grn>_n ’

forrh=112,...,Ryandn=1,2,...,N.
After some algebraic manipulations and replacing the IleBéE?) by (2.55),

(2.56)

I x n{AT} = Y x o fAT =G 1 x 0 {ATA}xa AL (2.57)
the learning ruleZ.56) is simplified as

w Y xafATH G = (G, xn{ATA} xa AT (G

% G % (ATAL.Gr Y
I x (AT} G — A (G G x n {ATAD

—rI'n

<grn9 gl’n X —N {ATA}>_n

(2.58)

We note tha’A(WTAM has relatively small size d®, x R, due toR, « I,. Moreover, tensor product
Y x_, {AT} returns a tensor of sizB; x --- x Ry_1 x Ih x Ryy1--+ x Ry, and tensor product
G x_n {ATA} does not return a large tensor. Hence, they do not demandificagt extra storage.

2.8.2 Update Rules for the Core Tensor

The core tensor can be estimated using two following methgid®al update for the whole tensgr,
and sequential update for each ergry, r,.

2.8.2.1 Multiplicative Update Rule for Core TensorG
Vectorization of the Tucker model (27) gives us a nonnegative matrix factorization of (¢
vedy) = (A<N> @AN-D g ... ®A<l>) vedg). (2.59)

The vector veG) can be estimated by using any existing NMF algorithms. Fangde, by applying
the ISRA (Image Space Reconstruction Algorithm) update®pi?67110 also often referred to as
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Algorithm 2.2: HALS Algorithm for Tucker and NTD
Input: Y: input data of sizéd; x I, x --- x Iy,
R1, Ry, ..., RyN: number of basis components for each factor
Output: N factorsA(™ e R'*™ and a core tensgg e RT <<

v
1 begin
2 | Initialization allA(™ andg
3 repeat
4 forn=1to Ndo // Update A
5 V=W xn{AT}G) . W=(Gxn{ATALG)_,
6 forr, = 1to R, do
[Vrn - A(_nr) W—rn,rn]

7 aE:) — i +

Wr
8 end
: = (18" 2. 183
10 G — G xpdiag{t}, AM — A0 diag{e[~1}
11 end
12 foreach 1< r =[ry,...,rn] < [Ry,....Ry] do // Update G
13 | o < [or + Yx{a} - Gx{AT a}],
14 end
15 until a stopping criterion is met
16 end

Lee-Seung algorithmi42, we obtain the following multiplicative update rule

vedG) « vedG) ® ((A(N)®---®A(l))T vec(;ll)> %)
((A(N) ®. .. @Aa))T (AM@...0AD) Vqu)>
= vedG)evedY x {AT}) ovedg x {ATA}) (2.60)
which can be written in the tensor form as

6 « [6e (Y x{AT}) o (6 x{ATA})], . (2.61)

2.8.2.2 Local Update Rule for Core TensoGg

The multiplicative update rules have a relatively low coexitly but are characterized by slow conver-
gence and involve the risk of converging to spurious localima. An alternative approach is that we

.....

to derive local update rules for entries of the core teiggsor
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Intuitively, from the cost function4.51), the ALS update rule for the core tenggrcan be formu-
lated as follows

g(_yxlA(l)T xo A@T. AN (2.62)

whereAT = (A(”)TA(”))flA(”)T denotes the Moore-Penrose pseudo inversion. Howevenibiste
formula requires to compute pseudo inverses of all facddfsfor each iteration step.

In order to explain a basic concept, let us assume first theteafactorsA (" have only one vector,
thatisR, = 1, vn: A = a(™_ In such a simple scenario a data tensor is approximated d&ykaane
tensor and the core tensor simplifies to a scglat g, and the pseudo-inverses will become transposes

of these factors
(mT
mi_ &7
a et (2.63)
With the assumption that all the components &raorm unit length vectorsa™ Ta(™ = 1, the ALS

update rule foig simplifies the tensor-vector products of the data tensottlamdomponents
g « Yx1aPT »,a@T...xya™MT =y xa® x,a? ... xya™) = yx{a}.(2.64)

The ALS update rule2.64) for rank-one approximation is extremely simple and staitee we do
not need to compute matrix inverse.

In the next step, we present an algorithm to estimate all titées of the core tensor for the
general Tucker decomposition with factors having more tirascomponent. We assume that an entry
O, r = [r1,r2,...,rn] of the core tensog needs to be updated. This entry has relation to components
{a/} = {aﬁf), aﬁf) e aED')}. We divide the Tucker modell(27) into two parts

e AtensorY(~" consists of all the rank-one tensors which are not built omfthe components

a[(i—), aI(ZZ)’ . --1al(,|:|)1

=) :Z Ok al(;) o al(;) 0-:-0 af(N) . (2.65)

k#r N
e And a rank-one tensor built up froa”, a2, ... aV: ¥y =g a0 P o ... 0 aN) .
The decompositionl(27) can be now rewritten as
y = Yy Lyt g, (2.66)

To exploit the learning rule2(64), we define a new residual tensor which is approximated by the
rank-one tensay/ (")

Y = vy -yt ys—galoa?  oal) + &, (2.67)
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Assume that all the componera,%?) arel>-norm unit length vectorsagf)T af(:) = 1, the entryg, can
be updated using the learning ru2g4)

o < ¥'x(a)l=(v-9+y) K(a}
= O +y;{ar}_g;{ATar} (2.68)
where{AT a,} = {ADT gD ANT Ny
Finally, the learning rules2(58 and @.68 are summarized in Algorithr2.2 (referred here to
as the HALS NTD algorithm). Note that_,r, = [wi,,. ..,wrnfl,rn,wrm,rn,...,wpgn,rn]T consists

of (Ry — 1) entries extracted from vectaw, exceptw; . Without rectifiers in Step§ and 13,
Algorithm 2.2is for Tucker decomposition.

2.8.3 Regularization for HALS NTD Algorithm

Similar to the HALS algorithms for NTF in Sectioh4, we can impose additional constraints such
as sparseness, smoothness or uncorrelatedness (orthityyamrathe factors and the core tensor for
NTD. Generally, the cost functior2(51) can be incorporated additional penalty terms as

DE(Y|G x {A}) = DE(Y|G. {A}) + > andam + acls. (2.69)

whereJ, . andJg are suitably designed regularization terms for facfoi® and core tensog, and
regularization parametets, > 0 andag > O control the amount of regularization. Each factdP)
can have independent parametgr

2.8.3.1 Sparseness Constraints

The following penalty term is often used to impose sparsenes

0J°P
sp sp _ Sp
JA = En an HA(n)”L aA(n) = p 1|n><Rn‘ (270)

2.8.3.2 Orthogonality Constraints

The regularization term which enforces (as much as po3sibleogonality of basis componemé:)
is introduced in the cost functior2 1) as

F=af Y4 Th—ay Yal —afAlIg —afdl. (@71
pl oa;, p#rn
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That also means componem@ should be as sparse as possible. From the learning 2188 @nd
derivation given inA2.1, we obtain a new learning rule with uncorrelatedness caims$r given by

[Vio = AT wrr, = 0§ AT 1
n n +

(n)

A, < Wt , (2.72)
V = Y x AT} 6, (2.73)
W = (G.Gx n{ATA}) . (2.74)

2.8.3.3 Smoothness Constraints

The penalty term is the same as that used in Setiér3
sm aJsm
Br= gl s D = el - ensal, (275)
a

n

whereS is defined in 2.25. The learning rule for the regularized (smoothed) HALS NdlBorithm
takes the following form:

_a(m sm (n)
() [Vrn A—rn Werprn +ay S arn ]+

a, (2.76)

W, a’ﬁm
2.8.3.4 Discriminant Constraints

One of important applications of NTD is feature extractiomihich the core tensors represent reduced
(compressed) features and factors are bases of the feahgpaze. We consider tiNeway tensory

as a training data which is concatenated frignsamples (subtensorgl®) = y; _ e R'1x/2-xIn-1,

To extract features from sampl&ék), we decompose the training tendrinto N — 1 factors except
the last mode. Factos™ (n = 1,2,...,N—1) will be regularized by between-class and within-class
scatter matrices. It is interesting to notice that the fiestdor a samplel(k) = Y-k to classify an
object can be obtained by a simple projection:

F® = YO o AT S AT L ANDT
= YO« AT 5, AT = Z0 5 AT, (2.77)
We denote the average feature tensor for ctaby 7?(‘"’), forc = 1,2,...,C, and the average

feature tensor for whole samples f)_'y The within-class and between-class scatter matgendS,
are defined as

In _
(s = ) 7Y - F X2 =u|AOTS VA, (2.78)
k=1
c — =
tr[Sol = Y Ke|F - FJ2 = tr [A(”)T S A<”>] , (2.79)

c=1
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wherecy indicates the category of the samgleéK. is the number of training samples in tb¢h class,
and symmetric scatter matricé&_”) andsg_”) are expressed via tensor contracted products

In

S%‘”) _ Z (z® - Z(Ck)’ z® Z(Ck)>7n’ (2.80)
k

C — =
So_n) _ Z KC<Z(C) —Zz.Z0 _ 2 .. (2.81)
C

In order to find the discriminant basis factors for nonnegaliucker decompaosition, the overall
cost function is designed using penalty terms so thi@,f} is as small as possible while[8] is as
large as possible

Jae — %aw tr[Sy] — %ab tr[Sp) . (2.82)

The partial derivative with respect %" is given by

aJdC
oA

= (a/w si™ — ap SE;”)) A (2.83)

From the learning rule(58 (assuming that the discriminant terms are in the numeratase
obtain the new learning rule for factof§™ as

_aAM (—n) A(N
(n) [Vrn A—rn W_rn,rn + 3 arn ]+

- 2.84
a, o (2.84)

whereS(" = q, S(Af”) —ap SE)*”). When the discriminant terms are in the denominator, amgaltive
implementation of the learning rul@.84) is given by

A" [(s<—”> w7 (vrn s w_rn,rn) ] R (2.85)

2.8.3.5 General HALS NTD Algorithm with Multiple Constrain ts

The HALS NTD algorithm can simultaneously impose multipdgularization terms on factos(™.
From the learning rule2(72), (2.76) and @.84), the general learning rule with orthogonality, smooth-

ness and discriminant constraints can be formulated as

[Vrn — A(_nr)n Wy, r, — @ A(_nr)n 1+ (af™S+ ap Séfn) — ay S\(N*n)) af:)]

sm
Wrorn + an

Ay -

t (2.86)
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2.9 HALS Algorithm for Large-Scale Data

The HALS algorithms are developed to avoid matrix inverségcty are necessary in the ALS algo-
rithms and to reduce the complexity of computation via satjakestimation of the components. To
estimateA(", we need to calculate produdt x _,, {AT} as in Stefs in Algorithm 2.2. Although this
product does not produce significant temporal storage,afgelscale tens@y, it might be compu-
tationally demanding. In this section, we consider a metioodieal with this problem. We note that
real-world tensors are often sparse or the features répladang modes. This gives us an ability to
manipulate tensors on some tubes which are sampled alongsnrsiead of computing the full tensor.
For each modey, we select a set of (random) indicé&g of J,, typically R, < J, < Ip,

Tn={l<ii<iz<..<iy <}, (2.87)

then, build up sub-factor&™ e R¥»*Rn from J, rows of factorA(™ e R'*R with row indices
indicated byZ,, which can be written as

AM =AM (7, ) eRMF, (2.88)

Selected indices can be identified by the CUR decompositidis extension for multiway dafd°.
The learning ruleZ.58 can be reformulated using subfacté$) as follows

—rI'n

<grn9 gl’n an {ATA} >7n

i AT Q) AT A
y —n A s —rn/—_n A —r Ir —-n A'A —
agrr]]) - < X { } g n> n <g n g n x { }> n’ (289)

where the reduced tens&(n) takes samples from selected tubes along all modes but exefsn

I YT Tens Taits. . I (2.90)
The strategy of tube selection reduces the dimension of ritoe tensorfl(n) to Ry x Ri_1 x I x
Rhi1 x ... x Ry which is much smaller than that of the full error tendd?). We note that the set of
selected tube indices can be changed during the estimédtfantorsA(™.

Finally, the learning rule2.89 dramatically reduces the complexity of the HALS NTD algjom
(2.58 and is suitable for very large-scale low-rank and tens@ra@pmations. In the experimental
section, we illustrate the performance of this method fgects classification.

2.10 Speeding up HALS with Inner Loop

This section presents affieient technique to speed up convergence of HALS algorithifter some
first iterations (for example 20, 30 iterations) for estiimatactorsA(" and core tensag, we impose
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Algorithm 2.3: HALS Algorithm with Inner Loop
Input: Y: input data of sizéd; x I, x --- x Iy,
R1, Ry, ..., RyN: number of basis components for each factor
Output: N factorsA(™ e R'*™ and a core tensgg e RT <<

v
1 begin

2 | Initialization allA(™ andg

3 repeat

4 forn=1to Ndo

5 fork=1toLdo // Inner loop
6 UpdateA(™* from the currenA(™M

7 if [AM* — A | < g|AM|e then Exit inner loop

8 A — A=

9 end

10 end

11 UpdateGg

12 until a stopping criterion is met

13 end

an inner loop to updat& (™ illustrated in Steb in Algorithm 2.3. The number of iterations in the
inner loopL could be 10 or 20, the update can jump out of the loop whéierénce between two
consecutive estimations is lower than a threshold (8}ep

2.11 Summary

Rank-one update algorithms (or HALS) have been propose@Roand Tucker withwithout nonneg-
ativity constraints. These algorithms avoid matrix inestsHence they are more stable than the ALS
algorithms, especially for nearly collinear data. Thegealhms also avoid Khatri-Rao and Kronecker
products often arising in CP and Tucker algorithms. The psep algorithms compute products of the
data tensor and vectors. Because of less computationalticesank-one update algorithms are faster
than the ALS algorithms. Moreover, multiple constraintstsas orthogonality, sparseness, smooth-
ness are straightforwardly imposed on the factors (and ahe tensors for Tucker decompositions).
These rank-one algorithms can face the same problem of tf& adorithm such as bottleneck and
swamp when data is highly collinear.

A2.1 Appendix: Derivation of Learning Rule for A ("

This section presents an alternative derivation of theldpeel HALS NTD algorithm by minimizing
a set of local cost functions instead of deriving it from ttenslard ALS updates rules.
To estimate the componeaf:), we assume that all the other components in all factors amd th
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core tensor are fixed. Instead of minimizing 1), we can use a more sophisticated approach by
minimizing a set of local cost functions given by:

1 _ 2 1~ 2
D@ = S|y -y -yt | S F Y g o (A}l |
1)~ 2
= S YW Al Gl AT (291)
forrh=112,...,Ryandn=1,2,...,N.
We first calculate the gradient d2.01) with respect to vectoaf(:)
oD !
T = = (Y - al Bl AP T) AZ[Gm T, (2.92)

0a;,
and set it to zero to obtain a learning rule ﬁﬁf) (n=12,....,Nandr, = 1,2,...,Ry) given by

7 (M) A®- T
90 A® [T,
(n) (n) (M ry: R
F T Gyl AB T AB 1[G T, =W Y G X {ADy (2.93)

The learning ruleZ.93 is equivalent to the update rule given t%6).

A2.2 Appendix: Derivation of Learning Rule for Core Tensor G

Entries of the core tensor can be sequentially updated wihraption that all components are fixed.

We consider the following cost function
2

De — %Hy _y(-n _ yt+n) %”gm e i

.
_ % [vea¥®) - (& 0@ ) o 2 (2.94)

To derive the update rule, we calculate the gradien2®4j with respect to elementy

aaD—g(F:) = - (afﬁ') R ® aEP)T (veo(\?(r)) — (agNm Q- ® aff)) gr) (2.95)

and set it to zero to yield a learning rule for entries of theedensorg, given by
T ~
(aV ®--@a) veq¥")
T
(aV ®--@a?) (aVe - od!)

This update rule can be simplified by taking into account thatkronecker product of the two unit-

o (2.96)

length vectorsaandb, i.e.,c = a®b, is also a unit-length vector, that is¢ |3 = c'c = (a®@b)" (a®
b) = (a'a)® (b'b) = 1® 1 = 1. Hence, if all the componenaﬂ‘) are normalized to thé;-norm
unit length vectors, we obtain a simplified version of therézg rule @.96)

O < [L‘?(r) xpal) xpal Xy aEDI)L' (2.97)



CHAPTER 3

Appropriate ALS Algorithms for
Nonnegative CP and Tucker
Decompositions

Chapter 2 introduced the “work-horse” Alternating Least&®s (ALS) algorithms for CP and Tucker
decompositions and adapted it for use in nonnegative tetesmmpositions including CP and Tucker
models by combining with the rectifi¢x], = max(x,0). However, the modified algorithms can be
relatively slow for nearly collinear dafd®19%210, To improve performance and increase convergence
speed, several simple techniques were proposed for the AJdsitam, such as the weighted ALS
incorporating a weighting matrix into the cost functidnthe line-searcH®171200 or regularization
terms controlling sparsity and orthogonafity®219215 the projected gradient methdds, active set
method%2. Further modifications were discussed in Chapter 4

Generally, these techniques help ALS cope with collineayarsparse factors. However, some
other problems arise from controlling regularization pagters. The fact is that the ALS with a simple
rectifier might not be an appropriate algorithm for NTF. Siengxperiments with sparse and nonnega-
tive factors can straightforwardly prove this confirmatiém alternative version of the ALS algorithm
is the HALS algorithn¥”152 which estimates only one component for each factor, andiavoverses
of matrices. This algorithm was proved to outperform thetiplitative algorithmg3. However, for
tensor composed by highly collinear factors, both muktgive and HALS algorithms often fail to
factorize such data. Moreover, the HALS algorithm may neotdeze sparse tensors without using
additional regularization terms to control sparsity.

To this end, an appropriate ALS algorithm for NTF is propobgdecursively solving nonnegative
guadratic programming problems in this chapter as follows

e Propose a recursive method for solving the nonnegativergtiaghrogramming.

e Formulate ALS algorithms for nonnegative CP and Tucker dgumsitions based on solving
nonnegative quadratic programming problems.

e Proposed ALS algorithm for low memory machine or for pataltamputing system.
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3.1 Recursive Update Rules for Nonnegative Quadratic Progimming

In this section, we reinvestigate the nonnegative quadmtigramming which involves applications
in signal processing and machine learning such as nonmegattriytensor factorizations and de-
compositions (NMF, NTF, NTD}/103113130132142143183  the classification by support vector ma-
chineg81182,

Problem 3.1(Nonnegative Quadratic Programming)
Consider the quadratic programming problem with nonnegationstraints

minimize f(x) = %xT Qx—b'x, (3.1)

subject to x>0,

whereQ € RR*Ris a nonnegative symmetric positive-semidefinite maltri; [by by ---bg]" , x =
[x1% - Xg]T. This problem has an unique global optimal solutigh= [x} x5 - - x5]T, x* > 0, vr.

Although the optimization problenB(l) is similar to the NQP mentioned #%182 for SVM or
for NMF 216, the matrixQ in our NQP is diferent, and is nonnegative. Due to the nonnegativity con-
straints, Problen8.1 does not have an analytical solution. S#a al'®? proposed the multiplicative
iterative learning rules employed SVM. Zdunek and Cichétkproposed a method using second-
order Taylor expansion with using second-order Taylor agmm. Some other methods such as the
projected gradiert®, the exponentiated gradiéfit could be employed in order to solv&.{). Prac-
tical results revealed that the multiplicative update sutenverge slowl{*>, while convergences of
other iterative are quite sensitive to the choice of leaymate.

By exploiting the structure of the nonnegative matgixand the objective functior3(1), this sec-
tion will derive a robust algorithm for NQP based on the retu technique. The proposed algorithm
can be applied to any applications involving nonnegatiestisquares approximation. We note that the
nonnegative CP and Tucker decompositions can be convertibe honnegative quadratic program-
ming after a few mathematical manipulations.

Problem3.1can be solved by consideration of two Lemn3akand3.2
Lemma 3.1. A stationary point of function3(1) is denoted by

X=[%% - % =Q th (3.2)
If 3% < O, then ¥ = 0.

Proof. Without loss of generality, we assume thxat< 0. The gradient of3.1) with respect taxg at
point x*1, - - - , X*r_1 given by

9(XR) = Ve f (X*1,--+ ,X*R_1,XR) = ORRXR + OR1R-1 X1r_1 — PR (3.3)
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Algorithm 3.1: Recursive Algorithm for NQP
Input: Q: nonnegative symmetric matrijR x R), b: vectors ofR entries
Output: x: nonnegative vector minimize8.Q)
begin
Ir={12....R}
repeat

%7 =Q, by

IT_={rel % <0} 71— I\I_
until 7 = ¢
X = max{0, X}
end

0w N o 0o b~ W NP

has a solution given by

Fa
br — OR1R-1X1R_1

Xg = 3.4
OrR (34)
Assume thatx% > 0, by taking into the assumption off (X*1,- -, X*r_1,X5) <
f(X*1,--+,X*r_1, XR) , VXR € [0, +00), we straightforwardly obtairnxt = Xz. That means<* is
the solution of equatior3(2): Q x* = b. Consequentlyx* = X or X} = Xz > 0. That conflicts to the
above assumptiorr"< 0. Therefore, we havel = 0. m|

Lemma 3.2 (Solution of ProblenB.1). Solutionx* of Problem3.1 can be found under a recursive
formulation.

Proof. The gradient of the functioi(x) with respect tox given by
Vi(x) =Qx—Db (3.5

has an unique solution

X=[%% - %' =Qh. (3.6)
It is straightforward that ik™= 0, thenx* = X is solution of 38.1). _
For another case, we assume that therekare R nonnegative entrieg = {r : % < 0,1 <r <
R}, card{7} = K. Based on Lemma.1, all the corresponding variables are zexrjs= 0. The rest
(R — K) variables are solutions of a similar Probl& but of an lower orde(R — K)

o 1
minimize f(x7) = Ex} Qr X7 — bl x7 (3.7)

subject to Xy =0,

whereQ; is a part of the matrixQ deletedK rows andK columns with indiced, andby is a part of
the vectorb removedK entriesZ. This establishes a recursive formulation to find nonnegaidlution
of (3.1). This procedure described in Algorithgil iterates until there are not any zero engthat
mean = 0.
Algorithm 3.1 has never fallen into infinite-loop and ensures to find thegersolution after a
finite number of iterations which does not excegd
m|
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3.2 Novel Alternative Least Square Algorithm for NTF
3.2.1 QALS Algorithm for NTF

The proposed algorithm will be derived based on the ALS miation of the squared Euclidean
distance (Frobenius norm) to estimate the fa&@? while the others fixed. We convert the cost
function for NTF to a quadratic function given by

1 . 1 1 - .
D = IV -FE = SIYIE+SIFIE Y. T)
1 1
= SIE + SIAD (AR TTZ — (Y o, AT AT
_ Yyl mT\" () T _ mT\" (T
= 2HJI||F+2vec(A ) <I|n®l‘ )vec(A ) vec(cb )vec(A ),(3.8)

wherel'™ = {ATA}®-n € RR*R and®™ = Y, {A}O-n € R""*R. The first term in 8.8) | Y2 is
constant, hence it can be ignored. The last two term8.®) €an be formulated as a minimization

problem
1 T
i MY = = aMT ) 4 _ (mT (m
min f (a ) 2“ Y'Wa vec<<I> ) a\'"V, (3.9
s.t. a >,
where¥(™ = |, @TM ¢ R"R*IR anda(" is a vectorized version of the factaf™ T, and expressed
by concatenation of all rowq(:), (in=1,2,...,1,) of the factorA(™
.
o _ vec(A<n>T) _ [ R P ] , (3.10)

We haveAMTAM (vn) are symmetric positive-semidefinite matrices. Moreofarfull column
rank matricesA(™W, AMTAM (vn) are symmetric positive definite matrices. Hence, the Haldm
productl'™ is again positive-(semi)definite according to the Schudpod theorerff*. This leads to
the Kronecker producP(™ also a positive-(semi)definite As a consequence, the problegdj is in
the form of Problen8.1in which x 2 a(™ > 0 andQ 2 ¥(™. The factorA(™ can be updated using
Algorithm 3.1

It is worth noting that the stationary point of the functich9) without nonnegative constraints
given by

a0 — ypo vec(cb(”)T) = vec( (m(”)r(”)l)T> (3.11)

is indeed a vectorized version of the ALS algorith22j. If there is not any negative entry, the factor
A s exactly the ALS update. Otherwise, we solve the reducstesyas in3.7). Pseudo-code of
the proposed algorithm is listed in Algorith&a2. The functionngp refers to as Algorithn8.1 If we
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ignore the loop Stef in the functionngp, the ALS algorithm 2.2) is obtained. Normalization of the
factorsA(" is always necessary but is not explicitly described in Ailion 3.2

o __a”

la™ 2
We note that the Kronecker produ#t™” = I, ® I'"™ is indeed the direct sum o, matricel'™
given by

n=12...,N—1,vr (3.12)

r™m
r™m
) — I, QT — . , (3.13)

™

and produces a sparse matrix whose number of nonzero ekeisantlyl,R?, and does not consume
significant temporary extra-storage. Moreover, the irvefthe blockdiagonal matri¥(™ is quickly
calculated based on the inverses of block matrices
rm-1
-1
_ ™
gyt ‘ . (3.14)
rm-1t

The reduced versio®" of the diagonal block matri®¢(" after deleting columns and rows with the

same indices is also a diagonal block matrix. Hence, insem’s@(n)

also can be expressed by inverses
of its diagonal blocks as in3(14). This helps to reduce computational cost in Sdepf the NQP
functionngp during the estimation Stepof Algorithm 3.2 Therefore, for low rank approximations

R « Iy, Algorithm 3.1 has relatively low computational cost.

3.2.2 Algorithm for Low Memory Machine and Parallel Computing

The NQP problem3.9) demands to solve a systemlgR variables. Although?(™ in (3.8) is a sparse
matrix, for large-scale data and high-rank approximattbe,complexity of Algorithm3.2 increases
rapidly with increasing the number of samplgsand the number of componerf& Hence, it could
demand high computational cost, and also large space coshisTend, an alternative algorithm will
be presented in this section to run on low memory machine apiarallel system with multiple nodes.

From definition of vectors(" (3.10 and the structure of matrica™ (3.13), the cost function
(3.8) is rewritten ad,, simultaneous nonnegative quadratic programming probfers! I, rows af”)
in=12...,1,of the factorA(M

1 _m)
= 5a, I

(mT

(n)) al

min fio (3.
st a” >0

— """ (3.15)
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Algorithm 3.2: NQP for NTF - QALS

Input: Y: tensorly x o x -+ x Iy,

R: number of approximation components

Output: N nonnegative factor&(™ of size (, x R) minimize the problem3.8)
1 begin
2 | Random or leading singular vectors to initialize 20"
3 | repeat
4
5

for n=1to Ndo
‘ vedAMT) = ngp <| 1, ® ({ATA}®-) ,veC((Y(n){A}Q‘”)T))

6 end
7 until a stopping criterion is met
8 end

where¢i(n”:) is thei,-th row of the matrix®(™. For each problem3(15), Algorithm 3.1is straightfor-
wardly applied to estimate the rov&énn:) withQ £ T x = aj(r:)T andb 2 ¢i(::). It is clear that the
NQP problem .15 solves onlyR variables. Hence this demands much lower computationaticas
solving Problem3.9). The proposed method is suitable for large-scale problem lonited-memory
system.

Moreover, these simultaneous problems can be indepegdsaitied. They can be optimized to
run for multi-core CPU PCs or GPU devices such as CUDA. The@so can be run on a remote
cluster of computers using multiple workers to take adwgataf parallel processing. The pseudo-
code of this algorithm is given in Algorithr8.3 in which parfor denotes the parallel loop. Matlab
implementation of this algorithm allows each iteration bé parfor loop (Step8) is executed in
parallel on MATLAB workers. Because several workers candeisg concurrently the NQP3(15
on the same loop, this algorithm can provide significantlgdsgoerformance than Algorithi3.2

3.2.3 Complexity of QALS Algorithms

Computational complexity of Algorithm3.2and3.3depends mostly on inverse of matrig@s= ¥
or Q = I'™ and the number of recursive iterations of Algorit@rl For Algorithm3.2 Q is a block
diagonal matrix ofl, (R x R) matrices. For Algorithn8.3 Q is only anR x R matrix. This means
algorithms have space cost of ord®fIR?) and O(R?), respectively. We note that Algorithi3.2
updates the whole factax(", and can convert to Algorithr8.3 to update rows oA(™. Hence, we
only need to analyze complexity of Algorith13. In the worst case, the NQP algorithm repeats
times to update one row. Hence, the worst case complexityigirihm 3.1is of orderO(R® + (R —
13+ +224+1) = ORY).

Practical analysis on random tensors (discussed furth€eation6.2.3 shows that the number
of recursive iterations did not exceéldg,(R) + 1), was high on some first iterations of estimation,
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Algorithm 3.3: Parallel Algorithm for NTF - pQALS
Input: Y: tensorly x o x -+ x Iy,
R: number of approximation components
Output: N nonnegative factor(" of size (, x R) minimize the problem3.8)

1 begin

2 | Random or leading singular vectors to initialize A
3 repeat

4 for n=1to N do

5 M = (ATA}®-n

6 (I)(n) = Y(n) {A}Q*”

7 parfor inp=1tol,do // parallel loop for update A
8 aj(n”:)T = ngp (F(”), ¢i(nn;)T)

9 end

10 end

11 until a stopping criterion is met

12 end

and tended to be lower for later iterations. This result igdvbecause the number of variables to
be tuned is reduced during the estimation until convergén@ehieved. lllustration of occurrence
rates for the number of recursive iterations in the NQP fioncts shown in Figures.13for various
tensor factorizations. As seen in Figusel3 even forR = 600, I, = 1000, the NQP function in
Algorithm 3.3 iterated almost 4 times. Lét be the smallest intege“2> R K = [log,(R)]. The
worst case complexity of Algorithr.3 for updateai(:) iSOR+(R-13+---+(R-K+1)3) =
O(KR®) = O(log,(R)R®).

3.2.4 Simplified Algorithm for NMF

A simplified version of Algorithms3.2and3.3for 2 dimensional data (matrix) formulates the QALS
algorithms for NMF described by the following model

Y ~ AXT, (3.16)

whereY e R'*7is the observed datdy € R'*R, andX e R?*R are two nonnegative factors. The
algorithm sequentially updates factoksand X by solving two nonnegative quadratic programming

problems
min fa(A) = 5 vedA)" (11 ® (XTX)) ved(AT) ~ veo(X"Y")" vedAT).
st. A=0,
min - fx(X) = 5 veoX")" (1;® (ATA)) veoX") — ved(ATY)" vedX")
sit. X =0,
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Algorithm 3.4: QALS Algorithm for NMF
Input: Y: nonnegative matrix x J
R: number of approximation components
Output: A € R'*RandX e RV*R nonnegative factors
1 begin
Random or leading singular vectors to initialigeand X
repeat
vedAT) =ngp (I} ® (XTX),vedXTYT))
vedXT) =nagp (1;® (ATA) ,vedATY))
until a stopping criterion is met
end

N o o b~ W N

Pseudo code of this algorithm is given in Algoritt8.

3.3 QALS Algorithm for NTD

In a similar way to derive the QALS algorithm for NTF, we derian ALS algorithm for NTD by
consideration of the cost function for NTD as an NQP problenfoilows

1 ~ 1 1 -~ -
D = SIY-FR = SIWE+ 51912 - . P)
1 1
= SIYIZ + SIAD G (AT 2 = (Y (0, ATVG gy {A}S1T)
T T
= 2112 + 5ved A7) (1n@A®) ved AOT) —ved tT) veo AT . (317)

whereA™ = (G x_, {ATA},G)_, € RR*Ro andY(™ = (¥ x_, {AT},G)_,, € RI"*Rr. The first
termin 3.17) \|y\|§ is constant, hence it can be ignored. The last two term3.8) ¢an be formulated
as a minimization problem to findl ("

;
min f (o) :%wnn@w a® — veo(r™T) " 4 (3.18)

s.t. a > o,

wherea(™ is a vectorized version of the fact&" 7. In order to findg, the cost function3.17) is
also rewritten

D= LWIR + Lvedg) (1ATAI%) veag) - vecy x (A7) vedg) . (819)
as

min f(g) = % 9" {ATA}® g—vedV x {AT})T g, (3.20)
s.t. g=vedG) = 0.
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Algorithm 3.5: NQP for NTD - QALS
Input: Y: tensorly x o x -+ x Iy,
R1, Ry, ..., Ry : number of approximation components
Output: N factorsA(™M e R'"*Rr and a core tensa@ minimize the problem3.17)

1 begin

2 | Random or leading singular vectors to initialize 20"
3 | repeat

4 for n=1to Ndo

5 AW = (G x {ATA},G) |,

6 T =Y x o {AT},6)

7 vedAMT) = ngp (I n® A(”),Vec(T(”)T))
8 end

9 vedG) = nap({ATA}®,ved ¥ x {AT}))

10 until a stopping criterion is met

11 end

According to Algorithm3.2, factorsA(" and core tenso§ can be updated as follows

vec(A<”>T) - nqp(ln®A(”),vec(Y(”)T)), (3.21)
vedG) <« nap({ATA}®,ved¥ x {AT})). (3.22)

Of course, we also have an alternative update rule for rowiaadbrsA(™ which is much low com-
plexity than 3.21)

ai(,:)T — nqp(A(”),vi(::)T). (3.23)

Algorithm 3.5 illustrates pseudo-code of the above learning rules for NIfDpractice, in order to
improve stability and convergence of the algorithm, wezdithe regularized NQP algorithm in sec-
tion 3.4instead of thengp function in Step& and9.

3.4 Regularization for QALS Algorithms

An important point for QALS algorithms is that matricE€", A are well-conditioned. For factor-
ization of collinear factors or in some first iterations, adligional regularization parametgris added
to matrices to ensure the stability of the algorithms. Theupeeter plays a role similar to that of the
damping parameter in the Levenberg-Marquardt iteratione parameter should be initialized by
a large enough value, then slowly descends down to nearatenoeach 5-10 iterations. Finally, the
solution of the NQP problem is slightly modified as follows

X =ngp(Q + ul, b). (3.24)
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Algorithm 3.6: RankK Update Algorithm - K-QALS

Input: Y: tensorly x o x - -+ x Iy,
R : number of approximation components
Output: N nonnegative factor&(™ of size (, x R)

1 begin
2 Random or leading singular vectors to initialize /"
3 repeat
4 for n=1to Ndo
5 repeat
6 R = activeset
7 T — (ATAg}®- .
(m _ O-n (M fAT -
8 Q" =YmAg " Az {AVEAR
9 vec(A;{n)T) = ngp (I I, ® I‘;{n),vec((I);{n)T))
10 until all componentsa,(”) are updated
11 end
12 until a stopping criterion is met
13 end

3.5 Rank-K Update QALS Algorithms

This section aims to derive learning rule to update a subd® oomponents (1< R < R).
Assume thatR = {ry : 1 < rx < Rk = 1,2,...,Ii} is a set ofR indices of components
A;”) = [aﬁf) al ... asg)] e R"® to be estimated. In order to derive the update ruleﬁfé”r),
we split the CP modell(11]) into two parts:

e Atensor consists of all rank-one tensors in which the comptsAgz”), (n=1,2,...,N) do not
involve ¥R = 3 . alP 08?0 0.

e Another part consists of all rank-one tensors which aretcocied from the components;”)
vn): YR =3 a oa@ o 0a™ = 1 x {Ag].

We consider a residual tenstf ) = ¥ — y( R = y(R) L g — 1« {Ag} + &, which is
approximated byR componentsAgz”) along the modex. The cost functionq.1) is rewritten as a cost
function of the factor#\j, as follows

1 ~ R
D(+R) _ Eny( ) _ y(+7?)“l2:

1 ~(+R 1 . R) O_nT
= SIFETR + SIAD AT IR — (Y ARAR T

= L5 4 2ue A0T) (1, 01) ved ADT) - ved @) veo{ AL

(3.25)
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wherel“gz”) = {AfAR}®-n € RRXR, and(I)%”) = ?E:)R){A}R‘” e RI"*R_While fixing the components
af”)(r ¢ R,n = 1,2,...,N) during the estimation process of factdké”), the first term in 8.25
Hﬂ”ﬁ is considered as constant, hence it can be ignored. Thewastetms in 8.25 formulate a
minimization problem in the form of Proble®1

T
min f (a(”)) = %a(”)T ra — vec(cbg‘)T) alm (3.26)
s.t. am > o,

wherell = || ®F§:) e RIRxXIR gndal = vec(Agz”)T). Construction of the residual tensA™®

could demand large-scale temporary extra-storage foretheoty (%), and also high computational

cost due to Khatri-Rao products. To significantly reducectiraplexity, the matrix@(" is constructed
without building up the tensorg(m) as well as¥ %) as follows

®_n
(I)(n) = Y(n)AG_n — A%]) {A%AR} > (3.27)

R -
All the componentsA;”) will be updated using Algorithn3.1. Such procedure will be replicated

whereR = {1:R}\R, A%‘) is a subset of the factax(™ ignored the components(”)

for different subset® until each componerﬂﬁ”) ¥n, Vr should be updated at least once. Pseudo-code
of the proposed algorithm is listed in Algorith&6. The functionngp refers to as Algorithn3.1 We
note that wherk = 1, the proposed algorithm becomes the HALS algorithm ptesein Chapter 1
which updates one componmﬁf‘).

In each loop to estimate the factaf™ (Steps5-10), a set of column indice® will be selected
in Step6. Normally, this selection step will be replicated until &le components should be updated
at least one time. A subs®is anR-subset orR elements. Therefore, there are in tdﬁ@ possible
combinations of selectioR. A simple approach is to proceed the estimation over all thesats
R. This procedure demands high computational cost, but doyttdove the performance. Dividing
the set ofR indices{1,2,...,R} into subsetsR with empty intersections or as least as possible is a
suggested strategy which has low computational cost. weelactR highly correlated components.
An alternative strategy is that for each component indexe sequentially sele¢t = min(ﬁ, R— Ii)
consecutive indice® = {r,r + 1,...,r + K — 1}.

3.6 Summary

Novel algorithms for NTF and NTD have been proposed in theptér based on recursively solving
the nonnegative quadratic programming problems. A variatf the proposed algorithm which is
suitable for low memory or parallel computing is also présdn Moreover, we derived an flexible
algorithm (K-QALS) which sequentially updates a subset cf R < R components of factors. For
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R = 1, the K-QALS algorithm simplifies to the HALS algorithd. Adaptive choice behavior of
the number of components being updated in teQALS algorithm is a possible future work. The
performances of the proposed algorithm are verified f@iadit synthetic benchmarks and also for
clustering and classification problems in Chapter 6. Ouritlym not only works well for dense data,
but also for sparse data without any additional reguldongtarameter as other algorithms. Especially,
the proposed algorithm copes with highly collinear factorke proposed algorithm for NQP can be
applied to any applications involving nonnegative leasiasgs approximation.



CHAPTER 4

All-at-Once Algorithms for Tensor
Decompositions

4.1 All-at-Once Algorithms for CP

Chapter 2 presented the ALS algorithm and proposed a vasfahts algorithm which updates com-
ponents sequentially. We call it the HALS algorithm whichn egork for CP with and without non-
negative and other constraints. However, alternating ke@sares algorithms often fail for data with
different magnitudes of factor®, or collinearity of factors, such as bottleneck when two @ren
components are collinezlf’ 1’1, or swamps in which a bottleneck exists in all motied127172,
Alternative least squares (ALS) algorithms with line skas; regularization, rotation can improve
performance, but they do not completely solve the probleitisat-once algorithms which simultane-
ously update all the factors(" instead of the alternating least square methods are expectope
with this problenf:142143176196202203 * Nevertheless, those algorithms are computationally dema
ing due to construction of gradients and Hessians with dpeall the entries of the factors. Acer
al.* presented the OPT algorithm in the Matlab Tensor tootbexhich fits a CP model to a tensor via
optimization. The OPT algorithf'’ employs the nonlinear conjugate gradient (NCG) method with
Fletcher-Reeves, Polak-Ribiére, and Hestenes-Stietitag®,

aea—ng, (4.2)

wherea is vectorization of all factor& (") defined in (.25, 7 is the step size.
An alternative approach to minimize the cost function isthmped Gauss-Newton (dGN) method
with update rule given by

aea+ (3T +pulpr) T @—3) 4.2)

wherey = ved¥), 4 = vec(ﬂ), J e RULIWX®D) (T = 3" 1,) is the Jacobian of vs{él) with
respect ta, and the damping parameter> 0. Paaterd*® emphasized advantage of dGN compared
with ALS when dealing with problems regarding swamps$tedent magnitudes of factors. We note
that the approximate Hessi&h = JT J is rank-deficient*3144200203 Tg deal with this problem and
to improve convergence and stability of the algorithm, theabian can be forced to be full rank by
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adding additional rows as proposed by Bini and B#toAn alternative approach is to employ the
dGN iteration with a damping paramejer

The Gauss-Newton algorithm can be derived from Newton'shotwet Hence, the rate of conver-
gence of the update ruld.@) is at most quadratic. However, these methods face prohi@rok/ing
the large-scale Jacobian and large-scale inverse of thexipgate Hessiall = JTJ e RRT*RT T =
> In. In order to eliminate the Jacobian, Paatéfestablished explicit expressions for submatrices
of H. We note that inverse ¢ is the largest workload of the GN algorithm with a complexifyorder
O(N3R®13) for factorization of a tensor with, = |, Vn. Paateré*® solved the inverse probler—! by
Cholesky decomposition of the approximate Hessian and satostitution. However, the algorithm is
of order0(10/3R%13) for 3-way symmetric tensor factorizatidg = 1, Vn, and still computationally
demanding. Toma&i® extended Paatero’s resuit, and derived a convenient method to construct
H and the gradient foN-way tensor without using the Jacobian. In order to cope wtlerse of
H, Tomasf%! used QR decomposition. However, existing dGN algorithnessaill not suficiently
efficient for the large-scale inverse problét?.

Recently, Tichavsky and Koldovsk$f have proposed a novel method to compute inverse of Hes-
sian based onR® x 3R? dimensional matrices. For low-rank approximatierk I, vn, this method
dramatically improves the running time. However, the athans still demand significant temporary
extra-storage, and high computational cost due to employmieKronecker products, and it is re-
stricted for third-order tensors.

Another approach is to consider the CP decomposition as r& jiagonalization prob-
lem®611L1175173 However, the method will not be discused in this chapter.

This chapter will derive a suite of low cost algorithms totéaze real and complex-valued tensors
with/without nonnegative constraints based on damped GaustsNédGN or LM) iterations with
convenient computations for the approximate Hessian aadignts. Especially, for low-rank tensor
approximation, we introduce fast dGN algorithms withoutiding up huge approximate Hessians,
and also with elimination of Kronecker products which areenfused in CP algorithms. The pro-
posed algorithms are verified to overwhelmingly outperféstate-of-the-art” algorithms for éicult
benchmarks with bottlenecks, swamps for both real and cexralued tensors.

4.2 Damped Gauss-Newton Algorithm

In this section, we will derive a fast dGN algorithm for loark approximation of tensors with arbi-
trary dimensions. The most important challenge of the wpdde @.2) is to reduce the computational
cost for evaluation of the approximate Hessiand its inverse. We derive a low rank adjustment for
the approximate Hessian and employ the binomial inverseréing” to inverse alNR? x NR2 ma-
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Figure 4.1: lllustration of the approximate Hessian for B ensor which can be expressed as a low
rank adjustmentd = G + ZKZ T as in Theoren#.1 Green dots indicate nonzero elements.

trix which is much smaller thakl € RR2n'nxRXnIn This result allows formulating a low complexity
update rule equivalent to the dGN rue2).

4.2.1 Low-Rank Adjustment for Approximate Hessian

Theorem 4.1(Low rank Adjustment for approximate Hessid). The approximate Hessidth can be
decomposed as

H=G+2zZKzZT, (4.3)

where G is an invertible block diagonal matrixZ is a block diagonal matrix consisting of NR
columns, and kernel matrix is an N x N block of matrices (™™

N

G = blkdiag (r<”’”>®||n) ¥ (4.4)
n=
N

Z = blkdiag (|R®A(”>) y (4.5)
n=

KOM™ = (1 6nm) PrR diag(vec(l“(”’m))), (4.6)

whereénm is the Kronecker delta. The permutation matfixg is defined for an R« R matrix (see
AppendixA4.1), andI'™™ are symmetric matrices defined as

pm _ [rmm)]T _ [rmn)]T _ @ ch. ) ATAM, 4.7)

k#n,m

Proof of Theoren#.1follows from Theorems presented in the subsequent sectiofsgure 4.1,
we illustrate an example of the approximate Hessian fox 4:35x 6 x 7 dimensional tensor composed
by 5 factors of 3 components. The approximate Hessian irefhdand side of Figuret.1 consists of
(N(N — 1))R? rank-one matrices andR? diagonal matrices located along the main diagonad of

In order to prove Theorem.1, we seek for explicit expressions for the Jacobian and theoap
mate Hessian. Partial or similar results have been showrabieR3** and Tomasi®. However, our
purpose and those of Paatétband Tomasi® are quite diferent. Both Paatefd* and Tomasi®
introduced explicit expressions for submatrices of size I, or I, x |, of the approximate Hessian in
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order to bypass the large-scale Jacoliiand to establish fast computationtf but they have not suc-
cessfully solved the large-scale inverse problémt. In this section, our aim is to deal with this hard
problem. Moreover, due to flierent vectorization of factors and to the chapter beingmitained,
the results for the approximate Hessian and the Jacobiahtodm reinvestigated.

4.2.1.1 Explicit Expression for Approximate Hessian

In order to compute the JacobidnandH, we consider the commutation mati of size[ [\_; In x
TN, 1, mapping vetY) = P, veY (n)) and defined in Lemmd.1 This definition is related to the
commutation matrix defined by Magnus and Neudet#eand considered by Tomasit?. However,
they are not the same. Moreover, explicit expressioR.as presented in Appendi&4.2.

From (1.24) and Lemmat.1, the gradient of the vect@ with respect to each componemfp, for
n=12...,Nandr =12,...,Ris computed as

R T
: : oy <@ ask>>
&) avec(y) ovedY ) rzl ken (K)
W - o P/ =P o =P [OaYel, . 48
oa; oay oa; 0ay kzn
wherel | is anl, x |, identity matrix. As a consequence, the Jacobian mdttias a form of43202
oY o o o o o o
P TR T T R H ]
@ GEN oag GEY GEN GEN dag

(o) (g ) - () )

We express the approximate Hesskiras anN x N block matrix, and establish the explicit ex-
pression foH

CHED LA L AN ] [H RO

H=|poD .. gom g | with HOM = Hm o gem g em e (4.10)

1,s r,s
HND oo g(Nm) o H(NN) (r},m) . (r},m) . (r},m)
| | _Hl,R Hr,R HRR |

where blocksH(t™ e RR¥Rin is defined as

~ T ~
0 0
HW = (3> (;y > (m=12..N rs=12....R. (4.11)

oalm oal™

The purpose herein is to establish the explicit expressionblock matricesi—lgf?;m), for vn, Vm,

andVvr, Vs.
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Theorem 4.2. A submatri><|—|§?gm) is a rank-one or diagonal matrix given by

(nm) ()

Hsgm) = 5n,m7§2’n) IIn + (1 - 5n,m) Yrs & agm)T’ (4-12)

(n,m)

wherey, o™ is the(r, s) entry of the symmetric matriX™™ defined in 4.7).

Proof. From @.8) and @.11J), submatricesb—lg,';’”) can be quickly expressed as

.
HEY = ((9 afk)> ®I|n> P’ P, (9 a ®||n> - (H aloT a@) o=y
#N #N k#n

The gradient in4.8) can be rewritten as concatenation of Kronecker produgengby

03y In
J _p [@ e Da¥ e .. (Da¥ ®e|(:)] _lp [@a¥ o™ ’
() k#n k#n k#n Ken In

oay

in=1
where unit vectoel(:) forin = 1,2,..., I, is theiy-th column of the identity matrix,, € RIn>*'n,
Based on Theorem.13 an (in, im) entry of a sub matri>l—|§g’m) forn # mandip, = 1,2,..., 1,
andinp=1,2,..., lyis calculated by
' [ & !
(nm) K MT | pT (k) m)
His 7| = = | Oa” | ®¢ PIP @a®e>
[ rs ]|n,|m [a (n)]In [aa(sm)]Im ((k#n ) 'n ) no (k;tm ° "
= (agN)T R ® aE”H)T ®el(nn)T ® agn—l)T R ® agl)T)
(agN) ® - ® a(smﬂ) ®e|:') ® agmfl) ® - ® a(sl))
- (L (7)) (774 (47 ) =527 el 30
k#n,m
This leads to a compact formula of a block matrl%”s’m) for n # mgiven in @.12. O

The result in Theorem.2is somewhat similar to those introduced by Paat&tor 3-way tensors,
and by Tomagi®® for N-way tensors. Both Paatetd and Tomasi® introduced the results for the fast
computation of the approximate Hessian and to bypass the-krale Jacobiah but they have not
employed these structures of the approximate Hessian tocawe the problem of large-scale inverse
problem. We reinvestigated the results in Theoregin order to establish an explicit expression for
the whole approximate Hessian as a low rank adjustment giv€heoremd.1

Theorem 4.3. A submatrixH™™ (¥n, Ym) has an explicit expression given by

HO™ — 6o (T @ 1),) + (1r@AD) KO (1@ AMT). (4.14)
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Proof. From @.12), a diagonal block matriid (™" is expressed as

ygnln) l, )’Enln) h, 7}(::1”) h, |
H( vi”s”) A, | <reen, (4.15)
7§”R”) I VE”R”) I YECF?) I,

From @.12, by employing 4.95, we vertically concatenate &H(”m (n # m) which have the same
indexr in the same column, then horizontally concatenate thetrethbIocks by using4.98. The
final expression for thén, m) block matrixH ™™ can be written as

y:(Lnim) ag-n) ag-m)T (nm ag-m nm) aR a1m)T 7
H(n,m) _ (nm ag yggm) aEn) agm)T nm) aR a_Sm)T
AT T e AT
_ [ ( ®a" ) DM A ( R®a£n)) D™ AMT ... <|R®ag‘)) D™ AMT ]
- lwok) o) - (o) |5 (oA
_ <|R®A< >) Prgr DM ( ®A<’“>T) : (4.16)
whereD™™ — diag (yE”’m)) is a diagonal matrix whose diagonal entries arertiie row of [(™™,

andD™M = diag (vec(l‘(”’m))). O

By establishing expressions for submatrie€&™, we can straightforwardly prove Theorefrl

Proof. (Theoremé.1) From @.14), we construct a sparse matfxconsisting all block matriceid (™"
locating along the diagonal of the approximate Hessfahd, that is

G (4.17)

— blkdiag (r(”m ®| |n) §

N
blkdiag (H(”m) .
n=1

n=1

From Theorend.3, and by using the product of block matrices, th&atenceH — G can be
straightforwardly decomposed into three matrices definétheoremd.1as
H-G=2zKZ'. (4.18)

This completes the proof of Theorefril ]
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4.2.2 Fast Inverse of the Approximate Hessian H
Theoremd.1allows inversion of the large approximate Hessian via a namshller matri*
Hol=(H+ulr) b= (G, +2KZT) ' =G, ~G,'zB,Z7G,*, (4.19)
with
B,= (K1+2"G,12)™", (4.20)

if K is invertible, or in an alternative form
B, =K (Inre + 27G,1ZK) ™, (4.21)
N
whereG, = G + ult = blkdiag ((I‘(”’”) +MIR) ®I|n) X and its inverse can befiently
n=

~ -1 —1
computed frorrffln’n) = I‘fl”’”) = (F(”’”) + M|R)

N

®h,) . (4.22)

n=1

G, =Gt = blkdlag( e

The following results are used to inverse the approximatestde in 4.19

— Gz - blkdlag( " )®A(”))n iy (4.23)
N
®ch >) : (4.24)

n=1

v-7TG 1Z_b1kd1ag( g

The matrixK can also be expressed as a product of the permutation nitgepand a partitioned
matrix of matriceD™ = (1 — 6, ) diag (vec(r(nﬁm)))
K = (INn®PrR) [D(n’m)] . (4.25)
nm

If all the entrieSyEf’s’m) are non-zeros, the matrd is invertible, and its inverse is also a partitioned
matrix comprising diagonal matrices. Proof is briefly désenl in AppendixA4.3.

4.2.3 FastdGN Algorithm

From dGN rule 4.2), we can replacdﬁ;l by those in 4.19 to formulate the fast dGN algorithm

aeatGI (y-9) - LBLII" (y-39). (4.26)
The Jacobian still exists in the update rude2@), and it could demand high computational cost. We
also note thaB,, is inverse of arN R2 x N R matrix given in @.20) or (4.21), andL , is a block diagonal
matrix of N Kronecker productz{l“ ®A( )) € RRIxF? given in @.23. Construction ot , might
have a computational complexity of oro@l(T Rg) and requires an extra—storage@(T Rg) In order
to completely bypass the Jacobidim (4.26), avoid building up the matrik ,, we seek for convenient
methods for computings,J" (y —j) w=1L}J" (y —j) and product. , B, w.
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4.2.3.1 Elimination of Jacobian

From @.9), (4.22), projection of& = ¥ — ¥ onto the matrixG, *JT can be expressed as

(éyJTve((S))TZ:Vef(S (((g”) >®'>]1
e

_ T4 N
— | vec| Y ( k)> I:(n ) (@A > (@A(k> (n,n)
k#n k#n k#n o1
- TN
= vec( ( k)> I‘(n W AM ) I‘( )>
k#n ne1
- a2 (.27)
where factorA (V¢ = ¥ (kQ)A ")> y andAgBS = A IN‘/(ln’n) are results of the damped
#n

rule (2.5)°! for the tensorsy andY obtained from factor& (. Similarly, we have derived a conve-
nient formula to compute the following projection

w=2"G, 1" ved§) = [vec(A(”)T( Als ~ Als)) ]N '
n=1

:vec([A(mTAg‘) - rf(” ”)]n_l> : (4.28)
wherell = @), C.

4.2.3.2 Elimination of Kronecker Products and Large-scaleExtra-storage for L,

This section copes with computational issues regardingad<ronecker products imt(23, and the
matrix productL, f in which f = B,w. We denote a 3-D tensgf € RR*R*N whose vectorization is
the vectorf € RN®  that is

ved¥) = f =B,w, (4.29)

or eachR x R frontal sliceF, € RR*Ris given by: vetFn) = [fn_1ri1 -+ frirps -+ fnRz]T,

n=1,2,...,N. Noting that( o )®A ) vedF,) = vec(A(”) Fal, o , we obtain
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vec(A(l) Fi ffll’l))

L, f= VeC(Am) anfl”m) : (4.30)

e AEE) |

Each product inside4(30 has a complexity oD (I, R? + R®). As a consequencg,, f in (4.30 has
a complexity ofO (TR + NR®) ~ O (TR?) which is significantly lower thai© (2T R®) for building

up L, and direct computatioh , f. Furthermore, this fast computation does not use any signifi
temporary extra-storage.

4.2.3.3 Fast dGN Algorithm

ReplacingG,J" (y _ 3) LTJT @ _ 3) andL ,B,w in (4.26) by those in 4.27), (4.28 and @.30
reformulates a compact update rule expressed for eachr afon=1,2,....N

AM — AD A (| R — (Fn + r<”’”)) ff,”’”)) , (4.31)

with F,, are frontal slices ofF and f = veq¥) is solution of the inverse problem
f =K (Inre + ¥K) tw, (4.32)
or
f=(K1+w) tw, (4.33)

for invertible K, wherew is given in @.28).

We note that both linear system4.32 and @.33 have computational complexity of order
O(N3R®) if we discard the sparsity and symmetric structures of mesniP; = Iy + YK and
®, = K1+ ¥, while (H+pul)"! has a computational complexity of ord@(R3(3,,1,)3) or
O(N3R313) for a tensor with; = I, = --- = Iy = |. As a consequence, solving an inverse problem
f=K cI>1_lw in(4.32orf = (I);lw in (4.33 is much less expensive than solving the inverse prob-
lem (H Jr,ul)’1 JT e. Moreover, the update rul@@1) does not employ the approximate Hessin
and the Jacobiad. Hence, they are significantly faster than the standard d@dtitnms43200,

Pseudo code of the proposed algorithm based the update4:@® (s given in Algorithm4.1
If components ofA(" are mutually non-orthogonak is invertible, and its inverse can béieiently
computed as in Appendi#&4.3. In this case, Step is replaced by4.104. Although normalization
for factorsA(™(n = N) is not explicitly shown in Algorithma.1, it is always needed after St@8in
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Algorithm 4.1: Fast Algorithm for Low-Rank Approximation

Input: Y: input data of sizé; x o x --- x Iy,

R: number of basis components

Output: N factorsA(™ e R'"*R such that the cost functior2(1) is minimized.

1 begin
3 | Random or SVD initialization foA(™, ¥n
4 repeat
5 forn=1toNdo
6 form=n+1toNdo // K in Eq. (4.6)
8 ‘ K(Om) — gmn) — po o vec(l‘(”’m)) /7 1M — @ ch g — AOTA®D
’ k#n,m
9 end
- ~1

11 l“fln’n) = (I‘(”’”) +,UIR)
13 AV Y (AR ) T // damped ALS £ in (2.5

ALS (n) u ampe actor in (2.5)

k#n

15 Wy = vec(A<n)T Al — rfi”’”)) // Eq. (4.28), W = [wy]
17 p(nn) ffln’n) ®Ccm // W = blkdiag (‘I’(”’”)) in Eq. (4.24)
18 end
20 f= (K1 +‘I’)_lvec(W) // or f=K( +W¥K)  vedW) in Eq. (4.32)
21 for n=1to Ndo // Update AM™ using Eq. (4.31)
23 AP < AD+A® (1 - (Fy +TOD) TM) // vedF) =t
24 end
26 Updateu
27 until a stopping criterion is met
28 end

Algorithm 4.1 A practical normalization is that the energy of the compiaés equally distributed in

all modes. The method often enhances the convergence spibedLdv iteratior?®S.

4.2.3.4 Two Variants of the Fast dGN Algorithm

From @.32), (4.33, we present two variants of the fast dGN algorithm whiclveahe corresponding

inverse problemd —w.

(@) fLM 4. For problem 4.32, ® = ®; comprisesN diagonal matrice$gz, andN (N — 1) block

m<':1trices<l‘(””‘)_l ® C(”)) PrrD™M, for n # mgiven by
@1 = Iy + PK.

Note thatd®; is not symmetric, and its density is given by

N(N-1)R*+NR (N-1)RE+1
N2 R4 B NR2 ‘

do, =
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For 3-D tensor factorizations, the fast dGN algorithm in ethStep20 solves 4.33 simplifies
into the LM-1 algorithm irt®6.

(b) fLM p,. For problem 4.32), we have a sparse and symmetric maixof sizeNR? x NR derived
from (4.6) and @.24)

@, =K 14w (4.36)

AppendixA4.3 presents an explicit form &f ! which is a partitioned matrix afiR* x R?) diagonal
matrices (see Theoref14). Hence, it has onli? R? non-zero entries. The block diagonal matrix
¥ (4.24) is diagonally constructed from (R? x R?) sub-matrices. As a consequence, the density
of the sparse matris, ¢ RNFxNF jg

do, = N’RP+NR' —NR _ R2+N—1.
N2 R4 N R2

(4.37)

Becausab; in (4.34) is not symmetric and less sparse thibg solving the linear system (32
involving @1 could be more time consuming than thatdn33 with ®,. Inverse oK is not expensive
and has explicit expression given in Theordmi4 However, when factor matrices have mutually
orthogonal columnsK has collinear columns and rows, and is singular. We can kwiétween two
variants by verifying whetheF (™™ consists of any zero or close-to-zero entries. In Figdrg we
illustrate structures and properties of the two matribeand®, fora 3x 4 x 5 x 6 x 7 dimensional
tensor composed big = 3 rank-one tensors. We can reduce computational cost afsiey@oblems
(4.32), (4.33 by employing sparsity and symmetric structuresbafand®,.

4.2.3.5 Complexity of the Fast dGN Algorithm

For simplicity, complexity of Algorithm4.1is evaluated for amN-D tensor withl, = 1, Vn.

Step8 computed ™ with complexity O ((N — 2)R?). Hence, building uf demands a complexity
O(3N(N — 1)(N - 2)R?) = O(5N°R?).

Step1l has a cost 0D (NR®).

Step13 computes the damped factod$” at a cost of0 (NIN7R), and is one of the most expen-

sive step in the fast dGN algorithm. We note that the largekisad Y @A(k) is used for

k#n
evaluation of gradient, and exists in all CP algorithms sagALS, OPT.

Step17 builds up the block diagonal matriK with a complexityO (NR?).

Step20 solves the inverse problerd.@2) or (4.33 with a cost ofO (N3RP). This step is much faster
than inverse of the approximate Hess@{N3R®I%) due toR « I, = 1 or NR< X In.
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Figure 4.2: lllustration of structure ™ R% x NR2 sparse matrice®; and®, fora3x 4 x 5x 6 x 7
dimensional tensor composed By= 3 rank-one tensors. The matudx, is less sparse than the matrix
®,. Blue dots denote nonzero entries.

The total expense of the fast dGN algorithm per one iterationpdate all the factor&(™ is

approximatelyO (NIN"IR + N3RP). ForN > 7, the proposed algorithm has the same order of com-

plexity as that of ALS. However, fast dGN requires less tiers than ALS. Hence, it converges faster
than ALS.

4.2.4 Damping Parameter in LM Algorithm

The choice of damping paramejeim the fast dGN algorithms4(31) affects the direction and the step

sizeAa = H,,* gin the update rule4.2): a < a + Aa'%. In this chapter, the damping parametés

updated using thefiécient strategy proposed by Niels€f

H

1
2max{§,1— (2p—1)3}, p >0,

2u,

la—1l? — a3
AaT (g+puAa)’

V€C<Y (1) (@ A(k)

) AW r<1’1>>

vec(Y(N) (

k#1

k#N

’

otherwise

@A(k)> —AN) F(N,N))

N
€ RRZn-aln,

(4.38)

(4.39)

(4.40)
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whereg = vec(;ll — ;flt), the gradientg can be straightforwardly derived as #.27) or in200202,
The factorsA(™ will be updated unless the new approximate ergof)(is lower than the previous one:
|le]l2 < |e—1]2. The algorithm can stop whenincreases to a siiciently large value (e.g. £6). In
practice, factor& (" are often initialized usin leading left singular vectors of the tensor unfoldings
along the corresponding moté%1%6, then run over ALSZ.2) after few iterations. According to the
CP model £.21), all the component (m (n # N) except ones of the last factor are unit-length vectors.
The initial value of the damping paramejeis chosen as the maximum diagonal entryHoas

Ho rmax{diag(H}) = rmax{diag (I‘(“)) ... diag (F(”v”)) .- diag (r(NﬁN))}

Tmax{l,diag (C(N))} , (4.41)

wherer is typically in the rangd10-8, 1].

4.3 Damped Gauss-Newton Algorithm for NTF

This section extends the dGN algorithm for CP to NTF. Paafénoroposed the PMF3 algorithm for
NTF which minimizes the cost functior2(l) with a logarithmic penalty function to prevent factors
A™ reaching zeros. In order to derive the fast dGN algorithmN@#, we consider a similar cost
function @.1) with additional penalty termB; andPs to enforce nonnegativity and sparsity constraints
on factorsA(", respectively,

D: = DWW, {AM}) +P({AM}) + Ps({AM}), (4.42)
N In R N

Pl= =Y any, Mlog@y), Ps= 3 6 |A X (4.43)
n=1 in=1r=1 n=1

where parameters, > 0 andB, > 0 forn = 1,2,...,N. The update rule derived from the cost
function @.42 simultaneously updates all the factér$) based on the damped GN iteratiah2) 13,
and can be expressed in a common formula as

a—a—(H+u)™g (4.44)

N

wherea’ = [veo(A(”))T] SR> 0 is the damping parameter. The gradigrdnd the approximate
n=

HessiarH are given by

N T

~ 0Py oP ~ o[—1] T
_ T s 4T
g =J@-y+ =t e @ -y - [(an vec(A(”)) —,3n> ]nl , (4.45)
P %P N o[-2]
L s _ g7 (n)
H J' I+ " + 2 J' I+ n(—?ldlag{an vec(A ) } (4.46)
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3= [ Puar=en) o Py A oIy | (4.47)

where ‘(P denotes a direct sunA @ B = diag{A, B}, and[x]*["! denotes element-wise powers. In
the sequence, we present mofigogent computation methods for the learning rutedd) for NTF.

4.3.1 Fast Computation of the Gradient g

From @.40, by denotingF™ = Y, {A}®-" — AL, the gradient4.45 can be expressed as a
concatenation vector without using the Jacohlan

N

. ) e T
g = vec(—F( ) — ap (A( )) +/3n> - (4.48)
n=1

4.3.2 Construction and Inverse of Approximate Hessian H

The approximate Hessiah, = H+-ul can be expressed as the concatenatidd lpk R I, dimensional
block matriceH ™™ asH + ul = [Hfl”’m)].

Theorem 4.4(Expression of block matriklfl”’m)). A diagonal block matri>k—|£”’”) can be expressed by
. o[-2]
HM =T @ 1, + dlag{an vec(A(”)) —i—,u}, (4.49)

and a block matrix ™™ for n + m is given by

HM™ = (1r @ AM) PrrdiagvedT™™)) (1r @ AMT), (4.50)
wherel ™™ = (%) AT A® andPgrris a permutation matrix oK: vedX) = PrrvedXT).
k£m,n
Proof. Proof is directly derived from4.47) and @.46) and Theorend.3, O

Theorem 4.5(Low rank Adjustment for the approximate Hessldp). The approximate Hessiaf,
can be decomposed under the form as

H,=G+zZKzT". (4.51)
wherekK is defined in4.6), and matricess € RTR<TRandz e RTR*R are given by

(6969 < )+ diag{ana”) " +u})> PT, (4.52)

n=1ip=1
N
Wy (IR®A(”)) , (4.53)
n=1

N
in whichP = (PPgy,, PrJ, is @ permutation matrixyedX) = Pg;, veqXT).
n=1
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Proof. Proof is derived from Theore#h.4and Theorend.1 O
Theorem4.5allows to inverse the large approximate Hessian via therbiakinverse theorefff
H,'=Gl-G1lz(K'+Z'Gc 12"zt (4.54)

We note thats—* can be @iciently computed as

N In
Gl =p (@@ @§”>> PT, (4.55)
n=1ip,=1 "
™ (*-2 -
where®," = (F(”’”) + diag{ana]-n: +u}> . The inverse of the partitioned matri has an
explicit expression given in Theore#n146”.
Products of matrices iM(54) can be computed as

N
L=G1zT = P (@T(n)> (IN ® PrR) , (4.56)
N
Z2'c1lz = | N ® PRR (—B | N & PRR) (4.57)
where (MW7 [a] ®®(”)T] v andw® = [WE”S)] is a partitioned matrix of sub-matrices
In in= ,

WE”S) = Zil:=1 | ajnrajns, forr=212,...,Rands=12,...,R
From @.48), (4.54), (4.55), (4.56), (4.57) and Theoren#.14, the update rule4(.44) is formulated
in a more dicient form as follows

a—a-Glg+Lo (LT g), (4.58)

where® = K1 +ZTG-1Z e RNFXNR We note that for low rank approximatid® < In, Vn, the
matrix ® is much smaller than the approximate Hessiaa RRT*RT. Inverses of the matris requires
computational complexity of orded(N3 R?), while (H erl)’l has a computational complexity of
orderO(R3T3) or O(N3 R®13) for a symmetric tensdr = --- = |y = |. As a consequence, solving an
inverse problemw = @1y, = LT gin the update rule4.58 is much less expensive than solving
the problem(H +,u|)_l g in the update rule4.44). Moreover, because the learning ru#e58 does
not need to construct the approximate Hesslaand the Jacobiad, this update rule is significantly
faster than the ruled(44).

4.3.3 Selection of Barrier and Sparse Parameters

Paaterd*® suggested an heuristic approach to control the barrienpeigae = an, Vn. The parameter
a should be initialized by a large enough value, then slowkcdads down to near-zero after each 10
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iterations. This strategy idiecient in almost all cases. However, we cannot control thee@gence
speed. An alternative approach is to adaptively selectiaggation parameters based on the Karush-
Kuhn-Tucker (KKT) condition. In this direction, Rojas andefhaug updated barrier parameter at
each iteratioh’. Ding et al. derived an optimal formula for regularization parametersrthogonal
NMF55. The sparsity parametess are often fixed to a small enough value. By employing this weth
regularization parametets, andg, (Vn) are selected based on the KKT slackness condition

a>0, aeg=0, g=0. (4.59)

From conditions4.59, and the gradient4(48), we obtain
A @ (F(”) +an <A<n>)'[_l] _ ﬁn) = 0, vn, (4.60)
F 1 (A<”>)'[7 ! s < 0, wn (4.61)

This leads to solve a constrained LS problem

BO) x < uM,
mxin||B(”)x—u(”)||§ suchthat{ Xsu vn, (4.62)

X = |an ﬁn]T >0,
whereB™ = [1 ve —~AM)], andu™ = veq—~A™ @ F™).

For NTF without the penalty ters, conditions 4.59 lead to the resulA™ @ F™ + ¢, < 0, Vn.
The parameters, can be chosen as

an = max(O, min (vec(—A(”) ® F(”)))) ., vn. (4.63)

4.4 Complex-valued Tensor Factorization

This section aims to extend the dGN algorithms to compldnedhtensors. Although a real-valued
tensor is considered as a complex-valued tensor with zeagimary part, for simplicity algorithms
for real- and complex-valued tensors are introduced inpausge sections. For the complex case, CP
model is to find complex-valued factapg" e C'n*R,

The damped Gauss-Newton-like update rule2) is rewritten to update complex-valued fac-
tors76:189

ae—at (@)t @—3) (4.64)

where symbol H” denotes the Hermitian transpose, and the Jacobiangiven in @.9). The ap-
proximate Hessiail = J" J slightly changes from that for the real-valued tensors4ini@. A fast
and dficient computation method for the complex-valued Hesklanill be presented so that the final
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update rule does not employ both of the Jacobian and the dpmate Hessian. The explicit expres-
sion of the approximate Hessi&his deduced from the following theorems which can be deriveal i
similar manner presented in the previous sections.

Theorem 4.6(Block matrlcesH (n m)) Block matrlcesH( ™ of the approximate Hessiat are diag-
onal or rank-one matrices glven by

(m) H

HE™ = Snmne™ 1, + (1= 6nm) yie™ & al (4.65)

wherey("" are the(r, s) entries of the Hermitian matricd&™™ = k@ AWH A,
#Nn,m

Theorem 4.7 (Block matricesH(™™). Block matricesH™™ of the approximate Hessiad are ex-
pressed in an explicit form as

HO™ — 6,0 ®D @ 1), + (1R@AM) KO™ (1@ AMH) (4.66)

whereK is defined as in4.6).

Theorem 4.8(Low-Rank Adjustment) The approximate Hessiad = J" J can be expressed as a
low-rank adjustment given by

H=G+zKz", (4.67)

where sparse matriceS, Z andK are defined as in4.4), (4.5 and @.6).

The damped Gauss-Newton algorithms for complex-valuesotefactorization are stated in fol-
lowing theorems:

Theorem 4.9(damped GN algorithm for complex-valued tensor factorizes) The factorsA(™ are
updated using the rule given by

a « a+ (H+uh)™g, (4.68)

where the approximate Hessia is defined in Theorem4.6 or 4.7, and the gradienty € CRT is
computed as

N

;
;
g= vec(Y(n) (@ A(k)*> —AM r<”’”>T> , (4.69)

k#n
n=1

where symbol *’ denotes the complex conjugate.

Theorem 4.10(Learning rule for low rank approximationfor NR < T, the factorsA(" are updated
using the fast update rule given by

a <« a+aALS—&AL5—LﬂB#W, (4.70)

whereB, = (K~1+2z"G;1Z) 'if K is invertible, orB, = K (I +ZHG;1ZK) 7, L, is defined
in (4.23, and an Levenberg-Marquardt regularization parameterand vectorw is computed from
damped ALS factorsfs and Al
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w o= vec([A<”>H (AN —AS{‘BS)]:'1> : (4.71)
e = Yo (@A) (0 )™ @72)
AQs = AOTeDT (penT |)_l. 4.73)
We note that ALS for complex-valued CP with damping parameis given by
AV — Y (g?n A<k>*> (rm”)T + |)71. (4.74)

The update rule4.70 can be reformulated for each facf” as

-1
A Ag‘gs +AM ('R _ (Fn + F(n,n)T) (r(n,n)T +H|R) ) , (4.75)

whereF, is defined in 4.29. Kronecker product has been eliminated in building_yp

4.5 Damped Gauss-Newton Algorithm for Tucker Decompositio
Most algorithms for Tucker decomposition minimize the dosiction

DG x {A}) = |Y — G x {A}|3, (4.76)

via alternating optimization which often accompanies updales with low computational cost, but
face problems of slow convergence. For NTD, the multipheaalgorithmg7103131 gre based on min-
imization of the squared Euclidean distance (Frobeniusmhand the Kullback-Leibler divergence.

All-at-once algorithms which simultaneously update a#l factors cope with such problems. For
Tucker decomposition and NTD, due to high computational cb&ronecker products and consump-
tion of extremely large temporary extra-storage, the dGhkhoethas not yet been considered.

In this section, an all-at-once algorithm with low comptgxwill be derived for Tucker decompo-
sition withywithout nonnegative constraints based on the damped Géaston (dGN) iteration. A
logarithmic barrier penalty term has been imposed on thefanstion @.76) to enforce nonnegativity
constraints. The proposed algorithm is verified to overwiiregly outperform “state-of-the-art” NTD
algorithms for dfficult benchmarks.

The proposed algorithm minimizes the cost functidrv @) with a logarithmic penalty function to
prevent factoré\ (") and the core tens@ reaching zeros.

D, = D(Y|G x {AM}) —aP({AM},G), 4.77)
N In Rn
= >3 Dlog@™)+ > log(gr) . (4.78)

n=1lip,=1r=1 r=[r1’r2 ,,,,, rN]
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wherea > 0, ai(:r) andgr = Orr,.ry are elements of facto’s(" and core tensog, respectively. The
update rule derived from#(77) simultaneously updates all the facté$) and the core tens@ based
on the damped GN iteratidf? given by

a—a—(H+u)tag, (4.79)

whereaT — [Veo(A(l))T Lo ved AT ,vec(g)T],y > 0 is the damping parameter, ahds the
identity matrix. The gradieng and the approximate Hessiahare given by

. oP . e

g = JT@—j)—aa—aI:JT@—:y)—aa[l], (4.80)
2

H = JTJ—Q%:JTJJradiag{a'[_Z]}, (4.81)

J o= [3 3 - In Init ] (4.82)

5 - Pl ({A}®G'®11,), n=12...,N, (4.83)

The Jacobian matrid € R x (X1Raln) can be directly utilized in the learning rulé.79. How-
ever, this demands high computational cost for constrmaifdhe approximate Hessidhl + ul) due
to high computational cost of Kronecker products. In theusege, we present moréieient compu-
tation methods for the learning rulé.79.

4.5.1 Fast Computation of the Gradient

From @.83, forn=1,2,..., N, we have the following result

R-3)

(R} TG ®11) P ved ¥ — )
= veq(Ym — Y(m) {A}®"TG)
= ved(¥ x n{AT} =G x n{ATA},G) ), (4.84)

where(Y, ;fl>,n denotes contracted product betwegn¥ along all their modes except modeTen-
sor products¥ x_, {AT} andG x_, {ATA} are defined in1.4) and can be ficiently calculated
over a hierarchical stage of tensor-matrix multiplicasiof his avoids Kronecker products which are
often computationally demanding, and consume significampbrary extra-storage. For example,
Kronecker product$A}®-n produce large-scale matrices of sizg ., Ik x [ ., Rc. Therefore, ten-
sor productsY x_n {AT} andG x_n {ATA} are much less computationally expensive than products
Yy {A}®T, Y () {A}®—T. Moreover, we don't need to build up the tendpin (4.84).

Similarly, we have

N @ —j) = ved¥ x {AT}— G x {ATA}). (4.85)
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From @.84) and @.85, we established a fast computation for the gradgmiithout computing the
Jacobian].

4.5.2 Construction of Approximate Hessian H

This section presents a low computational cost method td logi the approximate Hessian given in
(4.81). For simplicity, we construct the approximate Hesskin= J'J without the regularization
term which can be expressed as concatenatiofNof 1)2 block matricesH™™ = HMNT m n =
1,2,....N+1las

H@D ... H@N+D

H = : : . (4.86)
H(N+1,1) H(N+1,N+1)

4.5.2.1 Qf-Diagonal Block Matrices H™™ (n % m)

Without loss of generality, we consider submatrit€&™, for 1 < n < m < N. From @.83), for
n=12,...,N, we have

I = Pru, (1, ® Gy {A}®"T) Py, Pr
Protn (11, ® Gmy) (11, ® {A}®T) Py k, Pn

= PRy (1, ®G(n)) (PipRerin @ IRin ) ( ®Q ANTI, ®®A k)T> (4.87)
k=n+1
whereKn = [Ty Ik Raran = [Tkeni1 Ro Rin1 = [ 151 Re 1 is and x Jidentity matrix. Permuta-

tion matrlcesPRn s Pk, @ndPy g .., are defined in AppendiR4.1: ved X, 3) = Py 3 vec(XI XJ)
Let Q(™ denote the matrix product i@ (87)

G(nl)
(n)
Q(n) = (I In ® G(n)) (PlnaRn+l:N ®IR1:n71) = : > (4.88)
~( |n)
Gy
whereG(”'”) (in = 12,...,1h,n = 1,2,...,N) are the moder matricized versions ofN + 1)-

Q)
dimensional tensoré(ni”) of sizeRy x Ry x «++ x Ry x I x Ryy1 x -+ x Ry in which the tensogg

is a subtensor obtained from the tenéﬁ?i”) by fixing the(n + 1)-th index toi,, and other entries are
set to zeros, that is

O'n 1)x l_[ 1Rk
Gy = | vedg)

(n+1) (4.89)
O('ﬂ*'ﬂ) XHk:l Rq
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For each pair of indiceg, m), we define a set afN + 1) matricesB™ given by

(AR TAK), 1<k<n,
AMT K=n+1,

BR = JAKDTAKD  nyo<k<m,
Al K=m+1,
AKDTAKSD  my2<k< N+ 1L

Note that for simplicity, indices, m are omitted in matriceB®. We have the following expression

forl<n<m<N

n.n ®-n\T gMm) T _ - T (M) T
({B} ) (m) (Q X_<n21> {B} Xmit1 AM Xn41 A > G(m)
m+1 (n)

(rw(n,m) X1 ai(nT)T X1 a]_(r:)T) o G(Tm)’ (4.90)

wherew ™™ = G x o
7(mi1

Ry % 1 % Ryp1 % --- x Ry. We note that ve(@G) = vedG).
From (4.83), (4.87), submatricesd ™™ = JI' J;, . n < mcan be expressed as follows

> {B}, andG is an augmented version of the tengpof sizeR; x - - - x

N
P HM P (- = éE:)”) (( ® A(k)TA(k)> AMTg

k=m+1

(K)T A (K) (KT A (K) (M) T
(@A A >®A (@A A >>G(m)

k=n+1 k=1
Q" (B} T} QT

_ [ (Min) {{B}® nT} G(mm ] in=1,2,...,In
im=12,...Im

[<w(n,m) ;m+la1(nT)T X il a](:)T’ g>7n’7m:| =120 (491)
im=12,...Im

where(Y,G) ,, ., denotes the contracted product along all modes except méatetensory, and
except moden for the tensorg. Similarly, we straighforwardly express submatridg¢&-N+1)

J! Ing1 as follows

| (Z(”) ><n+.1 a&?)T)(n) |

(nN+1) _ (n) (mT
H = PRan (Z ><n+.l a1n: )(n) , (492)

i (Z(n) X”+.1 al(::)T)(n) ]

wherez™ = G () (ATA}.
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4.5.2.2 Diagonal Block Matrices H™"

A diagonal block matrixd (™" = JT J,, can be expressed by

.
L) _ {(g x n{ATALG) ®l,, n#EN+1, (4.93)

{ATA}®, n=N+1

From @.91), (4.92, and @.93, the approximate Hessiah = J"J is fully expressed by products
of tensors and contracted products. We note that matA€8SA (™ have size oR, x R,, and much
smaller than matrice&(™ due toR, « I,. This construction avoids computing large-scale Jacahjan
and Kronecker products of large-scale matrices sudid8— or {A}®.

Finally, from Sections4.3.1) and @.5.2 we completely bypass the Jacobian and establish a much
faster computation for the approximate Hessian and theiggrathan their conventional approach
given in @.81) and @.80. Moreover, the proposed method does not demand signifteamporary
extra-storage. Selection of the regularization paramet@nd the damping parametercan employ
methods presented in Sectioh®.4 4.3.3'6%16°% For nonnegative Tucker composition, the gradient
and the diagonal of the Hessian are modified a4 i@ and @.81).

4.6 Summary

Most CP and Tucker algorithms incorporated with line-skedechniques work well for general data,
but often fail for highly collinear data with bottlenecks swamps. In this chapter, a suit of robust
all-at-once algorithms has been proposed based on the -Glawgsn iteration. However, because the
approximate Hessian matrices are rank-deficient, the dar@dé (or LM) method has been applied.
The proposed algorithms can work with complex-valued tensand especially are robust for highly
collinear tensors. Extensive experiments for tensor fazttions and in CDMA application in Chapter
6 showed that our algorithms overwhelmingly outperformatstof-the-art” algorithms for dicult
benchmarks with bottlenecks, swamps for both real and cexnalued tensors.

A4.1 Appendix: Permutation Matrix

Vectorization of anl x J matrix X can be arranged from its transpose maiix by anlJ x 1J
permutation matriXP, ;: veqX) = Py j vedXT) with Py, = Ply= P, 3°%. The following properties
are frequently employed in this chapter.

Theorem 4.11(Interchange in Kronecker proddé). Consider the permutation matricé% p and
P1g, andA € R"*J andB € RP*Q. Then

A®B =P, (B®A) Pio. (4.94)
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Theorem 4.12 (Concatenation of Kronecker productsfoncatenation of the Kronecker products
forms a Kronecker product of the concatenation matrix

[A®C D®C|] = [A D]®C, (4.95)
[A®B A®C|] = (A®[B C])P, (4.96)

whereA € R'J, B e RP*Q, C e RP*RandD e R'*X andP denotes a permutation matrix.

Proof. Proof of @.95) is directly derived from the definition of the Kronecker guwst

[A®C D®C] = [a®C -+ ay®C di®C --- dk®C |
= [a.]_ --- a3 dp - dK]®C=[A D]@C (4.97)

By employing Theorerd.11, the second concatenatiofh.96) is proved as follows

P
A®E AaCl ~ [Pl (BOA)Pos PE (COA) Pri] =L (B Cloa) | P27, |

— PLPr (A®[B C]) Ph,g, [ Pas PR ] —(A®[B C])P.

HenceP = PB+R’J blkdiag{Pq,J. Pr 3} o

Theorem4.12can be generalized to concatenate multiple Kronecker gtedé-or a special case
in which the second terms in the Kronecker products are w&otee have the following expression

[A®Qby -+ A®Dby -+ A®bg | =(A®B) Pyg. (4.98)

A4.2  Appendix: Commutation matrix P

This appendix presents connection between vectorizatibtensor unfoldings via a permutation ma-
trix. The commutation matri®, often exists in construction of the Jacobidand the approximate
HessiarH in dGN algorithms for CP, NTF and Tucker decomposititsfd°.

Lemma 4.1. (moden to mode-1 unfolding) Commutation matriP, mapsveo(A(l)) = vedqA) =
PnvedA ), given by

j
Pn=lippun ® Pty o With iy = [l (4.99)
k=i

Theorem 4.13(Permutation in a Kronecker product)ultiplication of P, with a Kronecker product
of N vectorsal e R, (n = 1,2, ..., N) will move the n-th itena(" to the last location, that is

(a<N> ®---®a?® a(l)) — P, (a<N> ®--@ad™gaNg...9a? g a(n)) . (4.100)
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Proof. We assume a rank-one tengicomposed b\ componenta(”), forn=1,2,...,N. Noting
that ve¢X 1)) = Pn veq(X(y)), we have

]
vedX ) = Vec(am) (Mo -0d el e.. .0ad) )

- aVg..eadmadVg...0ad gam (4.101)
= P;'; Vec()((l)) — PI(a(N) R ® a(n+y) ® a(m ® a1 R ® a(l)) (4.102)
The proof follows directly from4.101) and @.102. O

A4.3 Appendix: Inverse of the Kernel Matrix K

Lemma 4.2. Inverse of a sparse block matrik = [V(*™] V(M — (1 — 5, )z isan Nx N
block matrixV with

~ 1
Jnm _ (N - - 5n’m> lee. (4.103)
N N 1
Proof. It is straighforward to prove thaE \VALDAVICU) Z (— — 6n,|> (1—6mlge =
=1 =1 N-1
6n’m I RZ . O

Theorem 4.14. Inverse ofK defined in 4.6) is a partitioned matrixk = K1 whose block ("™,
forn=1,..., N,m=1,...,N are given by

R(m — (ﬁ . 5n,m> diag (vec(c:(”) eCM r)) PrR. (4.104)

Proof. Each blockk ™™ — (1 — 6, )PrRr diag (vec(l*(”’m))) in (4.6) can be rewritten as

KM — (1 —§,m)Prr diag(y) diag (1 @vec(C(”))) diag (1 %) vec(C(m))) :

whereC(™ = AMTAM T = {C}®, y = vedI'). Therefore, this matri¥ can be decomposed into
product of matrices

K = (In® (Prr diag(y))) diagig) v diag(B) (4.105)
N T
whereV is the partitioned matrix defined in Theorett?, andg = 1@ [veo(C(”))T] | - Hence,
n=
inverse ofK is given by
K = K™t = diagg) 1V diagiB) * (In ® (diag(1 @ y) PrR)) - (4.106)

By replacingV —?! given in Lemma4.2to that in @.106, we obtain

RMm  —  diag (vec(C(”))) v diag (vec(C(m))) diag(1@ ) Prr

( ! —5n,m) diag (vec(d”) ®Cm @r)) PRR. (4.107)

N—-1



CHAPTER 5

Large-Scale Tensor Factorization

5.1 Introduction and Problem Statement

This chapter presents CP factorization suitable for lacme problems and fast parallel implemen-
tation. The proposed model and algorithms solve till nowaictiable problem for arbitrary high di-
mension and large-scale tensors. We divide a given datartaris a grid of multiple sub-tensors (see
Figure5.2). We factorize all the sub-tensors independently by usfigient CP algorithms in parallel
mode and next integrate partial results for the whole tettsestimate desired factors.

The developed model is referred here to as the grid-tenstwrfzation (gTF). The simplest case
of the gTF is factorization for a large-scale tensor pani¢id only into two sub-tensors. If one sub-
tensor is considered as a new data coming and expandingrieat(actual) data along a single mode
(usually time), the problem is referred to as the dynamisderanalysis (DTA) or dynamic tensor
factorizatiort®191, This problem also often arises in factorization of a tranilataset.

Tensor factorizations can be used as dimensionality reugiethods in multiway classification,
and factors are bases to project a tensor data onto thedeatbspace. In practice the training data
is often augmented with some new samples, hence the basissféar the expanded training tensor
need to be updated. A simple way is to factorize the new whalaibg tensor again. However, this
approach demands high computational cost. A convenientisviat we update the old bases with
factors of the new coming data.

The proposed algorithm calculates Hadamard products,ipticdition of small matrices, and
avoids Khatri-Rao products. Especially, this new algonithpens new perspectives to find nonnega-
tive factors for the very large-scale nonnegative tenswsis potentially useful in many applications,
such as those in neuroscience and data mining. For spedificsilech as spectral data, images, chem-
ical concentrations, in order to provide meaningful repnésation and clear physical interpretation,
sparsity and nonnegative constraints are often imposeldednidden factors. The extracted basis com-
ponents are part-based representations of the nonnedateHowever, the constrained nonnegative
CP, also called Nonnegative Tensor Factorization (NTFpisguaranteed to converge to a stationary
point. Hence, the NTF often needs to be analyzed with maaistrand diferent regularized values
to choose the desired solutions. This demands high conigmeiaicost due to often accessing to the
input data. In practice, a large data tensor can be well egaleby CP factors, then it is moréieient
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A(Z)
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Figure 5.1: lllustration of the dynamic tensor factoripatifor two sub-tensors. The purpose is to find
the common factors for the concatenated tedé@onstructed from two sub-tens¥&” andy @ .

Data

CcP

A(1)

to store the hidden factors, and process them instead oftibeewdata tensor. The ALS CP algorithm
is a “work-horse” algorithm®106203 However, it is not suitable for very large-scale problergsy.
using the estimated factors by the modified ALS, we develepviry fast algorithm to retrieve the
nonnegative factor hidden from a data tensor.

An important key factor for large-scale factorization iakexation of stopping criteria to control
convergence. The cost function value or the fit error is ofteed. However, for a large-scale tensor,
an explicit computation of the cost function value is impblesdue to so much memory requirement
to build up the approximate tensdf. We derive a simple low complexity formula for stopping eria
applied to the grid tensor factorizations.

5.2 Dynamic Tensor Factorization

For simplicity of explanation of our basic concept, we sha#it consider the grid CP for a three
dimensional tensor partitioned into only two sub-tensoféis model can be also considered as a
Dynamic Tensor Analysis (Factorization) in which data igrmented along a single mode.

Problem 5.1(Dynamic Tensor Factorization)
Consider two data tensod® € R!*IxKi y() ¢ RIxIxKz with their approximated CP models:

YO~ 7 x; AW x, BO w3 c®, k=172 (5.1)

whereA® e R'*R BK® ¢ RI*Rc and C) e RK«*R« The problem is to find CP factors for the
concatenated tens@/ € R'*J*K (with K = Ky + K3):

y%IX]_A XzB ><3C, (52)

without repeating all computation from the beginning, bsitig already known partial results (factors).
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The easiest way is that we factorize the concatenation texgsin. This method provides accurate
results. However, for large-scale data, this is not a sl@tatlution due to high computational cost. In
this section, we present three methods to deal with thislenot3°. The final learning rules of all the
methods are identical.

1. By minimizing the cost function for the concatenated ¢ens

2. By adopting or modifying the ALS algorithm for the conasdied tensor represented by block
matrices.

3. By concatenating factors of sub-tensors and then regdh@number of components.

5.2.1 Approach 1: By Directly Minimizing a Cost Function

Assume that the concatenation tendbican be factorized bR componentsA € R'*R B ¢ RI*R

!
andC e RK*R_If we split the factorC into two matricesC = [C(Tl) ng)] , Ciy € RF*R and

C(2) € R¥2*R, the subtensor& ™ andy® are now approximated via their common factors as

y(l) = IX]_A XzB ch(l), (53)
Y@ = Ix1Ax2Bx3Cp. (5.4)

Generally, a tensor factorization can be solved by miningiza cost function of the concatenation
tensor and its approximation, that is

2
1 1
D = J|¥-Ix1Ax2B x3C|2 = 5 M Y® — T 51 A x2B x5 Cpo?
k=1
k)
- 3 Z IYig) ~A (Co @B)" [ (5.5)

In order to find the learning rule for factér, we formulate the cost function in the mode-1 matriciza-
tion (5.5), and compute its gradient with respect&o

2
VaD = Y (-Y{}) (C©@B) +A (Ch ©B)" (Cry @B))
2
Kk
= > (—Yglg (C©B) +A (C(Tk)c(k)) ® (BTB))
2
= 3 - (cwoB) +A (CTC)e (B7B) . (5:6)

By replacing¥® and¥® in (5.6) by their approximations in51), and setting %.6) to zero, we
obtain an update rule fak
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>

T
R
M~

T

A <C<k>es>><<cTc>@ (&"8))

T

Il
R
MI\J

1A<k) (c<k> o B(k))T (Ca @ B)) ((C'c)e (B"B)) *

_ A (P (K) ) -t
(;A (P @(A TA)) Qo (ATA)) ™, (5.7)
where
Pl = (AWTA)e (B%TB)e (CTC) (5.8)
Q = (ATA)e(B™B)e(C'C). (5.9)

Similarly, learning rule foB is given by

B« (ZZ] B8Y (PO g (B<">TB))> Qo (87B)) . (5.10)

k=1

FactorC is estimated via partially updatirg;), andC ;). The ALS learning rule to updaté, from
the tensoy ™ is given by

Ci « Yiy (BOA) ((BTB)® (ATA))™ =¥ (BY @A(k))T BOA) ((B"B) @ (ATA))

=c¥ (PP (c®Tc)) (o (cTe)) . (5.12)

We note that matriceB®) ¢ RR>*R andQ e RR*R are relatively small size. Hence, the learning rules
(5.7), (5.10 and 6.11) are low computational cost.

5.2.2 Approach 2: By Modifying the ALS Learning Rule

FactorsA, B andC can be estimated by using the ALS algorithtn?] for the concatenation tensaf
A <Yy (COB) ((CC) e (BTB)) . (5.12)
By using the following relation, we can convert the ALS udaile to one given ing.7)
_ [y® y® (1) ® y@] | Ca©B
Yo (CoB) = [Yq) V] ([ Co) } © B> Y@ &) [ Cp OB

ZAU‘( ">@B<k>) Cg @B) = ZA(" ((c¥cyy) e (8Y78)).
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5.2.3 Approach 3: By Concatenating Sub-factors

Another method to find factors of the concatenation tedfds that we build up a factorization from
concatenation factors. The following lemma will show ttastbrization.

Lemma 5.1(Concatenation of factors)lensor is factorized by factors d® = R; + R, components

~ ~ ~ (1)
A=[A® A@ ]~ B=[B®» B@], C= [ ¢ c® ] (5.13)

that is
Y=7x,Ax,B x3C. (5.14)

Proof. We consider the mode-1 matricized version of the concatangétnsory

1 2 T T
Yo =] Y5 Y3 | =] A0 (o)’ A® (@ oB@)" |

W oBW)'
_[ A a@ 1| (CPOBY)
@ A® CW1 S gw 01.50) ]
w ao1] [EP w21 —i(Eod"
= [AD AB@)] co|@[BYB@ ]| =A(CoB) . (5.15)
This leads to a tensor factorization 8fB andC for the tensot/ given in 6.14). a)

Lemmab.1 ensures that any large-scale tensor can be factorized lmatmorating factors of sub-
tensors. However, the combined factors often have highws ttzan that we need. The next update
rule will help us to findR componential factors from factoss, B, C.

FactorA can be updated by using the ALS learning rie2) for tensorY as

A—Yq (COB) ((CTC)o (B7B)) "=A (€ ( 8)'(coB) ((C'c)e (B7B))
-A ((€7c)e (8™8)) ((c'C) o (BTB))
—A (PO (ATA)) (Q@ (ATA)) ™, (5.16)
where

P=(ATA)e (B"B)® (C'C) . (5.17)

We note that the learning ruleS.), (5.16) are identical due to the following relations
~ T ~
2T c@ Cwl _ coT Cu
e { CAJ [Cal [C¥TCy |”

- SRR | BOTB
3% - 6 821 8~ | Zorp |
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Figure 5.2: lllustration for the standard CP (dash arrowy grid CP for large-scale tensors (solid
arrows) in two stages

and

A((CTC)@)(ETB)):ZZ] W (EWTcy)) e (BYT8) .

53 GridCP

We consider a tens is divided into a grid of multiple sub-tensapg™ of sizely, x Iy, x -+ x gy,
Z 1 Ik, = In, Where vectok = [k, ke, ..., ky] indicates sub-tensor index, 4 ky < Kp, andKj
is the number of subtensors along the modsee Figurés.2). We factorize all the subtensors by CP
sub-factorsU"") in parallel mode. Finally, the full factora(™ for the whole tensor will be estimated

(k)
from these sub-factors with fast learning rules and pdretimputing.

5.3.1 ALS Algorithm for Grid CP

Assuming that the tensd can be approximated by factorsA(™, we split each factoA™ into K,

parts
AM = [AEZ;T AEQ;T A(”);]T (5.18)
where sub-factoA!” e R*R k. — 1.2, . K,

(kn)
Lemma 5.2. A sub-tensory(k), k = [ki, ko, ...,kn] can be factorized by a set of N sub-factors
_a) A .
{A(k)} = {A(kl), A(kz),...,A(kN)}.

vy 5 leA(ii szzz ---><NA —|[{A 3. (5.19)
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Proof. Proof of this lemma is directly derived from definition of CRodel for each entry;, i =
D (N)
m|

[il9i29---,iN];Z:(;11|kj<in<z:(;1|kl,i.e.,y a a1 ca

The ALS algorithm for grid CP minimizes the standard Eudidelistance for all the sub-tensors

1
D = 1Y - TxiAD ;A o AMZ = 2 2 S I A e

kl kn=1
1sv 1y A
n
= 3 20V A Bwl® IR (5.20)
k=1

whereK = [Kl, Ko, ..., KN].

Gradients of %.20) with respect to sub-factdkEE:) are given by

4 NG . .
Van D= N1 (=Y (AT AR (AT (AG)O)
" (ilinked

_ (0) (A, @0 A (AT A 15"
_{-|an} (—Y(n) (A1 + AR {AT A ) (5.21)
IIn=

wherej = [j1,..., jn], @andj, = ky. This leads to the learning rule for sub—facmﬁﬂ:)

~1
(2, e ) (B ) e
{ilin=kn} {ilin=kn}
Due to relatively small sizes of subtensors, computatlowgdf {A@0 1, {A(k)A(k)}&n can be
quickly executed on parallel workers (labs) or sequentiait a single computer. Moreover, we can
eliminate the sub-tensors involving in estimation of sabtcbrsAEEz) to those built up from tubes
sampled by the CUR decomposition. We note that subtensdteigrid model don't need to have
consecutive tubes. We do not provide a detailed descrijimause this research is beyond the scope
of this chapter.

The next section presents optimized algorithm which av(JM@)}Q—n in (5.22.

5.3.2 Optimized ALS Learning Rules
For sub-tenso), we factorize this tensor using the ALS algorith#ng) for CP withRx components

y®O 7 X1 UE?) X2 Ugi)) S XN UEE)). (5.23)

The number of rank-one tensdRg should be chosen so that factchlg)) explain as much as possible
the sub-tensa¥ (). Because sub-tens@f¥) has small-size, this factorization can easily achieve high
fitness. For a subtensor, we have

(9 (A 1100 0 UM (U0 10T (A 100 = YO (T A (0
Yia) A} = U (U} Ao = U (Pro @ (URTAR) ) (5-24)
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® ®
whereP(y) = {U(TK)A(k)} e RROR LetQqyy = {A(Tk)A(k)} e RR*R from (5.22 and 6.24), we

obtain the fast update rule for the sub—factArE%))

-1
e 2 wae ) ([ 2 oo lan)
{ilin=kn} {ilin=kn}
=TSt (5.25)

where matrice§ andS are computed for specific subfactm(g;))

T

{”Jnan}UT (Po@ (Uf)AR)) - (5.26)

(£ eujolutrag) 5o

{ilin=kn}

wm
|

Each term of the two summations i.26) and 6.27) calculates Hadamard divisions, and performs
on small-sized matrices, instead of Khatri-Rao produatsdib matrices. Matrice® ) € RR>R and
Q) € RR*R can be calculated only once time, and can be quickly upddtedestimating the sub-
factorsAl(QT). Moreover, the matrice andS can be calculated through a parallel loop.

The pseudo-code of the new ALS algorithm is given in Algarith.1. The normalization of
components to unit-length vectors are not explicitly digeld in Algorithm5.1 Parallel FOR-loop
denoted by parfor” loop is available with the Matlab Parallel Computing Tom

5.4 Grid CP with Nonnegative Constraints

Factorization of nonnegative tensors such as spectral datges, data in social networks, email
surveillance requires nonnegative factors to provide nmgdul components, and physical interpre-
tation. Many dficient algorithms have been proposed or generalized frowritigns for nonnega-
tive matrix factorization (NMF). The ALY, HALS®"152 or multiplicative LS (least squares) algo-
rithms*%132 can be directly derived from the Frobenius cost funct®2(. However, most ficient
algorithms for nonnegative tensor factorization cannetl @déth very large-scale data. In this section,
we extend grid CP for nonnegative factors, and proposeditigts based on minimizing the same
cost function in .20). Sub-tensors are factorized by CP models, then nonnedaititors for the full
tensor will be estimated from factors of sub-tendatsWe note that if the number of subtensors is only
one, the proposed method becomes the two-stage apprairfati NTFL®, That is approximation
of tensor by CP first, then estimation of nonnegative comptni®Illows.
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Algorithm 5.1: Grid CP

Input: Y: input data of sizé; x o x --- x Iy,

R: number of basis components

Output: N factorsA(™ e R'"*R such that the cost functions.0) are minimized.

1 begin
2 initialize AEKE vn, an
3 parfor sub-tensoy )
4 [UE?), UEN))] — approx_CP(Y Y Ry)
(N)T 5 (N) (DT A (D)
5 P = <U<(k>) A((lm))) ® <U<(k>) A((k )))
_ N)T A (N - 1
6 Quo = (Afi Alln) @@ (Al AG))
endfor
9 repeat
10 forn=1toNdo
11 for ko = 1to K, do
12 T=0, S=0
13 parfor [K], = kn do
_ (T A (1)
14 Pao = Py @ (UG A
15 T=T+UQ Py
_ (MT p (n)
16 Quo = Quo @ (Af) Afl))
17 S=S+Qu
18 endfor
Q) -1 (n)
19 A(kn) «~TS // Update A(kn)
20 end
21 parfor eachk do
_ (MT p (n)
22 P(k) = P(k) ® (U( K) A( ))
_ (MT 5 (N)
23 Q(k) = Q(k) ® (A(kn) A(kn))
24 endfor
25 end
26 until a stopping criterion is met
27 end

5.4.1 ALS Algorithm for Grid NTF

A simple extension is that we enforce nonnegativity or #{rispeaking positive constraints for factors
updated by the ALS algorithnb(25

| B0 Eao () 5 cofolian) | o

{ilin=ka} jlin=kn}



84 Chapter 5. Large-Scale Tensor Factorization

Some extended ALS algorithms were applied the Levenbengyivadt approach with the regulariza-
tion parameten

A [T(s+an 1]

) (5.29)

T

However, for real-world data, a proper selectiomafecides the performance of the final result.

5.4.2 Multiplicative Algorithm for Grid NTF

From the gradients5(21), we apply a similar method to derive the multiplicative LI§aaithm for
NMF 556367110113 t5 obtain the update rule

() () ()
Ay = Ay elTlL o (AR)s) (5.30)

where matrice3 andSare defined ing.26) and 6.27), and computed through a parallel loop in Steps
15and17 of Algorithm 5.1 Replacing Stefi9 by the expression irb(30 gives us pseudo-code of the
multiplicative algorithm for grid NTF.

The multiplicative algorithms have a relative low comptgxiut they are characterized by rather
slow convergence and they sometimes converge to spurioabkronima.

5.4.3 Hierarchical ALS Algorithm for Grid NTF

By taking into account that if the tensaf in (5.22) is approximated by a rank-one tensor, that means
factorsA(" have only one component, matrix inverse simplifies intoacadlvision, and the ALS
algorithm 6.22 to update a pat of a factorn is given by

D Yoy (@)®

(n) {ilin=kn}

k) ®
{“Z:m {aI,-) a(j)}

(5.31)

Therefore, if we formulate an ALS update rule for a comporadrihe sub—factorAEEz), this learning

rule does not require matrix inverse, and hence reducesuatignal cost, and is more stable.
Assume that, we estimate theh component of the sub—fact@rgﬂz) denoted a{AEE:)]r = afk”),

n=112...,Nk, =212...,K,r =12...,R This component only exists in factorizations of

sub-tensors/* with k, be then-th entry of the sub-tensor indéx= [j1,..., jn-1,Kn, Jnt1,-- - IN]

im=1,...,Kpn We split the approximation of sub-tensoss, [K],, = kn into two parts:

(kn)

e one consists of all rank-one tensors in which the specifiqmmantark” is not involved

yEE)r) -y afkl) o agkﬂ oo agkNX (5.32)
j#r



5.4. Grid CP with Nonnegative Constraints 85

e And a rank-one tensor built up froafk”)
yEi% — ) 5 gl o ..o g, (5.33)
The approximation for each sub-tenggt*) is now rewritten as
Ky (k)
y - y +Y 5, +E. (5.34)
To exploit the learning rule5(31), we define a new residual tensor which is approximated by the
(k)
rank-one tensqy(+r)
gg_?r) = y®_ yEE)r) = agkl) o a,gkz) 0---0 aEkN) +&. (5.35)

Learning rule to update the compon@ﬁf“) is given by

3 50,7 o)

askn) - {ilin=kn}

Z {aE”T ap)}@’—

{ilin=kn}

Where{aﬁk)} {a'gkl) ag 2) a'gkN)}_
Each term in the numerator iB6.36) is rewritten as

g < afal = (v -5 Ly ) < {9
( o (U} = AL (A} + g {ask)}Q_nT) {aﬁk)}&n
= Uy { A(k n]r Al [{A& ()}(%n}r +a” {af(k)Taf(k)}&n
-8 [0 (0 AR AR [ow (AR (7))

Where[A]r = & denotes the-th column vector of matriA. Learning rule $.36) can be expressed in

(5.36)

the compact form

1
Aea o 3 U Puo (AR a3 Al [en e (ARAR)]
{ilin=ko} {lin=ta}
:agkn)_i_itr_w_knA(n)s,’ (5.37)

. Ny ®_n
where the scalar weight, = ] {afm af”} , andT andS are defined in%.26) and 6.27),

_ {ilin=kn}
respectively.

Finally, the equation given irb(37) is the update rule for a component of a subfa@t@). By
replacing Stef9 in Algorithm 5.1 by (5.37), we obtain the pseudo-code for the Hierarchical ALS
algorithm for grid NTF.
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5.5 Stopping Criterion

Stopping criterion takes an important role in identificatiof convergence of a factorization. For

simplicity, the cost function value(2) is usually used as stopping criterion. The FIT rate (FIT(0)
1Y
norm. For a large tensor, an explicit computation of the Gasttion value 2.1) is impossible due to

) can also be used. However, due to similar computation, weraantion the Frobenius

so much memory requirement to build up the approximate teMsdn this section, we derive a fast
computation for stopping criterion applied to the grid CReTFrobenius norm of a raw sub-tensor and
its approximation is given by

oK)

9 = Jy® - 512 = Jy®R 4 1¥YR - 2090, 1 (5.38)

where(¥, ¥} is the inner product of two same-sized tensors

(Y™ Z Yo g = vec(Y ) vec( ))). (5.39)

Each terms in the expressiob.88 can be computed as follows

~ (k
YR = vedY9) 13 = [{AGIO 18 = 1T (Al AwI® 1= 1T QL (5.40)

~ (K
@®. I = MU Aw)°1 = 1T {U Ak} 1=1TPg 1. (5.41)

(k)

From (.38, (5.40 and 6.41), we obtain a convenient and fast computing for the costtianc
p—iypw_1 YOI2 11T Q1 —21T Py 1
_EZ _QZ(H IF +1" Quyl-— (K) )
k k

1 1
= §||~‘/||§ +5 > (1T Qu1-21TPyy 1). (5.42)
K

The first term|Y|2 is constant, hence can be neglected. The rest terms areaddif all the entries
of matricesQ ), andPy.

5.6 Communication Cost and Practical Considerations

This section analyzes the communication cost of grid aflgors, and discusses some practical issues
on implementation of the grid factorization. Techniques iatroduced to deal with small-subtensors,
or with the large number of sub-tensors.

5.6.1 Communication Cost

The communication cost of algorithms for grid CP and grid NCEiR be evaluated as the total data
transferred between labs and the server in a parallel sydteimg the factorization. For illustration,
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we will compute the communication cost for the ALS algorithfihe value can be roughly measured
as the total data received and sent in all steps in AlgorBtin

For all the grid algorithms, the communication cost mostigaentrates on computing matrices
andS to update the sub-factov!sl((:). At Step14, to update a matri® ), a lab requires aRy¢ x R
matrix Py, theli, x Ry sub—factorUEE)) and thely, x Rsub—factorAEE)n), then send aR, x Rdata to the
server. Through Stefs}-17, the total transferred datalig (R¢ +3R) + 2R, R+4R?or 41, R+6R?
under the assumption that sub-tensors are approximatbdheitsame number of components of their
full tensors, that meanR = R¢. For all the sub-tensors, the total transferred data in gafor”
loop in Stepl8is <4R > % + 6R2) [T, Kn, or 4aRKN-1 3 1, + 6R2KN, with an assumption that
Ki = Ky, = ... = Ky = K. Hence, the total data transferred inside thepeat’ loop (in Step9) is
6RKN-1 Y I, + 10R?KN. For a specific data tensor, the communication cost of the &lg&rithm
(5.25 increases as the number of sub-tengotsincreases. The smaller the number of sub-tensors,
the lower the communication cost. However, the sub-teasire is limited by the configuration of
its working lab, such as memory, operating system. For B2jylsitem, tensor size should not exceed
3GB. Relatively small sub-tensors can be easily factongigd high fitness. When the number of sub-
tensorsk,, along the modes-are exactly the tensor size, that me#hs= I,, forn = 3,...,N, the
sub-tensors simplify into matrices. Factorizations oktheub-tensors will becomes Singular Value
Decompositions which can always explain 100% of the datawever, reconstruction of the full
factors demands very high communication cost due to the lawgnber of subtensors.

As a consequence, a large-scale tensor should be dividedvio & minimum number of sub-
tensors. Dividing the large-scale tensor into small suisdes could increase the risk of nearly collinear
factors which cannot be approximated by the standard ALG&risthgn in (2.2). In order to cope with
the problem, we can use some modifications such as Compréssid Line Searck 1’1, The com-
pression technique compresses the data into a smaller tesisg the TUCKER model. Next, an CP
model is fitted to the core tensor of the TUCKER model. The GRHe original data are represented
as products of estimated factors.

5.6.2 Multistage Reconstruction for Grid Decomposition

Reconstruction of the full factors from all sub-factors htignave high communication cost of the
order O(KN). This section is devoted to speeding up the reconstrucfiamulti-stage reconstruction
is recommended for this problem. At each stage, we constagtdrs for the concatenated tensors
which are built up from neighbor subtensors; hence thisaeslthe number of subtensors for the next
step.

The (N — 1)-stage paradigm illustrated in Figuse3(a)is an example. Assuming the tensor is split
into aKy x Ko x -+ x Ky grid of subtensors. At the first stage, we estimate the twtmfadrom
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Figure 5.3: lllustration of multistage reconstruction ¢pid CP.

all sub-factors along the mode-1 and mode-2. That meansrithé\gS algorithm will be employed
with a grid of K3 x K x 1 x --- x 1. This reconstruction demands a costQ§K?), and there are in
total K3 x - - - x Ky separate factorizations processed in parallel. For thensestage, the data can be
considered as a concatenation of 1L x K3 x --- x Ky sub-tensors. We reconstruct the third factor
using the grid ALS algorithm with a grid of 11 x K3 x 1 x - - - x 1. The next stage estimates the fourth
factor, and so on, until the last mode. This paradigm reqiXe— 1) stages, and dramatically reduces
the communication cost. However, this technique facesdeitd between accuracy and processing
speed. For a 3-D tensor, we need two reconstruction stagispayed in Figuré.3(a)

Another multistage paradigm is illustrated in Fig&.&(b)

5.7 Grid CP for Complex Tensors

CP for complex-valued tensor was proposed and investigatsame real applications such as for DS-
CDMA signals®133186 and for MIMO system'4. This section will extend the proposed algorithms
for complex-valued data tensor. The ALS algorithm for complalued CP model is extended from

the learning rule inZ.2) and given by
-1
Ay (AF}O ({ATA*}@*”) ,(n=12,...,N), (5.43)

where symbol “*” denotes the complex conjugate operatod ldris the Hermitian transpose. For
3-D complex-valued tensor, this learning rule simplifie®ithe COMplex parallel FACtor analysis
(COMFAC) approack?®.

The ALS algorithm for the grid CP to update a sub—fa(méﬁ) is given by

A TS, (5.44)

n)
(kn)
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where matrice§ andS are computed for specific subfactdkg;))

_ (m (MT 5 (M)*

T = ¥ Ui (Poe(ual)))- (5.45)

{ilin=kn}

-

s = | 3 o folamal). 540

{ilin=kn}

based on matrices

Pro = {UgAly} eR%™ (547)
AT A* ® RxR 4
Qu = {AlgAl} RV (5.48)

5.8 Experiments
5.8.1 Grid Decomposition with Diferent Grid Size

In the first set of simulations, we considered a 100A000 x 1000 dimensional tensor composed
from three factoré (" e R1000<10\yhjch were randomly selected from basic sparse and smapihlsi
such as half-wave rectified sine, cosine, chirp and sawtweatieforms as illustrated in Figuie4(a)

This tensor consists of 2Centries, and could consume 8GB RAM. We split the tensor ingic

of K x K x K sub-tensors, foK = 2,4,5,8,10. That means sub-tensors have 500, 250, 200, 125,
100 entries along each mode, respectively. To evaluatedhfermance, we employ the Signal-to-
Interference Ratio (SIR (dB)) between the estimated argirai components. The grid CP and grid
NTF achieved almost perfect performance40 dB) as shown in Tablg.1 The results were averaged
over 100 runs. The performance almost did not change whemgathe grid size.

This tensor was next degraded by an additive Gaussian ndatisel& dB. The grid CP achieved
good performance with SIR: 35 dB for diferent grid sizeK = 2,4,5,8,10. While the grid NTF
achieved SIRx 46 dB. We cannot see théect of the grid size on the accuracy.

The noise intensities were increased so that SN®RdB. Both the grid CP and grid NTF also
obtained good performance with a small grid dize= 2,4. However, the performance decreased as
the subtensor’s size decreased. The algorithms achieyg@®0miB for the gridsizeK = 20, or the
sub-tensor’s size 5@ 50 x 50. Small sub-tensors could not capture the hidden compemuer to
their structures distorted by heavy noise. The comparigdBIR indices for such kind of data are
illustrated in Figureb.4(b). We also analyzed the multistage reconstructions for tiie@P and grid
NTF, and the conversion model of CP to NTF factors. Multistagconstruction achieved slightly
lower performance. For example, with a grid sizekof= 5, the grid CP achieved 29.39 dB, and its
multistage factorization achieved 26.85 dB. The grid NTH @8 multistage obtained 35.11 dB and



90 Chapter 5. Large-Scale Tensor Factorization

BN I oridcP [ oridNTF [ | multistage gCP [ multistage gNTF [l CP2NTF
RN

25 —
o
S 0l 1
«
0
15F —
10 —
sk 1
2 4 8 10 20

Source 2 sample 0

5
Grid size K x K x K
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degraded by a 0dB Gaussian noise

Figure 5.4: lllustration of Example 1(a) components to build up the tensdl) comparison of SIR
indices obtained by grid CP, grid NTF, multistage grid faidations, and the conversion model of CP
to NTF for different grid sizes. The tensor was degraded by a GaussianwitiseNR= 0 dB.

32.97 dB, respectively. The performance of the multistaayagigm could be degraded up to 2 dB, but
this technique speeded up the processing time. The coropasfgrocessing speed between models
is given in Tables.1 With the same grid size, the multistage reconstruction®wakvays much faster
than the grid models. For example, the grid CP approximatedull factors from 512= 83 sub-
tensors in 1131 seconds, and achieved SIB.08 dB, whereas the reconstruction with 3 stages took
place in 172 seconds and achieved 23.95 dB.

As analyzed in Sectiob.6.1, communication cost of the reconstruction strongly depesr the
total number of sub-tensors or the grid size. The larger timaber of sub-tensors, the slower the
processing speed. The grid CP completed the reconstruitbom 4 sub-tensors in 18.65 seconds,
and in 249 seconds for 125 subtenskirs= 5, and in 29,310 seconds for 8,000 sub-tensors 20.

A similar effect of the grid size on the processing speed for the grid Nm&,the multistage grid
factorizations.

We replicated this experiment but for a 4-D synthetic teéar R1000x1000x1000<1000 composed
from the similar components. The tensor was also degraded®gussian noise with SNR10 dB.
The noisy dense tensor consisted oféntries, and could consumed 4TB RAM with single precision
format. The grid CP and grid NTF factorized the noisy tensith & 7x 7 x 7 x 7 dimensional grid of
sub-tensors. That means there were in total 2,401 subsgerisactorizations of all the subtensors took
place in 19,156 seconds in a parallel system consisting afdésiand 16 cores. The approximation
time will decrease when using more nodes. The reconstngid factors took 842 seconds using



5.8. Experiments 91

Table 5.1: Comparison of SIR (dB) indices and running timex¢sd) for grid tensor factorization
with different grid size for the synthetic tensor 100@000 x 1000.

SIR (dB) Running time (second)
Grid size K x K x K) Grid size K x K x K)
Algorithms 2 4 5 8 10 20 2 4 5 8 10 20
Clean tensors

gridCP 41.81 42.54 42.02 42.53 42.21
gridNTF 75.30 76.7277.77 77.27 76.60

10dB Gaussian noises
gridCP 34.85 35.1135.75 35.42 35.12 2470 191 337 925 3178
gridNTF 46.82 46.5246.92 46.35 46.50 46.82 46.5246.92 46.35 46.50
mgridCP 33.75 32.63 35.72 32.78 34.45 12.53 68.90 98.10 38561395

0dB Gaussian noises
Approximation 208 176 536 754 1,335 8,160
gridCP 31.10 25.11 29.39 25.08 23.90 21.00 18.65 71.12 249 1131 2,6061@9,3
gridNTF 35.99 35.92 35.11 29.84 27.70 23.71 18.05 98.07 169 592 1102 8,113
mgridCP 27.31 25.08 26.85 23.95 22.44 19.07 14.67 29.39 52.64 172 362 3,437
mgridNTF 33.67 30.97 32.97 29.03 27.03 23.25 14.08 33.54 57.69 178 370 3,456
CP2NTF 25.1525.16 24.83 23.52 22.82 20.27 0.27 0.20 0.23 0.23 0.29 0.23

mgridCP multistage grid CP
mgridNTF  multistage grid NTF
CP2NTF conversion of CP factors to NTF factors

the grid CP, and 3911 seconds using the grid NTF. By usingihe 2)-stage paradigm presented in
Section5.6.2 and illustrated in Figur&.3(b), the grid CP and grid NTF completed the reconstructions
in 167 seconds and 165 seconds, respectively. The perfea@rthe experiment is shown in Table
5.2(b). All the algorithms achieved very good performaned0 dB.

5.8.2 Synthetic Benchmark

In the next example, we factorized the synthetic terdoe R5000<5000x5000 pyjijt up from 15 non-
negative components (shown in Figlrd(a), and next degraded by an additive Gaussian noise with
SNR= 0 dB. The standard deviation of noise was quickly calculditenh synthetic factors based on
lemmal.lin Chapter 1. A partial data with 200 samples along each dsimernis illustrated in Fig-
ure 5.5(b), the 45-th slice of this noisy tensor is also given in Figbrg(c) This dense tensor with
125 hillions of entries could consume 500 GB of memory. Fézitty such tensor using existing CP
algorithms is impossible because of large tensor size. Mexvéhe proposed algorithm can quickly
deal with this problem. In the approximate step, we divid@d tensor into 8000 sub-tensors of size
250x 250x% 250, and simultaneously factorized them wih= 25 CP components in a parallel system
with 16 labs to obtain 8000 sub-factdrl%’ll)) e R50%25 n = 1,2 3,k = [ky, ko, ks]. kn = 1,...,20.
The experiment was run on MATLAB ver 2008b and its Distritut@omputing Server and Parallel
Computing toolboxes.
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Figure 5.5: lllustration for Example 2 with a noisy densestarof size 5006« 5000x 5000 (only 200
samples for each dimensions are showo)-(d) Noisy slice and its reconstruction for Example 2.

The full factors were estimated in two stages to reduce-tdermunication between labs. In the
first stage, 16 groups of 500 consecutive sub-factors inednrs of size 1258 1250 x 5000 were
used to simultaneously estimate 16 sets of sub-factora ffbm these sub-factors, we built up the full
factors for tensor 50080 5000x 5000. The whole step 2 took 56.51 seconds. With these estinG:?
factors, we can quickly retrieve the nonnegative factodeuthe data by applying the NTF algorithms.
This step only took Z8 seconds. The 15 estimated factors achieved high SIRemdica range of
[43.64,54.97] dB, and are depicted in FiguBe5(a) Figure5.5(d)illustrates the reconstruction of the
noisy slice in Figures.5(c)
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Figure 5.6: (a)(b) lllustration of 6 nonnegative components estimated fronCEOcomponents for
the Graz benchmark(c) Topographic maps of 6 spatial components for ExangpBed extracted by
the grid multiplicative algorithm

5.8.3 Graz EEG Dataset for BCI

The Graz datasét contains EEG signals involving left hand, right hand, faohgue imagery move-
ments acquired from 60 channels (with sampling frequend 125) in a duration of 7 seconds (4
seconds after trigger). The dataset is recorded from 3 sishjend has 840 trials. All the EEG signals
were transformed into the time-frequency domain using timeptex Morlet wavelet, to have a spectral
tensor 60 channels 25 frequency bins (6-30 Hz} 250 time frames< 840 trials. Due to meaningful
factorization, the hidden factors under this EEG spectasdr require nonnegative constraints, and
are considered as useful features for successful EEGfatasisint32. Therefore, we firstly estimated
CP factors of this tensor, then extract nonnegative factdns dense tensor has a total of 315 millions
of entries, and consumes 1.26 GB of memory. Factorizatiatisffull tensor with 10 components
took 3900 seconds on a quad core computer (2.67 GHz, 8 GB migraod achieved FI'E 78.95%.
However, the grid ALS algorithm for a grid of 16 sub-tensorddid from the EEG tensor along the
4-th dimension (trials) took only 112 seconds to extractsame number components with F
78.55%. The nonnegative factors quickly derived from bgtpraaches only took 0.41 seconds, and
respectively explain 77.08 % and 77.07% of the raw tensothi®ifull and grid processing. The com-
ponents of the two spectral and temporal factors are shoWwigime5.6. In Table.5.2(a) we compare
performances of multiplicative LS, KL, HALS, grid multigftive LS algorithms.

5.8.4 Visual and Auditory EEG Signals

We illustrate an example with the EEG benchmBEG_AV_stimuli“’ recorded during the 3 stimuli:
auditory stimulus; visual stimulus; both the auditory ahé visual stimuli simultaneously. EEG
signals were recorded from 61 channels during 1.5 secomelsstimulus presentation at a sampling
rate of 1 kHz. The observed tens¥rconsists of the EEG spectra in the time-frequency domaimgusi
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Table 5.2: Comparison of performance for grid CP models &yatrighms.

(a) Grid CP for 4-D noisy tensor in Exam#e8.1 (b) NTF and grid NTF

Model SIR (dB) Time (sec)  Algorithms Examplé.8.3 Example5.8.4
Subtensor Approx 19,156 Fit (%) Time (sec)| Fit(%) Time (sec)
gridCP 75.15 842 LS 76.93 20,599 79.40 1,237.4
gridNTF 87.72 3,911 KL 76.53 29,595 79.30 2,823.7
mgridCP 77.01 167.02 HALS 76.71 4,820 79.44 417.3
mgridNTF 78.29 164.94 gridLS 77.08 112.2| 79.37 68.3
CP2NTF 43.00 0.06

the complex Morlet wavelet of size 61 channel81 frequency bins (16 40 Hz) x 126 time frames

(0 — 500 ms)x 25 trials x 3 classes. The multiplicative LS, KL and HALS algoriththé’ factorized
this tensor with 6 nonnegative components in 1237.4 sec@828.7 seconds and 417.3 seconds with
fithess values 79.40%, 79.30% 79.44%, respectively.

We applied the grid NTF for 75 subtensors of sizex631 x 126 divided from the full data along
the 4-th and 5-th dimensions. The approximate step tooleglad8 seconds, and the construction
step took 50.3 seconds. The running time for the whole femation was only 68.3 seconds. The full
factors explain 79.37% of the original variance. In Figbré(c) we display topographic maps of 6
spatial components. The component 1 relates to the vismallsis, whereas the components 3 and
4 reflect activations by the auditory stimulus. Comparisbpexformance of algorithms is given in
Table.5.2(a)

5.8.5 Classification of Handwritten Digits

We factorized and classified the MNIST data set of images oflwaitten digits (0-9%2. This data
set is composed 60,000 training images and 10,000 testiagas Each image is a 2828 grayscale
(0-255) labeled representation of an individual digit. ®osamples of this dataset are displayed in
Figure7.5(a)

In the training step, we simultaneously factorized 10 ®risors corresponding to ten classes (dig-
its) into Rk = 28 CP components. This step took place in 185.42 seconds thkdull nonnegative
factors were built from 10 sets of the sub-factors. The tvetdisA (L), A2 were used as basis vectors
to extract feature of an imagé,: f, = vedY,)' (A® ©AD) (AQTAR) g (AOTAM))) ™,
The number of features is exactly the number of NTF compaient

An example for the 36027-th sample (digit six) in the tragnatatabase is illustrated in Figuber.
Training feature of this digit is a vectors which consist®Rantries. A pair of basis vectoa§l), agz)
142

forms a basis imagaj J . A reconstructed sample of a digit was a linear compositibhasis
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Figure 5.7: Feature extraction for digits using CP featu(aya training digit and its reconstructions
by using 10, 15 and 20 features with corresponding bas@®.ifc) Visualization of CP features using
the t-SNE components

images in which scaling céigcients were features. In Figuke7(b), we displayed basis images which
were ranked in the descending order of 20 largest featuestuFe cofficients were annotated in their
corresponding bases. Superimposes of 10, 15, 20 basissmegdted reconstruction images of this
digit shown in Figureb.7(a) respectively.

We used thék-nearest neighbor classifier (KNN with= 3) for this experiment, and verified the
classification accuracy with 10ftiérent numbers of featureR = 20,21,...,28. Both two classi-
fications based on gNTF and NTF returned quite similar acgugaven in Table5.3. However, the
gNTF-based method significantly reduces the running tinspeEially, this method provides a conve-
nient and fast way for Monte Carlo analysis. To build 9 setsafnegative factors in this experiment,
the total running time for gNTF is 1882+ 23259 = 41801 seconds, whereas that for NTF is 358
seconds.

From the extracted features, the dataset is visualizeavwai& SNE component8” in Figure5.7(c)
Classification of this benchmark can be performed using theka@r decompositiof¥©.
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Table 5.3: Comparison of grid NTF and NTF for the digit datase

No. Running Time (seconds) Accuracy (%)
Features gNTF NTF gNTF NTF
20 17.38 394.31 95.60 95.86
21 25.26 400.67 96.12 96.00
22 26.28 313.37 96.02 96.40
23 19.71 357.08 96.43 96.18
24 24.91 479.83 96.24 96.21
25 38.96 520.47 96.51 96.56
26 24.03 271.90 96.74 96.78
27 29.95 349.11 96.73 96.84
28 26.11 253.94 96.95 96.62
Total 418.01 3340.68
5.9 Summary

We presented the new fast and robust ALS algorithms for lacgée CP. The validity and high perfor-
mance of the proposed algorithm have been confirmed evermisy data, and also for the large-scale
BCI benchmark, and image classification. The new fast stgppiiterion is proposed for this algo-
rithm. Variations of the ALS algorithm for CP with regulaeid terms such as total variation, sparsity,
smoothness, nonnegativity, orthogonality constraintskeapplied to the grid CP with some modifi-
cations on the learning rul®& 5. Strategy for grid division of a tensor caffect to the performance
of factorization, and the running time of parallel compgtifBasically, sub-tensors’ sizes should sat-
isfy unique conditions of CE¥%. Moreover, sub-tensor should have maximum possible number
entries in its working lab. Increasing the number of sutstes from the original tensors increases the
communication cost of the algorithms. To deal with this, \&a estimate the full factors in multistage
as illustrated in Examples.8.1, 5.8.2



CHAPTER 6

Simulations and Results for Algorithms
for CP and Tucker Decompositions

The proposed algorithms have be verified and compared wiskirgx algorithms in a variety of bench-
marks including real-world data or randomly generateddensvith dense or sparse factors, or fac-
tors with bias, factors with collinear components. For QR, algorithms including HALS (Algo-
rithm 2.1), (fast) dGN or LM (Algorithm4.1) 67 are compared with ALS, OP'T For NTF, we com-
pared HALS (Algorithm2.1) 37152 QALS (Algorithms3.2, 3.3) 160166 rK-QALS (Algorithm 3.6) 6%,
LM, (4.5816°with ALS and multiplicative algorithms. The multiplicadKL (mKL) and LS (mLS)
algorithms32 are based on gradient descent approach applied to the Kkidlsber divergence, the
Frobenius distance, respectively. For (nonnegative) &udkcomposition, the algorithms HALS (Al-
gorithm2.2), LM (Section4.5)1%8 QALS (Algorithm 3.5) are verified. For sparse tensors, the HALS
algorithm with regularization term controlling sparseness tested. Algorithms used in this chapter
are listed in Tablé.1

All the algorithms were initialized using the same methodr Bw rank approximations, that is
leading singular vectors afY, Y)_,, which can be computed as in the HOSVD algoriftim For
large-scale tensor and relatively highrandom initialization is employed.

Stopping criteria are based orfférences of successive relative errors which is lower thart®.0
that is

1Y ~ Y

== T 10710, 6.1
°T TV 1)

or when the maximum number of iterations (e.g. 2000) is edege

In order to evaluate the estimation accuracy, the SIR indexaalculated for the true and estimated
components after permutation matching and normalization

" — 3"

S|R=—20|ogloHar o
la™ |2

dB. (6.2)

In addition, we compute Mean Square Angular Error (MSAEWeeh orginal and estimated compo-

WINQ)

nents after matching order of components defined in Sedfidn1108197198,
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Table 6.1: List of tested algorithms for tensor decomposgtiand sections in which they are intro-
duced.

Algorithm CP NTF Tucker NTD
ALS V21 /21

HALS V23 /23 /28 /28
QALS v 3.2 v/ 3.3
rK-QALS /3.5 v/ 3.5
LM or dGN V42 43 45 /45
mLs47;131 V4 V4
mKL47;131 V4 V4
OoPT* v

HOSVD,HOOP860 v

gridCP V53 /54

6.1 Simulations for CP

The dGN algorithm has been successfully confirmed féiadilt data (such as collinearity of fac-
tors, diferent magnitudes of factors) by Paaféfo Later, the dGN has been validated again by
Tomasit99200201203 - A variation of the dGN algorithm for three way data is the INEAC algo-
rithm199 which computes the approximate Hessian, and gradient, mptbgs Cholesky decomposi-
tion to deal with inverse problent$—1. Therefore, itis straightforward to see that INDAFAC demign
much higher computational cost than that of our fast dGNrélyo for three-way data. Moreover,
with the same initial values and damping parameters, the d@Nast dGN algorithms should return
similar results. The major fierence between the fast dGN algorithm and common dGN ahgasit

is complexity. However, this task is equivalent to detelimgrhow much inverse of a(’NR2 X NRZ)

matrix in our fast algorithm is faster than inverse of 2 In x RE Inh | matrix R « 1) in other

dGN algorithms. Therefore, we do not intend to compar?e mu_mti'men between dGN algorithms.

In this section, we analyze the CP algorithms fdfidult data with collinear factors in all modes
(swamp). Collinearity degree of factors is controlled bytual angles between components. Or-
thonormal factorsJ(™ were first randomly generated from the normal distributitven converted to
collinear factorsA("™ by a simple modification

(m)

a” =ul 4 yu™, ve(01],vnvr £ 1. (6.3)

Mutual anglesy, between componentsé”) and aﬁ”), g # r are in a range of0, 60°] for v € (0, 1],
and have

V. g=1

tan(eq,r) = {ym’ q ;t 1’ r (64)



6.1. Simulations for CP 99

For exampley = 0.1,0.2,...,1yield 6;, = 6°,11°,17°,22°,27,31°,35°, 39,42°,45°, andb,, =
8°,16°, 23, 30°, 37°,43,48° 52,56° 60(°, g # 1,9 # r, respectively. For high such asy = 2,
61y ~ 63 andfy, ~ 78, and tensor can be quickly factorized by CP algorithms. Tigker the
parameterr, the lower the collinearity of factors. It is morefiiicult to factorize tensors with lower
v (e.g. v =0.1, 0.2). Howevery > 3 arises another issue involving a larg&elience in magnitude
between components. The tensors are stifiailt to factorize even thought collinearity of factors is
low (91, > 71°). In addition to (.21), CP tensors in our simulations can also be expressed as

yziaraﬁ”oaﬁz)o...oaﬁ“‘), (6.5)
r=1
whereHaS”)Hz = 1,vr, andA; = 1, andd, = (1 +vA)NV2 vr > 1. Therefore, forv = 3,4,5 and
N = 3,4, = 316,70.1,1326,Vr # 1, respectively. That means factors h@Re- 1) large components
compared with the first component.

The OPT algorithm has been tested for collinear data wittséimee mutual angleg,, = 26° and
60°, Vg # r in®. In our experimentsdi, andég,, g > 1 are diterent,0,, < 6y, and are in a wider
range[6°, 60°]. We analyze synthetic tensors for two cases: error-freenaigy data with additive
white Gaussian noise at SNR20 dB, 30 dB or 40 dB.

The proposed algorithms have been extensively verified antpared with the ALS, ALS plus
line seach (LS), and OPT algorithms for large-scale, highetlisional tensors witiithout Gaussian
noises. Allthe algorithms are analyzed under the same iexpetal conditions. Those are leading sin-

Y —YiF

gular values for initialization, iteration until 10férences of successive relative erroes W
F

are lower than 102, or the maximum number of iterations (5000) is exceeded. Alt® algorithm

is adapted from the Tensor toolbt’ to accompany with line search and enhanced line search. The
line search algorithm was adapted frét3% to run with synthetic and high dimensional tensors. For
ELSL, although its published versiéhcan support arbitrary dimension, this algorithm is in peact
computational demanding. Moreover, results of ELS in oomusations are not significantly flerent

from those of LS. Therefore, we skip ELS in the simulation.

The OPT algorithrfl provided in the Tensor toolbdx was set to run with Hestenes-Stiefel (HS)
updates, and adapted to factorize noiseless large-sceerseand to have the same stopping criteria
as other algorithms. Parameter “MaxFuncEvals” was setdstg while other parameters of OPT were
set to their default values. The fast dGN algorithm with\ite tvariations fLM, and fLMy, in Section
4.2.3.4is denoted by fLM. We note that the two variations are eqgeivain the sense of performance.

In order to roughly compare complexity of algorithms, wevpde the average execution time per
iteration for algorithms in addition to their number of @éibns. Running time does not reflect appro-
priate complexity of an algorithm. It mostly depends on pamgming skills (memory management,
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code optimization), and programming language. All aldonis are implemented in Matlab which is
relatively slow for doing large number of “for” loops. Moregr, due to huge workload for the whole
simulations, we run experiments in parallel system in whichkers do not have the same configura-
tion (CPU, memory). We note that speed of an algorithm is @rtignal to its computational cost for
one iteration and the number of iterations in one run. We teadask in which all factors have been
updated once as one iteration. The cost of ALS per one iberagiapproximateyO(NIN-IR + NR®)

for atensor with = 1; = ... = Iy. OPT has a cost adD(NIN—!R) per gradient evaluation. However,
its cost per one iteration is much higher due to repetitiogratiient evaluation for optimization of step
size. The fast dGN (fLM) algorithm has a cost@fNIN—'R + N3R®).

6.1.1 Mean Squares Angular Errors and Cramér-Rao Induced Band

In order to evaluate performance of factorizations, in &oioial to the relative error, we compute Mean
Square Angular Error (MSAE) between orginal and estimamdpnnentsaﬁn),ér(”) after matching
order of components defined!4§1°%198

(MH 2(n)

MSAE(&",a") = E | arcco? (6.6)

Ja™ a1a" 2]
Cramér-Rao Induced Bound (CRIB) on the MSAE & is computed as #8197, The average
MSAESs for all the estimated components are compared agamsiverage CRIB. Figug 1(a)illus-
trates the angular CRIB versuggiven in 6.3) at SNR= 30 dB for various size® and dimensions

N. Legend describes factor sizgsx R and dimension of tensoid. CRIB for the same tensors at
other SNR can be straightforwardly deduced from those inf€if.1(a) For example, CRIB at SNR

= 20 dB or 40 dB is shifted up or down 10 dB from that at SN0 dB. CRIB for the test case of
N = 3,1, = 50,R = 20 and at SNR= 20 dB deduced from that at SNR30 dB (dark-yellow line)

is above -30 dB. We also have CRIB for the test casblof 3, I, = 50,R = 5 and SNR= 40 dB
deduced from that at SNR 30 dB (pink line) is lower than -30 dB. It is important to noteat an
MSAE lower than -30 dB, -26 dB or -20 dB means two componergdéiferent by an mutual angle
less than 2, 3° and &, respectively. This gives us a rough evaluation of a ratledgpproximation

in which MSAE < —30 dB. As seen in Figuré.1(a) the angular CRIB for the test caselgf= 50,
R=5,N = 3 and SNR= 30 dB is lower than -30 dB for = 0.2,0.3,...,1. That means we can ob-
tain a good approximate in which mutual angles of componamtdess than®2 Practical simulations
show that MSAE is hard to reach a CRIB-30 dB, since collinearity of factors has been destroyed
by noise. Discussion orffects of noise on collinear data in Appendig.1 gives us insight into when
CP algorithms are not stable, and when they succeed inviegieollinear factors from noisy tensors.
Figure6.1(a)also reveals that we cannot retrieve collinearity compté&om factorization of 3-D
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tensors of raniR = 15,20 at SNR= 20 dB forv < 0.5. Therefore, we will not analyze simulations
having CRIB> -26 dB.

6.1.2 Factorization of Real-Valued Highly Collinear Tensos

We analyze tensors of sizg = 50, various dimensiond = 3,4, 6 and rank$k = 5, 10, 15,20, and at
differenty = 0.1,0.2,...,1. MSAE is computed from 100 runs for each combination.

For noiseless tensor factorizations, the average MSAEdSgafrithms are compared in Fig-
ures6.1(e) 6.2(e) 6.3 6.4(a) (c). For 3-D tensors of ranR = 5 (in Figure6.1(e), ALS, LS and
OPT obtained MSAE -27 dB, -33 dB and -29 dB for high collinearity = 0.1, respectively. That
means original and approximate components dferdint by an angle: 2°. The algorithms achieved
better MSAE fory > 0.5. We note that CP algorithms are expected to retrieve thet exdlinear
factors from noiseless tensors. This can be obtained onty@y (fLM) with perfect MSAE< -100
dB, Vv.

LS improved performance of ALS for 3-D noiseless tensordlastiated in Figure$.2(e) 6.4(a)
(c), and for 6-D noiseless tensors in Figufe8 However, the improvement is notfigient for exper-
iments withy = 0.1. OPT might still get stuck in local minima, or its updateschosen parameters
were not suitable for the simulations. For some runs, OPTamegx the data tensors and achieved
low MSAE. However, its performance for the whole analysitects the algorithm is not stable in our
experiments.

MSAE for factorizations of noisy tensors at SNR20 dB, 30 dB and 40 dB are illustrated in
Figures6.1-6.3 CRIB at SNR= 20 dB and 40 dB are shifted¢t 10 dB from that at SNR= 30 dB
plotted in Figures.1(a)

For 3-D tensors of ranR = 5 at SNR= 20 dB, MSAESs of ALS and LS reach CRIB fer> 0.4
as illustrated in Figur®.1(b) whereas OPT's MSAEs approach CRIB foe= 0.5. MSAEs of fLM
are always close to CRIB even for= 0.3. At SNR= 30 dB, algorithms mostly converged to solution
for v > 0.2. However, ALS, LS and OPT failed to retrieve collinear éastin some runs as = 0.2.
Hence, their average MSAEs are still far from CRIB (see inurég.1(c). At SNR = 40 dB, CP
algorithms obtained high MSAE comparable to CRIB for masMSAES of LS are better than those
of ALS and OPT, and are identical to those of fLM for> 0.2 as shown in Figuré.1(d) We note
that CP algorithms are not stable foe= 0.1 in spite of CRIB= -33 dB. Explanation for this test case
is discussed in Appendi&6.1 and illustrated in Figur®.19(b) For this test case, condition humber
of the approximate Hessian with respect to solutions is ltolarge damping parameter> 10°C.

In Figure6.2, we compare algorithms for higher raRk= 10. It should be noted that factorization
becomes more flicult for higher rankR. The angular CRIB foR = 10 is lower than that foR = 5 as
seen in Figurés.1(a) fLM’s MSAEs always approach CRIB at various SNR levels igufes6.2(a}
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Figure 6.1:(a) angular CRIB at SNR= 30 dB for various sizes and ranks. Legend describes factor
sizesl, x Rand dimensions of tensob$. (b)-(e) the average MSAE for factorization of 3-D tensors
with I, = 50, rankR = 5 at SNR= 20 dB, 30 dB, 40 dB and-oo dB (noiseless tensor). Algorithms
run until reaching a derivative of successive relative rsraf 10-12 or 5000 iterations(f) MSAE for
factorization of 4-D tensors with, = 50, R = 5 at SNR= 40 dB evaluated as algorithms reach a
derivative of successive relative error of £0or 1000 iterations.
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(c). LS seems more stable than ALS and OPT, and sometimes itaperices (MSAE) reach CRIB,
e.g.,» = 0.7,0.8,0.9, 1 at SNR= 20 dB (Figures.2(a), v = 0.8,0.9, 1 at SNR= 40 dB (Figure6s.2(c)).
Both ALS and OPT are not stable, or have not yet convergedrunaestopping criteria. In addition
to the average MSAE in Figure.2(c) Figure6.2(d)illustrates median MSAE of algorithms which
are comparable to CRIB. That means ALS, LS and OPT sometictgsve@d good MSAE by 5000
iterations. However, in some runs, they have not yet comebtg the solution, and might need more
iterations. Figure§.2(c)(d) also indicate that ALS, LS and OPT are less stable than fLMnute that
the performance of algorithms might depend on the stoppiitgria, and they all should be similar
if we increase the number of iterations and discard all oth@pping criteria (such asftirence of
relative errors).

MSAEs of 3-D tensors of the same size but higher raRks 15 and 20 at SNR= 40 dB are
illustrated in Figure$.4(b), (d). The higher the tensor rar¥ the more diicult the approximation. As
seen in Figuré.1(a)and also in Figure6.4(b), (d), CRIB increases (worse performance) as increasing
rank R. Therefore, forlR = 20, we cannot obtain accurately collinear components fer 0.1,0.2
despite high SNR= 40 dB. Once again, in this analysis, fLM gives the best pertorce (MSAE)
which is comparable to CRIB.

Additional results shown in Figurés1(f), 6.2(f) are for 4-D tensors with raniR=5 and 10 at SNR
= 40 dB. For these simulations, algorithms run untifeliences of successive relative errors are lower
than 108, or the number of iterations exceeds 1000. MSAE of fLM vakdahat fLM is superior to
other algorithms in our simulations.

In order to compare complexity of algorithms, Fig#® shows the average execution time (mil-
liseconds) per iteration of algorithms for factorizatioh3sD tensors withR = 5, 10, 15, 20. The
running time was measured in Matlab on two separate congpuléie first one (PC1) is a PC that has
a Core 2 Duo 2.4 GHz processor, and 2GB memory. The second aneoimputing server (PC2) that
has 2 quadcore 3.33 GHz processors and 64 GB memory. Thengutimie per iteration for ALS is
less than those of other algorithms on PC1. However, OP Tigptexity seems less (on average) than
that of ALS for high rankR = 15, 20 on the computing server. For fLM, the running time penaition
are often higher than those for ALS and OPT, and increasedraseases. For example, in order to
to factorize 3-D tensors of rarlR = 20 forv = 0.2, 1, fLM consumes 406 msecs and 583 msecs (per
iteration) on PCL1 respectively, whereas it take 125 msed<d 68 msecs on PC2.

Running time of an algorithm over the whole factorizatiorpisportional to its number of itera-
tions and execution tinfigeration. In addition to Figuré.6, we illustrate the number of iterations of
algorithms in Figure$.5, 6.7. For 3-D tensors, = 50 andR = 5 andv = 0.2 at SNR= 40 dB, ALS,
LS, OPT consumed 99 secs, 185 secs, 151 secs (on average3hmfirPC2, while fLM consumed
only 3 secs on the same computer. For 3-D tensors of the game= 0.2, SNR= 40 dB butR = 10,
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Figure 6.2: (a)(e) Average or median MSAE for factorization of 5050 x 50 dimensional tensors
with rank R = 10 at SNR= 20 dB, 30 dB, 40 dB androo dB (noiseless tensor)(f) MSAE for
factorization of 4-D tensors with the same factor size at SNR dB.

ALS, LS and OPT took 143 secs, 258 secs and 182 secs, reghgctiile fLM took only 76 secs
on PC2. We can evaluate speed ratio between fLM and ALS féerdnty. For 3-D tensors of rank
R = 5 at SNR= 40 dB, the speed ratios for= 0.2, 04, 0.6, 0.8, 1 are approximately 15.3, 9.6, 4.4, 2.6,
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Figure 6.3: Average MSAE for factorization of 6-D noiselésssors with sizé, = 50. Algorithms
run until reaching a derivative of successive relativersrod 10-2 or 5000 iterations.
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Figure 6.4: Average MSAE for factorization of 3-D tensorghwsizel, = 50 and ranksR = 15
and 20 at SNR= 40 dB and-+oo dB (noiseless tensor). Algorithms run until reaching adgive of
successive relative errors of 14 or the number of iterations of 5000.
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Figure 6.5: Number of iterations of CP algorithms as theghearelative error of 10 for approxi-
mation of 3-D tensors with sizk, = 50 and rank$®k = 5, 10, 15,20 at SNR= 20 dB, 30 dB, 40 dB,

and-+oo dB.

2.7 times measured on PC2. That means fLM is often fasterAh&nif they are run under the same
conditions. The ratios are 1.9, 10.9 7.8, 6.7 and 5.1 timeff&torization of 3-D tensors d® = 10 at
SNR=40dB, and are 2.5, 2.4, 1.6, 1.9, 3.5 timesRo« 15.

Figures6.5, 6.7 also reveal that LS is quiteffective for ALS. The number of iterations of LS is
always lower than that of ALS. That means LS stops at an e@sdigtion. However, we cannot ensure
it converges to the desired solution, and LS speeds up AL8usecLS has higher complexity per
one iteration than that of ALS (see in Figue). If LS runs 5000 iterations, ALS in LS runs 5000
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Figure 6.6: Running time (miliseconds) per iteration of Qgbethms for factorization of 3-D tensors
with sizel, = 50, ranksR = 5, 10, 15, 20. (a) measured on a PC with an Intel Core 2 Duo 2.4 GHz
processor, 2 GB memor{b) measured on computing server that has 2 quadcore 3.33 GEegsars
and 64 GB memory.
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Figure 6.7: Number of iterations of CP algorithms as theghearelative error of 10 for approxi-
mation of 4-D and 6-D tensors with sizg= 50 and rankfk = 5, 10.

iterations and its line search runs 2500 iterations. Tloeeeft is not clear LS is faster than ALS unless
the number of iterations of LS is significant less than thahloE. For example, speed ratios between
LS and ALS are 0.5, 1.2, 0.8, 0.7, 1.1 times fo& 0.2,0.4,0.6,0.8, 1 when factorizing 3-D tensors
with R= 15 at SNR= 40 dB.

For higher dimensional tensorbl (= 6), fLM’s complexity is at the same order of those of other
algorithms. Hence, fLM might be faster than other algorishiNumber of iterations of fLM is often
lower than those of ALS and LS for high collinearity degreéllastrated in Figures.7. This ensures
that fLM converges faster than other algorithms for sudhialilt benchmarks even though complexity
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Table 6.2: Description of structured matrices of Size n698788122,
Matrix type  Description
1. binomial Multiple of involutory matrix. Am-by-n matrix with integer entriesA? = 21 |,
2. Cauchy An n-by-n positive matri(i, j) = 1/(i + j), de{C) =0
3. Chebspec  Chebyshev spectradfatientiation matrix of order n.
C is nilpotent(C" = 0), and has the null vectdr,
. ChebVand Vandermonde-like matrix for the Chebyshevmpmiyials
. Chow Singular Toeplitz lower Hessenberg matAx= H (1) has[n/2] zero
eigenvalues and the remain eigenvalues are equal taK@s + 2))2.
. Circulant  Toeplitz matrix whose first row is the vectori. :
. dramadah  Toeplitz matrix of zeros and orjeetA)| = 1. Inverse has large integer entries.
. gcdmat Greatest common divisor mathi, j) = gcd(i, j).
9. Hilbert Hilbert matrix is a poorly conditioned matrikd (i, j) = 1/(i + j — 1)%°.
10. Lehmer  Symmetric positive definite matrix such that j) =i/}, ] >=1
11. Lotkin Lotkin matrix is Hilbert matrix with its first rowlgered to all ones.
The Lotkin matrix A is nonsymmetric, ill-conditioned, and
has many negative eigenvalues of small magnitude.

H b

o0 ~N O

12. minij Symmetric positive definite matrida(i, j) = min(i, j)
13. peiw Pei matrix is a symmetric matrixl n, + 1nxn.
14. triw Upper triangular matrix

15. randsvd A banded (multidiagonal) random matrix withd{@g = +/1/e
and singular values from geometric distribution.

16. tridiag Tridiagonal matrix (sparse)
the Toeplitz tridiagonal matrix with subdiagonal and sulggonal elements -1,
diagonal elements 2.

of fLM per iteration is higher than those of others.

6.1.3 Structured Factors

This section considers fiiicult benchmarks with structured matrices which can be spdrghly
collinear, or ill-condition. The list of structured mate is given in Tablé.2 Factors are leading
left columns of structured matrices of the same size. Thai rder to construct a factor of size
50 x 10 from the Hilbert matrif®, a full Hilbert matrix of order-50 is generated, then 10 tftumns
of this matrix is picked up to form the factor. All the tensarere constructed with; = ... = Ay = 1.

For pei matrix, can be one of four values -2, -1, 1, 2. Hence, there might batéh 21 structured
matrices. We verified only 3-D tensors with = 50 orl, = 100, and factors can consist of 5, 10, 15
or 20 components.

Factorization results were evaluated through SIR indiet&/éen estimated and original compo-
nents. Fol, = 50,R = 5 andR = 10, SIR indices are given in Tab&3, whereas for higher rank
approximationdR = 15, I, = 50 andR = 20, I, = 100, SIRs are in Tablé.4. Relative errors for
these experiments are given in Tablé. The results show that the ALS algorithm fail in most cases.
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Table 6.3: Comparison of SIR indices for algorithms in Exé&1.3 Tensors were composed from
structured factors. A good algorithm provides high SIR kestworiginal and estimated components.

Factor type ALS LS ELS HALS OPT fLM
R=5,1,=50

minij 10.85+8.96 10.84-8.95 10.84-8.95 10.82:8.89 9.21+7.79  12.19+ 8.64
Hilbert 20.88+6.33  23.08+9.86 20.88+6.32 20.14+7.96 24.36+591 2562+ 8.95
Lotkin 2350+ 6.83 2334 6.36 2323586 23.70+7.68 28.07+859  28.88+9.21
Cauchy 2528+ 8.21 24.68+588 24.06+569 23.49+4.64 30.68+ 11.29  29.52+9.23
Chow 5.17+7.02 802+10.16  546+8.78  4.58+6.62 3.57+6.18 30.46+ 55.84
Circulant 12.30+3.34  12.84+6.79 1230+ 3.34 11.95+ 459 16.47+4.39 119.26+ 4.96
Chebspec 34.49+ 17.71 39.63t 18.49 34.49+ 17.71 43.45+ 19.08 24.74+ 15.21 134.60+ 18.22
ChebVand 9.13-5.98 19.46+10.53  9.13+598 16.38+7.11 19.86+9.43 150.83+ 42.56
pei-1 1017+ 258 13.21+251 10.16+258  9.91+255 11.75+2.58 164.97+ 54.87
Lehmer 17.65+ 6.65 38.71+ 19.06 17.65+ 6.65 11.99+ 555 23.37+ 10.82 169.55+ 82.75
peil 9.87+259 1273252  9.89+258  9.71+2.56 13.79+2.52 186.19+ 71.08
pei2 21.04+2.40 81714231 21.04+240 1893+2.19 54.53+2.80 196.88+ 75.50
pei-2 24724236 98.85+229 24.75+236 22.02+1.92 84.27+2.22 197.07+ 75.35
gcdmat 35.17% 27.54 60.64+ 41.63 35.17+27.54 24.93+ 22.26 30.32+ 23.38 200.54+ 123.06
dramadah 26.38 9.93 51.62+ 12.72 26.38+9.93  18.65+ 1.94 54.67+ 14.98 201.05+ 72.45
triw 61.54+9.07 123.57+8.99 61.54+9.07 121.689.02 99.17+7.33 269.28+ 63.60
randsvd 177.49+ 63.72 230.63+ 76.80 164.41 55.49 163.72+ 55.67 137.59+ 9.33 280.87+ 50.48
binomial 34.97+ 25.12 98.60+ 100.36 34.95+ 25.10 71.97+ 63.50 48.86+ 36.29  300.00+ 0.00
tridiag 106.70+ 5.68 126.58+ 5.70 106.70+ 5.68 125.25+598 9.02+9.22 300.00+ 0.00
R=10,1, =50

minij 11.21+6.86 11.76+6.92 12.37+7.01 1043t 6.70 10.29+7.18  16.04+ 9.23
ChebVand 7.62-4.14 1143+ 620 11.23+557 16.87+9.23 13.39+509 18.10+ 10.73
Cauchy 22.02+6.61 21.60+6.13 22.48+6.29 21.68+6.04 27.01+842  27.37+8.09
Lotkin 2250+ 5.69 21.88+6.47 2217+ 6.33 2270+ 6.34 27.17+8.87  28.43+9.96
Hilbert 18.99+5.64 18.78+5.80 17.94-555 19.48+5.17 24.51+6.21 30.54+ 11.06
binomial 13.96+ 7.59 17.25+ 10.72 1545+ 9.13  14.53+8.82 18.14+9.30 31.85+ 19.20
Chebspec 30.06- 1859 30.07 1859 30.37 18.54 28.01+ 19.00 34.90+ 23.71  35.46+ 23.73
Lehmer 10.80+ 357 13.14+538 13974597  9.10+4.38 16.87+7.98 65.59+ 47.36
Chow 6.84+566  6.85-536  591+507 528+572 7.03-586 73.39+ 58.45
peil 12.15+2.97 16.35+2.82 14.25+2.88 10.97+3.01 11.17+3.09 110.96+ 2.65
Circulant 10.12+3.65 13.07+530 11.63+502  8.00+4.08 11.56+1.99 131.18+2.15
pei-1 12.38+2.96 14.65+2.87 14.63+2.87 11.12+3.01 9.82+3.61 167.02+ 53.17
pei-2 21474273 76.18+258 40.32+2.60 17.58+2.65 57.33+3.20 172.03+ 58.30
tridiag 18.10+ 8.10 2147+ 9.06 5850+ 6.66 134.22+5.22 12.63+ 13.39 173.34+ 64.49
dramadah 14,65 7.96 14.12+6.62 14.16+6.96 20.87+6.97 14.27+5.18 203.51+ 74.85
pei2 19.50+ 2.77 56.88+2.60 31.94+264 16.22+274 33.19+261 212.57+ 77.85
randsvd 32.39+8.36 123.21+9.45 116.41+9.00 116.28+9.99 17.30+6.66 214.98+ 75.75
gcdmat 13.57% 15.34 14.56+ 16.03 14.65+ 16.08 15.64+ 15.47 17.83+ 15.27 215.33+ 102.09
triw 60.37+ 15.62 90.19t 15.65 90.12+ 15.55 118.82+ 15.76 46.0Lk 24.74 238.74+ 76.32

In Tables6.3and 6.4, successful factorizations with high SER20 dB are emphasized in blue.

ForR =5, I, = 50, ALS achieved good performances for matriceisv, randsvd tridiag. Line
search can improve the ALS for some experiments, but noAlHough ELS was designed to be better
than LS, this algorithm could not reveal its ability for teeatifficult benchmarks. The performances of
ELS were not better than those of LS. The HALS algorithm fabessame problem for theftlcult
benchmarks. HALS did not explain the data well. However, I$Akith linesearch can achieve quite
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Table 6.4: Comparison of SIR indices for algorithms in Exé1.3 Tensors were composed from
structured factors. A good algorithm provides high SIR kestworiginal and estimated components.

Factor type ALS LS ELS HALS OPT fLM
R=15,I, = 50

minij 12.46+6.19 12.08+5.62 12.46+6.19 10.64+5.91 12.13+6.44 16.08+ 6.73
ChebVand 1146 6.75 12174691 952+ 6.08 11.75+4.36 14.30+8.74 18.09+ 11.42
Cauchy 20.58F 6.68 22.83+ 6.04 22.76+6.88 21.35+5.66 27.00+9.76 26.69+ 8.07
Hilbert 2171+ 5.98 20.96+6.82 21.36+5.03 19.01+4.71 24.25+6.16 27.44+8.07
Lotkin 23.61+7.65 26.04+8.13 24.78+6.68 23.35+5.82 27.74-8.08 29.36+ 9.92
Lehmer 10.94 511 13.17+ 853 1094+ 511  8.71+517 16.06+8.15 63.88+ 75.39
peil 13.7742.91 17.89+2.73 13.79+2.91 12.08+5.24 11.57+3.77 108.70+ 2.53
Chow 7.15+5.03  8.19+5.84  6.69+5.11  6.65+4.72  7.98+ 524 110.02+ 81.36
pei-1 13.99+ 2.90  17.56+2.74  13.99+2.90 12.54+ 3.03 8.35+ 552 123.03+ 2.52
Circulant 9.88+3.36 11.30+3.93 10.41+4.43  7.69+4.49 9.81+1.80 125.87+6.24
pei2 19.88+ 2.69  28.24+ 255 19.87+2.69 16.69+ 7.06 20.11+ 8.57 130.68+ 2.50
pei-2 21.35+2.65 33.94+ 251 21.35+2.65 17.00+7.28 30.41+ 2.57 139.65+ 2.41
gcdmat 20.79- 12.05 26.15+ 14.50 20.79+ 12.05 17.24+ 15.42 18.62+ 14.29 203.94+ 91.36
Chebspec 19.49 13.38 18.16+ 13.48 19.49+ 13.38 50.35+ 28.50 58.3%F 20.48 227.22+ 79.27
triw 75.50+ 23.12 102.62- 20.51 75.50+ 23.12 107.7H 19.61 55.17+ 24.15 233.184 75.59
dramadah 26.65 11.54 29.92f 14.93 26.65+ 11.54 23.73+ 11.60 28.46+ 11.88 237.80+ 73.61
randsvd 9.26- 454 1121+ 536  9.26+ 454 37.65+8.80 8.11+ 4.23 267.44+ 61.61
binomial 14.69+ 7.50  14.83+7.44  14.69+ 7.50  11.74+ 5.98 20.23+ 10.29 300.00+ 0.00
tridiag 45.68+ 11.08 109.10- 6.88 45.68+ 11.08 120.50+ 7.52  7.81+ 4.31 300.00+ 0.00
R = 20,1, = 100

minij 11.12+5.76  11.12+5.49 13.07+ 6.44 10.73+5.44 12.35+6.02 15.64+ 6.00
ChebVand 8.30- 524 12.19+7.17 12.63-6.88 11.55+ 4.23 12.36+4.38 17.58+ 12.21
tridiag 19.85+ 12.69 19.67+ 12.74 19.43+-12.70 24.37+20.35 12.09+9.37 18.38+ 12.11
Hilbert 21.60+ 6.28 20.21+5.62 19.78+6.73  19.79+ 479 27.05+9.75 23.87+6.11
Lotkin 2421+ 7.39 26.45+6.72 23.78+6.92 22.98+5.86 28.45+9.48 26.35+ 7.47
binomial 1541+ 6.56  15.19+ 8.02  13.99+ 591  12.68+ 6.01 20.74+8.20 26.83+ 17.26
Cauchy 21.29F 6.03 26.10+5.54 2506+ 7.14 20.73+5.28 26.56+ 6.53 28.43+ 8.07
dramadah 16.30-8.19 21.20+ 9.27 18.44+10.21 15.314+5.88 19.62+3.81 48.20+ 18.59
Chow 6.30+ 4.84  8.30+6.66  7.50+5.02  6.07+4.25 8.56+ 4.94 74.44+ 43.00
Lehmer 10.20+ 4.66  12.25+7.28  10.74+5.98  9.43+ 4.87 17.70+ 6.86 82.31+ 89.57
triw 86.52+ 61.83 77.79+ 44.69 76.71+ 43.59 51.46+ 31.69 49.88+ 24.89 84.49+ 55.61
pei-1 14.11+ 2.84 1717+ 275 1552+2.79 12.38+3.10 11.95+4.97 91.89+ 2.61
peil 14.02+ 2.84 16,71+ 2.76 1541+ 2.80 12.37+3.05 14.19+2.82 92.04+ 2.61
Circulant 10.59+ 4.26  12.88+4.72 12.81+505  7.03+1.99 11.63+1.99 126.83+8.63
pei-2 18.944+ 2.73  30.86+2.62 23.79+ 2.66 1455+ 2.87 21.41+2.69 132.11+ 2.52
pei2 18,51+ 2.73  28.59+ 2.63  22.90+ 2.67 14.36+ 2.89 21.21+ 2.68 156.97+ 48.24
gcdmat 2261 20.34 32.37+ 2551 25.35+21.51 23.07+20.13 21.18+ 15.21 187.29+ 84.00
Chebspec 23.13 15.78 52.07+27.19 50.96+ 26.64 49.98+ 25.92 84.60+ 29.62 230.27+ 78.29
randsvd 150.114 35.44 196.67 71.11 138.55- 22.50 141.79F 7.08 111.40+ 5.95 248.73+ 70.48

good performances for some benchmarks such as ma@leelsspec, triw, randsvd, tridiag

The OPT seems better than ALS and HALS algorithms due to a@dethe entries simultaneously.
For low rankR = 5, OPT easily outperformed (H)ALS algorithms. For examfide pei2, per-2 and
dramadahmatrices, OPT estimated components with averaged=S# dB, 84.27 dB and 54 dB
respectively. However, for higher raflR = 10,15 with higher number of entries to be updated,
the performances of OPT were reduced. For example, SIRsef@; per-2and dramadahmatrices
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Table 6.5: Fitness comparison for algorithms in Exantple3
Factortype ALS LS ELS HALS OPT fLM ALS LS ELS HALS OPT fLM

R=51,=50 R=10,l, =50

minij 1.83e-4 1.83e-4 1.83e-4 1.83e-4 3.9083490e-6 |7.85e-5 7.33e-5 7.24e-5 7.13e-5 6.348:45e-6
Hilbert 1.78e-4 7.63e-5 1.78e-4 8.67e-5 4.678-29e-6 |2.32e-5 2.42e-5 5.45e-6 6.63e-7 1.678.36e-8
Lotkin 3.82e-5 2.33e-6 6.72e-5 1.33e-5 8.42&-36e-7 [3.99e-6 4.84e-5 5.62e-6 5.14e-7 4.32&-24e-8
Cauchy 1.73e-5 1.20e-5 1.78e-5 1.38e-5 1.13Mbe-7 |3.88e-6 2.28e-6 6.56e-7 3.95e-7 6.508-98e-8
Chow 4.01e-4 2.85e-4 5.24e-4 5.52e-4 1.14e-3 0 |2.12e-3 2.07e-3 2.07e-3 2.07e-3 1.82e-3 O
Circulant | 6.16e-3 6.05e-3 6.16e-3 6.14e-3 1.86e-3 0 |5.11e-3 3.31e-3 5.78e-3 6.40e-3 3.82e-3 0
Chebspec| 2.36e-3 1.25e-3 2.36e-3 8.29e-4 6.85e-3 0 [4.01le-2 4.01le-2 4.0le-2 4.0le-2 3.044-®0e-2
ChebVand 1.94e-2 8.49e-4 1.94e-2 1.33e-3 8.63e-4 0 |1.94e-2 4.41e-3 6.55e-3 5.20e-4 7.75d4-36e-5

pei-1 1.23e-3 7.42e-4 1.23e-3 1.31e-3 9.618-86e-8 |8.70e-4 5.48e-4 5.50e-4 1.26e-3 9.76&-48e-8
Lehmer 3.28e-3 2.83e-4 3.28e-3 8.14e-3 3.04e-3 0 |1.63e-3 1.33e-3 1.40e-3 2.29e-3 3.604-B8e-4
peil 1.16e-3 7.06e-4 1.15e-3 1.22e-3 6.16e-4 0 |8.19e-4 3.72e-4 5.22e-4 1.17e-3 8.77e-4 O
pei2 1.87e-3 1.86e-6 1.87e-3 2.45e-3 3.70e-5 0 |1.84e-3 3.0le-5 4.85e-4 2.92e-3 4.25e-4 O
pei-2 1.57e-3 3.27e-7 1.56e-3 2.17e-3 1.73e-6 0 |1.86e-3 4.14e-6 2.47e-4 3.08e-3 3.54&-21e-8
gcdmat 1.17e-3 5.58e-5 1.17e-3 6.74e-3 2.43e-3 0 |7.98e-3 7.40e-3 7.41le-3 7.61le-3 6.20e-3 O
dramadah| 2.18e-2 1.00e-3 2.18e-2 1.51e-2 9.46e-4 0 [2.75e-2 2.71le-2 2.71e-2 1.31e-2 2.18e-2 O
triw 2.02e-4 1.87e-7 2.02e-4 1.99e-7 7.02e-6 0 |4.30e-4 1.38e-5 1.38e-5 5.17e-7 1.08e-1 O
randsvd 1.71e-8 1.71e-8 4.19e-8 3.83e-8 1.03e-7 0 |6.02e-3 1.84e-7 3.42e-7 4.32e-7 4.95e-2 0
binomial | 1.10e-3 1.38e-4 1.10e-3 3.97e-4 4.50e-4 0 |1.50e-3 8.53e-4 8.97e-4 2.87e-3 4.62@-Ble-5
tridiag 1.33e-6 1.35e-7 1.33e-6 1.61e-7 3.28e-1 0 [2.96e-2 2.50e-2 2.63e-4 6.84e-8 4.05e-1 O
R=15,1,=50 R= 20,1, = 100
minij 3.99e-5 3.69e-5 3.99e-5 2.29e-5 7.35e&+26e-6 [1.57e-5 1.54e-5 1.54e-5 1.06e-5 4.19d-24e-6

ChebVand 3.83e-3 2.27e-3 5.84e-3 7.83e-4 1.17e&e-6 [6.32e-3 1.13e-3 2.64e-3 6.73e-4 5.98@-38e-6
Cauchy 4.19e-7 3.37e-6 2.74e-6 2.88e-7 1.03e-3 0 |(1.86e-6 3.02e-6 1.58e-6 6.19e-7 1.01le-3 O
Hilbert 1.93e-5 1.44e-5 2.87e-6 2.38e-6 2.20e-3 0 [4.20e-6 1.83e-6 2.59e-6 2.39e-6 3.21e-4 0
Lotkin 6.03e-7 1.52e-6 1.95e-6 1.53e-6 6.0le-4 O |(1.74e-6 4.90e-7 6.49e-8 1.92e-7 6.71e-4 O
Lehmer 1.25e-3 7.64e-4 1.25e-3 7.1le-4 3.462-B3e-5 |8.75e-4 4.81le-4 7.92e-4 5.94e-4 2.26&6-34e-6

peil 6.57e-4 2.79e-4 6.53e-4 2.41e-3 7.29e-4 0 |2.57e-4 1.24e-4 1.68e-4 5.73e-4 2.40e-4 O
Chow 2.04e-3 1.66e-3 2.36e-3 2.08e-3 2.71e-3 0 |1.03e-3 9.00e-4 1.02e-3 9.17e-4 1.20&-51e-8
pei-1 6.97e-4 3.32e-4 6.95e-4 1.15e-3 9.066:45e-8 (2.65e-4 1.19e-4 1.73e-4 5.98e-4 2.94e-4 O
Circulant | 4.65e-3 4.54e-3 4.61e-3 5.72e-3 7.89e-3 0 |[2.46e-3 2.26e-3 2.03e-3 2.86e-3 2.87e-3 0
pei2 1.57e-3 6.38e-4 1.57e-3 8.86e-3 8.68e-3 0 |6.78e-4 2.10e-4 3.74e-4 1.82e-3 4.58e-4 O
pei-2 1.67e-3 4.55e-4 1.67e-3 1.03e-2 6.65e-4 0 |7.12e-4 1.90e-4 3.82e-4 1.92e-3 5.04e-4 O
gcdmat 3.06e-3 1.99e-3 3.06e-3 9.60e-3 7.84e-3 0 |6.39e-3 1.79e-3 3.90e-3 5.88e-3 9.53e-3 0
Chebspec| 2.94e-1 2.93e-1 2.94e-1 1.50e-2 1.40e-3 0 [2.50e-1 2.63e-2 2.64e-2 2.64e-2 4.30e-4 O
triw 2.15e-4 7.28e-6 2.15e-4 3.75e-6 4.35e-2 0 |2.27e-2 2.27e-2 2.27e-2 3.36e-2 8.54e-2 O
dramadahl 1.24e-2 1.23e-2 1.24e-2 1.25e-2 1.27e-2 0 |1.24e-2 8.99e-3 1.05e-2 9.81e-3 3.71e-3 O
randsvd 4.10e-2 2.51e-2 4.10e-2 1.98e-3 9.96e-2 0 |3.54e-8 4.33e-8 7.30e-8 5.31e-8 1.41e-6 O

binomial | 2.08e-3 1.60e-3 2.08e-3 5.85e-4 3.786:89e-6 (7.99e-4 9.52e-4 8.02e-4 1.52e-4 1.848.52e-7
tridiag 2.05e-3 7.20e-7 2.05e-3 2.04e-7 3.52e-1 0 |2.16e-1 2.16e-1 2.16e-1 2.16e-1 3.05€-13e-1

estimated by OPT are 33 dB, 57 dB 33 dB fr= 10 and 20 dB, 30 dB and 28 dB fé&t = 15.
However, OPT did not succeed in factorizing other structuemsors such as chow, circulant, tridiag
matrices.

For all the experiments, the fLM algorithms always achietieel best performances, and suc-
cessfully estimated components for most structured nestrid he fLM algorithms overwhelmingly
outperformed all the other algorithms. Fig@&illustrates SIR indices for CP algorithms.

In a further example, we incorporated 20dB Gaussian no@sesuctured tensors. CP algorithms



112 Chapter 6. Simulations and Results

Experiment
Algorithm Algorithm
(@) R=5,1, =50 (b) R= 10,1, =50

Experiment

g Experiment g Experiment
Algorithm Algorithm
(c) R=15/1,=50 (d) R=20,1, =100

Figure 6.8: SIR indices for CP algorithms in Examglé.3for different rankkR and dimension,,.

Table 6.6: Comparison of SIR indices for algorithms faciog noisy structured tensors in Example
6.1.3 Tensors were composed from structured factors. A gooditigo provides high SIR between
original and estimated components.

Factor type ALS LS ELS HALS OPT fLM
R=15,I, =50

Cauchy 2286+ 5.11 23.23+4.48 22.86+5.11 23.02-5.13 26.98+ 4.84 26.97+ 4.81
Chebspec 32.0F 14.77 35.05+ 14.06 32.07 14.77 36.94 12.76 20.58+ 15.02 41.58+ 9.19
dramadah 26.449.93 33.85+10.12 26.44-9.93 19.50+4.91 38.46+ 3.77 38.45+ 3.72
Lehmer 16.73:9.19 17.71+9.41 16.73+9.19 12.50+ 6.44 24.30+ 8.24 24.38+ 8.43
Lotkin 22.85+5.45 24.53+5.64 22.85+545 22.48+5.90 26.69+ 6.45 26.66+ 6.41
orthog 42.82+ 10.41 43.54+9.31 42.82+ 10.41 45.62+ 3.18 42.02+ 11.63 45.62+ 3.18
triw 46.23+2.29 46.22f 2.33 46.22+ 2.34 46.22+ 2.33 43.01+ 10.75 46.224+ 2.30

Hilbert 18.66+ 5.50 19.37+5.84 18.66+ 5.50 18.94+5.61 24.954+ 7.21 24.95+ 7.20
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factorized the noisy tensors, and SIR indices were evalufatethe estimated factors. The results
are given in Tablé.6. For some benchmarks such @auchy, dramadah, Lehmer, Lotkin, Hilbert
the performances of OPT and fLM are almost similar. Howef@rpenchmarkshebsepc, orthog,
triw, OPT's performances are even worse than (H)-ALS algorithiie results also show that fLM
outperformed other algorithms for noisy tensors.

6.1.4 Factorization of Complex-valued Tensors

In the next set of simulations, we considered factorizatiboomplex-valued tensors. Factdk§? e
%R were generated in the same manner as for experiments ind¢h@ys section. However, they
had random real and imaginary parts. In addition to collitgalegreesy = 0.1,0.2,...,0.5, we
consideredv = 0.05 for mutual angle®;, ~ 3°r # 1, andv = 3,4,5. We note that although
collinearity of factors is low for highy = 3,4,5 (91, > 71°), the tensors are still flicult to factorize.

Normally, the CP algorithms can straightforwardly extethde handle complex-valued tensors.
However, due to missing extensions of the ELS, OPT algosthwe only compared ALS, LS and
fLM algorithms. Algorithms were stopped adidrences between successive relative errors are lower
than 10°8, or maximum number of iterations (2000) is exceeded.

In Figures6.9(a}(b), we illustrate the average MSAE of all factors for 5&0 x 50 dimensional
tensors with rank® = 5 and 15 over 100 runs. ALS and LS achieved good performance=ad.3,
and excellent MSAE at = 0.4 and 0.5. However, for high= 3, 4 and 5, ALS completely fails as for
v =0.05, 0.1 and 0.2. LS seems betterfo& 5, but it is not éicient forR = 10. The fLM algorithm
achieved perfect estimations for all test cases. Figbu@&)(d) indicate that the number of iterations
of ALS and LS tends to decrease graduallyascreases from 0.05 to 0.5 and even to 1. However,
ALS and LS still need at least 1000 iterations in order to easfully factorize 3-D tensors of rank
R = 5. Forv = 3, 4 and 5, the number of iterations of ALS and LS increasemagad quickly passes
over the maximum value of 2000 while they still get stuck icdbminima. For ranlR = 10, both ALS
and LS stopped after tens of iterations because there iswdatignificant change in the relative error.
Figures6.9(c)(d) also reveals that fLM requires less iterations for higheDifference in magnitude
between components does néeat to fLM. For tensors withiR = 15,v = 5, the number of iterations
of fLM is rather high. It can be caused by initial value of dangpparameter.

6.2 Simulations for NTF
6.2.1 Random Data

We constructed 3-D synthetic tens@fswith 1; = I, = I3 = 100 composed from random factors
comprisingR = 10 components. The components were forced to be collingéarathers. All the



114 Chapter 6. Simulations and Results

x I
v, ' ' ' : ' —¥
" N Yr.as
-40 ‘
.
™) o |
s 1 2 !
W 8or w !
< <
%) %) |
= -100 = -100
-120 -120 ”i”
-140 -140 -
N L : : O Pl b
ST . S WS St e v SN ~160 : T YO0 SRR SRR SN N NP S
0.05 0.1 0.2 0.3 0405 3 4 0.05 0.1 0.2 0.3 0405 3 4 5
4 v
(a) 3-D tensorsA(™ e €595 SNR= +o0 dB. (b) 3-D tensorsA(M e C59%15 SNR= +00 dB.
YTy I L
(2] (9]
c c
2 ]
< IS
o] 2
S S
P4 2
R v Eod i
0.05 0.1 0.2 0.3 0405 3 4 5 0.05 0.1 0.2 0.3 0405 3 5
4 4
(c) 3-DtensorsA(M e C50%5, (d) 3-D tensorsA(M e C50x15,

Figure 6.9: lllustration for MSAE for factorization of 3-Domplex-valued tensors with sizg = 50
and ranksR = 5,15. Algorithms stop as they reach a derivative of successiative errors of 108

or 2000 iterations.

algorithms were initialized using leading singular comgats, and stopped whenfidirence of the
consecutive relative erroeswas lower than 10, or the maximum number of iterations (200) was
exceeded. Comparison of performances of various algosittweraged over 100 runs is given as Ex-
ample lain Tablé.8. The proposed algorithm achieved almost perfect perfocemwithe ~ 2.87e-9
after only 67 (averaged) iterations. The other algorithmda not estimate hidden components in 200
iterations. To analyze their convergences, we set new stoapiterion with one million iterations,
ande < 10710, Most algorithms except the KL algorithm converged to thsimel results with aver-
aged SIRs> 30 dB (given in the 3-rd row in Example la of Talfié8). Figure6.10illustrates relative
errors as functions of iterations for NTF algorithms for € run. The fLM, converged after 104
iterations, whereas the QALS stopped after 50K iteratidiasyield comparable performances to that
of the fLM,. algorithm, the other algorithms need much more iteratioM@reover, in general the
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other algorithms often achieve affdirent solution because the optimization problem is hardthad
algorithms get stacked in a side local minimum more fredyehan fLM,, .

Next, we constructed 5-D synthetic tensdfswith I, = 10Q (n = 1,...,N). Factors compris-
ing R = 20 components were drawn from uniform distribution, or spariform distribution with a
density of 0.3. Factors were forced to be collinear with athoy the modification ing.3). All the algo-
rithms were analyzed under the same experimental conditi@omparison of performances of various
algorithms averaged over 100 runs is given in Tgh® For all the MC runs, the QALS algorithm
achieved perfect factorizations with the lowest relativers ¢ < 10~8 after 500 or 1000 iterations.
Factors estimated by the QALS algorithm have the highest\@lRes for factorizations of dense
and sparse tensors compared to those by other algorithmisthé-game experiments, we analyzed
the convergence after 25.000 iterations, the mLS algoralhieved relative errors of&7 10~" and
9.91 1077 for dense and sparse tensors, respectively, whereas th& ldigorithm achieved.83 10~7
and 695 10~ ’. That means to explain a tensor at an equivalent relative, ¢he other algorithms need
much more iterations than the QALS algorithm. F&$1(a)6.11(c)illustrate convergences of NTF
algorithms for experiments 1-3 in Tale8.

In another experiment, we decomposed 18AM00x 1000 dimensional sparse tensors composed
by R = 100 collinear components. The proposed algorithm stilhebelmingly outperformed all the
other algorithms. The HALS algorithm achieved better panfances than those of the multiplicative
KL and LS algorithms. A more intuitive visualization for c@rgences of algorithms is shown in
Figure6.11(d) The proposed algorithm explained the large-scale tensty while other algorithms
were stacked in local minima, and did not improve the pertoroe after 60 iterations.

In order to illustrate theK-QALS algorithms, we analyzed a similar experiment in which
synthetic tensory/ with I, = 100 (n = 1,...,N) were composed by factors & = 10 sparse
random components which were forced to be collin€aB)( Comparison of performances (relative
error and SIR index) of various algorithms averaged overrli is given in Tablé.7. Figure6.10(b)
illustrates convergences of the analyzed algorithms. Th® aigorithm converged very slowly, while
the ALS algorithm stopped after 100 iterations. The QALS&atGm returned perfect results with SIR
= 67.5dB. With various approximation ranks= 1,2, ..., R, the proposed method outperformed the
mLS and ALS algorithms. And with suitable ranRsthe K-QALS converged faster than the QALS
algorithm. Although the HALS algorithm witR = 1 achieved much better performance than the mLS
and ALS algorithms, its performance was still lower thart thfathe proposed algorithm with higher
approximation ranks such &= 4,7, 10. We note that the r10-QALS algorithm in this experiment is
different to the QALS algorithm due to strategy of componentcsele.
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Table 6.7: Performance comparison for various algorithongEkample6.2.1

Algorithm Error Iteration SIR (dB)
mLS (2.11+0.47) 104 1000+ 0 29+8
ALS (4.32+ 0.52) 10°° 76.5+ 15 41+10
QALS (5.35+ 0.20) 10°° 410+ 17 67+7
r1-QALS (2.11+1.17) 107 1000+ 244 51+ 11
r4-HQALS (4.844+ 0.38) 10° 464+ 53 68+ 7
r7-HQALS (4.224+ 0.59) 10° 356+18 68+ 7
r10-HQALS (4.87+0.79) 10°° 331+ 21 68+ 7

©=-mLs
#*- ALS
QALS
| —— HALS-01F -
7+ HALS-0
<}~ HALS-0

+-H

Error
Error
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Figure 6.10: Convergence of NTF algorithms for experim@nSection6.2.1

6.2.2 Structured Factors

We considered factora(™ e R100%50 n — 1 2 3 whose components are the fiRst= 50 columns of
100 x 100 structured matrices such as the Circulant matrix, thelmatrix, the Helmert matrix, the
Hilbert matrix, the Lehmer matrix, the Lotkin matA%87:88.122,

Results of factorizations of such tensors are numberedecotigely from experiments 5 to 10
as given in Tableés.8 Convergence of algorithms for some experiments is iléistt as function of
iterations in Figure$.11(e}6.11(h) For all the experiments, the QALS always factorized thedat
tensors well, and converged quicker than all the other #hgos. In order to compare the original
factors with those estimated by NTF algorithms, we visealithem as 2-D matrices in Figuéel2
Figure6.12(a)shows the circulant factors. The corresponding factoisiastd by QALS and shown in
Figure6.12(b)are similar to the source ones, with the averaged-SIR.28 dB. The factors estimated
by HALS shown in Figurés.12(c)cannot reveal the circulant matrix structure. The distidnuof SIR
indices for this experiment is shown in FiguBel2(d)

Another visualization for the Helmert factors is shown iguéiies6.12(e}6.12(h) The verification

results here strongly confirm that the proposed algorithnimdeed provide significant improvement



Table 6.8: Performance comparison for various algorithifiee relative errors are expressed in logarithmic scale,ig&diRes are in dB unit,
and accuracies are given in percentage. A successful tagois with low relative error and high SIR index. For expegimts 5-10, the numbers
of iterations are in side brackets.

Description Measure mKL mLS ALS HALS QALS fLIM
1o N=31,=I00R=10,  Erior_(156£039)e-3 (1,02 0.17)e-4 (7.83 062)e-6 (105 0.83)e-6 (I5.0: 7.26)e7 (287 20.2)e-9,
200 iters., dense, collinear SIR 5+5 14+2 18+ 4 14+ 3 20+ 2 97 +16
1a*. (100000 iterations) SR 133 33£6 63+37 575 T 7 14073~ 150+ 23
1p. N= 3.1 = 100,R = 20, _Error (r67£9.61)e-r (5837367
" 25.000 iters., dense, collinear SIR 45.13+ 10.65 38.36+ 4.52
2aN=31n=100R=20, — "Erfor_ (744 0.28)e-d (I % 0.64)e-4 (195 087)e-4 (143 071)e-5(3 370509 (277% 124)e7
500 iters., sparse, collinear SIR 2453+ 11.09 10.91+2.83 8.31+ 1.72 17.84+ 4.09 58.45+ 5.43  125.25+ 28.35
op N = 3,1n = 100,R = 20, _Error (9.91+0.14)er ~ (69%0870)evr
'25.000 iters., sparse, collinear SIR 44 .46+ 10.91 37.5 4.77
3N =51y =100,R = 10, _EBror___________ (6.69+ 0.54)e-2 (1.23+ 0.07)e-2 (5.81t 20)e-6_ (0.89t 1.43)e-8 (0.23% 0.52)e-9
1000 iters., sparse, collinear SIR 28.15f+ 7.5 35.11+ 9.08 50.81+ 11.56 204.9+8.80 142.76+ 23.07
N = 3,1, =1.000,R = 100, Error (7.77+ 0.54)e-4 (6.45- 0.07)e-4 (6.34t 20)e-5 (3.84+ 1.43)e-9 3.95e-12 (54)
‘500 iters., sparse, collinear ~ SIR 7.66+1.09 696+ 129 1191+ 2.04  67.43t4.25 105.2545.98
g Circulant matrix _Bror - 1.85e-4(500) _ 2.27e-5(500) _ _1.50e-5(500) _2.12e-8)20 6.83e-10(139)
‘N =31,=100,R= 50 SIR 10.59+1.22 15.61+ 2.27 1419+ 2.53 21.28+ 7.57 40.30+ 8.08
g Frank matrix JBwor 1.62e-3(500) _ 4.92e-4(500) _ _3.38e-4(500) __5.37e-B)50 5.37e-6(205)
‘N =3,1,=100,R= 50 SIR 10.86+ 1.95 12.86+ 3.02 12.52+ 3.61 21.74+ 15.64 95.47+51.20
- Helmert matrix _Emor_ 9.1e-5(500) ~ 1.5e-5(500) 2.92e-5(500) ~ 6.11e-7(500)1.99e-7 (356)
‘N =3,1,=100,R= 50 SIR 16.36+ 10.40  17.99+8.11 17.34+£10.10  30.39% 15.98 94.57+ 34.80
g Hilbert matrix JEmor 6.13e-5(500) __ 1(500) _ __2.5e-7(500) _ 7.92e-9(47) 4.1e-12(40)
‘N =3,1,=100,R= 50 SIR 11.92+ 2.06 0 20.45+ 5.64 38.81+ 6.84 25.78+ 5.68
g Lehmer matrix _Bror____________ 71e-4(500) __________1.49e-5(500) _8.07e-10(500)2.91e-10 (63)
‘N =31, =100,R= 50 SIR 11.75+2.35 10.23+ 2.66 25.25+ 9.04 22.41+ 3.57
10,.L-otkin matrix _EBmor 3 3.89e-6(500) 3.38e-4(87) __ 5.37e-5(44) 1.86e-10(30)
‘N = 3,1, =100,R= 50 SIR 22.87+ 2.53 27.77+ 5.8 32.63+ 8.06 31.11+ 8.35

41N Jo} suonenwis '¢'9

LTT



Chapter 6. Simulations and Results

118

50 100 150 200 250 300 350 400 450 500
Iterations

(a) Relative errors for Experiment 1.

8

Ls

ALS

HALS
—%— QALS

e

50 100 150 200 250 300 350 400 450 500
Iterations

(b) Relative errors for Experiment 2.

100 200 300 400 500 &0

"™
.
700 800 900 1000

Iterations

(c) Relative errors for Experiment 3.

108

——1Ls
ALS
HALS
—E— QALS
="M+
100 200 300 400
Iterations

500

(d) Relative errors for Experiment 4.

50 100 150 200 250 300 350 400 450 500
Iterations

(e) Relative errors for Experiment 6.

10 e
10°0 |
Y
Ls
102| As ||
HALS
—57— QALS
—85— LMp

106]

108

50 100 150 200 250 300 380 400 450 500
Iterations

(f) Relative errors for Experiment 7.

10°

102

O 104

106

108

0 100 150 200 250 300 350 400 450 500

Iterations

(g) Relative errors for Experiment 8.

LS

ALS

: HALS
—F—QALS

——Lmp

F——

Iterations

4

50 100 150 200 250 300 350 400 450 500

(h) Relative errors for Experiment 9.

Figure 6.11: Performance comparison of NTF algorithmsdetdrization of synthetic tensors.
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for nonnegative tensor factorizations in the terms of penfnce and convergence compared to the
other algorithms.

6.2.3 Analysis of Number of Recursive Iterations in QALS Algrithms

This sections aims to show upper bound for the number of se@uiterations in NQP algorithms used
in Algorithms 3.2and3.3. Experiments are similar to those in Sectth2.1 However, the number of
recursive iterations and dimensions of matriQem the NQP function were measured. We composed
3-D and 5-D synthetic tensors from random factors which eaddnse, or sparse and collinear with
In = 100,300,500 or 1000 andr= 10, 20, 80, 100, 200 or 600 components. FigbuE3illustrates
occurrence rates for the number of recursive iterationserNtQP function (Algorithn8.1) for various
tensor factorizations. Description of tensor factori@asi appearing in legend are given in the order:
R, I, N. The occurrence rates are normalized in [0 1] and also giVelite6.9. The results show that
NQP function repeated only few iterations even for largalestensors such &= 600 and, = 1000.
The number of recursive iterations did not excéled,(R) +1). Dense tensors were quickly factorized
with fewer iterations than sparse and collinear tensorstisfital results also reveal thefidirence
between ALS and QALS algorthms. That is the NQP function inL@Algorithms almost needed at
least two iterations as convergence was achieved (Figdi2(a), and higher iterations for collinear
data (Figure6.13(b). For tensors wittR = 80,200 or 600 collinear components, QALS required
4 recursive NQP loops. Note that ALS employs the NQP funciiith only one iteration, but it is
extremely slow for collinear data, or cannot fit such datesfattorily due to possible trapping in local
minima. It also explains why QALS outperforms ALS.

6.3 Simulations for NTD

We compared performance of the LMilgorithm with the multiplicative LS (mLS¥!, HALS 156158,
Synthetic tensord/ with I, = 100, N = 3,4 were composed from uniformly distributed random
factors comprisingR = 5 or R = 3 components. In some experiments, factors were forced to be

sparse with density of 30%. Algorithms were initializedngsthe HOSVD algorithr?, and stopped
1YY
7

iterations was exceeded. Comparison of performances imugalgorithms averaged over 100 runs is

when diference between consecutive relative ereots < 1078, or the maximum number of
given in Table5.10 Although the HALS algorithm achieved better performar@ntthe multiplicative
LS algorithm especially for sparse tensors, both thesewitiigns could not decompose the random
tensors with small errorx 107°) in 500 iterations. Their relative errors for decompositiaf dense
tensors were greater than ) and slightly better for sparse tensors. Whereas, the peapalgorithm
achieved almost perfect performances with< 10° after only few iterations, even for large-scale
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Table 6.9: Occurrence rates for number of recursive NQPsl@o®QALS algorithms for factorization

of random tensors in Sectid2.3 .
Experiment Number of recursive loops

R, Ih, N 1 2 3 4 5 6

Dense factors

10, 100, 3 2.88 93.36 3.75 0.01
20, 100, 3 1.18 93.52 5.27 0.04
80, 100, 3 0.28 91.23 8.30 0.18
80, 100, 5 1.64 91.70 6.59 0.07
100, 300, 3 0.23 92.59 7.06 0.12
200, 500, 3 0.16 90.66 9.02 0.16
100, 1000, 3 0.26 93.90 5.80 0.04
600, 1000, 3 0.26 67.78 31.02 0.93

Sparse and collinear factors

10, 100, 3 41.73 53.61 4.56 0.10
20, 100, 3 0.01 35.00 58.67 6.00 0.30 0.02
80, 100, 3 0.41 2.13 42.45 52.08 291 0.02
80, 100, 5 0.76 32.95 62.79 3.49 0.01
100, 300, 3 0.38 47.17 47.84 4.33 0.27 0.01
200, 500, 3 0.31 1.94 1096 73.58 13.02 0.19
600, 1000, 3 2.90 2.52 74.14 20.39 0.04
21 ‘ ‘ 2os : :
= 0.9} = [ 10,100,3 E =1 [ 10,100,3
[ [ 20,100,3 o 0.7¢ [ 20,100,3
o ogl [—-180,100,3 o . —180,100,3
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o7t 2005005 o 06/ I 12003003
E = 100,1000,3 5 05l n 1 600,1000,3 |
o 0.6r B 600,1000,3] | 3 0.
8 0.5 8 0.4 I
° °
o1 Zoa
© o © L
£ 0.2 £ 0.2
CZD 0.1+ g 0.1 L
0 Bon 1 . ! ! 0 | 1 . .
1 2 3 4 5 6 7 1 2 3 4 5 6 7
No. Recursive iterations No. Recursive iterations
(a) Random tensors with dense factors (b) Random tensors with sparse and collinear tensors

Figure 6.13: Statistical analysis on number of recursigeations in the NQP function for random
tensors with dierent sized, and N, different number of componeni and structures of factors:
dense or sparse, collinear factors. Description of terestipfizations appearing in legend is given in
the order:R, I, N. Tensors with sparse and collinear factors are harder torfae than those with
dense factors. The number of recursive loops does not extmpdR) + 1).

tensor (, = 100 N = 4). In Figure6.14, we compared the relative errors of algorithms as functadns
iterations for one run of decomposition of a 10A.00 x 100 dimensional tensor. After few iterations
to seek the damping parameteand the regularization parameterLM , quickly explained the data
tensor ina 69 iterations. The mLS and HALS algorithms could not explai@ benchmarks even if
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Table 6.10: Performance comparison for various algoritfondecomposition of synthetic tensors.

Experiment Error No. iterations
(In,N,R) mLS HALS LM, mLS HALS LM,

(50, 3,5) (1.62+ 0.18)e-2 (1.15+0.12)e-2 (1.52+6.39)e-7 500 500 47

(100, 3, 5) (1.76+ 0.15)e-2 (1.28t 0.12)e-2 (7.27+ 10.26)e-9 500 500 69

(100, 3,5), sparse  (8.26 1.21)e-2 (1.49t 0.86)e-2 (1.70+ 4.28)e-8 500 500 77

(100, 4, 3) (2.04+ 0.23)e-2 (2.01+ 0.83)e-3 (.10+2.31)e-8 5000 5000 55

(100, 4, 3), sparse  (1.821.01)e-2 (0.49- 1.38)e-4 (3.46+9.57)e-6 2000 218 59

10 L R
multiplicative LS | :
o HALS :
N |
(i SRR
° s
= L
= s
o sl
04 s
1075 = — -
10 10 10

Iterations

Figure 6.14: Convergence of NTD algorithms for decompasitf 3-D synthetic tensor.

they were run for 2000 or 5000 iterations.

6.4 Applications
6.4.1 Analysis, Clustering and Classification of EEG Datage

This example illustrates the analysis of real-world EEGatf&twhich consists 28 inter-trial phase
coherence (ITPC) measuremerifsof EEG signals of 14 subjects during a proprioceptive pulthef
left and right hands, and gives a 4-way tensor of 64 chanréf? time framesx 61 frequency bins
(15 to 75 Hz)x 28 measurements. This dataset was analyzed by CP and Tuwkeooents with
nonnegative constraints compared with components egttdst NMF and ICASC, For the right hand
stimuli, the ITPC maxima were observed in the left frontafiptal central region. On the contrary,
for the left hand stimuli, the activities occur on the riglentral region. Generally, the right hand
and left hand stimuli activate similar rhythms which shooltur after similar latency periods but
distribute over two dferent regions. That means factorization of such nonneg&tinsor will give



6.4. Applications 123

collinear spectral and temporal components. In this secti@ show that the proposed algorithm not
only extracts highly collinear components as expectedalaat outperforms the other algorithms, and
achieves the highest clustering and classification aciasac

The ITPC tensor was factorized inB® = 6 rank-one tensors. Exemplary illustrative results are
shown in Figure6.15 with scalp topographic maps and their corresponding teaipmmd spectral
components, whereas the performance comparisons (eeéatiors and number of iterations) are given
in Table6.11 The estimated components by mKL, ALS, HALS, r3-QALS and @Adre shown in
Figures6.15(a}6.15(f). The K-QALS resulted almost similar components witlifteientR. For the
factors estimated by QALS, the 3rd components distribut the left frontal-parietal central region
(visualized by the 3rd spatial component), reveal the gamiytém with the peak frequency of 37Hz
(the 3rd spectral component), and with a latency of 56ms Jtidetemporal component). The 2nd
components also distribute over the same region, but présebeta rhythm between 15-25 Hz with a
latency of 87ms. That means an activity caused by right haimdiation mainly pertains beta rhythm
with a latency of 87ms (component 2), and 37Hz gamma rhythimadiatency of 56ms (component 3).
Similarly, an activity caused by left hand stimulation cacharacterized by beta rhythm with a latency
of 83ms (component 4), and 42Hz gamma rhythm with a laten&6ofs (component 5). Temporal
components 3 and 5, 2 and 4 are respectively almost idenN@leover, spectral components 2 and
4 are collinear, spectral components 3 and 5 are shifteceguéncy. The other algorithms (mLS,
mKL and ALS) did not successfully retrieve both collineateband gamma rhythms. The spectral and
temporal components corresponding to spatial componésitsbdting over the right or left parietal
regions for the ALS are intuitively illustrated in Figuéel5(c)

In the next step, we performed clustering for selected feataorresponding to components which
distribute over the right or left parietal regions. We faized matrices of projected features szx“
into 2 factorsA € R3%? andX e RY* F ~ AXT. A cluster label of a measurement was specified
by the column index consisting of the maximum weight in ther@gponding row of the matriA.
The clustering accuracies are given in TaBlél Figure6.16illustrates scatter plots discriminative
features extracted from NTF features for the ALS, HALS, mKId®ALS algorithms. The proposed
algorithm achieved an accuracy of 92.86%, and there are dmhjsclassified measurements. The
performances for the mKL, mLS and ALS, HALS algorithms arspextively 85.71%, 78.57% and
82.14% and 82.14%. The same performances can be obtaimepthigsiK-means clustering.

Another application for this dataset is classification. lesgbject was characterized by 6 features
and assigned to a label corresponding to the left or riglsiscldhe leave-one-out crossvalidation was
employed to evaluate the feature extraction by NTF algarjtand classification. We selected only
two significant features based on the Fisher scores. A QDgsiflar was trained for training features.
Classification accuracies for algorithms are given in Téhld. Classification using features extracted
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Table 6.11: Performance comparison for various algorittong&xample6.4.1

Algorithms mKL mLS ALS HALS r3-HQALS QALS
Error 0.412 0.376 0.378 0.370 0.369 0.369
No.lters 100 100 100 100 59 61

Clustering Accuracy (%) 85.71 78.57 82.14 82.14 92.86 92.86
Classification Accuracy (%) 75.71 92.86 75 75 96.43

by the proposed algorithm achieved the highest accuracy.df3%o, that means there was only one
subject misclassified.

6.4.2 Clustering of the ORL Face Database

This example considers the ORL face datab&seonsisting of 400 faces for 40 subjects. A common
way to process this dataset is that faces are vectorizedx&mple in Fisherfacé®, ICA 18 Wavelet+
RBF23, In the first analysis, 100 faces from the first 10 subjectsawlewn-sampled, then vectorized
to give a(400 x 100) matrix Y. We applied NMF to findR = 20 features for each face, and used the
K-means algorithm to cluster them. The accuracy (%) and abzed mutual information (NMI) for
algorithms are given in Tab& 12 The proposed algorithm explained data with a lowest radagiror
and achieved a higher clustering accuracy than the otheritions. Especially, LM with sparsity
constraints (LM s) successfully clustered the selected faces.

Next, we constructed 32 Gabor feature tensors of 8 oriemsiit 4 scales which were then down-
sampled to 16< 16 x 32 x 400 dimensional tens@/. That means we have a 4-D ten3$r Because
of low correlation or rare common parts between Gabor featuvhich are not in the same levels
(orientations and scales), we found common basdd ¢ RR n = 1 2 for 3-D sub-tensors
Y, =Y(,.,1,:) e R16x16x400(| — 1 2 32)along the two first dimensions

y| X I| XlA(ll) X2 A(Zl) ><3A(3|). (67)

Rows of the factoré\(3) represent compressed features of the sanmfé)SZ Y...katlevell. From

L = 32 decompositionss(7) for all levels, we obtainetl = 32 sets of base&®) andA (). Features
of each sample (face) at a levek 1,2, ...,32 can be found via projected filters built up from basis
factors of the same level. Concatenation of features irhellévels will form the whole compressed
features of a sample after tensor factorizations.

In this experiment, we sd¥ = 8,VIl. Hence, a sample (face) had 256§ x 32) features com-
pressed from 819216 x 16 x 32) Gabor features. In the second stage, the matrix of festur
X € R#00%256 \yas factorized to reduce the number of features to the nuofbelasses. Finally, the
data was clustered using the K-means algorithm. In Taldl& we compare clustering performances
for various algorithms. For clustering of faces for the f88tsubjects, LM achieved 99% accuracy,
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Figure 6.15: Visualization of components retrieved from AP C tensor using the mKL, ALS, HALS,
and QALS algorithms. A successful algorithm results cebin spectral and temporal components
which reveal the beta and gamma rhythms as in Figuts(f).
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Figure 6.16: Scatter plots illustrate discriminative teas for clustering for Exampig.4.1

outperformed the other algorithms. The LMlgorithm with sparsity constraints (LMs) slightly
improved performance up to an accuracy of 99.67%. Incrgas$ia number of classes to 35 or 40
subjects, LM s always gave the highest performances.

We also can extract nonnegative features for faces from Gabsors using NTEP’. The data
tensorY was reorganized to be a 5-D tensor of sizex1®6 x 8 x 4 x 100 (for 100 faces). The data
tensorY was decomposed along the first 4 modes to give core tensor'ekBx 3x 2x 2x 100. Hence,

a face had 36 features compressed from 8192 Gabor featunadlyRhe data was clustered using the
K-means algorithm. The accuracy (%) and normalized munfatination (NMI) for algorithms are
given in Table6.12 The LM, algorithm achieved 92% accuracy. Increasing number ofifeatto
72 =3 x 3 x 4 x 2, our algorithm achieved 99% accuracy. For both cases itaéned accuracies for
the mLS algorithm were 91% and 98%, respectively. The ptedarsults also confirm the superiority
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Table 6.12: Accuracies (Acc) and normalized mutual infdrama(NMI) for various algorithms for
Example6.4.2

(@) NTF model
10 classes

Algorithm 30 classes 40 classes
Error Acc (%) NMI Acc (%) NMI Acc (%) NMI
KL 4.51e-2 80 8.64e-1 92.67 9.49e-1 82.25 9.08e-1
LS 1.27e-2 88 9.06e-1 96.33 9.75e-1 85.75 9.42e-1
ALS 6.79e-2 93 9.20e-1 95.33 9.71e-1 85.50 9.30e-1
HALS 1.17e-2 91 9.10e-1 97 9.76e-1 86.25 9.47e-1
QALS 1.18e-2 92 9.21e-1 98.33 9.84e-1 88 9.50e-1
fLM 1.17e-2 94 9.44e-1 99 9.90e-1 87.25 9.44e-1
fLM s 1.24e-2 100 1 99.67 9.97e-1 92.75 9.69e-1
(b) NTD model
Algorithm 10 classes, 36 features 10 classes, 72 features
Error No. iters. Acc (%) NMI Error No.iters. Acc (%) NMI
mLS 0.4768 300 91 89.65 0.4430 300 98 97.09
HALS 0.4745 300 92 91.45 0.4369 300 96 94.76
LM, 0.4745 68 92 91.45 0.4368 86 99 98.54

of features extracted by NTD over features by NTF.

6.4.3 BSS in DS-CMDA Systems

This section aims to illustrate an application of factatima of complex-valued tensors of received
signals in direct sequence code division multiple acce&@DMA) system. Consider a DS-CDMA
system ofR users andK antennas over a flat Rayleigh fading, each information sempief user

s € CPis spread using a codg, € CQ before transmission over fading channels. At the receiver
side, an array oK antennas is employed to receive and decode the signalstoj®idioset al.*8®
established the model of wireless transmission as a thegediversity tensoX € CX*P*Q whose an
entry X p,q denotes the baseband output of khila antenna, for symbad and chipg

R
Xk.p.g = Z ar Spr Cqr »
r=1

(6.8)

whereay, fadinggain between userand antenna elemekt This model can be expressed as compo-
sition of 3 factors given by

X=1x1Axy,Sx3C +§&, (69)

where& is tensor of additive Gaussian noige,c CK*R denotes the compound flat fadjagay re-
sponse patter§ e CP*Ris the information bearing signal matrix, aGde C2*R s the spreading code
matrix!86. Approximation of the output of antennas returns the sigmairix S. Then with an appro-
priate demodulation for each colungn, the user information sequences will be retrieved. The com-
pression technique using the ALS and LS algorithms was recemded to factorize complex-valued
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tensors$®8. However, it's worth noting that when two or more user segesrare closely identical, or
antenna responses are collinear, the ALS algorithm willtdaietrieve accurate signals.

In our experiments, user signals were modulated by M-DPBK=f 2, 4, 8), then spread with
Hadamard(64) codes. In order to solve the sign (scaling)pemohutation ambiguities, all the user
sequences were augmented by 1 sign-correction bit] aadllog,(R)] user ID bits. That means each
user signal consisted ¢P + | + 1) bits. An alternative method is to use the greedy least square
matching algorithm®. However, this method is only useful to evaluate the peréoroe.

The compression version of the LM algorithm was comparet alorithms cALS, cLS. In Table
6.13 we present performances foffdirent DS-CDMA systems over 100 MC runs anffefient white
noise levels. For DS-CMDA system witR = 15 usersK = 10 antennas, we considered a particular
case in which array responsaswere set to be collinear so that their mutual angles weretabeus®.

R = 15 different spreading codes were randomly chosen from HadamdroigesC e C®15, For
SNR > 10 dB, we received exact user signals using the LM algoritimith BER = 0. The ALS
algorithm completely failed to decode the signals even feart systems (without noise). The LS
technique improved the ALS performance. However, its parémces were rather unstable. Note that
the analyzed DS-CMDA system had number of users more thab&uof antennas.

For DS-CDMA system wittK = 20 receivers (antennas) aRd= 20 users, user sequences were
modulated by DQPSK. The performance index BER was evaluatgdng the SNR at the receiver
inputSNR=0,2,4,...,20,30dB. The cLS algorithm almost gave the same results to thidbe LM
algorithm. However, the LM algorithm converged after a ¢desable smaller number of iterations. In
Figure6.17, we illustrate the constellations at the receiver outpubadditive white Gaussian noise
SNR = 10 dB decomposed by cALS, cLS and cLM for one MC run. Sequeestated by cALS
algorithm were still overlapped and not separated from e#oér (Figures.17(a). The corresponding
error rate was BER:= 0.0747. Both cLS and cLM returned quite similar results, aodieved high
performances without any error (BERO).

Additional results are also given in TalBel3for DS-CDMA system using 8-DPSK modulation.
For all the experiments, the proposed LM algorithm for cammplalued tensor factorization achieved
the best performance with the smallest number of iterations

6.4.4 Estimation of System MIMO Responses Using the Fourtrder Statistics

We considered ahl, x Nj MIMO system withN; = 20 inputs and\, = 20 outputs. The system
output is modeled as:
L—1

l—
X=2H|S+W, (6.10)
I=0
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(a) ALS algorithm, BER= 0.0747 (b) LS algorithm, BER= 0. (c) LM algorithm, BER= 0.

Figure 6.17: lllustration of signal constellation for outp obtained by cALS, cLS and cLM algo-
rithms in a DS-CDMA system witlR = 20 usersK = 20 antennas, and Hadamard(64) codes. User
sequences were modulated using DQPSK.

Table 6.13: Performance comparison for decoding user segeemodulated by D-MPSK in DS-
CDMA systems for Examplé.4.3

SNR (dB)
Algorithm 0 4 10 20 30
10 x 100 x 64,R = 15 usersf = 6°, DBPSK
CALS 2.47e-1 (5e-2) 6.48e-2 (6.99e-2) 4.30e-3 (1.28e-2B0633 (2.48e-2) 3.00e-3 (1.08e-2)
BER cLS 2.15e-1 (7e-2) 1.05e-2 (3.17e-2) 0(0) 1.80e-3 (8.05e-3 0 (0)
cLM 2.07e-1 (8e-2) 4.63e-3 (7.79e-3) 0(0) 0(0) 0 (0)
CALS 1.59e-1 (3.17e-3) 1.03e-1 (1.76e-3) 5.14e-2 (1.36e389%e-2 (4.31e-3) 5.51e-3 (6.44e-3)
Error cLS 1.56e-1 (2.99e-3) 1.0le-1(1.30e-3) 5.12e-2 (7.06eUp2e-2 (3.74e-4) 5.13e-3 (6.52e-5)
cLM 1.56e-1 (2.98e-3) 1.0le-1(1.34e-3) 5.12e-2 (7.06e-4)2e126(1.97e-4) 5.13e-3 (6.52e-5)
CALS 2000 (0) 2000 (89) 2000 (182) 2000 (0) 2000 (106)
Iteration cLS 2000 (0) 675 (469) 192 (87) 170 (439) 164 (251)
cLM 895 (394) 180 (198) 75 (21) 73 (24) 66 (38)
20 x 100 x 64,R = 20 usersd = 6°, DQPSK
CALS 4.57e-1 (1le-2) 2.25e-1 (1.87e-1) 5.83e-2(1.18e-1p9%et2 (3.78e-2) 2.41e-2 (5.37e-2)
BER cLS 4.08e-1 (le-1) 8.71e-2 (1.11e-1)1.25e-5 (5.59¢e-5) 0(0) 0(0)
cLM 4.00e-1 (le-1) 8.29e-2(1.08e-1) 1.25e-5 (5.59e-5) 0(0) 0)0 (
CALS 2.27e-1(2.85e-3) 1.45e-1(1.38e-3) 7.34e-2 (1.15e:832e-2 (1.20e-3) 7.38e-3 (4.06e-3)
Error cLS 2.24e-1(2.29e-3) 1.44e-1(9.87e-4) 7.29e-2 (5.57e-4)1e223(1.73e-4) 7.31e-3 (4.73e-5)
cLM 2.24e-1(2.33e-3) 1.44e-1(9.87e-4) 7.29e-2 (5.57e-4)1e223(1.73e-4) 7.31e-3 (4.73e-5)
CALS 2000 (0) 2000 (0) 2000 (21) 2000 (13) 2000 (0)
Iteration cLS 2000 (22) 340 (212) 153 (103) 141 (94) 148 (233)
cLM 2000 (515) 176 (98) 65 (13) 46 (12) 50 (29)
20 x 100 x 64,R = 20 usersf = 6°, 8-DPSK
CALS 4.57e-1 (2e-2) 3.56e-1 (1.42e-1) 1.25e-1(1.49e-1y¥332 (7.42e-2) 1.00e-1 (1.60e-1)
BER cLS 4.47e-1 (3e-2) 2.77e-1 (1.43e-1)1.63e-2 (1.71e-2) 4.61e-3 (2.06e-2) 0 (0)
cLM 4.46e-1 (3e-2) 2.60e-1(1.42e-1) 1.63e-2(1.71e-2) 0(0) 0)0 (
CALS 1.60e-1 (3.31e-3) 1.03e-1(1.90e-3) 5.22e-2 (2.05eB64e-2 (4.55e-3) 5.20e-3 (9.64e-3)
Error cLS 1.57e-1(3.43e-3) 1.0le-1(1.61e-3) 5.1le-2 (5.42e#p2e-2 (9.65e-4) 5.14e-3 (6.26e-5)
cLM 1.56e-1 (3.60e-3) 1.0le-1(1.59e-3) 5.11le-2 (5.42e-4)2etH(1.41e-4) 5.14e-3 (6.26e-5)
CALS 2000 (0) 2000 (1.55€2) 2000 (1.16e1) 2000 (8.94e-1) 2000 (2.73&)
Iteration  cLS 2000 (492) 519 (708) 177 (131) 173 (418) 172 (143)

cLM 1118 (569) 167 (131) 83 (29) 73 (16) 58 (21)
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whereH, e CNoxNi for| = 0,1,...,L — 1 is the MIMO system impulse response matfx CN*T
contains the input signalX, e CN*T is a given output data matriI;S_ denotes thépositions (columns)
shifting operator to the left, with the columns shifted iorfr outside the matrix set to zer‘(_S0 =S
W is the observation noise.

The inputss;, j = 1,2,...,N; were taken to be i.i.d. BPSK signals. The channel length was
L = 20. The purpose is to estimate tﬁ@j’: (No x N;j) be theN¢-point Discrete Fourier Transform
(DFT) of Hj j;, with Ny = 128, then recover the impulse responses.

We computed the discretized 4-th order cross-spectruniiedeas thek — 1 dimensional DFT
of the 4th-order cross cumulants. Concatenation of all thessspectrum tensors formed a 5-D tensor
C € CNoxNoxNoxNoxNr - Factorization of this tensor witN, components allow to retrieve the system
frequency responsg(

C~ T x1 AW x, A@ 5o AB) », A@ o AG) (6.11)
with the conditionA® = A@* = A®)_ The tensor of frequency responsikis computed as
H =T x1 AD x5 AO) (6.12)

Yu and Petropulé!* suggested to factorize only one of cross-spectrum tensotbér4-D CP
model. Hence, for large scale systems with large numberrspot$s and outputs, this technique cannot
provide a good solution. Experiments were analyzed by YuRetdopuli# for very small MIMO
system with few numbers of outputs and inputs such as 2, 3n4hi$ section, we will emphasize
the grid CP for such kind of application with large system.eTderformance index used here is the
overall normalized mean-square error (ONM3E) ForN, = 20, andNs = 128, the observed tensor
consisted of 20.48 millions of entries. Factorization a thhole tensor to find 5 factors to&@0665
seconds, and achieved an ONMSH.1810 We applied the grid CP with a grid of 1281l x 1 x 1 x 1.
That means all the cross-spectrum tensors were indepéndactorized in a parallel system. The
reconstruction factors took placed only 247 seconds, anigzed a performance of ONMSEQD.1792.
Although Yu and Petropulu’ s methdH processed the data only in 346 seconds, its estimated impuls
responses were distorted from the original responsesuassréted in Figuré.18(c)and6.18(f). This
method provided an ONMSE 0.4485. The grid CP significantly outperformed the otherhods.

In Figure6.18 we displayed some selected responses for some first inpditsLaputs. The phase,
constant permutation and scalar ambiguities were coddotenatch with the original responses. In
each plot, the original magnitude or phase responses wpresented by dot lines, the estimated
responses were shown by dashed lines.
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Figure 6.18: lllustration of frequency responses of the<220 MIMO system for Example 6a)-(c)
magnitude responses of the original and estimated impulsetibns obtained the 5-D CP, the grid
CP and Yu and Petropulu’s methdd. (d)-(f) phase responses of the original and estimated impulse
functions for diferent methods. For each plot, the x-axis denotes the freguymints, and the y-axis
represents the intensity. We displayed only some respdosé® first three inputs and outputs.

6.5 Summary

Novel algorithms for tensor decompositions witithout constraints have been proposed, and verified
for difficult benchmarks, and real-world applications. Espegitly proposed algorithm copes with
highly collinear factors. For general data, the HALS altjori can give satisfied results compatible
with ALS but it should be faster due to low computational cddALS faces the same problem for
collinear data as ALS. Although linesearch or rotation rodthfor ALS can be employed for HALS,
its performance is often lower than that of ALS. The propdsstidGNLM algorithms works well for

all the dataset. For tensor decompositions with nonnegatiwmstraints, QALS based on the recursive
algorithm for the nonnegative quadratic programming gobis proved to be a robust ALS algorithm
which can work well for collinear and ill-conditioned facto A variation of QALS is K-QALS which
sequentially updates a subset o£1R < R components of factors. F& = 1, the iK-QALS algorithm
simplifies to the HALS algorithr®’. The IK-QALS algorithm has been experimentally confirmed its
validity and high performance for filicult data, and real-world EEG dataset. Adaptive choice ef th
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number of components being updated is a possible future.wouk algorithms not only works well
for dense data, but also for sparse data without any additi@gularization parameter as other NTF
algorithms. The fLM_ algorithm outperforms the multiplicative and (H)ALS algbms, and even the
QALS algorithm.

A6.1 Appendix: Effects of Noise on Collinear Data

This section discusses brieflyfects of noise on factorization of collinear tensor generdtg the
modification 6.3). Consider matrix factorization of the moddensor unfolding

]
Y =A® (@ A(")> +Em» (6.13)

k#n

leading left singular components ¥fy,, are good initialization foA(" 5960106, Moreover, analysis of
singular values o¥ ;) or eigenvalues of Y(Tn) allow predicting whether factorization succeeds in
retrieving collinear factors from noisy tensors. This als@s insight into when CP algorithms are not

stable, and yield non-unique solution.
T
The modification §.3) can be expressed a$” = U Q, whereQ = [ 0 ! vllRil ] e RRXR,
R—1 R-1
In theory, for noisy tensor® with I, = |, Vn, we have

Y Yy = ADTOVANT LB EL = UMW E2UMT 4 o2 1N, (6.14)

whereX = Q (Q' Q)°[N_l] QT, [A]*[P! denotes element-wise power, and

,  l¥E  R+R-1Lxy-1 L, s
7 T 1sNRAOIN 1SNRIO N X=1+viy=x"" (6.15)
It is straightforward to prove th& = [RZ +(R-1(y-1) v(R+y—1)1%_,
v(R+y—-11g 1 (x—1) (lr11% ; + (y—1)lr1)

has(R — 2) identical eigenvalues, = (x— 1)(y — 1),r = 2,...,R— 1, and its largest and smallest
eigenvaluesl; > A, > Ag are solutions of a quadratic equation

M+ = XY+ (R=—2)(R+x+y)+3, (6.16)
MR = (x=1(y-1) =21, 2<r<R-1. (6.17)

Figure 6.19(a)illustrates A, (r = 1,...,R) for 3-D noiseless tensors with = 50 andR = 5
compared with the noise levalg IN-1 at SNR= 20 dB, 30 dB and 40 dB. The higher the collinearity
degree of factor, the smaller the eigenvaldedf eigenvaluest; are considerably lower than the noise
level o2 IN—1, the factorization becomes infeasible, e.g.yas 0.3 at SNR= 20 dB,v < 0.2 at SNR
= 30 dB.
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BecauseU(™ are orthonormalY i Y[ = hasR leading eigenvalued, = A, + o2I(N-Yr =

1,...,R and(I—R) eigenvalues; = chI(N(—)l),i = R+1,...,l. InFigure6.19(b) we plot eigenvalues
i for noisy tensors having the same dimension as that of teriastrated in Figures.19(a) The
largest eigenvalug; significantly exceeds the noise levels. Whergais quite close to the noise level
at SNR= 20 dB forv < 0.3, or at SNR= 30 dB forv < 0.2.

Practical simulations show thBt E(Tn) is not a scale multiple of the identity matrix due to variable
lengthIN=1 not large enough. However, it can be approximated as a diﬁgmatrixw%lE(n) Egn) ~
o? diag{p1....,p1}, inwhichp; ~ N(1, p?), andp depends omN~1. For 3-D tensorsy ~ 0.145, 0.01,
0.032, 0.011, 0.007 fdr=50, 100, 1000, 10000, 20000. Therefore, eigenvaﬁuéisz R+ 1) are not
completely identical, they mostly fluctuate aroumél N~ within a variation range of-2p o-2IN-1.

In Figure6.19(b) the variation range is illustrated by green shading. Asresequence, eigenvalues
Ai which correspond to the signals can drop down into the naigon (green shading). In this case,
leading eigenvectors might reflect noise, not the signaid, the factorization can yield undesired
solutions in which some components explain noise. This@sses unstable performance when some
leading eigenvalues are equal to the noise level suchras /NlRH. Factorization of such tensor
by only R components tends to give non-unique solution even if disegrthe permutation and scale
ambiguities. Component of factors might b&elient over runs, and depend on the initial values which
are often eigenvectors &, Y(Tn). We note that due tdg = Ar: 1, Wwe can have multiple (at least two)
selections oRleading eigenvectors. Some selections can yield compsmérch explain noise, while
some can lead to the appropriate solution.

As seen in Figur®.19(b) at SNR= 20 dB andv = 0.1, all eigenvalues excepy are in the noise
zone. Hence, we cannot retrieve exactly all collinear campts from such noisy tensors. We note
that the average angular CRIB for this case is around -12.as1Been in Figuré.1(a) Even for
vy = 0.2, it is still hard to approach CRIB -23 dB becausdr is in the noise zone. At SNR 30 dB,
due to the same reason, CP algorithms often fail to estinaaters forv = 0.1 in spite of CRIB= -22
dB.

Some techniques are suggested to improve performancediodgticult data. We compute eigen-
valuesy; of the moden tensor unfolding. If the firsR eigenvalues are clearly fiérent to the rest
onesAr » Ar;1, the factorization is feasible, we can obtain approprialet®on by using leading
eigenvectors.

If A is approximately close to adjacent ondg._1 » Ar ~ Ar:1, One eigenvalue related to
signal i is hidden under the noise level. Thatds < Ar, with R > R. The tensor factorization
becomes diicult. Approximation of the data tensor by raRktensors is not stable, and can yield
component which reflects noise. As mentioned previouslyhawe multiple selections d® leading
eigenvectors chosen fromcomponents. Each initialization comprisg®— 1) leading eigenvectors
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Figure 6.19: Analysis of eigenvalues ¥y, Y(Tn) for 3-D tensors of sizé, = 50 and rankR = 5. R

leading eigenvalues; for noiseless tensors and(r = 1,...,R) for noisy tensors are compared with
noise levels (green shading) at SNR0 dB, 30 dB and 40 dB. The more the eigenvalues are in the
noise zone, the morefticult the factorization of noisy tensors to retrieve coléinéactors become.

and one corresponding t§ with i = R R+ 1,...,1. There may exist one initialization (or more)
which can lead to the desired solution. However we don't kmawch one to select. A possible
method is that we initialize factors by a selectiorRieading eigenvectors. If resulting factors do not
satisfy prior knowledge of the solution such as the numbearoliinear components, we replace that
last column of the initial factor by the adjacent eigenvectben factorize data again. This process
stops when factors satisfy the collinearity condition. Vsle also factorize data simultaneously using
all or some potential selections Bfleading eigenvectors. Among the solutions, we can select th
suitable solution. Even if we don’t know the number of calim components, components related to
noise can be straightforwardly identified, and its solutan be ignored. The feasible solutions should
have the highest number of collinear components.

An alternative technique is that we approximate the datsdiehy rankR > R because the data
tensor no longer has rarfk IncreasingR until a feasible solution is achieved. It is also possible to
combine both of the methods.
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Applications for Feature Extraction and
Classification

7.1 Introduction - Problem Formulation

Supervised and un-supervised dimensionality reductiahfaature extraction methods with tensor
representation have recently attracted great int¥&&1°2195  Given that many real-world data
(e.g., brain signals, images, videos) are convenientlyesgmted by tensors, traditional algorithms
such as PCA, LDA, and ICA could treat the data as matrices ctovg 1:/2929396:97.9899124 gnd are
often not dficient. Since the curse of high dimensionality is often a meguse of limitation of many
practical methods, dimensionality reduction is a prersitgito practical applications in classification,
data mining, vision and pattern recognitions fields.

In classification and pattern recognition problems, theeetlaree main stages: feature extraction,
feature selection, and classifier design. The key issue éxttact and select statistically significant
features, which allow us to discriminatefidirent classes or clusters. Classifier design involves ehoos
ing an appropriate method such as Fisher discriminant sisalig-nearest neighbor (KNN) rule, or
support vector machines (SVM). In a nutshell, the class@@nputes distance or similarity among
extracted features for training and test data in order tigiagke test data to specific class.

In this chapter we propose a suite of algorithms for featuteaetion and classification, especially
suitable for large scale problems. In our approach, we fiegsbthpose multi-way data under the
TUCKER decomposition witlwithout constraints to retrieve basis factors and signitit@atures from
the core tensors. In addition, by revisiting the TUCKER deposition, we have developed family
of algorithms referred to as Higher Order Discriminant Amséd (HODA). Examples in this chapter
especially ones for BCI can be found in the NFEA toolbtx

7.2 Feature Extraction for 2-D Samples via Approximative Smultane-
ous Matrix Factorizations

We shall first illustrate the basic concept of feature eximacon a set of large-scale sample matrices.
The problem of feature extraction for a set of 2-D trainingnpes can be described as follows

Problem 7.1(Feature extraction for 2-D samples illustrated in Figiré(a)
Consider a set of K data matrices (2-D sampld¥ e R''*'2 (k = 1,...,K) that belong to C
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different datgsample classes. In order to perform model reduction andaekthe features for all the
training samples we apply simultaneous (approximativelrim#actorizations:

X® &~ AOER ART, (k=1,2...,K), (7.1)

where the two common factors (basis matricas) ¢ R'v*Rt and A®@ ¢ R'2*R R, < I, code
(explain) each sampDé(¥) simultaneously along the horizontal and vertical dimensioThe extracted
features are represented by matride® e RRRz typically with R << I; and R << 5.

The common method to solve simultaneous matrix factoomatis to minimize the cost functions
X0 — A FR ART)2, vk sequentially with respect to all the factor matrices. Toddtce an
alternative and morefiective method to deal with the simultaneous matrix factdi@n problem, we
first perform concatenation of all the sampk%) along the third dimension to form da x I, x K
dimensional data tens@. In other words, the frontal slices of the concatenatiorsderre built up
from the training matriceX® (see Figure7.1(b). The mode-1 matricization of the concatenation
tensor is expressed by the following matrix factorization:

X = [ XD X@ ... XK |xA® [FO FQ ... FK) | <|K®A<2>)T
= AWE, <|K®A<2))T : (7.2)
and similarly, for mode-2 matricization we have
Xp ~ A@[FOT FOT ... FKT ] (IK®A(1))T — A@F, (IK®A(1))T ,(7.3)

whereF ;) andF ;) are mode-1 and mode-2 matricized versions of the concatenadre tenso
comprising the feature matric&¥. Simultaneous matrix factorizationg.{) can now be expressed
as a decomposition of a 3-D tensor into two factors and a esrsor as the TUCKER-2 decomposi-
tion295206 jjjystrated in Figure7.1(b)

X~F x AW x, A (7.4)

In a particular case whee®) areR x R diagonal matrices, that i§® = diag{f®} (for R, =
R, = R), the matricization of the concatenation ten&bois given by

X(1) = [xa). . .x<K>] ~ A® [diag{fa)}A(z)T. . .diag{fm}A(zn]

_ A [(f(m @A(a)T. ..(f(K)T @A<2>)T] — AWM (F @A(Z))T, (7.5)

;
whereF = [f(l), @ .., f(K)] e RX*R_ This result enables us to rewrite Probl@m as a factor-

ization of the concatenation tensdrinto three factora@, A andF

X~T x AW x, AP x5 F, (7.6)
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(a) Simultaneous approximative matrix factorizations of(b) Equivalent 3D tensor decomposition: TUCKER-2 model.
2-D samples.

Figure 7.1: Simultaneous matrix factorizations are edeiato a TUCKER-2 decomposition of a 3-D
tensor into a core tensef (representing features) and two basis facff8 andA (2.

whereZ e RR*R*R s an identity tensor. The approximation.§) is referred to as the CP mod@l It
should be emphasized that such tensor decomposition anéhkemi simultaneous matrix factoriza-

tions are quite flexible, and we can impose various consgain

o Ifthe feature matriceB(¥) are positive definite diagonal matrices and fac#t® are orthogonal,
then, the model corresponds to HOSVD or multi-way PEA

e If the factorsA(™ are orthogonal and the feature matri¢€¥ are dense, approximatioi.()
corresponds to a model called DEDICOM (Decomposition ini@®ional COMponentsy.

e If the factorsA(™ are nonnegative, then7.Q) corresponds Tri Nonnegative Matrix Factoriza-
tion of dataX(®¥). Such a problem arises, for example, in bio-informatics é @@mbine gene

expression and transcription factor regulatio?#.

e Itis important to note that iKX) are positive-definite covariance or cumulant matricesbero
7.1becomes closely related to Joint Diagonalization oftesiragiin ICA, whereA(D) = A —
A corresponds to mixing matrix of ICA model. This leads to a ra@proach and algorithm for
approximative Joint Diagonalization via a symmetric CFhwatthogonal factors, given by

X~7T x1A x2A x3F. (7.7)
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Although this model is related to the model given ih6g) and (.4), the topics of ICA and
multi-way ICA are out of the scope of this chapter.

Note that generally, dimensionality reduction or featweaetion of set of matrices can be effect-
ively and elegantly solved by tensor decompositions, eafhecsing TUCKER-2, TUCKER-3, or CP
models. By exploiting existing algorithms for tensor degasitions, it is relatively straightforward to
retrieve common factors within the whole data. In the segegaur aim is to generalize Problefril
to make it applicable to higher dimensional data, and to ldeveew algorithms for finding reduced
features and hidden basis factors.

7.3 General Model for High Dimensional Classification

Assume a set of multidimensional tensf&) € R'1x12xxIn for k = 1,2, ..., K, representing train-
ing data coming fronC classes. Each training samp\’é") is given a labety indicating the category
(class) to which it belongs. We shall formulate the follogvitiassification problem (every step will be
addressed in a separate section).

Problem 7.2(Classification for multidimensional datasets)
Consider a set of K training sample¥® e R'txl2xxIn (kK = 1,2, ..., K) corresponding to C

categories, and a set of test dafél(t) e Rlvxl2xxIn(t = 1,2, T). The challenge is to find

appropriate labels for the test data. The classificationgaigm can be generally performed in the
following steps

1. Find the set of basis matrices and corresponding featimethe training data X ®;

2. Performfeature extractionfor test sample§<(t) using the basis factors found for the training
data (using a suitably designed projected filter);

3. Performclassificationby comparing the test features with the training features.

(n)

In general, a sample (object) is explained Kybasis matricesA(™ = [ain),a2 ™

R'"*R (n=1,2,...,N) giving features represented by core tensors. We can askaide® contains

] €

R, components. The relation of a samp)(@‘) andN basis factord\(" can be expressed as
XKW =gl AL s, AP AN L E L (k=1,2,...,K), (7.8)

where the compressed core tengdf) € RRxRexxRx representing features is of a much lower di-
mension than the raw data tensg¥). In other words, the reduced core tengtﬁ'f) consists of features
of the sampleX® in the subspace k(™. Each entnyg®,, . of the core tensog™® is an individ-

r1,r2,...,
D @ (N

ual feature, and expresses the strength of interaction grbasis componentaEl , ay, ,...,a,N) in

different factors. We call this the interactive bases.
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In a particular case for the CP model, the core ter@dt simplifies into a diagonal tensor. In
this case, a component of fact8f” e R'"*R has only one combination with components in the
same order as in the other factors. We call it the non-intabases. SamplA’(k) is reduced to
R = R; = --- = Ry features which are super-diagonal entrieg 6" .

7.3.1 Estimation of Bases and Corresponding Features

Consider a training dataset containiKgdata samplesx(") e Rlixl2xxIN The purpose of the first
training step is to find a set dfl basis factors (matricesd™, (n = 1,2,...,N) which explain the
training data along their corresponding dimensions, aatlfe core tensorg™. This problem is
illustrated in Figure7.2(a) and is formulated as follows:

Problem 7.3(Estimation of basis matrices and corresponding features)
Find N common factoré& (M ¢ R!nxRn (n=1,2,...,N) from K simultaneous decompositions of K

sample tensor&®) ¢ Rlxl2xxIn
X0~ gl x AW ox AN (k=1,2,...,K), (7.9)

where R < I, are the number of components (columns) of the facdfs and G e RRixRex xRy
consist of features of the data tensdf<).

From (7.9), it is clear that tensor decompositions perform samplectan by projecting the ten-
features of the training datX¥™ in the feature space spanned by factaf®. In total, we have
L =R x Ry x --- x Ry features which are vectorization of the core tenggis.

To solve ProblenY.3 we can design cost functions for &lsimultaneous decompositions.9);
one such example is

K

i ® _ g® ... (N) 12
arg{A(l)T‘,R(an;'X G" 1A xn AT, (7.10)

whereas, in principle, this method allows to find the comnamidrsA(™ and corresponding features,
but it is quite complicated. We can considerably simplifplflem7.3by concatenating all the training
dataX® and converting the problem into that of a single tensor demsition, possibly with some

constraints imposed on factor matrices.

Since the projection in7(9) is a TUCKER decomposition o¥ X, its vectorized version becomes
vec(X(k)) ~ (A<N> ® - ®A® ®A<1)) vec(g(k)) = ({A}®) vec(g(k)). (7.11)

By concatenating all ve(cx(k)) fork=1,2,...,K, we obtain a matrix factorization given by

[vec(X(l)) vec(X(Z)) > -vec(X(K))]T:[vec<g(l)) vec(g(z)) > -veC<Q(K))]T ({A1®)T (7.12)
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(a) Simultaneous decomposition of (b) Conceptual classification diagram based on TUCKER deocsition and
training data tensors with Projection Filter.
common basis factors.
Figure 7.2: (a) lllustration of feature extraction from tirmbay samples, and (b) the conceptual dia-
gram illustrating a classification procedure based on th€KBER decomposition of the concatenated
tensor of all sampling training data. Reduced features bt&reed by projecting the data tensor onto
the feature subspace spanned by basis factors (bases).

For simplicity, denote the left side of Eq7.2) by a matrixX 1y € RK*(112-18); then, we can write

X(nt1) = [vec(X ) vec(X(Z)) vec(X(K)) ]T. (7.13)

Now, it is easy to prove that the matiy .1 is the modetN + 1) matricized version of agN + 1)-
way concatenated tensdre R'*x!2xInxK optained by concatenating all the data tens¥8 along
the mode(N + 1). This can be formulated as

X =cat(N+1,XY x@ . xK), (7.14)
where the sub-tensors are obtained by fixing(fet+ 1)-th index at a valud

XCoooon, k) =&®, (7.15)

27N N1

or alternatively it can be expressedzﬁ@ = Xiy, 1=k = Xk
Similarly, the concatenation matr[nec(g(k))]fj:l = [vec(Q(l)) ,vec(g(z)) ,...,vec(Q(K))]
represents a matricization of N + 1) order core tensog € RRixRexxRuxK giong the mode

(N + 1) with its k-th sub-tensor, i.eg(i, oo K ) = 6%, Thus, Eq. 7.12 can be rewritten in a
N+ 1

compact matrix form
-
Xn+1) ® Giviny ({AF®) (7.16)
or equivalently in the form of tensor products

X~G x1 AW x, A@ .. 5 AN (7.17)
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which illustrates that the approximative simultaneousodguosition of a set of the training data tensors
(7.9 is equivalent to decomposing thi +1)-order concatenated tens¥ivia the TUCKERN model.
This provides a simple and elegant way to convert Proie3to the problem of decomposition of the
concatenated data tens¥rconsisting of all data samples.

Problem 7.4(Global TUCKER decomposition)

The N common bases of K sampk& e R'1xl2xxIn(k = 1,2, ..., K) in Problem7.3 are exactly
the factorsA(M ¢ Rn*R forn = 1,...,N in the TUCKER-N decomposition of the concatenation
tensor along the mode-(\L), that is

X~6G 1AW x, A@ ... 5 AN, (7.18)

whereX = cat(N + 1, XM, X@ ..., X)) and the core tensog represents extracted features for
the training samples.

Note that the features of a specific training daid) are represented by theth row of the
mode{N + 1) matricized version of. Problem?7.4is illustrated as the training step in Figure2(b)

7.3.2 Orthogonal Interactive Bases

Interactive bases are estimated as factors of the TUCKEBneasition of the concatenation tensor
X. In order to avoid any confusion, orthogonal basis facteesianoted by (™. To develop algorithm,

we first assume that the matricg§” are known or have been estimated at a given step. So, the core
tensor can be obtained %&°

G=Xx UDT 5, u@T. .. uNT, (7.19)
Therefore, we can maximize the cost funcfi®f®2 to find factorsU™ (n = 1,2,...,N)
2
JUD, U@, Uy = HX w UDT o UdT Ly U(N)THF, (7.20)

where only the orthogonal basis matri¢é®) are unknown. Wittu® ... U1 y+d YN

fixed, we can project tens& onto the subspace defined as
(W(in) =X X1 U(l) ... Xn—1 U(nil) T Xn+1 U(n+1) ... XN U(N) T = X X,(n’Nle) {UT} ,(721)

and then the orthogonal matriX" can be estimated &, leading left singular vectors of the mode-
matricized versiorWE;)”). This leads to the Higher Order Orthogonal Iteration (HO&forithm
introduced by De Lathauwer, De Moor, and VandewflleThe pseudo-code of the algorithm for
estimatingN common bases is described in detail in Algoritfri. In this algorithm,svds refers to

as the Matlab SVD function which computes a few leading damgealues and vectors.
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Algorithm 7.1: HOOI Algorithm (Orthogonal TUCKER) for Feat ures Extraction
Input: X: concatenation tensor of all training samples< o x --- x Iy x K,

R1, Ry, ..., Rn: number of basis components for factors
Output: N orthogonal factor&)(™ e R'"*Rr and a core tens@g e RRU<Rex - xRuxK

1 begin

2 | HOSVD or random initialization for all factors (")

3 | repeat

4 forn=1toNdo

5 WEY =X x_qnin) {UT)

6 d[u<n>,z<”>,v(n>] - svds(WE;)n), Rn, 'LM’) // WE;)”) ~ UMMy MmT
7 en

8 until a stopping criterion is met
9 G = WEN o UNT
10 end

7.3.3 Nonnegative Interactive Bases

A nonnegative object can be expressed as a linear combiraftits sparse parts which are considered
as basis components. The weights of this combination carseé as features of this object in a
reduced dimension subspace. Therefore, for nonnegatteseta, NTD can be applied to find basis
factors and to extract features, and Problesbecomes the NTD witiN factors.

7.4 Discriminant Analysis Approach for Multi-way Features

The training features obtained by non-interactive basé (T by interactive bases (Tucker model)
can be directly used for classification. However, they doawottain any category (label of a class)
information which is often useful to model theffidirence between classes of data. To exploit such in-
formation, we should find discriminant bases to project taming featureg;™ onto the discriminant
subspaces. Since entrig,%?rz’._.’rN can be considered as independent features, and metriciadogp
two multidimensional samples are the same as when evajuattitneir vectorizations (e.g. Euclidean
distance, Kullback-Leibler divergence), we can vectofeature tensorg®, and apply any 1-D dis-
criminant methods for the training features.

An alternative approach is that discriminant projectiore directly searched for the raw dataset,
and the feature tensoa™ are coordinate values of these projections. The basisrfaate derived
either from the Fisher discriminant criterion, or from thestfunctions which are incorporated dis-
criminant constraints.

Recently, a number of algorithms have been proposed foriglis@nt analysis with high dimen-
sional representations. Ha al.8> have first proposed algorithm to find the discriminant bases f
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2-D samples. Yaet al.?13 proposed a discriminant analysis for tensor representétised on Fisher
score. Zhangt al.?'® estimated discriminant bases via Laplacian score. Feggirag'3° found bases
exploiting local scatter by defining local weight matricé$owever, those methods arefdrent and
are not directly related to TUCKER decompositions. In oudele and algorithms, the bases can be
easily estimated from tensor decompositions, especiadlyTlUCKER decomposition. Moreover, the
proposed algorithms can flexibly switch between the orthmab and discriminant bases with a regu-
larization parameter. The HOOI algorithm once again hags beafirmed as a “work-horse” algorithm
in dimensionality reduction, feature extraction and dfasion.

7.4.1 Discriminant Analysis of Features

ConsiderL features obtained by a multiway decomposition. For intdradases (TUCKER model),
L = RiRy---Ry is the dimension of the core feature tensgr(é). The training features of thieth
sample are denoted by = [gl(k)] - vec(g(k)) e Rt andgl(k), forl = 1,2,...,L is thel-th entry
(feature) of the vectorized version of the core teng6¥ .

This section will present a simple LDA method to find the diménant projection matrix¥¥ e
R-%F (F « L) for the featuregg¥, that is (in fact, we can apply any LDA meth&tF°)

F0 — pT vec(g<k>) , (7.22)

wheref® e RF are the discriminant features. We shall denote the averagens for each class by
g9 (c=1,2,...,C) and the corresponding average for the whole set of samplgsthwt is

K
g = Z g, g==>1g", (7.23)
k=1

C ke’
where I is the subset of indicek which indicates the sampldsbelong to class, andK. is the

Xl =

number of training samples in theth class.
The average core tensor corresponding to the averagedeattiris denoted b)é(c), and given by

G9 = (2 g(k>> /Ke  (€=12...C). (7.24)

kelc

By removing the averag@(c“) for all the sampleé(k), a new set of centered tens@ék) is defined as
g(k) _ g(k) N é(ck) ) (725)

Concatenation of all the core tens@S forms an(N + 1)-D tensorG so that:G, = G'°. To avoid
any confusion in notation regardlng the concatenationotenisaverage tensog( ). the average tensor
for all the data tensor is denoted @ywlth its vectorization form given byg = vec(g)

G - (Z g“)) /K. (7.26)
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We can also remove the average part for all the sar@ﬁ@sto form a new set of tenso@(c)

69 = Vk(69-9). (7.27)

which are parts of the concatenation tengoi.e: G, = G'°.

The corresponding discriminant features are thereforengby

fO—wTgo, f=vTg (7.28)

whereas the discriminant projection matikcan be found by maximizing the Fisher discriminant
criterion?1?° defined as

C _ C .
> Ke[ T = 1 > Ko ¥Tg —¥Tg[3

Y=arg n‘}‘aXQD(\P) = arg max :1 = arg maxCKl , (7.29)
2110 - (it 3 17 - g

wherec indicates the category of sampe
By defining the within-class scatter matrs, and the between-class scatter matixfor the
featuresgk) as?125

K
(g(k) _ g(ck))(g(k) _ g(ck))T - Z g(k) g(k)T

4
I
M=

k=1 k=1
= G(N+1) N+1) = (G, g>,(N+1) ) (7.30)
C C
S = YK (G -@EI -9 = g9
c=1 c=1
= G.G)_(n+1) - (7.31)

it can be shown that expressioh29 is equivalent to the trace ratio probléit®

b 4 ¥ r [‘PT Sb‘ll] 7.32
= arg I’T\]IIano( ) = arg n‘}aXm , ( . )
or the simpler inexact problem
¥ = arg maxr [¥' S, 'S Y|, (7.33)
which can be solved by the generalized eigenvalue decotipo$GEVD)
Sy =7SwY. (7.34)

The projection matriX¥ is composed by the leading eigenvectgref (7.34).
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Algorithm 7.2: Discriminant Algorithm for Reduced Multidi mensional Features
input : G: tensor ofK training featuregR; x - -- x Ry x K)

I set of indices or labels indicating categories of samples.
output: W¥: discriminant projection matrixL x F)

F: matrix of discriminant features=(x K)

1 begin

_ K
2 G = (Z g““) /K // average tensor for all training features

k=1
3 foreach class cdo
4 é(c) = (Z g“‘>> /Ke // average feature tensor for class C
kelc

5 foreachk ¢ 7. do g% « g® — g© // centralize
6 é(c) — /K¢ (é(c) - é)
7 end
8 Sw=4G.G)_n+1) // within-class scatter matrix
9 S =4(G. g>_(N+1) // between-class scatter matrix
10 [W,A] = eigs(Sp, Sw, F,'LM") // initialize
11 repeat

_ trace (Y' § %)
v = trace (‘I’T SW‘I’)
13 [W,A] = eigs(Sy, — ¢ Sw, F,'LM") // or compute GEVD (7.34)
14 [P,A] = eigs(PPY Sy PY¥',F,'LM)
15 until a criterion is met

_wT T
16 F=%¥ G(N+l)

12

17 end

An efficient method to solve the trace ratio problerni3Q) is to iteratively solve a trace filerence
problen??®

¥ = arg maxr [T (S —¢Sw) Y. (7.35)

The pseudocode of this method is summarized in Algorithgn
Note that the feature vectors are obtained by the lineasfiramation

fao =¥ vec<g<">) , (7.36)

or equivalently, the matrix of training features= [f,] € RF*K is given byF = ¥T G(TN+1) .

7.4.2 High Order Discriminant Analysis using Orthogonal Tucker Decomposition

An alternative approach to exploit the discriminant infation for TUCKER features is that the core
feature tensorg® are directly projected on the discriminant bases.
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In general, we can maximize the Fisher ratio between theteoorsg™ to find the orthogonal
basis factors)(™

PRGN
N[5 4]

c=1
= ar max , 7.37
¢ gu(l)’._’um) n (7.37)

Slo o]
k

F

whereé(c) is the mean tensor of theth class consisting d. training samplesgy denotes the class
to which thek-th training samplex® belongs, an(§ is the mean tensor of the whole training features.
This technique provides a generalization of the 1-D LinescBminant Analysis to multilinear one.

In a similar way to the HOOI algorithm presented in Secfiad.2, the learning rule for the factor
U™ is derived with the assumption that all the other factorsfixexl. Taking into account that the
basis factors are orthogonal, we can express the denomufdfa37) via the trace of the within class
scatter matrix:

ek g
$ov-go

H (X(k) . {UT}) « UMT (X(Ck) . {UT}) “ U(n)TH2

F

Il
M=

kil v 2 K G 2
= 2 (O =&) Ul xnu<”>THF =325 xpuor

K = F

kKl - ~ 0 L ® o k= L ® (k) o
= l;[tr |:U <Z_“,Z_”>_n U :| — tr Z <Z U

- [ URTSILE ] (7.38)

L0 . . ~ ()
whereZ™" = x® x _n {UT} are thek-part of the concatenation tensgr "ie. Zx "= Z™ and

XY o xt_x©  Zz ok X _(nn+1) {UT}, (7.39)

and the within-class scatter mat®y," is defined as

~ (0

s - z@” = E T, (7.40)

Similarly, the between-class scatter is expressed asafabe between class scatter matrix:

5116 - Sl (7<) ot = () o

F

L © 2

Z " xp U(n)T

(X(c) :) « o {UT) XnU(n)THIZ: _ Z

c
i [ T(Z(C) <c>> Lo ]=tr[U( (i <z(c> Z(c>> > )]
—1

c=1

F

|
(]

|
—

rlu U(”)] (7.41)
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Algorithm 7.3: HODA Algorithm for Feature Extraction
input : X: Concanated tensor &f training samples$; x lo x --- x Iy x K
output: UM: N orthogonal basis factolg x R, (n=1,2,...,N)

G: Training feature tensom®; x Ry x -+ x Ry x K.

1 begin

2 | Initialize UM

3 CalculateX, andX according to 7.39 and (.42

4 repeat

5 forn=1toNdo

6 Z=Xx_ —(n.N+1) {U}

7 Sw —(Z.2)_ n // within-class scatter matrix

8 Z:XX —(n.N+1) {U}

9 S" = (Z. Z>_n // between-class scatter matrix
trace(U(”)TSD_nU(”))

10 L trace(UMT S;"UM)

11 [UM,A] = eigs(S," — ¢ Sy" Rn,'LM") // or

[um JA] = eigs(S;", Sy, Ra, ‘L)

12 [UM A] = elgs(U(n)U(n)T<z\’ X)_ UMUMT R ‘LM )

13 end

14 until a criterion is met

15| G=Xx (g {U)

16 end

whereZ " = X© x ., {UT} are thec-part of the concatenation tensgr , i.e.,Z; = 75
X - m(‘\_'(c) —{?) 7 (7.42)
Z7 = X anan (U, (7.43)
and the between-class scatter ma8jX is defined as
© (c) .
5" = Z Cal =(Z . Z ), (7.44)

By substituting 7.39 and (7.41) into the cost functionq.37), the discriminant factot)™ can be
found via maximizing the following trace ratio

rumTs O] tr [Sy|

,(n=1,2,...,N). (7.45)

This can be used to solve problem32), where the factor&)(™ can be found ag, leading left
generalized eigenvectors of the generalized eigenvakmnaeositionS,U™ = 1S, UM or R, leading
eigenvector of matriXS, — ¢ Sy). Alternating estimation of factors/(™ gives us the High Order
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Discriminant Analysis algorithm (HODA). The pseudocodéiig algorithm is given in Algorithn?.3,
We note that although generalized eigenvectdf® from the decompositios, U™ = 1S, UM are
not orthogonal, features can also be extracted using thexipmate projection given in719).

SinceS,, can be very ill-conditioned, especially in early updatég, system7.45 may have no
solution or can have infinite solutions (the linear equatiegstem is underdeterminédl) Thus, to
avoid the breakdown of iterations some sort of regulaiireis essential, for instance,

- tr [Sy)
@ =arg mgx—tr Sy tall (7.46)

wherel is the identity matrix and > 0 is the regularization parameter.
We note that seeking the optimal projective orthogonal $&$& in the feature space is equivalent
to solving the following optimization problem

tr [So] tr[S]

= = 7.47
= arg maxe S)] arg maxe: Sl (7.47)

where the total scatter matr§ = S, + S,y and trace of this matrix is given by

K —2
r[S] =[S +Su = Y 6% - 6] . (7.48)
k=1
Hence, an alternative regularization form can be estaists

¢ = arg max: S| (7.49)

um trjeSy+ (1—a)l]’

where 0< o < 1. The basis factord(" areR, leading left eigenvectors of matricégr S, + (1 —
a)1)71S) or (Sp — ¢ (@Sw + (1L — a)1)). The choice of parameter can be crucial to yield a good
performance. We note that the typical valuexaé 0 or 1.

e Fora = 1, the optimization problem7(49 simplifies into the problem given irv(45), i.e. we
obtain the HODA algorithm without regularization.

e Fora = 0, the optimization problem7(49 simplifies the maximization of7(48). In fact, this
problem is equivalent to the TUCKER decomposition of théntrey samples after centering
(7.20 with orthogonality constraints and solved by the HOOI aillpon (see Sectiod.3.2.

7.4.3 Discriminant Analysis for NTD

This section discusses ways of finding discriminant basitofa for nonnegative TUCKER decom-
position. The method is based on simultaneously solvingdptonization problems:

1. Minimize the Frobenius norn2(51) of the raw data and its approximation to find interpretable
basis factors;
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2. Maximize the Fisher score of the projected featui®87 onto the subspace of the estimated
factors.

For this purpose, a new global cost function with penaltynteis designed as

1 1 1 1
Dr (X[ G, {A}) = §||X—QX_(N+1) {A}H|2:+§/10 ) asn)Ta%n)Jré/lwtr [SN]_E/lb tr[Sp]. (7.50)
n=1r#p

The second regularization term enforces (as much as peptild orthogonality of basis components
aﬁ”), that is, componentaﬁ”) should be as sparse as possible. The within-class and bretiass
scatter matrice§,, and S, are defined in7.38 and (7.41). The last two regularization terms require
tr [Sw] to be as small as possible, whild$,| should be as large as possible.

In order to estimate the nonnegative basis factors, we reeghtpute the gradients of regulariza-
tion terms with respect t&(" given by

0 (Z:}I:l Zr;ﬁp agn)T a(pn))
OA M)

=AM (117 1) . (7.51)
Using a gradient descent approA€H3131 we can derive a multiplicative learning rule faf" as

AW — AV @ (X x_nni1) {ATHE) @ (A<”><g,g X_nnsn) (ATAY 4 2AM (117 — |)).
(7.52)
To derive the learning rule for the core tengpwe shall assume that all the facta$? are fixed.
Then, the gradients of the 3-rd and 4-th regularization $emf7.50 with respect taz are given by

K
N A
r{Sy = k=1 _ K _ o
6o 260 -2(6"-6"). (7:53)
€ _ =2
ot [Sy) N K| —6 HF
_c=1 _ ~o) A
PECE 26 -2(6%-6). (7.:54)

and the multiplicative update rule fgz47103131157 s modified to update rule a samg® as
6 —gMeg (x(k) % (AT} + (A + o) é(ck)) %) (g“‘) < {ATA} + 4, 6™ + 1p E) . (7.55)
This update rule can be rewritten for the whole concateneteel tensor of features as
668X x qn AT+ (+ )67 @ (6 % vy IATA}+ WG + 15 6*) . (756)

whereG* is an(N + 1)-way tensor whose each péﬁ is the average tensor corresponding to ctass

*

Gi = 6% (7.57)
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Algorithm 7.4: Multiplicative Discriminant Analysis for N TD
input : X: tensor ofK training sample$; x I, x --- x Iy x K
Ao, Aw @andAp: regularization parameters.
output: A(: N nonnegative factork, x R,
G: nonnegative training feature core tensBisx Ry x --- x Ry x K.

1 begin
2 | Initialize A(M
3 repeat
4 forn=1to Ndo
5 AM — AW @ (X x N {ATHLG) @

(A® (6.6 x _unin) (AT AD_, + A (117 -1)),
6 end
|| G=#ne®

_ 5 _ 1 (k)

8 foreachc =1toCdo G = &= >er, G
9 G 6@ (Xx Ny (AT} + (w+ )G") @ (g x_(ni1) {ATA} + 4G + A é)
10 until a criterion is met
11 end

and the tensog* is a replication of the average ten@ralong the modé&\ + 1, that meangl"(‘ =@G.

Combination of the learning rule3.62 and (7.56) gives us the new multiplicative algorithm for
finding discriminant basis factors(" and featuregs; the pseudo-code of this algorithm is given in
Algorithm 7.4. Note that, factor&\("V always need to be normalized to unit-length vectors, bubts n
explicitly listed in this algorithm.

An alternative approach to find the discriminant basis facis to regularize factora (™ by the
between-class and within-class scatter matrices. It erésting to note that the features to classify
objects can be obtained by a simple projection:

FO = X0 5 ADT L, AQT L g ANT = XK (AT) (7.58)

In the case of orthogonal bases (with HOOI or HODA algorithrfeature tensorg ® are exactly the
core tensorg . However, this kind of projection can also be applied formemative bases.

For such case, the two regularization terms for the disciami in the cost function7(50 are now
computed based A ® instead ofg®. By taking into consideration that the scatter matrisgsnd
S, are not constants with respect to fact&/®, and their relation to factor&(" is given by {.45),
their partial derivatives are given by

oSy ot [AMTS,"AM ] e A ()
TR NG =25,"AM (7.59)
otr [So] otr [AMT g A

OAM AN

=25"AM, (7.60)
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where the symmetric scatter matricgg’ andS; " are expressed via tensor contracted products

s, = (X X _(nN+1) (AT} X X _(nN+1) {AT}>_n7 (7.61)
S," = (X X _(nN+1) (ATLX X _(nN+1) {AT}>,n- (7.62)

With the tensorsX and X given in (7.39 and (.42, based on the multiplicative learning rule for

A(M 47103131157 5 new |earning rule foA(™ can be derived as
AD e AP (X x nin (ATLE) , + 1§"AM) @
(A<”> (6.6 *_mn+1) (ATAD_ + A (117 —1) + 2, s;”A<”>) . (7.63)

To reduce the computational complexity, the scatter mes&g," andS; " should be derived from the
tensor contractioiX x _nn1) {AT}. The core tensqg is updated using the multiplicative rul@.66).

7.5 Feature Ranking and Selection

The number of featurek of a multiway sample in a classification problem strongly etefs on the
number of basis componerf& of the factorsA(™ e R'"*Rn in tensor decomposition. The smaller the
valuesR,, the smaller the number of features. The number of competignior factor A(™ can be
defined by the number of dominant eigenvalues of the cowamtoducb((n)x(Tn) =UAUT g RlnxIn,
whereA = diag(11, A2, ..., iy), andAy = A2 > --- > Ag, = --- = 4, are eigenvalues. The factors
should explain the whole training data at least above thestold fitnesg (typical valued = 95%)

arg min& > 0. (7.64)
Ro Zrn:l Ar

For the TUCKER decomposition, we can fild by using the heuristic rule in7(64), for each
factor in each mode (see Algorithin5).

For interactive bases methods, the total number of featsles= R; x Ry x --- x Ry. Although
the number of features is reduced and is much smaller thanuimber of samples of the raw data,
its value is still large and dramatically increases withdlaga dimension. For example, for images of
size of 100x 100 pixels, which are compressed by two interactive facibi® columns, their reduced
versions have size of 19 10, and hence have still 100 features.

In practice, we do not need to use all the features from the trsors but only some significant
features, without sacrificing the accuracy via some infdimnaranking criteria such as correlation
score, minimum-redundancy-maximum-relevance selectasher score, Laplacian score, and en-
tropy?’. Information indices for all the features are calculated] then sorted in a descending order.
Significant features corresponding to the largest inditesilsl be chosen first. Features with small
score indices can be neglected withofiieeting the performance.
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Algorithm 7.5: Initialization for Basis Factors
input : X: tensor ofK training sample$; x I, x --- x Iy x K
output: AM: N factorsl, x R,

1 begin
2 parfor n=1to Ndo // parallel loop
3 [AM,A] = eig (X, X)_)
4 [4,{] = sort(diag(A)) // sort A in descending order
DIAPRY
5 Rn—argmlnZr e > 6
6 A = ALY
{1Rn
7 endfor
8 end

Using validation data, we can analyze tffieeet of the number of features on the achieved accuracy.
The number of dominant features can be found so that theedieaacuracy changes according to an
acceptance tolerance during the validation. As a conseguéhis step removes redundant features.
For TUCKER decompositions, we note that a major featyre,. r, is the coordinate value of the
tensor data explained by the base vectaﬁ%, aE? ...,aEN) Thus, the components which are not
involved in any major features can be ignored in order to tluce the factor dimensions.

A convenient method to rank a feature is based on the Fisties (@cores) of features defined as

S Ke (@ —§)2
SR (o - g2

is thei-th entry (feature) of the vectorized version of the coresteg™, ¢ = 1,2,...,C

(i) = (i=12..,L), (7.65)

wheregi( K
denotes the class to which the training sam’pﬁ@ belongs, and; is the number of training samples
in thec-th class. The-th class mean sample of thé¢h featuregfe), i=1,...,L,c=1,...,C,and the
total mean featurg; are respectively defined as

_ o1 J
g = Z g,  §-= < 2 . (7.66)
k=1

C kEI]_

After ranking the features in a descending order of theihétiscores, significant features should be
chosen to classify the sample.

7.6 Feature Extraction

. . . o (t
Feature extraction corresponds to projecting the dataleah%ﬁ e Rl1xl2--xIn onto a feature subspace
spanned by an available set of basis fac®8 or U™ . In a general case, this problem is stated as
follows.
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Problem 7.5(Feature extraction)
Feature extraction of a tensgk " e R1X12xIn with a set of given bases™ e R'"<Rn js to find the
core tenso@(t) e RRixRexxRn in the TUCKER decomposition

{°\,(t) _ é(t) x1 AD 5, A@ L AN, (7.67)

For general bases(™, Problem 7.5) can be explicitly solved by products of matrix inverses

GV = XY  ADT AT AT (7.68)
For orthogonal bases™ — UM, with UMTU®M — | a core tensog " is easily obtained
GV = XY ADT L ADT L AT (7.69)

For nonnegative basés™, the core tensoé(t) can be estimated by applying iterative (multiplicative)
learning rule for the core tensor. Such iterations ofterveaye quickly after few iterations.

Although these methods are quitdfdrent, both approacheg.68 and (7.69 in practice can also
be used to retrieve the features for nonnegative bases. Wdeathe features of the training data and
the test data must be extracted by the same approach.

7.7 Image Classification - Dataset COIL20

In the first set of simulations, we considered the Columbiavérsity Image Library (COIL-20)
dataset®* consists of 1,420 grayscale images of 20 objects (72 imagesigect) with a wide va-
riety of complex geometric and reflectance characteristieech image was downsampled to 3232
grayscale (0-255). Figure.3(a)shows some sample images of this dataset. The dataset vdasnign
divided into two separate sets with 720 training and 700iteages. The results were averaged over
100 trials. The training data was constructed as a 3-D tesfsize 32x 32 x 720 images. We applied
three methods to find basis factors with orthogonality (Aipon 7.1), discriminant (Algorithm?7.3)
and nonnegativity (Algorithn7.4) constraints from the training tensor. For all the meth@d$) and
A® were fixed to 10 components, hence, there were toFaly 100 features for each sample.

To classify the data, we trained an SVM classifier using thasSian Radial Basis Function ker-
nel3l. With the same holdut ratio of 50%, NTD, Orthogonal TUCKER-2 and HODA-2 had akh
perfect performance as shown in Ta@ld. The discriminant factors were estimated by solving the
trace diference problerf?®. Orthonormal factors achieved the highest accuracy 0f689.9

The holdout ratio was next verified at 3 additional levels of 80%, 908 85%. As the hol@ut
ratio was 90%, there were 160 samples for training: 8 sang@eglass, and 1260 samples for test.
Classification with nonnegative factors obtained an aveeaguracy of 94.78%. HODA with trace-
ratio method (HODA-T) achieved 96.26% accuracy, whereasdbying the ratio trace problem with
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dataset.

Figure 7.3: Visualization of the COIL-20 dataset and disttion of its features by t-SNE components.
Digits represent diierent classes of objects

Table 7.1: Classification Performance for The COIL-20 Detta€omparison of accuracy of methods
using the SVM classifier for fierent holdout ratios. Feature core tensors had size ok 11D.

Method 50% 80% 90% 95%
Test N¢ Test N+ Test N+ Test N¢

NTD-2 9994+0.22 36 9827+0.81 68 9478+1.38 68

Orth. TUCKER-2 9996+0.13 20 9903+065 32 9718+109 32 9176+196 36

HODA-T 99.90+0.19 21 9865+0.69 24 9626+1.09 24 8977+2.33 24

HODA-G (GEVD,a = 0.001) 9712+1.18 36 9141+2.03 32

HODA-G (GEVD,a = 1) 82.05+2.11 46 7435+3.11 40

GEVD this algorithm (HODA-G) achieved only 82.05% accuratie regularized HODA algorithm
(7.49 with « = 0.001 achieved much better accuracy of 97.12%. We note thalhéoregularization
parameterr = 0, HODA simplifies to HOOI, which gave the highest averageueacy of 97.18%.
The detailed results are listed in Talld

The nonnegative components explain the data as commongpartthe samples, the orthonormal
factors try to explain the data at a highest fitness, wheteadiscriminant factors focus onftrences
between the samples. Due tdgfdrent physical meanings of decomposition, the number cfssry
significant features for the three approaches are quiterdnt. It is obvious that classification with
nonnegative factors requires more components than thake other methods. For the same accuracy
level, the discriminant factors often need less signifiteatures than those of others. For the hald
ratio of 50%, classification with nonnegative factors regdi36 significant features to achieve the
highest performance of 99.94%, while that with orthogomatdrs needed 20 significant features. For
the holgout ratio of 80%, the number of selected significant featioesonnegative, orthogonal, and
discriminant bases are 68, 32 and 24, respectively.
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From the extracted features, the dataset was visualizetivaid-SNE componenf’§7 shown in
Figure 7.3(b)illustrating good separation. Objects that have a highlanity are located in close
proximity to each other in the scatter plot, such as classesl®, classes 3, 6 and 19, whereas objects
that have low similarity are located far from each other,geample classes 13, 14, 17, 20.

7.8 Classification of Handwritten Digits

In the second set of simulations, we factorized and cladsifie MNIST data set of images of hand-
written digits (0-9}12. This data set is composed 60,000 training images and 16e8@0g images.
Each image is a 2& 28 grayscale (0-255) labeled representation of an indalidligit. In Fig-
ure 7.5(a) we present 100 randomly selected handwritten digits. Seffitéent methods can process
this large data such as Jiaegal.®®, Horio and Yamakaw®. In this example, we selected a small
subset of digits to illustrate our models and algorithms.

In the training stage, we decomposed the data to find two TURK&Sis factors. Orthonormal and
discriminant factors were set to explain 99.9% of the trajrtensor, whereas both nonnegative factors
had 10 components. Nonnegative factors gave a classificaticuracy of 97.66%, with 78 significant
features. Those features were fimgents of 48 compositions of basis components. Each comiposi
of two components formed a basis image, that is, a digit imageconsidered as a summation of basis
images. Figur&.4(a)displayed the first 40 nonnegative basis images. A basisdéraggresses a part
of a digit in which grey pixel denotes positive value and Zeydoright one.

In Figure 7.4(b) we displayed 40 basis images generated by discriminanpooents. With
those bases, the dataset was classified with 98.39% acauwsanythe SVM classifier. Discriminant
basis images are rank-one matrices with particular strestiGrey parts correspond to zeros, whereas
negative and positive values for dark and bright elemesigetively.

Table 7.2(a) shows the performance of our methods. Orthonormal factcngeeed a 97.32%
accuracy with 30 significant features. All performances eveerified with the KNN-3 classifier,
except the last method using SVM. There was not mudferdince between these two classifiers.
In order to illustrate more clearly the classification ratésdigits, in Figure7.5(b) we show the
Hinton graph of the confusion matrix using the KNN-3 classifi The volume of box is pro-
portional to the intensity of a corresponding predictioteraA diagonal cofficient indicates the
classification accuracy for each digit. Whereas other entexpress the misclassification (error)
rates. For example, digits 0 and 1 were classified with higluacies & 99%). A digit 3 may
be potentially misclassified as one of digits 5, 7, 8, 9. InuFég 7.5(c) we show test samples
418, 1232, 2151, 3248, 4389, 5549, 6067, 7059, 8197, 939%6lansified as other ones using the
KNN-3 classifier.
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(a) Forty dominant basis images composed of nonnegatiyb) Basis images of discriminant factors for 200 digit
factors. images.

Figure 7.4: Visualization of basis images for the hand+emitdigit images.
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(a) Randomly selected handwritten digits fr¢ly) Confusion matrix for the classification with (c) Some misclassified
the MNIST dataset. ten digit categories. digits.

Figure 7.5: Visualization of classification of ten digit s&s:(a) 100 handwritten digits randomly
selected from the datas€h) Hinton graph of the confusion matrix using the KNN-3 classif{c) ten
digits for ten classes were misclassified as other digitsgusie KNN-3 classifier.

An alternative icient approach for this problem is to classify the Gaborndies of digit images.
We computed 24 Gabor features for each image consisting aéBtations at 3 scales. That means
2-D samples (images) were augmented dimensionality torbe@ D tensors. Gabor features were
down-sampled to 16 16 x 24 dimensional sample tenso¥§Y. Hence, both the training and test data
were 4-D tensors. To illustrate the performance of this @@, we chose only 20 first samples for
each digit for both training and test data. For classificatibthe raw data (images), both orthonormal
and discriminant factors provide 89.50% accuracy with 2d a4 significant features, respectively
(see in Table.2(b). For the Gabor tensor, we decomposed the training tenso8ifactors with sizes
16 x 10, 16x 10, and 24x 23. Classification of a set of 41 significant features on thisgace of
orthonormal factors (TUCKER-3) with the SVM classifier amléd an accuracy of 93%. The same
procedure with 32 discriminant significant features predicn accuracy of 94.50%; the results are
given in Table7.2(b). The values corresponding to highest performance are giMerackets.
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Figure 7.6: Conceptual model illustrating feature extoas for handwritten digit images using Gabor
filters and multiple projection filters based on simultare®lW CKER-2 decompositions.

The classification accuracy can be considerably improvetdking into account that there is low
correlation among them, or rare common parts between Gabtures which are not in the same levels
(orientations and scales). Hence, instead of decompiosifithe Gabor training tensors along all the
three modes, we should find common bases only for the two firstrtsions. Due to this reason, we
split the training tensoX into 24 3-D sub-tensorX| = X(:,:,1,:) € RY®*&xK (1 = 12 24)
which contain thé-th frontal slices of tensor¥™ for k = 1,2, ..., K with K = 200 training samples.
For each specific Gabor level (orientation and scéley 1,2,...,24), we found two basis factors
A e R16xRu gandA(2) ¢ R16%Ra vig a TUCKER-2 decomposition

X~ G x1AM s, A@) D (1=1,2...,L) (7.70)

in which G, is anRy x Ry x K dimensional tensor whodeth frontal slices represent compressed
features of the sample¥® at levell.

FromL = 24 decompositions7(70 for all the levels, we obtainetl = 24 sets of basea ()
andA@), andL = 24 core tensorg;, | = 1,2,...,L. Therefore, features of the multiway training
sampleX® are represented by 32th frontal slices of the core tensag that can be expressed as a
concanated vectay, of 3 =>? Ry Ry entries

g® = [vedGi(:, 1 k) : vedGa(:, 1, K)) ;... :vedGL(:, 1, k)] - (7.71)

The whole training procedure is illustrated in Figufes. Features of a test sampsé(t) e R16x16x24
(t=1,2,...,200) can be obtained by projecting each frontal s}(été of this tensor onto the corre-
sponding feature subspace spanned by baSesandA (@), forl = 1,2,..., L, described as

GU = XU g AT s, AT — AMTROAR) 1=12...,1). (7.72)
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Figure 7.7: Classification accuracy for the hand-writtagitdiataset achieved with multiple projection
filters for Gabor levels.

Table 7.2: Comparison of classification performance forhthed-written digit dataset. For Gabor
samples, only first 20 samples for each digit were taken ftr training and test data.

(@) Samples are raw images. (b) Samples are 3-D Gabor features.
Method Accuracy Nj Method Raw data Gabor features
NTD-2 97.66 78 Accuracy N; Accuracy N
Orth. TUCKER-2 97.32 30 NTD 90 50
HODA-2 97.71 52 TUCKER 89.50 24 93 41
HODA-2 98.39(SVM) 40 HODA 89.50 14 94.50 32 (26)

Those features can also be expressed in the vector form as

g = [vec(égt)) ;vec(ég)) ;...;vec(égi)] : (7.73)

For the model of multiple projection filters, we employed H@DA algorithm, and set the number
of basis components to 12. The classification accuracy eth@8.3%6 for 252 significant features.
Accuracies and Fisher scores of 300 significant featureshemen in Figure7.8.

The paradigm given in Figur&’.6 can be applied for classification of other image datasets. Fo
example, for the ORL face databasdg we constructed Gabor feature tensors of 8 orientations at 4
scalesX® ¢ R16x16x32 \jith a holdout ratio of 50%, classification of such tensors achieved an
average accuracy of 99.32%, 99.29%, and 99.27% over 100uging the HODA-G, HODA-T, and
HOOI algorithms, respectively.

7.9 Scenes Classification

Recognition of the scene implies providing information @tithe semantic category and the function of

the environment. This problem has an important role in modégital cameras, and robot vision. For
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automatic imaging system, scene information helps to sehi®re accurate autofocus, auto exposure
and auto white balance control prior to capture. The Sceredrétion System integrated in the Nikon
D3 and D300 digital SLR camer&® uses information from the 1,005-pixel RGB sensor to recogni

a subject or scene, that enables highly precise exposutetaotilizing color information. Intelligent
Scene Recognition that features on SONY Cyber-shot modkéstthe guesswork out of adjusting
digital camera’s settings for beautiful results in a ranfjeconmon shooting situations.

In computational vision, some experimental studies haggested that recognition of real world
scenes may be initiated from the encoding of the global cordigpn, ignoring most of the details and
object informatio®?1, The primary semantic representation appears to be buit low resolution
spatial configuration. In this direction, Oliva and Tormif' proposed Spatial Envelope to express
“shape of a scene” using a few perceptual dimensions . Sterduse can be characterized by global
features which are often constructed from Gabor featuresuhiple orientations and scales. A set
of features in specific orientations and scales indeed septex matrix. Hence, Gabor features for an
image establish a 3-D tensor.

We use the same dataset analyzed by Oliva and Toffdibaavailable at website
http://people.csail.mit.edu/torralba/code/spatialenvelope. There are 2.600 color im-
ages of 256x256 pixels classified into 8 outdoor scene cagsgaoast, mountain, forest, open coun-
try, street, inside city, tall buildings and highways. @liand Torralb&*! proposed to use global fea-
tures to classify this dataset. In fact, we disregard chmamie channels, employ only the luminance
channel of images. Global features are constructed fronoGigatures consisting of 8 orientations
at 4 scales. That means 2-D samples (images) are augmentedsibnality to become 3-D tensors
whose each frontal slice consists of Gabor features at afispedentation and level. Figuré.8il-
lustrates Gabor features for some sample images. Gabaordsaire down-sampled to 26 16 x
32 dimensional tensors before extracting discriminariufes. Training data consists of 100 samples
per class randomly selected from the whole data. Test dattharrest samples. We denote the 4-D
training data byX e R'1x12x1sxK |, — 16,1, = 16,13 = 32 which consists oK = 800 3-D samples
XK e R16x16x32for |k — 1,2 ..., 800.

A common method to deal with high dimensional data is to tteam as 1-D samples. In this
direction, Oliva and Torralb&® vectorized all global featur@k’(k), and converted data tensors to a
matrix X 4, of 800 scencesx 8,192features Linear Discriminant Analysis can be applied to seek
discriminant projection for this 2-D data.

We employ the similar diagram in the previous example fa tataset. Instead of decomposition
along all the three modes, we find common bases only for thietfus dimensions. We split the
training tensotX into 32 three dimensional sub-tensds= X(:,:,1,:) € RIv*12xK (| = 1,2 .. 32)
which consist of-th frontal slices of tensor® ¥ for k = 1,2,...,K, and extract features as in.{0),
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(c) Forest scene

Figure 7.8: Visualization of some randomly chosen scerms the dataset with their Gabor features
in the 3 first orientations.

(7.7, (7.73 163,

The classification paradigm can be generally describedgareir.6. We verified the classification
performance with feature extraction using the Linear Distrant Analysis for the vectorized Gabor
training features, and using the multiway decompositiol tt nonnegative factors were set to have
6 components. The results were averaged over 100 trialsasndiven in Table7.9(b) All the
methods used the SVM classifier with the Gaussian RadiasBasiction kernéll. The multivay-
based approaches achieved an average accuracy of 85.06%iseitiminant bases, and 84.92% with
nonnegative bases. Those results were improved by at let@mpared with the LDA approach.

The confusion matrix shows the average classification te$oit the HODA algorithm in Table
7.9(a) The classification accuracy is also illustrated using ¢tirdiagram of the confusion matrix in
Figure 7.9 Each blob at a specified positiom,(n), for 1 < m,n < 8 in the Hinton diagram has its
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Category 1 2 3 4 5 6 7 8 tall buidings
1. Tall buildings87.05 7.09 1.48 0.17 0.38 0.36 1.75 1.72 inside city
2. Insidecity ~ 6.7384.78 4.05 1.00 1.06 1.57 0.21 0.60 el
3. Street 1.24 4.3B9.55 2.37 0.01 0.73 1.05 0.68
4. Highway 0.59 2.28 1.385.24 520 2.78 2.26 0.26 highway E
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¢) Hinton diagram of the confusion matrix.
(b) Comparison of the classification methods. © g

Figure 7.9: Confusion Matrix and its Hinton diagram showdlceuracy of scene classification.

size proportional to the rate in which classis classified into clasa. Dominant entries which are
mostly on the diagonal of the confusion matrix indicate thkdity of the classification.

7.10 BCI Motor Imagery Classification

In the next set of simulations, we considered the classific@nd single trial recognition for BCI EEG
data involving leftright motor imagery (MIl) movements. Exemplary process shawkFigure7.10
illustrates how to organize brain wave into tensor and dgum® multidimensional training data tensor
into factor matrices and core tensor representing redweagdries and the process of feature extraction
for test datd%1°5%165 EEG signals should be first passed over preprocesing stag#sas artifact
removal, bandpass filters, then transformed into speetnabirs uses bank of band pass filters, wavelets
transforms. The tranforming stage could ultisize two or endifferent wavelets or alternative time
frequency transforms. The training data tensor with a pkoowledge is constructed and tensor
decomposition is preformed using constrained Tucker deosition. In the next step projected filter
is constructed and test data are projected to estimateeddaatures. By comparison these features
with labeled features (for training data) classificatiorp&formed. We performed experiments on
three diferent BCI datasets, and compare performances of our motleht@f the Common Spatial
Pattern method (CSPY. Examples in this section are provided in the NFEA tooft38x

7.10.1 Single Trial Recognition

The BCI EEG dataset analyzed in this section was recordaed®channels (with sampling frequency
500 Hz) with duration of 2 seconds with a 4 second break betvike trials. The datas€t was

recorded for 2 subjects and has 840 trials.
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Figure 7.10: Conceptual diagram for BCI recognition basedaltiway feature extractidt.

For each subject, the data were collected over two sessiihsavl5 minute break in between.
The first session was conducted without feedback, and thaa® (30 trials for each class) obtained
in this session were used for training and analysis. Thensegsession consisted of 140 trials (70 trials
for each class) as testing data to give online feedbackseldata collection stage, each subject was
asked to sit in an armchair, keeping arms on the chair arnfstwit hands relaxing, and looking at a
computer monitor at approximately 1m in front of the subptatyes level. EEG signals were sampled
at 500 Hz and preprocessed by a bandpass filter withiduégiuencies of 8 Hz and 30 Hz.

In the time domain each trial can be represented as a mat@i ohannels< 1000 samples. For
each subject the first 30 training trials belong to the lefegary and the rest training trials are for
the right class. Similarly, the first half of test trials issigned for the left category, and the rest is
assigned to the right class. The purpose was to find the laoetesponding to left or right hand
imagery movements for all the test trials.

In preparation and imagination of movement the mu and bettomis are desynchronized over
the contralateral primary sensorimotor afa This phenomenon is known as Event-Related Desyn-
chronization (ERD). In some subjects in addition to the ateral ERD an ipsilateral Event-Related
Synchronization (ERS) or a contralateral beta ERS follgwiime beta ERD is found”14, By con-
vention, an ERD corresponds to a power decrease and an ER#teea increase. For the right hand
imagery movement, an ERD distributes over the left hemisgphrd an ERS over the right hemisphere.
On the contrary, for the left hand imagery movement the HHR® phenomena occur on the left and
right hemisphere, respectively.

A popular classification method for such kind of dataset & ¢bmmon spatial pattern method
(CSP) with suitable preprocessiti§. The performance obtained by using CSP achieve8682 and
90% for subject 1 and subject 2, respectively. In this sactice will present methods which improve
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Figure 7.11. Visualization of some leading basis companefitained by orthogonal TUCKER-3
(HOOI algorithm) Exampl&.10.1 (a) Topographic map built on 4 spatial componedtd). The first
two components (top) show the EFERD cover strongly the motor cortex area indicated by bluk an
red regions; the next two components (bottom) did not expecksarly the EREERD but can improve
the classification accuracgh) Spectral components indicate the mosiatences between two classes
concentrate on the mu band (8-12 Hz) and the beta band (1423(d) Oscillations of the spectral
component{b) were expressed by the temporal componéeht.

dramatically the classification accuracy via tensor deawsitipns. Moreover, our approaches allow
us to interpret ER[ERS by some dominant components.

The key point of the enhancement methods is that the santpi@s)(are augmented to become
3-D or 4-D tensors with additional modes. TransformatiorE&G signals into the time-frequency
domain is a standard technique to augment dimensionalitith& EEG signals were transformed
into the time-frequency domain using the complex Morlet @leis CMORG6-1 with the bandwidth
parameterf, = 6 Hz, and the wavelet center frequengy= 1 Hz. The data for each trial formed a
3-D spectral tensor with modes @Bannelsx 23 frequency bing8-30 Hz) x 50 time frames That
means the training dat¥ is a 4-dimensional tensor of 120 3-D sub-tensors for twoestibjand two
classes: 6% 23 x 50 x 120. The first 60 sub-tensors are for subject 1 and the nexilbdensors are
for subject 2. The test data were also organized in a simidgrand consisted of 240 3-D sub-tensors
(70 tensor&lasgsubject): 6Zhannelsx 23 frequency bins< 50time framesx 280trials.
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Figure 7.12: Fisher scores of orthogonal TUCKER-3 featarekthe classification accuracy of 90.36%
with 35 significant features , 89.29% for subject 1 and 91.48%6ubject 2.

7.10.1.1 Orthogonal Factors

Classification of the 3-D spectral tensors can be perfornyethds Orthogonal TUCKER-3 decompo-
sition as described in Sectiah3.2 The HOOI algorithm was used to estimate 3 orthonormal facto
U™, forn = 1, 2, 3 with the number of components set to explain 99% of theitrgidata tensor. The
decomposition resulted in the estimation of 3 factdf® with sizes of 62« 25, 23x 11, and 50x 12,
respectively. Hence, there were in tokak= 25 x 11 x 12 = 3,300 features compressed from 300
samples of the spectral tensors. This is a quite large nufabelassification of two categories.

In order to select a set of significant features, the featwe® ranked in a descending order of
Fisher scores. Figuré.10.1shows 100 significant features with their scores (solid) lmarmalized
so that the largest score became unity. We trained an SVMifitasusing the Gaussian Radial Basis
Function kernel’. The method achieved an average accuracy of 90.36% for Bfisamnt features
(89.29% for subject 1, and 91.43 % for subject 2). This meam$myproved performance by 3.92%
compared with that of CSP. Figuré.10.1also illustrated the classification accuracy verified fdr di
ferent numbers of significant features (from 1 to 100) on thktraxes. The accuracy increased with
the number significant features, then, decreased when esgggsive number of features.

In Figure 7.11, we illustrated some dominant components that correspmsdyhificant features.
The 4 leading spatial components shown in Figatd1(a)indicate distributions of ERERD phe-
nomena over channels C3 and C4. The distributions graddadlyeased for features with low scores.
The two leading spectral components are shown in Figutd.(b) The first spectral component (solid
line) indicates the major rhythm in the frequency rangeshefrmu rhythm [8-13] Hz, and the beta
rhythm [14-30] Hz.



7.10. BCI Motor Imagery Classification 165

0.7 [
0.6 !
05
0.4
0.3
0.2
0.1

N - - z
10 15 20 25 3l 500 1000 1500
Frequency (Hz) Time (msec)

(a) Topographic map of 2 spatial componeAt®.  (b) Spectral componens®. (c) Temporal componenis®.

Figure 7.13: Visualization of the dominant nonnegative ponents for Exampl.10.1 (a) two
spatial components separately express the power distriisubf EEG signals over channels C3 and
C4. An event with high feature for the first component (cha@® and low feature for the second
component (channel C4) relates to the right hand imageryemewt. On the contrary, this event
relates to the left hand imagery movemeh):(c) Major rhythms are reflected by spectral components
in the frequency range of [12-20] Hz and [10-15] Hz, and bytémaporal componenta(®),

7.10.1.2 Nonnegative Factors

Since the EEG spectral tensor consists of nonnegative tteajecomposition of the spectral data
into nonnegative common parts can often help in the claasidic and interpretation. This method
is described in Sections.3.3and7.4.3 In this experiment, we estimated three nonnegative factor
AM™ for the 4-D training tensor. For this decomposition, thedes were set to havi; = 10 spatial
componentsR, = 5 spectral components afd = 5 temporal components.

Classification of a set of 5 significant features achievedvanage accuracy of 87.50% (85% for
subject 1 and 90% for subject 2). In Figurel3 we illustrate basis components which related to the 5
significant features. Two spatial components in Figdré3(a)indicated that EEG power distributions
over two channels C3 and C4 were separately decomposed. el with high intensity for the first
leading component (reflecting the channel C3), and low sitgrior the second leading component
(channel C4) relates to the right hand imagery movement. h@rcontrary, this event relates to the
left hand imagery movement. The two leading spectral coraptnin Figure7.13(b)reflected main
rhythm on the channels C3 and C4 and in the frequency rang2-20Hz. We can also discriminate
the activations of these rhythms via temporal compon&ftsshown in Figure7.13(c)

7.10.1.3 Discriminant Factors

In this section, we illustrate the classification using tieedminant factors approach. We note that the
training data is a 4-D tensor, therefore, the HODA algorithias set to find 3 discriminant basis factors
UM, for n = 1, 2,3. To solve the trace ratio probleri.45), we used the general EVD approach. The
number of components of factors set to explain 99% of the rat& deturned the factotd(™(n =
1,2, 3) with sizes of 62x 25, 23x 11, 50x 12, respectively.
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Figure 7.14: Visualization of the reduced discriminantibéeactors for the BCI motor-imagery dataset.
Factors had only one component after a proper seled@iopographic map built on the spatial factor
UW shows the BCI motor-imagery data cover strongly the motalegarea indicated by blue and red
regions;(b) Spectral factor indicates the mosttdrences between two classes on a frequency range of
10-15 Hz;(c) Oscillations of the spectral componédb) expressed by the temporal componeiit).

The first leading feature corresponds to the first three tumfmonentsugl), ugz), uf‘). With only
one leading feature, we obtained an average accuracy fgledital recognition of 957%, (9071%
for subject 1, and 983% for subject 2). Both thke-nearest neighbor classifidt & 3) and the SVM
classifier gave the same performance.

The three dominant basis components are illustrated inr€iguL4(a)for the topographic map of
the spatial component, in Figur@.14(b)for the spectral component, and in Figuil4(c)for the
temporal component. The mainfidgirences between the two classes were characterized biptiscs
in the frequency rangfgLO — 15] Hz that strongly cover the motor cortex areas indicated by lind
red regions (channels C3 and C4) in Figufdl4(a)

With only one basis component for each factor, each tensoplsacan be expressed by only one
feature. Hence, the training features form a vector of 12fe= and the test features form a vector of
280 entries. lllustrations of two feature vectors are giveRigure 7.15(a)- 7.15(b) The EEG power
for negative features was high for channel C3, and low fonobeaC4, hence, negative features were
assigned to the left class. Similarly, positive featureesehEEG powers were low for channel C3 and
high for channel C4 should be assigned to the right class.

For this experiment, we need only one basis component fdr f&tor to project the raw sample
onto the feature space. However, the basis fadté?s cannot be forced to be a vectBy, = 1, for
n = 1,2 3, orto explain the training data with a low threshold fitn@dgfined in 7.64). For example,
atd = 80%, the numbers of components for three factors were 1, @dectively, the classification
performance achieved only a.88% accuracy. A factorization of this spectral tensor witraak-
one tensor achieved an accuracy of 66.43%. In TalBewe analyzed the accuracy of the single trial
recognition with threshold varying in the range of [80%, 99%]. The number of componeamtssiases
as the fitness rat@increases. The accuracy was increased by high threshaddditn
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Figure 7.15: Discriminant features of the BCI dataset usinly one basis component for each factor.

7.10.1.4 Augmentation of Dimensionality with Multi-dictionaries

In the previous sections, we illustrated that our methogegaved the performance by at least 4% and
up to 10.71% compared with the CSP methtd Although the nonnegative bases provided a slightly
lower accuracy, their nonnegative components can easéypret ERERD. In this section, we shall
introduce a technique to further improve the accuracy.

We note that a transformation of data with a dictionary aimdédcorrelate the raw data and ex-
press them in a sparse domain. fiBient dictionaries (transforms) allow to obtairffeient sparse
representations with various sparsity profiles. The stiow-Fourier transform (STFT) is often used
to determine the sinusoidal frequency and phase conteatal $ections of a signal as it changes over
time. Gabor filters represent data withfdrent frequencies and orientations. For neuronal oscilla-
tions, the continuous Morlet wavelet transform are usuadlgd to optimally identify stimulus-induced
amplitude modulations of oscillatory activities. By exitilog the diferences of categories infiéirent
domains, we can improve the classification accuracy.

For this dataset, we selected the continuous Morlet wawelasforms with two dierent band-
width parameterd, = 1 Hz andf, = 6 Hz, but the same center frequenky= 1 Hz. This gave
us two dictionaries CMOR1-1 and CMORG6-1. Each dictionamyrfed a 4-D tensor including modes
channelsx frequency bins< time framesx trials for both training and test data.

As a result, a trial became a 4-D tensor with 4 modes, and #ieirtg tensor had a size of 62
channelsx 23 frequency bins< 50 time framesx 2 dictionaries x 120trials. Training a 5-D tensor
needs 4 factors. We used the HODA algorithm to estimate therichinant bases. Four significant
features were selected to classify the data, and returnestleaage accuracy of 95.71%, (94.29% for
subject 1 and 97.14% for subject 2).

To summarize, tensor decompositions with nonnegativéoodrmal, or discriminant bases im-
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Table 7.3: Analysis of the classification accuracy of disémant factors with dferent training param-
eters for the BCI Motor Imagery Dataséa) the accuracy could be improved with significant features,
but decreased when using excessive number of feat(ibgslecomposition of the training data with
small core tensor could in general reduce the accufagomparison of performance of methods.

(a) ACC for diferent (b) ACC for different sizes of core

number of features. tensor. (c) Comparison of performance of methods.
No. Accuracy (%) 6 (%) Core’s size Accuracy (%) Method Accuracy (%)
FeaturesTraining Test 80 Ix2x1 68.93 Subject1 Subject2 Average
1 95.83 93.57 85 2x2x2 82.86 CSP 82.86 90.00 86.43
2 95.83 91.79 90 Ax4x4 88.21 NTD-3 85.00 90.00 87.50
10 98.33 89.64 95 6x7x6 90.71 HOOI 89.29 91.43 90.36
30 99.17 88.57 97 10x8x8 91.07 HODA (4-D) 90.71 96.43 93.57
50 100 84.64 99  25x11x12  93.57 HODA (5-D) 94.29 97.14 95.71

proved the classification accuracy for the BCI dataset byairh0%. A comparison of all the methods
is given in Table7.3. Augmentation of dimensionality for samples with addisgbmodes improved
the performance. Anfcient augmentation approach exploits multiple dictiomatihat explain data

with different sparsity profiles.

7.10.2 Crossvalidation for ABSP BCI Dataset

This example considers the BCI EEG dat48eWe compares our models with CSP methods for two
subjects: A and B.

Dataset'subA_6chan_2LR_s1* consists of 130 trials of BCI EEG motor imagery for subject A.
All EEG signals were recorded in a duration of 3 seconds atrgpbag frequency of 256 Hz over 6
channels by a gTec amplifier. Each trial was assigned a latoelrding to left or right hand motor
imagery. EEG signals first go through a bandpass filter (8-3p Hhe 10-fold cross-validation is
employed for 10 runs to evaluate classification accuracyCiSdP, we estimated two projected (spatial)
filters for each class to extract spatial features and tdaéme L DA classifier to classify the test data.
That means there are four spatial filters for left- and righdhmotor imageries to give 4 features for
EEG signals in a trial. The classification accuracy achidxe@SP is 88.46+ 0.96%.

For the same signals, we extracted multiway features framategl tensors which represent EEG
signals in each trial in the time-frequency domain usingciiaplex Morlet wavelets CMOR 6-1, and
have size of 23 frequency bins (8-30 Hz)77 time frames (in 3 seconds) 6 channels. The whole
data is a 4-D tensor of size 2877 x 6 x 130. For the same dataset and the same indices for 10-fold
crossvalidation, and LDA classifier, the result obtainethia example is 90.7% 0.36% accuracy, and
improved 2%. The p-value associated with the significanséngis 1.25e-6.

Dataset‘subB_6chan_2LR*® consists of 162 trials of BCI EEG motor imagery for subject B.
All EEG signals were recorded in a duration of 4 seconds athgbag frequency of 250 Hz over



7.10. BCI Motor Imagery Classification 169

—_ 0.96} + 1
0.94r | 1 N [ %I
0.93f —/ 0.941 - Iil S 1

N ==
0.92r | 0.92 ifl =+ 0 T

> * > = "

§ 0.91r —_ 1 1 g 09r 1 e

g o9r + : Loss} | *
089f [ ] ! El

0.86f
0.88} ] |
‘ 0.84r |
087f L ] N
0.82k J
CSH HODA. CShm  HODA CSPy, CSDRy CSR, CSDR, CSRy CSDRy
(a) Dataset ABSH (b) BCI Il motor imagery datasét.

Figure 7.16: Comparison of performances for BCl datasetexamples7.10.2and 7.10.3between
CSP and HODA methods.

6 channels by a Neuroscan amplifier. By running 10-fold cralggation and using the CSP method
to extract 4 spatial features for EEG signals in a trial, weaimied an accuracy of 87.90 1.4 %.

We employed tensor discriminant analysis on 3-D CMOR1-ktspktensors of 23 frequency bins
(8-30 Hz) x 100 time frames (in 4 seconds) 6 channels. The whole data is a 4-D tensor of size 23
x 100 x 6 x 162. For the same 10-fold crossvalidation indices, and DA tlassifier, our model
with one leading Fisher feature achieved 92:41.27% accuracy, and improved 5%. The p-value
associated with the significance testing is 7.84e-07. iDidion of accuracies for two subjects shown
in Figure7.16(a)reveals that classification using features extracted fipeatsal tensors is much more
stable and high performance than those by CSP.

7.10.3 Crossvalidation for BCI Il Motor Imagery Dataset (D ataset 1Vb)

This section demonstrates classification of two classeshi®BCI IIl motor imagery competition
benchmark®. We selected only 7 channels (51-57) from 118 channels dithdata to illustrate the
classification performance. EEG signals in trials wereaetéd from the continuous EEG signals, and
organzied into 3-D arrays of modes: 7 channel850 samples (in 3.5 seconds)280 trials’*t. For
multiway-features, EEG signals are first transformed iimteetfrequency domain using the complex
MORLET wavelets to form spectral tensors of size 23 frequdaics x 350 time frames< 7 channels

x 280 trials. Classification accuracy was evaluated by 5-doddsvalidation. That means there were
224 3-D tensors for training and 56 3-D tensors for test. Bmsdr has temporal modes with large
number of time frames. A simple technique to deal with thishfem is that the data is tensorized to
have additional modes. For example, folding the temporalevad 350 time frames as®2 x 5 x 7
dimensional tensor can yield a 6-D data tensor.
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Using CSP features, we obtained accuracies of 86.8331%, 90.87+ 0.5% and 92.#4 0.49%
for subjectsaw, ay al respectively. Whereas combination of CSP features amdimiimant features
from spectral tensors (Common Spatial and Discriminanjeetions) helped to achieve accuracies of
91.61+ 1.15%, 93.8% 0.9%, 95.6+ 0.21%. The performances were improved at least 3% accuracy.
Classification accuracies for methods are shown in Figut(b)

7.11 Summary

In this chapter, we have proposed a general approach forlmestiection, feature extraction and clas-
sification problems of high dimensional dataset. Revigitiee TUCKER models, we have developed
robust algorithms within a general framework, which geliega or extends some existing approaches.
A family of flexible algorithms has been developed to find Isaséh different constraints such as or-
thogonality, nonnegativity, and discriminant projectiohll of them have been verified by extensive
numerical experiments for real-world datasets. Througmexes, factors with orthogonal compo-
nents often achieved highest performance (recognitia) with an acceptable number of significant
features. Especially, such bases can be relatively quieglynated using the HOOI algorith§i®©
without any category information.

Employing category information to find discriminant basa#g6rithm 7.3) has been shown not
only to (slightly) improve the performance, but also to reelthe number of desired selected features.
However, complexity of a such algorithm increases and thesg of approximations decreases.

For all the used datasets, although nonnegative basestdidumally provide the best performance,
their components could often help us to physically intarphe data, for example, the BCI EEG
datasets. A supervised training paradigm with discrimir@iterion incorporated in the cost func-
tion has also been presented to find nonnegative factors.etwchoosing optimal regularization
parameters is still an open problem. Furthermore, multiie learning rules for the estimation of
nonnegative bases are characterized by rather slow cemeargand frequent convergence to spurious
local minima. Therefore, in practice, the HOOI algorithnoghd be run first to give orthogonal bases
which can be then used as initialization for nonnegativesas

Features can be extracted based on CP decompositionss battd, samples are also organized in
the same way as Tucker decomposition, and the obtaineddsaite rows of the last factors. Recently,
we received promising results in seeking discriminantuiest from EEG signals for healthy children
and children with attention deficit using Event-RelatedeRtialP>5354,

Finally, our methods and algorithms have shown to fiecéive for many practical problems. The
presented techniques are very perspective and useful iicapms like model reduction, pattern
recognition, vision, classification, and multi-way clustg.



CHAPTER 8

Conclusions

The main objective of this thesis is to propose robust algas for CP and Tucker decompositions.
Rank-one update algorithms (HALS) have lower computati@oat than the ALS algorithms, but
are compatible with this algorithm in the term of performandhe proposed algorithms can com-
bine multiple regularization terms such as smoothneskpgdnality, nonnegativity and discriminant
information.

We also investigated the NQP problem and proposed a reeuapproach to solve this problem.
Based on the proposed technique, a family of QALS algoritfonsionnegative CP and Tucker de-
compositions is derived and confirmed as appropriate ALS8rdlgns for tensor decompositions. We
proposed a robust algorithrKfQALS which can update arbitrary number of components K < R
instead of one component or all the components. The algordtiows flexible control of traded
between computational cost and performance of the QALSi#hgo. That is the K-QALS algorithm
should converge faster than the HALS algorithm, but has lomvgutational cost than that of the QALS
algorithm.

All-at-once algorithms based on the damped Gauss-Newdoatibn are proposed with low com-
plexity to build up the approximate Hessian and gradierd,aso to inverse the approximate Hessian.
Especially for CP and NTF, the fast dGN (LM) algorithm hasrbéerived to not only bypass com-
putation of Jacobian, Hessian and gradients but also evefrshe approximate Hessian. The LM
algorithms have been experimentally confirmed as the bgstitim for all experiments including
difficult benchmarks and real-world applications.

For large-scale tensor factorization, we propose the gtatk) model in which subtensors are first
factorized, then the factors for the whole data tensor apecpmated from subfactors. Algorithms
for large-scale CP and NTF have been derived and confirmegripetic and real-wolrd data and
applications including EEG analysis and estimation of ilepuesponses in MIMO systems. The
model can be extended to Tucker decomposition.

Finally, we present the model for feature extraction for tima#ly data based on Tucker and CP
decomposition. Applications for BCI, object classificatibave been verified and confirmed high
performance of our model. Algorithms and paradigms in tresithare demonstrated in the Matlab
NFEA toolbox!°.






(1]
(2]
(3]

(4]
(5]
(6]
(7]
(8]
9]
(10]
(11]

(12]

(13]

(14]

(15]

(16]
(17]
(18]

(19]

(20]
(21]
(22]

(23]

Bibliography

Karim M. Abadir and Jan R. Magnu$/atrix Algebra (Econometric Exercisesfambridge University Press, August
2005. (Cited on pagé2.)

H. Abdi. Discriminant correspondence analysi¥.J. Salkind (Ed.): Encyclopedia of Measurement and Sitzgjs
pages 270-275, 2007. (Cited on pdgel.)

E. Acar, C.A. Bingol, H. Bingol, R. Bro, and B. Yener. Contational analysis of epileptic focus localization. In
Proc. of The Fourth IASTED International Conference on Bidimal Engineering BioMED200&ages 317-322,
Innsbruck, Austria, 15-17 February 2006. (Cited on 8@

E. Acar, D. M. Dunlavy, and T. G. Kolda. A scalable optimtion approach for fitting canonical tensor decomposi-
tions. Journal of Chemometri¢®5(2):67—-86, February 2011. (Cited on pageSsl, 97, 98 and99.)

E. Acar and B. Yener. Unsupervised multiway data analyéi literature surveylEEE Transactions on Knowledge
and Data Engineering21:6—20, 2008. (Cited on pag&s6 and15.)

R. Acar and C. Vogel. Analysis of bounded variation p&natethods for ill-posed problem$EEE Transactions on
Image Processingl0:1217-1229, 1994. (Cited on paz&)

R. Albright, J. Cox, D. Duling, A. N. Langville, and C. D. &er. Algorithms, initializations, and convergence fa th
nonnegative matrix factorization. Technical report, NCBi¢hnical Report Math 81706, 2006. (Cited on pages
17,28and39))

S. Amari. Differential-Geometrical Methods in StatisticSpringer Verlag, 1985. (Cited on pagé.)

C.A. Andersson and R. Bro. Improving the speed of multiyalgorithms: Part I. Tucker3Chemometrics Intell.
Lab. System#12:93—-103, 1998. (Cited on pa8e.)

C.A. Andersson and R. Bro. The N-way toolbox for MATLABhemometrics Intell. Lab. Systers2(1):1-4, 2000.
(Cited on pages, 17, 18, 19and28.)

C.J. Appellof and E.R. Davidson. Strategies for anagzlata from video fluoromatric monitoring of liquid chro-
matographic luents.Analytical Chemistry53:2053-2056, 1981. (Cited on pag¢

L. Badea. Extracting gene expression profiles commddion and Pancreatic Adenocarcinoma using simultaneous
nonnegative matrix factorization. Proceedings of Pacific Symposium on Biocomputing PSB;2@fes 267-278,
World Scientific, 2008. (Cited on pad&7.)

B.W. Bader, R. Harshman, and T.G. Kolda. Pattern amalykdirected graphs using DEDICOM: An application to
Enron Email. Technical Report SAND2006-7744, Sandia Natidaboratories, Albuquerque, NM and Livermore,
CA, December 2006. (Cited on paggand16.)

B.W. Bader, R. Harshman, and T.G. Kolda. Temporal asialpf social networks using three-way DEDICOM.
Technical Report SAND2006-2161, Sandia National LabeiespAlbuquerque, NM and Livermore, CA, April 2006.
(Cited on pages$, 16 and137.)

B.W. Bader, R.A. Harshman, and T.G. Kolda. Temporallysia of semantic graphs using ASALSAN. IGDM
2007: Proceedings of the 7th IEEE International Confereogdata Mining pages 33-42, October 2007. (Cited on
pagess, 15and16.)

B.W. Bader and T.G. Kolda. fEcient MATLAB computations with sparse and factored tens@5\M Journal on
Scientific Computing30, 2007. (Cited on pag?9.)

B.W. Bader and T.G. Kolda. MATLAB tensor toolbox versio 2.4.
httpy/csmr.ca.sandia.gpvtgkoldaTensorToolbok January 2010. (Cited on pageésand99.)

M.S. Bartlett, J.R. Movellan, and T.J. Sejnowski. Faseognition by independent component analyHEE Trans.
Neural Networks13(6):1450-1464, 2002. (Cited on pabj24.)

M. Berry, M. Browne, A. Langville, P. Pauca, and R. Pleoma. Algorithms and applications for approximate
nonnegative matrix factorizationComputational Statistics and Data AnalysE2(1):155-173, 2007. (Cited on
pagess, 17 and18.)

I. Biederman. Recognition-by-components: A theoryioman image interpretatiof.sychological Reviey®4:115—
148, 1987. (Cited on padks9.)

I. Biederman. Aspects and extension of a theory of huimage understandingComputational Process in Human
Vision: An Interdisciplinary Perspectiy@988. (Cited on pag&59.)

D. A. Bini and P. Boito. A fast algorithm for approximagpelynomial GCD based on structured matrix computations.
Operator Theory: Advances and Applicatiod99, 2010. (Cited on pads?.)

C. Boutsidis and E. Gallopoulos. SVD based initialiaat A head start for nonnegative matrix factorizati®attern
Recognition41:1350-1362, 2008. (Cited on patjg)



174

Bibliography

[24]
[25]
[26]
[27)
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37)

(38]

(39]

[40]

[41]
[42]
(43]
[44]

[45]

[46]

[47]

(48]

[49]

R. Bro. PARAFAC. Tutorial and applications. Bpecial Issue 2nd Internet Conf. in Chemometrics (INCINE'9
volume 38, pages 149-171. Chemom. Intell. Lab. Syst, 190ifeq on pages$, 17 and18.)

R. Bro. Multi-way Analysis in the Food Industry - Models, Algoritanand ApplicationsPhD thesis, University of
Amsterdam, Holland, 1998. (Cited on pade$, 18, 19, 23, 51, 87 and99.)

R. Bro and C.A. Andersson. Improving the speed of mudthalgorithms - Part Il: Compressio@hemometrics and
Intelligent Laboratory System42:105-113, 1998. (Cited on pagjg.)

C. Brunner, R. Leeb, G. R. Muller-Putz, and A. SchlogICIRompetition 2008 - Graz data set A. 2009. (Cited on
page93.)

D. Cai, X. He, and J. Han. fEcient kernel discriminant analysis via spectral regressla Proc. Int. Conf. on Data
Mining (ICDM’07), 2007. (Cited on pag#43)

D. Cai, X. He, and J. Han. SRDA: Arfecient algorithm for large-scale discriminant analy$sEE Trans. on Knowl.
and Data Eng.20(1):1-12, 2008. (Cited on pagd3)

C. F. Caiafa and A. Cichocki. Generalizing the colunomvmatrix decomposition to multi-way arraylsnear Algebra
and its Applications433:557-573, 2010. (Cited on page)

S. Canu, Y. Grandvalet, V. Guigue, and A. Rakotomamo8yM and kernel methods —Matlab toolbox, 2005. (Cited
on paged53 160and164.)

J.-F. Cardoso and A. Souloumiac. Jacobi angles for kémeous diagonalizationSIAM J. Matrix Anal. Appl.
17(1):161-164, January 1996. (Cited on page)

J.D. Carroll and J.J. Chang. Analysis of individudfeliences in multidimensional scaling via an n-way geneatitn

of Eckart—Young decompositiof®sychometrika35(3):283-319, 1970. (Cited on padg42, 17and76.)

R.B. Cattell. Parallel proportional profiles and othlpgnciples for determining the choice of factors by rotatio
Psychometrika9:267—-283, 1944. (Cited on pag9

T. Chan, H.M. Zhou, and R.H. Chan. A continuation metfarctotal variation denoising problems, 1995. (Cited on
page23.)

A. Cichocki, S. Amari, R. Zdunek, R. Kompass, G. Horidahh He. Extended SMART algorithms for non-negative
matrix factorization.Springer, LNAI-40294029:548-562, 2006. (Cited on pags 25 and26.)

A. Cichocki and A.-H. Phan. Fast local algorithms faiga scale nonnegative matrix and tensor factorizatifi€ E
Transactions92-A(3):708-721, 2009. (Cited on padk$; 20, 24, 26, 27, 39, 50, 82, 94, 97 and131)

A. Cichocki, A.-H. Phan, and C. Caiafa. Flexible HALSyalithms for sparse non-negative matiéxsor factoriza-
tion. InProc. of 18-th IEEE workshops on Machine Learning for SighralcessingCancun, Mexico, 16—-19, October
2008. (Cited on pagesd and24.)

A. Cichocki, A.-H. Phan, R. Zdunek, and L.-Q. Zhang. #de component analysis for sparse, smooth, nonnegative
coding or representation. lrecture Notes in Computer Science, LNCS-498{Lime 4984, pages 811-820. Springer,
2008. (Cited on pag#9.)

A. Cichocki, Y. Washizawa, T. Rutkowski, H. Bakardjiah.-H. Phan, S. Choi, H. Lee, Q. Zhao, L. Zhang, and Y. Li.
Noninvasive BCls: Multiway signal-processing array depositions. Computey 41(10):34—42, 2008. (Cited on
pagel6l)

A. Cichocki and R. Zdunek. Multilayer nonnegative nivafactorization.Electronics Letters42(16):947-948, 2006.
(Cited on pageg, 18and39.)

A. Cichocki and R. Zdunek. Regularized alternatingstesquares algorithms for non-negative matersor factor-
izations. Springer, LNCS-44931493:793-802, June 3—7 2007. (Cited on padk24 and26.)

A. Cichocki, R. Zdunek, and S. Amari. Csiszar’s diverges for non-negative matrix factorization: Family of new
algorithms.Springer, LNCS-3888889:32—-39, 2006. (Cited on paé

A. Cichocki, R. Zdunek, and S. Amari. Hierarchical AL§arithms for nonnegative matrix and 3D tensor factoriza-
tion. In Lecture Notes in Computer Science, LNCS-4@@es 169—-176, 2007. (Cited on pdge

A. Cichocki, R. Zdunek, S. Choi, R. Plemmons, and S. Amétonnegative tensor factorization using Alpha and
Beta divergencies. IRroc. IEEE International Conference on Acoustics, Speastl,Signal Processing (ICASSPQ7)
volume Ill, pages 1393-1396, Honolulu, Hawaii, USA, ApB-20 2007. (Cited on pag@4, 26 and28.)

A. Cichocki, R. Zdunek, S. Choi, R. Plemmons, and S.+haki. Novel multi-layer nonnegative tensor factorization
with sparsity constraintsSpringer, LNCS-4432432:271-280, April 11-14 2007. (Cited on pagdsand26.)

A. Cichocki, R. Zdunek, A.-H. Phan, and S. Amaonnegative Matrix and Tensor Factorizations: Applicagdo
Exploratory Multi-way Data Analysis and Blind Source Segiem. Wiley, Chichester, 2009. (Cited on pades, 7,
8,15, 17,18, 19, 21, 24, 28, 39, 40, 63, 68, 82, 93, 94, 98, 135, 149 151and162)

A. Cichocki and Q. Zhao. EEG motor imagery dataset. el report, Laboratory for Advanced Brain Signal
Processing, BSI, RIKEN, Saitama, Japan, 2011. (Cited oegi88and169)

P. Comon. Tensor diagonalization, a useful tool in algsrocessing. 1r10th International Federation of Automatic



Bibliography 175

[50]
(51]

[52]

(53]

(54]

(58]
[56]

[57]

(58]
[59]

(60]

(61]

(62]

(63]
(64]
(65]
[66]
[67]
[68]
(69]
[70]
(71]
[72]

(73]

Control Symposium on System Identificatipages 77-82, 1994. (Cited on pdgg

P. Comon. Tensor package, enhanced line search//tpv.i3s.unice.ff~pcomoriTensorPackage.html, May, 2010.
(Cited on page$ and99.)

P. Comon, X. Luciani, and A. L. F. de Almeida. Tensor dapositions, alternating least squares and other tates.
Chemometrics23, 2009. (Cited on pagés 18, 19, 51 and58.)

F. Cong, I. Kalyakin, A.-H. Phan, A. Cichocki, T. Hutten-Scott, H. Lyytinen, and T. Ristaniemi. Extract mismatch
negativity and p3a through two-dimensional nonnegativedgosition on time-frequency represented event-related
potentials. INSNN, 2010pages 385-391, 2010. (Cited on pdg®.)

F. Cong, A.-H. Phan, A. Cichocki, H. Lyytinen, and T. Risiemi. Identical fits of nonnegative matttensor factor-
ization may correspond to fiierent extracted event-related potentials.International Joint Conference on Neural
Networks 2010pages 2260-2264, 2010. (Cited on page.)

F. Cong, A.-H. Phan, H. Lyytinen, T. Ristaniemi, and Aclibcki. Classifying healthy children and children with at
tention deficit through features derived from sparse andhegative tensor factorization using event-related patent
In LVAICA 201Q pages 620-628, 2010. (Cited on pdg®.)

M.E. Daube-Witherspoon and G. Muehllehner. An itaatmage space reconstruction algorthm suitable for volume
ECT. IEEE Transactions on Medical Imaging:61-66, 1986. (Cited on pag88and84.)

L. De Lathauwer. A link between the canonical decomgyasiin multilinear algebra and simultaneous matrix diago-
nalization. SIAM J. Matrix Anal. Appl.28:642—-666, 2006. (Cited on pag2)

L. De Lathauwer. Decompositions of a higher-order ¢eris block terms — Part I: Lemmas for partitioned matrices.
SIAM J. Matrix Anal. Appl.30(3):1022—-1032, 2008. Special Issue on Tensor Decotpusiand Applications.
(Cited on page8.)

L. De Lathauwer, B. de Moor, and J. Vandewalle. A mulidar singular value decompositiol®IAM Journal of
Matrix Analysis and Application®1:1253-1278, 2001. (Cited on padés 28, 97, 98, 120, 137, 141and170)

L. De Lathauwer, B. De Moor, and J. Vandewalle. A Muitgar Singular Value DecompositiorSIAM J. Matrix
Anal. Appl, 21(4):1253-1278, 2000. (Cited on pabz2.)

L. De Lathauwer, B. De Moor, and J. Vandewalle. On thetlbask-1 and rank-(R1,R2,...,RN) approximation of
higher-order tensorsSIAM J. Matrix Anal. Appl|.21(4):1324-1342, 2000. (Cited on padés 28, 63, 98, 132 141
and170)

L. De Lathauwer and D. Nion. Decompositions of a higbedter tensor in block terms — Part Ill: Alternating least
squares algorithmsSIAM J. Matrix Anal. Appl.30(3):1067—-1083, 2008. Special Issue Tensor Decompnsiand
Applications. (Cited on page8.)

L. De Lathauwer and J. Vandewalle. Dimensionality retchn in higher-order signal processing and rank-
(R1, Ry, ..., Ry) reduction in multilinear algebralinear Algebra Applications391:31-55, November 2004. (Cited
on pagel4l)

A.R. De Pierro. On the relation between the ISRA and thMeadtgorithm for positron emission tomographfEEE
Transactions on Medial Imagind2(2):328-333, June 1993. (Cited on pagesnd84.)

I. Dhillon and S. Sra. Generalized nonnegative matpgraximations with Bregman divergences. Neural Infor-
mation Proc. Systempages 283-290, Vancouver, Canada, December 2005. (Qitealge28.)

C. Ding, T. Li, W. Peng, and H. Park. Orthogonal nonnagamatrix tri-factorizations for clustering. [KDDO6,
pages 126-135, New York, NY, USA, 2006. ACM Press. (Cited age6.)

G. Dornhege, B. Blankertz, G. Curio, and K.-R. Mulleiodting bit rates in non-invasive EEG single-trial classifi
tions by feature combination and multi-class paradigiBEE Trans. Biomed. Eng51, 2004. (Cited on pagks9)
P.P.B. Eggermont and V.N. LaRiccia. Maximum smoothkelihood density estimation for inverse problenfsn.
Statist, 23(1):199-220, 1995. (Cited on pagsand84.)

Center for Brain-Like Computing and Shanghai Jiao Talmiversity Machine Intelligence. Data set for single trial
EEG classification in BCI. (Cited on pagél)

G. E. Forsythe and C. B. MolecComputer Solution of Linear Algebraic Systems, ChapterA@ntice-Hall, 1967.
(Cited on page408and116.)

A. Franc.Etude algebrique des multitableaux: apports de I'algebedensoriellePhD thesis, Université Montpellier
II, 1992. (Cited on pagé9.)

J. H. Friedman. Exploratory projection pursultournal of the American Statistical Associati@?2(397):249—-266,
1987. (Cited on pag#35.)

J. H. Friedman. Regularized discriminant analyd@irnal of the American Statistical Associatj@4(405):165-175,
1989. (Cited on pag#35.)

N. Gillis and F. Glineur. Nonnegative factorizationdathe maximum edge biclique problem. CORE Discussion
Papers 2008064, 2008. (Cited on p&ge



176

Bibliography

[74]
(78]
[76]

[77]

(78]

[79]

(80]

(81]
(82]
(83]
(84]
(85]
(86]
(87]
(88]
(89]
[90]
(91]
(92]

(93]

(94]
[99]
[96]
[97]
(98]

[99]

G.H. Golub and C.F. Van LoanMatrix Computations The Johns Hopkins University Press, Baltimore, London,
1996. (Cited on pag#48)

S.A. Goreinov, E.E. Tyrtyshnikov, and N.L. ZamarashkiA theory of pseudo-skeleton approximationisinear
Alegebra and Application®61:1-21, 1997. (Cited on pagé.)

P. Guillaume and R. Pintelon. A Gauss-Newton-like myization algorithm for weighted nonlinear nonlinear least
squares problemd$EEE Trans. Signal Processing4, 1996. (Cited on padeb.)

X. Guo, S. Miron, D. Brie, and A. Stegeman. Uni-mode araftipl uniqueness conditions for CANDE-
COMP/PARAFAC of three-way arrays with linearly dependent logginSIAM J. Matrix Anal. Appl.page in press,
2011. (Cited on paggl.)

T.M. Hancewicz and J.-H. Wang. Discriminant image tason: a novel multivariate image analysis method utilii

a spatial classification constraint in addition to biline@mnnegativity. Chemometrics and Intelligent Laboratory
Systems77:18-31, 2005. (Cited on pagésl8 and39.)

R. A. Harshman. Models for analysis of asymmetricahtiehships among n objects or stimuli. Paper presented at
the First Joint Meeting of the Psychometric Society and TdweBy for Mathematical Psychologidamilton, 1978.
(Cited on pagé.)

R. A. Harshman and M. E Lundy. Three-way DEDICOM: Anahg multiple matrices of asymmetric relationships.
In the Annual Meeting of the North American Psychometric $pdgolumbus, Ohio, 1992. (Cited on pag&sl5
and16.)

R.A. Harshman. Foundations of the PARAFAC procedurendsls and conditions for an explanatory multimodal
factor analysisUCLA Working Papers in Phonetic$6:1-84, 1970. (Cited on pagésl2, 15, 17, 18 and19.)

R.A. Harshman. PARAFAC2: Mathematical and technicates. UCLA Working Papers in Phonetic22:30-44,
1972. (Cited on page&and137.)

R.A. Harshman and M.E. LundyResearch Methods for Multimode Data Analydisaeger, New York, USA, 1984.
(Cited on pagé.)

T. Hazan, S. Polak, and A. Shashua. Sparse image coding a 3D non-negative tensor factorization.Piroc. Int.
Conference on Computer Vision (ICGYpges 50-57, 2005. (Cited on pa&iye

Z. He and A. Cichocki. Hicient method for estimating the dimension of Tucker3 modelurnal of Multivariate
Analysis 2009. (Cited on pag#42)

M. Heiler and C. Schnoerr. Controlling sparseness im-negative tensor factorizatioSpringer LNCS3951:56-67,
2006. (Cited on pagé.)

D. J. Higham and N. J. HighanMATLAB Guide, Second EditioisIAM, 2005. (Cited on pagel)8and116.)

N. J. Higham. Accuracy and stability of numerical aligoms. SIAM, 1996. (Cited on pageEd8and116.)

F.L. Hitchcock. Multiple invariants and generalizeahk of a p-way matrix or tensodournal of Mathematics and
Physics 7:39-79, 1927. (Cited on pad®.)

N.-D. Ho.Nonnegative Matrix Factorization - Algorithms and Applicams Thesgdissertation, Universite Catholique
de Louvain, Belgium, FSANMA - Departement d’ingenierie mathematique, 2008. (€iv@ paged9 and23.)

N.-D. Ho, P. Van Dooren, and V.D. Blondel. Descent mehfor nonnegative matrix factorizatioNumerical Linear
Algebra in Signals, Systems and Cont2008. (Cited on pag9.)

K. Horio and T. Yamakawa. Feedback self-organizing rauagits application to spatio-temporal pattern classificat
International Journal of Computational Intelligence angplications 1(1):1-18, 2001. (Cited on pad85.,)

K. Horio and T. Yamakawa. Handwritten character reétign based on relative position of local features extrd¢ie
self-organizing mapslnternational Journal of Innovative Computing and Con}®{4):789 — 798, 2007-08. (Cited
on paged35and155)

R. A. Horn and C. R. JohnsonMatrix Analysis Cambridge University Press, 1990. (Cited on pag@s52, 57
and65.)

R. A. Horn and C. R. JohnsorTopics in matrix analysisCambridge University Press, Cambridge, 1991. (Cited on
page72.)

A. Hyvarinen, J. Karhunen, and E. Ojmdependent Component Analysi®hn Wiley & Sons Ltd, New York, 2001.
(Cited on pagd.35)

A. K. Jain, R. P.W. Duin, and J. Mao. Statistical pattexoognition: A reviewlEEE Transactions on Pattern Analysis
and Machine Intelligenge22:4—-37, 2000. (Cited on pag#&35and151)

J. Jiang, L. Zhang, and T. Furukawa. A class density@ppration neural network for improving the generalization
of fisherface Neurocomputing71:3230—-3246, 2008. (Cited on pabg5.)

J. Jiang, L. Zhang, and T. Furukawa. RBFxSOM: Aliagent algorithm for large-scale multi-system learnitiglCE
Transactions on Information and Systera92-D(7):1388-1396, 2009. (Cited on pad&5and155)

[100] H.A.L.Kiers. An alternating least squares algorittonPARAFAC2 and DEDICOM3Computational Statistics and



Bibliography 177

[101]
[102]
[103]
[104]
[105]
[106]

[107]

[108]

[109]

[110]

[111]
[112]
[113]
[114]
[115]
[116]
[117]
[118]

[119]

[120]
[121]
[122]
[123]
[124]

[125]

Data Analysis16:103-118, 1993. (Cited on paijg.)

H.A.L. Kiers. A three-step algorithm for CANDECONPARAFAC analysis of large data sets with multicollinearity
Journal of Chemometri¢d2(3):155-171, 1998. (Cited on pat@)

H. Kim and H. Park. Nonnegative matrix factorizatiomsld on alternating nonnegativity constrained least squar
and active set metho&IAM J. Matrix Anal. App|.30:713-730, July 2008. (Cited on pag@)

Y.-D. Kim and S. Choi. Nonnegative Tucker decompasiti In Proc. of Conf. Computer Vision and Pattern Recog-
nition (CVPR-2007)Minneapolis, Minnesota, June 2007. (Cited on pade8, 40, 68, 149and151)

J. Kivinen and M.K. Warmuth. Exponentiated gradiesitsus gradient descent for linear predicténéormation and
Computation 132, 1997. (Cited on pagto.)

T.G. Kolda and B. Bader. The TOPHITS model for highestes web link analysis. I®Proceedings of the SIAM Data
Mining Conference Workshop on Link Analysis, Countertésm and Security2006. (Cited on paged 15and16.)
T.G. Kolda and B.W. Bader. Tensor decompositions gudieations.SIAM Review51(3):455-500, September 2009.
(Cited on pages, 11, 13, 14, 15, 17, 18, 28, 63, 76, 96, 132and135)

T.G. Kolda, B.W. Bader, and J.P. Kenny. Higher-ordebviink analysis using multilinear algebra. l@DM 2005:
Proceedings of the 5th IEEE International Conference onalMining, pages 242—-249, November 2005. (Cited on
pagel6.)

Z. Koldovsky, P. Tichavsky, and A.-H. Phan. Stabiktyalysis and fast damped Gauss-Newton algorithm for IND-
SCAL tensor decomposition. Btatistical Signal Processing Workshop (SSP), IEfges 581-584, 2011. (Cited
on page®7and100)

A. N. Langville, C. D. Meyer, and R. Albright. Initiaations for the nonnegative matrix factorization. Rroc. of
the Twelfth ACM SIGKDD International Conference on Knowke@iscovery and Data Minindhiladelphia, USA,
August 20-23 2006. (Cited on pagg28and39.)

H Lantéri, R. Soummmer, and C. Aime. Comparison betwi&RA and RLA algorithms: Use of a Wiener filter
based stopping criteriomstronomy and Astrophysics Supplemantary Seti48:235-246., 1999. (Cited on padss
andg4.)

L. De Lathauwer and J. Castaing. Blind identificatidmoderdetermined mixtures by simultaneous matrix diagona
ization. IEEE Transactions on Signal Processji®(3):1096—1105, 2008. (Cited on p&g)

Y. LeCun, L. Bottou, Y. Bengio, and P. lffaer. Gradient-based learning applied to document redogniProceed-
ings of the IEEE86(11):2278—-2324, 1998. (Cited on pa@dsand155)

D.D. Lee and H.S. Seung. Learning of the parts of objbgtnon-negative matrix factorizatioNature 401:788-791,
1999. (Cited on pages 31, 40and84.)

Z. Liang and P.F. Shi. Uncorrelated discriminant eestusing a kernel metho®attern Recognition38(2):307-310,
2005. (Cited on pag#24.)

C. J. Lin. Projected gradient methods for non-negatiatrix factorizationNeural Computation19(10):2756-2779,
October 2007. (Cited on pagé8, 39 and40.)

C.-Y. Lin, N. Cao, S. Liu, S. Papadimitriou, J. Sun, atdYan. Smallblue: Social network analysis for expertise
search and collective intelligence. IBDE, pages 1483-1486, 2009. (Cited on p&ge

X. Luciani and L. Albera. Semi-algebraic canonicatamposition of multi-way arrays and joint eigenvalue deeom
position. INICASSP pages 4104-4107, 2011. (Cited on p&agg

M.E. Lundy, R.E. Harshman, and J.B. Kruskal. A twoggtgrocedure incorporating good features of both trilinear
and quadrilinear models. pages 123-130, 1989. (Cited oesfieand15.)

D. Terzopoulos M. A. O. Vasilescu. Multilinear analysf image ensembles: Tensorfaces.7th European Con-
ference on Computer Vision (ECCV’02), Lecture Notes in GderpSciencevolume 2350, pages 447-460, 2002.
(Cited on pagé.)

J. R. Magnus and H. Neudeckéatrix Differential Calculus with Applications in Statistics and Eoaretrics, 2nd
Edition. John Wiley & Sons, March 1999. (Cited on péi)

A. Martinez and R. Benavente. The AR face database.hnieal Report 24, Computer Vision Center (CVC),
Barcelona, Spain, June 1998. (Cited on ph58&)

MATLAB. version 7.10.0 (R2010a) The MathWorks Inc., Natick, Massachusetts, 2010. (Citechagesl08
and116)

K. Matsuoka. Noise injection into inputs in back-pagation learning.|[EEE Trans. Syst, Man, Cyber@2, 1992.
(Cited on pagd.24)

K. Matsuoka and M. Kawamoto. A neural network that-setjanizes to perform three operations related to pritcipa
component analysisNeural Networks7(5):753 — 765, 1994. (Cited on pa#j85.)

G. J. McLachlan.Discriminant Analysis and Statistical Pattern RecogmitioNiley Interscience, 2004. (Cited on
pageld4)



178

Bibliography

[126]
[127]

[128]

[129]

[130]

[131]
[132]
[133]
[134]
[135]

[136]
[137]

[138]

[139]

[140]
[141]
[142]
[143]

[144]

[145]
[146]
[147]

[148]

[149]
[150]

[151]

M. Minami and S. Eguchi. Robust blind source separalip Beta-divergenceNeural Computation14:1859-1886,
2002. (Cited on pag6.)

B. C. Mitchell and D. S. Burdick. Slowly converging PARAC sequences: Swamps and two-factor degeneracies.
Jour. Chemometri¢s8:155-168, 1994. (Cited on pagé.)

F. Miwakeichi, E. Martnez-Montes, P. Valds-Sosa, Nsiyama, H. Mizuhara, and Y. Yamaguchi. Decomposing
EEG data into spaeetime—frequency components using parallel factor analy$ieurolmage 22(3):1035-1045,
2004. (Cited on pagé.)

M. Mgrup, L. K. Hansen, C. S. Herrmann, J. Parnas, amd. @rnfred. Parallel factor analysis as an exploratory tool
for wavelet transformed event-related EBGeurolmage29(3):938-947, 2006. (Cited on pagi¢

M. Mgrup, L.K. Hansen, and S.M. Arnfred. ERPWAVELAB@otbox for multi-channel analysis of time-frequency
transformed event related potentialburnal of Neuroscience Methqds61(2):361-368, 2006. (Cited on pad3s
40and122)

M. Mgrup, L.K. Hansen, and S.M. Arnfred. Algorithmsrfsparse nonnegative Tucker decompositioiNeural
Computation20:2112-2131, 2008. (Cited on paded5, 28, 68, 98, 120, 149and151)

M. Mgrup, L.K. Hansen, J. Parnas, and S.M. Arnfred. @gposing the time-frequency representation of EEG using
non-negative matrix and multi-way factorization. Teclahi@port, 2006. (Cited on pagd$, 82, 93, 97 and122)

C. Navasca, L. De Lathauwer, and S. Kindermann. Swasdpaing technique for tensor decomposition.Phac.
16th European Signal Processing Conference (EUSIPCO 2Q088. (Cited on pags.)

S. A.Nene, S. K. Nayar, and H. Murase. Columbia objexctge library (COIL-20). Technical Report CUCS-005-96,
Columbia University, February 1996. (Cited on pdd)

F. Nie, S. Xiang, Y. Song, and Ch. Zhang. Extractinggpgmal dimensionality for local tensor discriminant ares.
Pattern Recogn42(1):105-114, 2009. (Cited on paty#3)

H. B. Nielsen. Damping parameter in Marquardt’s methbechnical report, 1999. (Cited on pag2)

M. Nikolova. Minimizers of cost-functions involvingonsmooth data-fidelity terms. application to the processi
outliers. SIAM Journal on Numerical Analysi40(3):965-994, 2002. (Cited on pa22)

NIKON. Scene recognition system. hffpnaging.nikon.conproductgmagingtechnologyscengl9index.htm.
(Cited on pagd 59)

D. Nion and L. De Lathauwer. A tensor-based blind DSM®receiver using simultaneous matrix diagonalization. In
Proc. of SPAWC 07, IEEE Workshop on Signal Processing A@gandWireless Communications, Helsinki, Finland
June 2007. (Cited on pa@8.)

D. Nion and L. De Lathauwer. An enhanced line searclesehfor complex-valued tensor decompositions. Applica-
tion in DS-CDMA. Signal Processing88(3):749-755, 2008. (Cited on paged8and39.)

A. Oliva and A. Torralba. Modeling the shape of the szemholistic representation of the spatial enveldpéerna-
tional Journal of Computer Visigrt2(3):145-175, 2001. (Cited on patg9.)

P. Paatero. Least-squares formulation of robust egative factor analysi€€hemometrics and Intelligent Laboratory
Systems37:23-35, 1997. (Cited on pagésA0and51.)

P. Paatero. A weighted non-negative least squaresiddm for three-way PARAFAC factor analysi€hemometrics
Intelligent Laboratory System88(2):223-242, 1997. (Cited on pagk4€0, 51, 52, 54, 55, 59, 63, 65, 69 and98.)

P. Paatero. The multilinear engine: A table-drivemst squares program for solving multilinear problemduiting

the n-way parallel factor analysis modéburnal of Computational and Graphical Statistié$4):854—-888, December
1999. (Cited on pages 51 and53))

P. Paatero and P. K. Hopke. Rotational tools for faatwalytic modelsJournal of Chemometri¢c23:91-100, 2009.
(Cited on pagd8.,)

P. Paatero, C. Navasca, and P. Hopke. Fast rotatyoealanced alternating-least-squares. Workshop on Tensor
Decompositions and Applications (TDA 2010), SIAM, 2010ité@d on pagel 8)

G. Pfurtscheller and Lopes F. H. da Silva. Event-eeldEEGMEG synchronization and desynchronization: basic
principles.Clin Neurophysigl110:1842-1857, 1997. (Cited on palf2)

G. Pfurtscheller and Lopes F. H. da Silva. EEG evelated desynchronization (ERD) and event-related synchro-
nization (ERS). In E. Niedermeyer and F. L. da Silva, edjtBtectroencephalography: Basic Principles , Clinical
Applications, and Related Fielggolume 5, 2005. (Cited on pad®2)

G. Pfurtscheller and C. Neuper. Motor imagery anddibeain-computer communicatiohEEE, pages 1123-1134,
2001. (Cited on pageks1, 162and167.)

A.-H. Phan. NFEA: Tensor toolbox for feature extraoti and  applications.
http://vwww.bsp.brain.riken. jp/phan/nfea.html, 2011. (Cited on pages 135 161and171)

A.-H. Phan and A. Cichocki. Fast anflieient algorithms for nonnegative Tucker decompositionPfac. of The
Fifth International Symposium on Neural Networks, SpringdCS-5264 pages 772-782, Beijing, China, 24-28,


http://www.bsp.brain.riken.jp/phan/nfea.html

Bibliography 179

September 2008. (Cited on pa2&)

[152] A.-H. Phan and A. Cichocki. Multi-way nonnegative $en factorization using fast hierarchical alternatingstea
squares algorithm (HALS). IRroc. of The 2008 International Symposium on Nonlinear Theaad its Applications
Budapest, Hungary, 2008. (Cited on pad8s39, 82 and97.)

[153] A.-H.Phanand A. Cichocki. Analysis of interactioma@ng hidden components for tucker model AIRRSIPA Annual
Summit and Conferenc2009. (Cited on pagé.)

[154] A.-H.Phanand A. Cichocki. Block decomposition foryéarge-scale nonnegative tensor factorizationrCAMSAR
pages 316-319, 2009. (Cited on p&g)

[155] A.-H. Phan and A. Cichocki. Fast nonnegative tensotdidgzation for very large-scale problems using two-stage
procedure. ICAMSAR pages 297 —300, 2009. (Cited on p&39

[156] A.-H. Phan and A. Cichocki. Local learning rules fornmegative Tucker decomposition. Neural Information
Processingvolume 5863 of_ecture Notes in Computer Scienpgages 538-545. Springer Berlileidelberg, 2009.
(Cited on page20and120)

[157] A.-H. Phan and A. Cichocki. Tensor decompositionsféature extraction and classification of high dimensional
datasetsNonlinear Theory and Its Applications, IEICE:37—68 (invited paper), 2010. (Cited on page$26, 149,
151and161)

[158] A. H. Phan and A. Cichocki. Extended HALS algorithm fmnnegative Tucker decomposition and its applications
for multiway analysis and classificatiohleurocomputing74(11):1956 — 1969, 2011. Selected papers from ICONIP
2009. (Cited on pagezd and120)

[159] A.-H. Phan and A. Cichocki. PARAFAC algorithms forda-scale problemdNeurocomputing74(11):1970 — 1984,
2011. Selected papers from ICONIP 2009. (Cited on pate

[160] A.H.Phanand A. Cichocki. Seeking an appropriatera#téve least squares algorithm for nonnegative tensdorfac
izations.Neural Computing and Applicationpages 1-15, 2011. 10.106@0521-011-0652-0. (Cited on page)

[161] A. H.Phan, A. Cichocki, K. Matsuoka, and J. Cao. Novekarchical ALS algorithm for nonnegative tensor factor-
ization. INICASSR pages 1984-1987, 2011. (Cited on pag@and97.)

[162] A.-H. Phan, A. Cichocki, and K.S. Nguyen. Simple ariiiceent algorithm for distributed compressed sensing. In
Machine Learning for Signal Processingages 61 — 66, Cancun, 2008. (Cited on p2b

[163] A.-H. Phan, A. Cichocki, and Th. Vu-Dinh. Classifiaatiof scenes based on multiway feature extractionAdn
vanced Technologies for Communications (ATC), 2010 lateynal Conference grpages 142-145, 2010. (Cited on
pagel60)

[164] A.-H. Phan, A. Cichocki, and Th. Vu-Dinh. Nonnegati2&DICOM based on tensor decompositions for social
networks explorationAustralian Journal of Intelligent Information ProcessiSystems (ICONIP’10)12(1):10-15,
2010. (Cited on page®and16.)

[165] A.-H. Phan, A. Cichocki, and Th. Vu-Dinh. A tensorigbmoach to single trial recognition for brain computer
interface. InAdvanced Technologies for Communications (ATC), 201@rat@nal Conference grpages 138-141,
2010. (Cited on pag#61)

[166] A. H. Phan, A. Cichocki, R. Zdunek, and T. Vu-Dinh. Nowadternating least squares algorithm for nonnegative
matrix and tensor factorizations. In Kok Wai Wong, B. SumuiitMendis, and Abdesselam Bouzerdoum, editors,
ICONIP (1), volume 6443 of ecture Notes in Computer Scienpages 262—-269. Springer, 2010. (Cited on &g

[167] A.-H. Phan, P. Tichavsky, and A. Cichocki. Low comptgxdamped Gauss-Newton algorithms for parallel factor
analysis.SIAM, SIMAX 2010, (submit). (Cited on pag&s65, 72and97.)

[168] A.-H.Phan, P. Tichavsky, and A. Cichocki. Damped Galgwton algorithm for nonnegative Tucker decomposition.
In Statistical Signal Processing Workshop (SSP), IEfdfes 665 —668, 2011. (Cited on pages3 and97.)

[169] A.-H.Phan, P. Tichavsky, and A. Cichocki. Fast dam@ediss-Newton algorithm for sparse and nonnegative tensor
factorization. INCASSR pages 1988 — 1991, 2011. (Cited on pag2s’3and97.)

[170] C. E. Priebe, J.M. Conroy, D. J. Marchette, and Y. PaBkan statistics on Enron graph€omput. Math. Organ.
Theory 11(3):229-247, 2005. (Cited on pabt@)

[171] M. Rajih, P. Comon, and R. A. Harshman. Enhanced lirecte A novel method to accelerate PARAFASIAM J.
Matrix Anal. Appl, 30(3):1128-1147, 2008. (Cited on paged8, 19, 39, 51, 87 and99.)

[172] W. S. Rayens and B. C. Mitchell. Two-factor degenezacnd a stabilization of PARAFAGChemometrics Intell.
Lab. Syst.38:173-181, 1997. (Cited on pagt)

[173] F. Roemer and M. Haardt. A closed-form solution for tilinear PARAFAC decompositions. IRroc. 5-th IEEE
Sensor Array and Multich. Sig. Proc. Workshop (SAM 20p8pes 487 — 491, July 2008. (Cited on pagg

[174] M. Rojas and T. Steihaug. An interior-point trustiegbased method for large-scale non-negative regutaiza
Inverse Problemsl8:1291-1307, 2002. (Cited on pagf)

[175] J.-P. Royer, P. Comon, and N. T. Moreau. Computing threnegative 3-way tensor factorization using tikhonov



180 Bibliography

regularization. INCASSR pages 2732-2735, 2011. (Cited on pa§¢

[176] J.-P.Royer, P. Comon, and N. T. Moreau. Nonnegatiwa@tensor factorization via conjugate gradient with glgba
optimal stepsize. ICASSR pages 4040-4043, 2011. (Cited on padg

[177] P.Sajda, S.Du, T. Brown, L.C. Parra, and R. StoyanBegovery of constituent spectra in 3D chemical shift imggin
using nonnegative matrix factorization. Pmoc. of 4th International Symposium on Independent CompioAnalysis
and Blind Signal Separatiompages 71-76, Nara, Japan, April 2003. (Cited on fgage

[178] F. Samaria and A.C. Harter. Parameterisation of ehststecc model for human face identification. Pmoceedings of
the Second IEEE Workshop on Applications of Computer Vidig@®4. (Cited on pagé&24.)

[179] S. Sanei, A. H. Phan, J-L. Lo, V. Abolghasemi, and A.Hoicki. A compressive sensing approach for progressive
transmission of images. Migital Signal Processing, 200pages 1-5, 2009. (Cited on pa2k)

[180] B. Savas and L. Eldén. Handwritten digit classificatising higher order singular value decompositidtattern
Recogn.40(3):993-1003, 2007. (Cited on pagfe)

[181] F. Sha, Y. Lin, L. K. Saul, and D. D. Lee. Multiplicativgpdates for nonnegative quadratic programmihtgural
Computation19, 2007. (Cited on pagt0.)

[182] F. Sha, L. K. Saul, and D. D. Lee. Multiplicative updafer nonnegative quadratic programming in support vector
machines. Inn Advances in Neural Information Processing Systempages 1041-1048. MIT Press, 2002. (Cited
on page40.)

[183] A. Shashua and T. Hazan. Non-negative tensor faetiioiz with applications to statistics and computer visitm.
Proc. of the 22-th International Conference on Machine In&ag, Bonn, Germany, 2005. (Cited on paf@)

[184] A. Shashua, R. Zass, and T. Hazan. Multi-way clusteuising super-symmetric non-negative tensor factorinatio
European Conference on Computer Vision (ECA¥pz, Austria, May 2006. (Cited on pagg

[185] J. R. Shewchuk. An introduction to the conjugate geatlimethod without the agonizing pain. Technical report,
Pittsburgh, PA, USA, 1994. (Cited on pabe)

[186] N. Sidiropoulos, G. Giannakis, and R. Bro. Blind PARX-receivers for DS-CDMA systemdEEE Transactions
on Signal Processingt8(3):810-823, 2000. (Cited on pade88, 127and128)

[187] N.D. Sidiropoulos and R. Bro. PARAFAC techniques fignal separation. In P. Stoica, G. Giannakis, Y. Hua, and
L. Tong, editorsSignal Processing Advances in Communicatjasedume 2, chapter 4. Prentice-Hall, Upper Saddle
River, NJ, USA, 2000. (Cited on pag6sl7 and18.)

[188] A. Smilde, R. Bro, and P. GeladMulti-way Analysis: Applications in the Chemical Sciencdshn Wiley & Sons
Ltd, New York, 2004. (Cited on pagésand17.)

[189] H.W. SorensonParameter estimation: principles and problenvarcel Dekker, NY, USA, 1980. (Cited on pagé.)

[190] J. Sun.Incremental Pattern Discovery on Streams, Graphs and Ten&hD thesis, CMU-CS-07-149, 2007. (Cited
on pagers.)

[191] J. Sun, D. Tao, and C. Faloutsos. Beyond streams amhgralynamic tensor analysis. Rroc.of the 12th ACM
SIGKDD International Conference on Knowledge Discoverg &ata Mining pages 374-383, 2006. (Cited on
page75.)

[192] J. Sun, D. Tao, S. Papadimitriou, P. S. Yu, and C. Fatmit Incremental tensor analysis: Theory and applications
TKDD, 2(3), 2008. (Cited on pagE35.)

[193] Y. Takane and H.A.L. Kiers. Latent class DEDICOMournal of Classification14:225-247, 1997. (Cited on
pagels.)

[194] C. Tallon-Baudry, O. Bertrand, C. Delpuech, and Jnier Stimulus specificity of phase-locked and non-phase-
locked 40 Hz visual responses in humdournal of Neurosciencel 6 (13):4240-4249, 1996. (Cited on pdd2)

[195] D.Tao, X. Li, X. Wu, and S. J. Maybank. General tensscdminant analysis and Gabor features for gait recognitio
IEEE Trans. Pattern Anal. Mach. IntelR9(10):1700-1715, 2007. (Cited on pddfb.)

[196] P. Tichavsky and Z. Koldovsky. Simultaneous searctafomodes in multilinear models. pages 4114 — 4117. Proc.
IEEE International Conference on Acoustics, Speech, agdabProcessing (ICASSP10), 2010. (Cited on pagjes
51,52and61.)

[197] P. Tichavsky and Z. Koldovsky. Stability of CANDECOMPARAFAC tensor decomposition. IMCASSP pages
4164-4167, 2011. (Cited on pag&band100.)

[198] P. Tichavsky and Z. Koldovsky. Weight adjusted tensmthod for blind separation of underdetermined mixtures
of nonstationary sourceslEEE Transactions on Signal Processjrp(3):1037-1047, 2011. (Cited on pads
and100)

[199] G. Tomasi. INDAFAC and PARAFAC3Whttp://www.models.kvl/dk/source/indafac/index.asp, 2003.
(Cited on pag®8.)

[200] G. Tomasi.Practical and Computational Aspects in Chemometric Datalysis PhD thesis, Frederiksberg, Den-
mark, 2006. (Cited on pagds, 19, 39, 51, 52, 53, 54, 55, 59, 63, 98 and99.)


http://www.models.kvl/dk/source/indafac/index.asp

Bibliography 181

[201]
[202]
[203]
[204]

[205]

[206]
[207]
[208]
[209]
[210]

[211]

[212]
[213]
[214]
[215]
[216]
[217]

[218]

G. Tomasi. Recent developments in fast algorithmdifting the PARAFAC model. Greece, 2006. TRICAP. (Cited
on page$2and98.)

G. Tomasi and R. Bro. PARAFAC and missing valuekemometrics Intelligent Laboratory Systeir{s(2):163—180,
2005. (Cited on paged 51, 54and63.)

G. Tomasi and R. Bro. A comparison of algorithms foiirfiitthe PARAFAC model.Computational Statistics and
Data Analysis50(7):1700-1734, April 2006. (Cited on page$1, 60, 76 and98.)

G. Tomasi and R. BraComprehensive Chemometrichapter Multilinear Models: Iterative Methods, pages-431.
Number 22. Elsevier, Oxford, 2009. (Cited on pdde)

L.R. Tucker. The extension of factor analysis to thdgaensional matrices. In H. Gulliksen and N. Frederiksen,
editors,Contributions to Mathematical Psycholggyages 110-127. Holt, Rinehart and Winston, New York, 1964.
(Cited on pagd.36)

L.R. Tucker. Some mathematical notes on three-mocterfanalysis.Psychometrika31:279-311, 1966. (Cited on
pagess, 14and136)

L. van der Maaten and G. Hinton. Visualizing data ush®\E. Journal of Machine Learning Researc®:2579—
2605, November 2008. (Cited on pa@sand155)

P. M. Kroonenberg W. J. Heiser. Dimensionwise fittingdlARAFAC-CANDECOMP with missing data and con-
strained parameters. Technical Report PRM 97-01, LeidgoH@ogical Reports, 1997. (Cited on pate)

H. Wang, S. Yan, D. Xu, X. Tang, , and T. Huang. Traceoras. ratio trace for dimensionality reduction. IBEE
Conference on Computer Vision and Pattern Recognition R®YA 2007. (Cited on pages45and153)

J.H. Wang, P.K. Hopke, T.M. Hancewicz, and S.-L. ZhaAgplication of modified alternating least squares regres-
sion to spectroscopic image analysigalytica Chimica Actad76:93—-109, 2003. (Cited on pagésl8 and39.)

Y. Washizawa, H. Higashi, T. Rutkowski, T. Tanaka, @dCichocki. Tensor based simultaneous feature extraction
and sample weighting for EEG classification. Rroceedings of the 17th international conference on Neinfalr-
mation processing: models and applications - Volume PatGONIP’10, pages 26—33, Berlin, Heidelberg, 2010.
Springer-Verlag. (Cited on padé9.)

Stefan M. Wild, James H. Curry, and Anne Dougherty. loving non-negative matrix factorizations through struc-
tured initialization.Pattern Recognition37(11):2217-2232, November 2004. (Cited on pagé¢

Sh. Yan, D. Xu, Q. Yang, L. Zhang, X. Tang, and H.-J. ZpaBiscriminant analysis with tensor representation. In
Proc. IEEE Conf. Comput. Vision Pattern Recogrpages 526-532, 2005. (Cited on pdga)

Y. Yu and A. P. Petropulu. PARAFAC-based blind estiimatof possibly underdetermined convolutive MIMO sys-
tems.|EEE Trans. on Signal Processing6:111-124, 2007. (Cited on pades$38, 130and131)

R. Zdunek and A. Cichocki. Nonnegative matrix factation with constrained second-order optimizati@ignal
Processing87:1904-1916, 2007. (Cited on paged8and39.)

R. Zdunek and A. Cichocki. Nonnegative matrix factation with quadratic programmingleurocomputing71(10—
12):2309-2320, 2008. (Cited on pag@)

R. Zdunek, A.-H. Phan, and A. Cichocki. Damped Newterdtions for nonnegative matrix factorizatiokustralian
Journal of Intelligent Information Processing SystemsQNIP’10), 12(1):16—-22, 2010. (Cited on pad8.)

W. Zhang, Zh. Lin, and X. Tang. Tensor linear Laplac@iscrimination (TLLD) for feature extractionPattern
Recognition42(9):1941 — 1948, 2009. (Cited on pat3)



	List of Symbols and Abbreviations
	Introduction
	Problem Formulation
	Tensor Notations and Multilinear Algebra Basics
	Canonical Polyadic Decomposition
	Basic Statistics for a Synthetic Tensor

	Tucker Decomposition
	Decomposition into Directional Components

	Alternating Least Squares Algorithm and Its Variations
	ALS Algorithms for CP and NTF
	Line Search Techniques for ALS Algorithm
	Hierarchical ALS Algorithm Using Squared Euclidean Distances
	HALS Algorithm with Constraints for NTF
	Sparseness Constraints
	Orthogonality Constraints
	Smoothness Constraints

	Flexible HALS Using Alpha Divergence
	Flexible HALS Using Beta Divergence
	ALS Algorithm for Tucker Decomposition
	Hierarchical ALS Algorithm for Tucker Decomposition
	Learning Rule for Factors A(n)
	Update Rules for the Core Tensor
	Regularization for HALS NTD Algorithm

	HALS Algorithm for Large-Scale Data
	Speeding up HALS with Inner Loop 
	Summary

	Appendix: Derivation of Learning Rule for A(n)
	Appendix: Derivation of Learning Rule for Core Tensor G
	Appropriate ALS Algorithms for NTF and NTD
	Recursive Update Rules for Nonnegative Quadratic Programming
	Novel Alternative Least Square Algorithm for NTF
	QALS Algorithm for NTF
	Algorithm for Low Memory Machine and Parallel Computing
	Complexity of QALS Algorithms
	Simplified Algorithm for NMF

	QALS Algorithm for NTD
	Regularization for QALS Algorithms
	Rank-K Update QALS Algorithms
	Summary

	All-at-Once Algorithms for Tensor Decompositions
	All-at-Once Algorithms for CP
	Damped Gauss-Newton Algorithm
	Low-Rank Adjustment for Approximate Hessian
	Fast Inverse of the Approximate Hessian H
	Fast dGN Algorithm
	Damping Parameter in LM Algorithm

	Damped Gauss-Newton Algorithm for NTF
	Fast Computation of the Gradient g
	Construction and Inverse of Approximate Hessian H
	Selection of Barrier and Sparse Parameters

	Complex-valued Tensor Factorization
	Damped Gauss-Newton Algorithm for Tucker Decomposition
	Fast Computation of the Gradient
	Construction of Approximate Hessian H

	Summary

	Appendix: Permutation Matrix
	Appendix: Commutation matrix Pn
	Appendix: Inverse of the Kernel Matrix K
	Large-Scale Tensor Factorization
	Introduction and Problem Statement
	Dynamic Tensor Factorization
	Approach 1: By Directly Minimizing a Cost Function
	Approach 2: By Modifying the ALS Learning Rule
	Approach 3: By Concatenating Sub-factors

	Grid CP
	ALS Algorithm for Grid CP
	Optimized ALS Learning Rules

	Grid CP with Nonnegative Constraints
	ALS Algorithm for Grid NTF
	Multiplicative Algorithm for Grid NTF
	Hierarchical ALS Algorithm for Grid NTF

	Stopping Criterion
	Communication Cost and Practical Considerations
	Communication Cost
	Multistage Reconstruction for Grid Decomposition

	Grid CP for Complex Tensors
	Experiments
	Grid Decomposition with Different Grid Size
	Synthetic Benchmark
	Graz EEG Dataset for BCI
	Visual and Auditory EEG Signals
	Classification of Handwritten Digits

	Summary

	Simulations and Results
	Simulations for CP
	Mean Squares Angular Errors and Cramér-Rao Induced Bound
	Factorization of Real-Valued Highly Collinear Tensors
	Structured Factors
	Factorization of Complex-valued Tensors

	Simulations for NTF
	Random Data
	Structured Factors
	Analysis of Number of Recursive Iterations in QALS Algorithms

	Simulations for NTD
	Applications
	Analysis, Clustering and Classification of EEG Dataset
	Clustering of the ORL Face Database
	BSS in DS-CMDA Systems
	Estimation of System MIMO Responses Using the Fourth-Order Statistics

	Summary

	Appendix: Effects of Noise on Collinear Data
	Applications for Feature Extraction and Classification
	Introduction - Problem Formulation
	Feature Extraction for 2-D Samples
	General Model for High Dimensional Classification
	Estimation of Bases and Corresponding Features
	Orthogonal Interactive Bases
	Nonnegative Interactive Bases

	Discriminant Analysis Approach for Multi-way Features
	Discriminant Analysis of Features
	High Order Discriminant Analysis using Orthogonal Tucker Decomposition
	Discriminant Analysis for NTD

	Feature Ranking and Selection
	Feature Extraction
	Image Classification - Dataset COIL20
	Classification of Handwritten Digits
	Scenes Classification
	BCI Motor Imagery Classification
	Single Trial Recognition
	Crossvalidation for ABSP BCI Dataset
	Crossvalidation for BCI III Motor Imagery Dataset (Dataset IVb)

	Summary

	Conclusions
	Bibliography



