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ROUGH NON-DETERMINISTIC INFORMATION ANALYSIS

AND ITS SOFTWARE TOOL: AN OVERVIEW*
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Abstract

Rough Non-deterministic Information Analysis (RNIA) is a rough sets-based framework for handling

tables with exact and inexact data. Under this framework, we investigated possible equivalence

relations, data dependencies, rule generation, rule stability, question-answering systems, as well as missing

and interval values as special cases of non-deterministic values. In this paper, we briefly survey RNIA,

and report the state of its underlying software implementation.

1. Introduction

Rough set theory o¤ers a mathematical approach to vagueness and uncertainty, and

the rough sets-based concepts have been recognized to be very useful [19, 28, 34–38,

40, 41, 70, 74]. This theory usually handles tables with deterministic information, which

we call Deterministic Information Systems (DISs). Many applications of this theory to

classification analysis [3, 23, 42, 63, 72], data mining [11, 26], reduction [8, 18, 20, 65],

rule generation [4, 12, 14, 64, 66, 71], machine learning [6] and incomplete and non-

deterministic information systems [9, 15, 21, 22, 24, 25, 27, 29–33, 68, 69] have been

investigated.

Non-deterministic Information Systems (NISs) and Incomplete Information Systems

(IISs) have been proposed for handling information incompleteness in DISs [24, 25,

32, 33]. NISs have been recognized to be the most important framework for handling

information incompleteness in tables, and several theoretical works have been reported

[9, 15, 21, 22, 24, 25, 27, 29–33, 68, 69]. We follow this robust framework, and we

have been developing algorithms and a software tool, which can handle rough sets-based

concepts in NISs. We are simply calling this work Rough Non-deterministic Information

Analysis (RNIA) [43–62].

RNIA is a framework for discrete data analysis, which will take the complementary

role in statistical data analysis. In RNIA, there is no concept of mean nor variance,

but there exists the concept of consistency. In statistical analysis, we may obtain a

regression line from data sets, and the role of an association rule in RNIA corresponds
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to a regression line. We know the tendency and the property of each data set by using

regression lines and association rules. RNIA is a new attempt to analyze data sets in

addition to statistical data analysis.

In this paper, we survey our previous work, and show our implemented software

tool on RNIA. This paper is organized as follows: Section 2 recalls the foundations of

rough sets in DISs. Section 3 and 4 introduce the frame work of RNIA, and survey

several extended concepts from DISs to NISs. In Section 5, we describe our imple-

mented software tool. Section 6 concludes this survey.

2. Foundations of rough sets in DISs

This section recalls the foundations of rough sets in DISs.

2.1. Some definitions and concepts in DISs

A Deterministic Information System (DIS) c is a quadruplet [35, 37]

c ¼ ðOB;AT ; fVALA jA A ATg; f Þ;

where OB is a finite set whose elements are called objects, AT is a finite set whose

elements are called attributes, VALA is a finite set whose elements are called attribute

values and f is such a mapping:

f : OB� AT ! 6
A AAT VALA:

We usually consider a table instead of this quadruplet c. A DIS c1 in Table 1 is an

exemplary deterministic information system. We employ it for showing each concept.

In each c and a subset ATRJAT , we employ a notation ATR ¼ fA1; . . . ;Ang.
Each index i at Ai is the tentative ordinal number in a set ATR, and is not the

ordinal number in the original data set. For a set of attributes ATR and an object x,

ð f ðx;A1Þ; . . . ; f ðx;AnÞÞ is a tuple of x.

Table 1. An exemplary DIS c1 for the suitcase data set. Here, VALColor ¼ fred; blue; greeng, VALSize ¼
fsmall;medium; largeg, VALWeight ¼ flight; heavyg, VALPrice ¼ fhigh; lowg.

Object Color Size Weight Price

x1 red small light low

x2 red medium light high

x3 blue medium light high

x4 red medium heavy low

x5 red large heavy high

x6 blue large heavy high
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If f ðx;AiÞ ¼ f ðy;AiÞ holds for every Ai A ATRJAT , we see there is a relation

between x and y for ATR. This relation is an equivalence relation over OB [37]. Let

eqðATRÞ denote a set of the equivalence classes with respect to ATR, and let ½x�ATR A
eqðATRÞ denote an equivalence class below:

½x�ATR ¼ fy A OB j f ðy;AiÞ ¼ f ðx;AiÞ for every Ai A ATRg:

In rough sets, we e¤ectively employ equivalence classes.

According to c1, let us consider four cases (A), (B), (C) and (D) of ATR.

(A) For ATR ¼ fSize;Weightg, a tuple of x1 is ðsmall; lightÞ. eqðfSize;WeightgÞ ¼
ffx1g; fx2; x3g; fx4g; fx5; x6gg, ½x1�fSize;Weightg ¼ fx1g, ½x2�fSize;Weightg ¼ fx2; x3g.

(B) For ATR ¼ fColor;Size;Weightg, a tuple of x1 is ðred; small; lightÞ, eqðfColor;
Size;WeightgÞ ¼ ffx1g; fx2g; fx3g; fx4g; fx5g; fx6gg, ½xi�fColor;Size;Weightg ¼ fxig (i ¼
1; 2; . . . ; 6).

(C) For ATR ¼ fWeightg, a tuple of x1 is ðlightÞ, eqðfWeightgÞ ¼ ffx1; x2; x3g;
fx4; x5; x6gg, ½x1�fWeightg ¼ fx1; x2; x3g.

(D) For ATR ¼ fPriceg, a tuple of x1 is ðlowÞ, eqðfPricegÞ ¼ ffx1; x4g; fx2; x3;
x5; x6gg, ½x1�fPriceg ¼ fx1; x4g.
Now, let us sequentially consider five rough sets-based concepts by using the above

four cases (A), (B), (C) and (D).

(Concept 1) The Definability of a Set in a DIS c: If a set X JOB is the union of some

equivalence classes in eqðATRÞ, we say X is definable (for ATR) in c. Otherwise, we

say X is rough (for ATR) in c.

In case (B), any set X JOB is definable for ATR ¼ fColor;Size;Weightg, because
X ¼ 6

x AX ½x�fColor;Size;Weightg holds. However, X ¼ fx1; x2g is not definable for ATR ¼
fSize;Weightg in case (A). Both in cases neither (C) nor (D), X ¼ fx1; x2g is not

definable.

(Concept 2) The Consistency of an Object: Let us consider two disjoint sets CONJAT

which we call condition attributes and DECJAT which we call decision attributes.

An object x A OB is consistent, if f ðx;AÞ ¼ f ðy;AÞ holds for every A A CON implies

f ðx;AÞ ¼ f ðy;AÞ holds for every A A DEC.

Let CON be fWeightg and DEC be fPriceg. Then, ½x1�fWeightg ¼ fx1; x2; x3g holds,

but f ðx1;PriceÞ0 f ðx3;PriceÞ holds. Thus, object x1 is not consistent. Similarly, all 6

objects are not consistent.

Rough set theory makes use of equivalence classes for solving problems. Here, let

us show the most important proposition, which connects two equivalence classes ½x�CON

and ½x�DEC with the consistency of an object x.

Proposition 1 [37]. For each DIS, (1) and (2) in the following are equivalent.

(1) An object x A OB is consistent for CON and DEC.

(2) ½x�CON J ½x�DEC.
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(Concept 3) The Degree of Dependency: The degree of dependency for CON and DEC

is a ratio,

degðCON;DECÞ ¼ jfx A OB j x is consistent for CON and DECgj=jOBj:

Clearly, degðCON;DECÞ ¼ 1:0 holds if and only if every object x A OB is consistent.

For CON ¼ fWeightg and DEC ¼ fPriceg in c1, any object is not consistent. There-

fore,

degðfWeightg; fPricegÞ ¼ 0=6 ¼ 0:0:

For CON ¼ fColor;Size;Weightg and DEC ¼ fPriceg in c1, any object is consistent.

Therefore,

degðfColor;Size;Weightg; fPricegÞ ¼ 6=6 ¼ 1:0:

(Concept 4) Reduction of Condition Attributes: Let us consider a consistent object x for

CON and DEC. An attribute A A CON is dispensable in CON, if x is also consistent

for CONnfAg.
Object x1 is consistent for CON ¼ fColor;Size;Weightg and DEC ¼ fPriceg.

However, x1 is also consistent for CON ¼ fSizeg. Namely, both Color and Weight are

dispensable for x1.

(Concept 5) Rules and Criteria (Support and Accuracy): For any object x A OB, let tx

denote a formula called an implication related to CON and DEC.

tx : 5
A ACON

½A; f ðx;AÞ� ) 5
A ADEC

½A; f ðx;AÞ�;

where a formula ½A; f ðx;AÞ� implies that f ðx;AÞ is the value of the attribute A. This

is called a descriptor [19, 24, 35, 63]. In most of work on rule generation, a rule is

defined by an implication tx satisfying some constraints. A constraint, such that

degðCON;DECÞ ¼ 1:0 holds for CON and DEC, has been proposed in [35–37].

In c1, we know the following implication is a rule,

½Size; small �5½Weight; light� ) ½Price; low�;

because degðfSize;Weightg; fPricegÞ ¼ 1:0. Furthermore, we apply the reduction to

this implication, and have the following minimal rule from object x1,

½Size; small � ) ½Price; low�:

Another familiar constraint [1, 12, 15, 36–38, 70, 74] is defined by two values in the

following:

supportðtxÞ ¼ j½x�CON V ½x�DEC j=jOBj;

accuracyðtxÞ ¼ j½x�CON V ½x�DEC j=j½x�CON j:
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Since ½x�CON , ½x�DEC and ½x�CON V ½x�DEC are also equivalence classes for attributes

CON, DEC and CON UDEC, the following holds.

supportðtyÞ ¼ supportðtxÞ; accuracyðtyÞ ¼ accuracyðtxÞ

for any y A ½x�CON V ½x�DEC :

Therefore, we may handle t instead of tx in each c. However in NISs, this property is

not assured. Here, we clarify two standard rule generation tasks.

Definition 1 (Specification of rule generation tasks in a DIS). For threshold

values a and b ð0 < a; ba 1Þ, find each implication t satisfying supportðtÞb a and

accuracyðtÞb b. We say this is criterion-based rule generation in a DIS. Especially,

if b ¼ 1:0, we say this is consistency-based rule generation in a DIS.

The Apriori algorithm [1, 2] proposed to search for such criterion-based rules by

Agrawal is now one of the most representative methods in data mining [5]. As for

the consistency-based rule generation, a discernibility function method [63] by Skowron

is known well.

3. Foundations of rough non-deterministic information analysis

This section surveys a framework of RNIA (Rough Non-deterministic Information

Analysis) and possible equivalence relations in NISs.

3.1. Some definitions and concepts in NISs

A Non-deterministic Information System (NIS) F is also a quadruplet [32, 36,

37]

F ¼ ðOB;AT ; fVALA jA A ATg; gÞ;

g : OB� AT ! P
�
6

A AAT VALA

�
ða power set of 6

A AAT VALAÞ:

Fig. 1. A pair (support, accuracy) corresponding to the implication t.
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Every set gðx;AÞ is interpreted as that there is an actual value in this set but this value is

not known [32, 36, 37]. Especially if the real value is not known at all, gðx;AÞ is equal
to VALA. This is called the null value interpretation [7] or missing value [15, 22, 68].

We usually consider a table instead of this quadruplet F. Let us consider an exemplary

NIS F1 in Table 2.

In F1, gðx1;ColorÞ ¼ VALColor holds, and this means there is no information about

this attribute value, namely we identify F1 with Table 3.

In the previous work, non-deterministic information seems to be identified with

a null value. However, each gðx3;ColorÞ, gðx6;ColorÞ, gðx2;SizeÞ and gðx3;SizeÞ is

di¤erent from neither a null value nor a missing value. We have clarified the property

of non-deterministic information, and we are proposing a new framework [51, 52].

3.2. A basic chart and two modalities

Now, we introduce a derived DIS from a NIS, and show the basic chart in

RNIA. Since each VALA (A A AT) is finite, we can generate a DIS by replacing each

non-deterministic information gðx;AÞ with an element in gðx;AÞ. We named such a

DIS a derived DIS from a NIS, and define the following:

DDðFÞ ¼ fc jc is a derived DIS from a NIS Fg:

Table 2. An exemplary NIS F1 for the suitcase data set. Here, VALColor ¼ fred; blue; greeng, VALSize ¼
fsmall;medium; largeg, VALWeight ¼ flight; heavyg, VALPrice ¼ fhigh; lowg.

Object Color Size Weight Price

x1 fred; blue; greeng fsmallg flight; heavyg flowg
x2 fredg fsmall;mediumg flight; heavyg fhighg
x3 fred; blueg fsmall;mediumg flightg fhighg
x4 fredg fmediumg fheavyg flow; highg
x5 fredg fsmall;medium; largeg fheavyg fhighg
x6 fblue; greeng flargeg fheavyg flow; highg

Table 3. A table with non-deterministic information and null values. The � symbol means a null value, and

we identify � with a set of attribute value.

Object Color Size Weight Price

x1 � small � low

x2 red fsmall;mediumg � high

x3 fred; blueg fsmall;mediumg light high

x4 red medium heavy �
x5 red � heavy high

x6 fblue; greeng large heavy �
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In F1, there are 2304 (¼ 32 � 28) derived DISs, and c1 A DDðF1Þ holds. Due to the

interpretation of non-deterministic information, we see an actual cactual exists in these

2304 derived DISs. Like this, we always consider the basic chart and the following two

modalities.

(Certainty) If a formula a holds in every c A DDðFÞ, a also holds in cactual . In this

case, we say a certainly holds in cactual .

(Possibility) If a formula a holds in some c A DDðFÞ, there exists such a possibility

that a holds in cactual . In this case, we say a possibly holds in cactual .

Even if there exists the information incompleteness in F, we can have the following

decision making.

(1) If a formula a certainly holds, we think a holds under the uncertainty.

(2) If a formula a possibly holds, we think a may hold under the uncertainty.

(3) Otherwise, we think a does not hold under the uncertainty.

In RNIA, we follow the rough sets-based concepts in DISs, and reconsider the

certainty and the possibility of rough sets-based concepts in NISs.

3.3. Possible equivalence classes in NISs

For a NIS, we call an equivalence relation in a derived DIS a possible equivalence

relation (pe-relation) in a NIS. A pe-relation defines a set peqðATRÞ of all possible

equivalence classes (pe-class) in a NIS. For example in Fig. 2, we obtain

peqðfColor;SizegÞ ¼ ff1; 2; 3gg in DIS4;

peqðfColor;SizegÞ ¼ ff1g; f2g; f3gg in DIS24:

Fig. 2. An example of the basic chart for F2 and a set DDðF2Þ of 24 derived DISs.
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Both classes f1; 2; 3g and f1g are pe-classes with object 1. It is necessary to char-

acterize each pe-class for handling rough sets-based concepts in Section 2. We first

define two sets inf and sup for each descriptor, which is given in (Concept 5).

Definition 2. For a NIS with a function g : OB� AT ! Pð6
A AAT VALAÞ and a

set of descriptors ½Ai; zi� ðAi A ATRJATÞ, we define two sets inf and sup.

(1) For a descriptor ½Ai; zi�,

inf ð½Ai; zi�Þ ¼ fx A OB j gðx;AiÞ ¼ fzigg;

supð½Ai; zi�Þ ¼ fx A OB j zi A gðx;AiÞg:

(2) For a compound descriptor ½ATR; zATR� ð¼ ½fA1; . . . ;Ang; ðz1; . . . ; znÞ�Þ,

inf ð½ATR; zATR�Þ ¼ fx A OB j gðx;AiÞ ¼ fzig for each ig;

supð½ATR; zATR�Þ ¼ fx A OB j zi A gðx;AiÞ for each ig:

We can directly obtain the next proposition from Definition 2.

Proposition 2 [46, 51]. For descriptors ½Ai; zi� ðAi A ATRJATÞ, ATR ¼
fA1; . . . ;AngJAT and a tuple zATR ¼ ðz1; . . . ; znÞ, we obtain the following:

inf ð½ATR; zATR�Þ ¼ 7
i
inf ð½Ai; zi�Þ;

supð½ATR; zATR�Þ ¼ 7
i
supð½Ai; zi�Þ:

According to Proposition 2, we can easily calculate two sets inf and sup for each

compound descriptor ½ATR; zATR�. For example in Fig. 2, the following holds:

inf ð½Color; red�Þ ¼ f1g; supð½Color; red�Þ ¼ f1; 2; 3g;

inf ð½Size;m�Þ ¼ f3g; supð½Size;m�Þ ¼ f1; 2; 3g;

inf ð½fColor;Sizeg; ðred;mÞ�Þ ¼ f1gV f3g ¼ q;

supð½fColor;Sizeg; ðred;mÞ�Þ ¼ f1; 2; 3gV f1; 2; 3g ¼ f1; 2; 3g:

These inf and sup in Definition 2 and Proposition 2 are key information for RNIA.

The set sup is semantically equal to a set defined by the similarity relation SIM

[21, 22]. In [21, 22], some theorems are presented based on the relation SIM, and our

theoretical results are closely related to those theorems. However, the set sup causes

new properties, which hold just in NISs.

Now, let us consider a relation between each pe-class and each compound

descriptor ½ATR; zATR� (¼ ½fA1; . . . ;Ang; ðz1; . . . ; znÞ�Þ.

Definition 3. For a NIS, a compound descriptor ½ATR; zATR� and a derived DIS c,

let pec½ATR; zATR�;c denote a pe-class defined by ½ATR; zATR� and c.
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In Fig. 2, pec½Color; red �;DIS1
¼ f1; 2; 3g and pec½Size; s�;DIS1

¼ f1; 2g hold. If we see a

DIS c is a NIS with only singleton sets,

pec½ATR; zATR�;c ¼ inf ð½ATR; zATR�Þ ¼ supð½ATR; zATR�Þ

holds. However in every NIS, pec½ATR; zATR�;c depends upon a derived DIS c, and

generally

inf ð½ATR; zATR�ÞJ pec½ATR; zATR�;c J supð½ATR; zATR�Þ

holds. Proposition 3 connects a pe-class pec½ATR; zATR�;c with inf ð½ATR; zATR�Þ and

supð½ATR; zATR�Þ.

Proposition 3 [51, 54]. The conditions (1) and (2) in the following are equivalent.

(1) X is a pe-class pec½ATR; zATR�;c.

(2) inf ð½ATR; zATR�ÞJX J supð½ATR; zATR�Þ.
Namely, we can express any pe-class X by

X ¼ inf ð½ATR; zATR�ÞUM;

ðMJ supð½ATR; zATR�Þninf ð½ATR; zATR�ÞÞ:

3.4. Computational complexity in NISs

Here, we must pay attention to the computational complexity related to a NIS.

For a NIS F, the number of derived DISs increases in the exponential order. Therefore,

it will be hard to apply the explicit method such that we sequentially examine each

concept in c A DDðFÞ.
In each concept, we do not employ this explicit method. In the subsequent

sections, we show methods depending upon equivalence classes. Especially in rule

generation, we had an algorithm which does not depend upon jDDðFÞj at all.

4. Extended concepts from DISs to NISs

Now, we sequentially consider rough sets-based concepts in NISs.

4.1. The definability of a set in NISs

We can extend (Concept 1) in Section 2 to the concept of a NIS as follows:

(Certainly definable) A set X is certainly definable, if X is definable in each c A DDðFÞ.

(Possibly definable) A set X is possibly definable, if X is definable in some c A DDðFÞ.
Let PTðx;ATRÞ be a set of tuples for an object x and ATRJAT . For

example,
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PTð1; fColorgÞ ¼ fðredÞ; ðgreenÞg;

PTð2; fColor;SizegÞ ¼ fðred; sÞ; ðred;mÞg:

Here, X ¼ 6
x AXfxg and x A ½x�AT ¼ pec½AT ; zAT �;c (zAT A PTðx;ATÞ) hold according to

Proposition 3, therefore we clearly conclude X J6
x AX ½x�AT . On the other hand, if

each x and each zAT A PTðx;ATÞ satisfies supð½AT ; zAT �ÞJX , we conclude ½x�AT JX

in every c A DDðFÞ, because

½x�AT J supð½AT ; zAT �ÞJX :

In this case, we have the following:

6
x AX ½x�AT J6

x AX X ¼ X :

Therefore, we conclude X ¼ 6
x AX ½X �AT in every c A DDðFÞ. This means X is

certainly definable. As for the possibility, we employ inf ð½AT ; zAT ;x�Þ instead of

supð½AT ; zAT �Þ, and we have Proposition 4.

Proposition 4 [51].

(1) X is certainly definable for ATRJAT, if and only if supð½ATR; zATR�ÞJX for each

x A X and each zATR A PTðx;ATÞ.
(2) X is possibly definable for ATRJAT, if and only if inf ð½ATR; zATR�ÞJX for each

x A X and a tuple zATR A PTðx;ATÞ.

4.2. The consistency of an object in NISs

We can extend (Concept 2) in Section 2 to the concept of a NIS. Let CON be a

set of condition attributes and DEC be a set of decision attributes.

(Certainly consistent) An object x is certainly consistent in a NIS, if x is consistent for

CON and DEC in each c A DDðFÞ.

(Possibly consistent) An object x is possibly consistent in a NIS, if x is consistent for

CON and DEC in some c A DDðFÞ.
We can also characterize the above modalities by using inf and sup. This is an

extension of Proposition 1 in DISs to NISs.

Proposition 5 [51]. Let us suppose an object x and its tuples PTðx;CONÞ,
PTðx;DECÞ.
(1) An object x is certainly consistent, if and only if supð½CON; zCON �ÞJ inf ð½DEC; hDEC �Þ

holds for each zCON A PTðx;CONÞ and each hDEC A PTðx;DECÞ.
(2) An object x is possibly consistent, if and only if inf ð½CON; zCON �ÞJ supð½DEC; hDEC �Þ

holds for some zCON A PTðx;CONÞ and some hDEC A PTðx;DECÞ.
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4.3. Data dependency in NISs

As for the data dependency, we can extend (Concept 3) in Section 2 to the minimum

data dependency and the maximum data dependency in a NIS.

Definition 4. In a NIS, let us consider a set of condition attributes CON and a set

of decision attributes DEC. For any derived DIS c, let degðCON;DEC;cÞ denote the

data dependency degðCON;DECÞ in c.

(1) Let Min_degðCON;DECÞ be MincfdegðCON;DEC;cÞg, and we call it the min-

imum degree of data dependency for CON and DEC.

(2) Let Max_degðCON;DECÞ be MaxcfdegðCON;DEC;cÞg, and we call it the max-

imum degree of data dependency for CON and DEC.

4.4. The minimum and the maximum of criterion values in NISs

At (Concept 5) in Section 2, we have shown criteria supportðtxÞ and accuracyðtxÞ in
DISs. This txð¼ 5

A ACON
½A; f ðx;AÞ� ) 5

A ADEC
½A; f ðx;AÞ�) is an implication from an

object x. In a NIS F, we usually consider DDðFÞ and each c A DDðFÞ. Here, the

tuple of an object x in c 0 and the tuple of an object x in c 00 may be di¤erent. Namely,

tx in c 0 may not exist in c 00. For example in Fig. 2, t1 : ½Color; red� ) ½Size; s� in DIS1

does not exist in DIS4. If tx does not exist in c, we define supportðtxÞ ¼ 0:0 and

accuracyðtxÞ ¼ 0:0 in c. We also define

DDðtxÞ ¼ fc A DDðFÞ j supportðtxÞ > 0g:

Furthermore, if DDðtxÞ ¼ DDðFÞ, we say tx is definite. Otherwise, we say tx is

indefinite. In Fig. 2, there is no definite tx, and each tx is indefinite.

Definition 5. For a NIS F, each c A DDðFÞ and an implication tx, let

supportðtx;cÞ and accuracyðtx;cÞ be the support and accuracy values in c. We give

the following definition.

minsuppðtxÞ ¼ Minc ADDðtxÞfsupportðtx;cÞg;

maxsuppðtxÞ ¼ Maxc ADDðtxÞfsupportðtx;cÞg;

minaccðtxÞ ¼ Minc ADDðtxÞfaccuracyðtx;cÞg;

maxaccðtxÞ ¼ Maxc ADDðtxÞfaccuracyðtx;cÞg:

In Definition 5, we may employ DDðFÞ instead of DDðtxÞ. For a definite tx,

DDðFÞ ¼ DDðtxÞ holds, so we may employ either DDðFÞ or DDðtxÞ. However, if tx

is indefinite, we directly obtain minsuppðtxÞ ¼ 0:0 and minaccðtxÞ ¼ 0:0, because there

is a c where tx does not appear. Even though we may employ DDðFÞ, however we

think that DDðtxÞ is more appropriate than DDðFÞ in Definition 5. We have obtained
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the formula to calculate each criterion value in Definition 5. This calculation does not

depend upon jDDðtxÞj.

Proposition 6 [51, 54]. Let us define OUTACC and INACC as follows:

OUTACC ¼ ðsupð½CON; z�Þninf ð½CON; z�ÞÞninf ð½DEC; h�Þ;

INACC ¼ ðsupð½CON; z�Þninf ð½CON; z�ÞÞV supð½DEC; h�Þ:

If an implication tx : ½CON; z� ) ½DEC; h� is definite, the following holds.

minsuppðtxÞ ¼ jinf ð½CON; z�ÞV inf ð½DEC; h�Þj=jOBj;

minaccðtxÞ ¼ jinf ð½CON; z�ÞV inf ð½DEC; h�Þj
jinf ð½CON; z�Þj þ jOUTACCj ;

maxsuppðtxÞ ¼ jsupð½CON; z�ÞV supð½DEC; h�Þj=jOBj;

maxaccðtxÞ ¼ jinf ð½CON; z�ÞV supð½DEC; h�Þj þ jINACCj
jinf ð½CON; z�Þj þ jINACCj :

Proposition 6 shows a case of definite tx, and we can obtained similar formulas for

indefinite tx. The details are in [54]. In Definition 5, each criterion value depends

upon DDðtxÞ, however each formula in Proposition 6 does not depend upon the size of

DDðtxÞ. We have also obtained the next proposition.

Proposition 7 [56, 58]. Let us consider a NIS F and any tx.

(1) There is a c 0 A DDðtxÞ such that supportðtx;c 0Þ and accuracyðtx;c 0Þ are both min-

imums. Namely, both minsuppðtxÞ and minaccðtxÞ occur in this c 0. We employ a

notation cmin for this c 0.

(2) There is a c 00 A DDðtxÞ such that supportðtx;c 00Þ and accuracyðtx;c 00Þ are both

maximums. Namely, both maxsuppðtxÞ and maxaccðtxÞ occur in this c 00. We

employ a notation cmax for this c 00.

4.5. Rule generation tasks in a NIS

In Section 2, we have surveyed two types of rule generation in DISs. The one is

the criterion-based rule generation and the other is the consistency-based rule generation.

This section focuses on rule generation in NISs, and proposes an extended Apriori

algorithm named NIS-Apriori. A NIS-Apriori based rule generation is applicable to

several types of rule generation.

Definition 6 (Specification of the rule generation tasks in a NIS). Let us consider

the threshold values a and b (0 < a; ba 1).

(The lower system) Find each implication t such that supportðtxÞb a and accuracyðtxÞ
b b (for an object x) hold in each c A DDðtxÞ. We say this is a criterion-based certain
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rule generation in a NIS. Especially, if b ¼ 1:0, we say this is a consistency-based

certain rule generation in a NIS.

(The upper system) Find each implication t such that supportðtxÞb a and accuracyðtxÞ
b b (for an object x) hold in some c A DDðtxÞ. We say this is a criterion-based possible

rule generation in a NIS. Especially, if b ¼ 1:0, we say this is a consistency-based

possible rule generation in a NIS.

These two systems are natural extensions from rule generation tasks in a DIS, and

we need to see that these two systems depend upon DDðtxÞ. The number of derived

DISs increases in the exponential order. However, we can solve this problem.

Namely, we apply Proposition 6 and 7, and we obtain a result illustrated by Fig.

3. Therefore, we have the next equivalent specification.

Theorem 1 (Equivalent specification of the rule generation tasks in a NIS). Let us

consider the threshold values a and b ð0 < a; ba 1Þ.

(The lower system) Find each implication t such that minsuppðtxÞb a and minaccðtxÞ
b b for an object x (see Fig. 4).

(The upper system) Find each implication t such that maxsuppðtxÞb a and maxaccðtxÞ
b b for an object x (see Fig. 5).

For implementing this equivalent specification, we take the similar method as

Apriori algorithm. We identify an item [1, 2] with a descriptor ½A; z�. We always

assign inf ð½ATR; zATR�Þ and supð½ATR; zATR�Þ to each descriptor ½ATR; zATR� by Def-

inition 2. Since each tx is a conjunction of descriptors, we sequentially generate tx.

In the lower system, we check minsuppðtxÞb a and minaccðtxÞb b in Fig. 4. In the

upper system, we check maxsuppðtxÞb a and maxaccðtxÞb b in Fig. 5. We are calling

Fig. 3. A distribution of pairs (support, accuracy) for tx. There exists cmin A DDðtxÞ which makes both

supportðtxÞ and accuracyðtxÞ the minimum. There exists cmax A DDðtxÞ which makes both supportðtxÞ and

accuracyðtxÞ the maximum. We denote such quantities as minsupp, minacc, maxsupp and maxacc, respec-

tively.
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the above steps NIS-Apriori algorithm. Clearly, NIS-Apriori does not depend upon

jDDðtxÞj. The details are in [54, 67].

In this section, we extended each rough set-based concept in DISs to NISs. In

NISs, each concept is extended to the certain concept and the possible concept. Ac-

cording to the previous research [15, 21, 22, 24, 25, 32, 33, 68, 69], we knew the

necessity of handling NISs, and the survey in this section will be a solution for handling

NISs.

5. A software tool for RNIA

In our research, we have coped with the following challenges described in more

detail in the subsequent sections:

(A) Management of possible equivalence relations [46, 49, 51],

(B) The minimum and the maximum degrees of data dependency [47, 50, 52],

(C) Certain and possible rules, and rule generation [51, 53, 54, 57],

(D) Stability factor of rules and calculation [56, 58],

(E) Management of missing values [54, 59, 60],

Fig. 5. A characterization of a criterion-based rule by the upper system.

Fig. 4. A characterization of a criterion-based rule by the lower system.
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(F) Management of an actual value by intervals [57, 59, 60],

(G) Management of numerical patterns and figures [55],

(H) Direct question-answering [62].

5.1. About a software tool

This software is implemented in C and Prolog, and Prolog program is converted to

C. Then, C sources are compiled to object files. For execution, we call each object

in Prolog interpreter. This is implemented on Windows 7 PC in Fig. 6. The details of

this software tool are stored in [43].

5.2. An exemplary data set

In the subsequent sections, we show an actual execution on F3 in Table 4. Since

F3 is an artificial data set, the obtained rule may not coincide with our intuitive

knowledge.

The following is an actual data set of F3.

Fig. 6. The menu page of RNIA software tool.
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object(8,4). /* the number of objects=8, the number of attributes=4 */

support(0.3). /* support value = 0.3 */

accuracy(0.5). /* accuarcy value = 0.5 */

decision(4). /* decision attribute is 4th */

attrib_values(1,temperature,3,[normal,high,very_high]).

attrib_values(2,headache,2,[yes,no]).

attrib_values(3,nausea,2,[yes,no]).

attrib_values(4,flu,2,[yes,no]).

data(1,[high,[yes,no],no,yes]). /* NIS table */

data(2,[[high,very_high],yes,yes,yes]).

data(3,[[normal,high,very_high],no,no,[yes,no]]).

data(4,[high,yes,[yes,no],[yes,no]]).

data(5,[high,[yes,no],yes,no]).

data(6,[normal,yes,[yes,no],[yes,no]]).

data(7,[normal,no,yes,no]).

data(8,[[normal,high,very_high],yes,[yes,no],yes]).

total_cases(4608,nointerval).

5.3. (A) Management of possible equivalence relations

In rough sets, we make use of equivalence relations and classes in a DIS. However

in NISs, there may be several derived DISs, for example in F3 there are 4608 derived

DISs. Namely in F3, there are less than 4608 kinds of equivalence relations.

Table 4. An exemplary NIS F3. Here, VALTempðeratureÞ ¼ fnormal; high; very_highg, VALHeadðacheÞ ¼
fyes; nog, VALNausea ¼ fyes; nog, VALFlu ¼ fyes; nog, DDðF3Þ consists of 4608 derived DISs.

OB Temp Head Nausea Flu

1 fhighg fyes; nog fnog fyesg

2 fhigh; very_highg fyesg fyesg fyesg

3 fnormal; high; very_highg fnog fnog fyes; nog

4 fhighg fyesg fyes; nog fyes; nog

5 fhighg fyes; nog fyesg fnog

6 fnormalg fyesg fyes; nog fyes; nog

7 fnormalg fnog fyesg fnog

8 fnormal; high; very_highg fyesg fyes; nog fyesg
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Since the number of derived DISs increases exponentially, it seems inappropriate to

examine each equivalence relation sequentially. We at first generate pe-relations in each

attribute. Any pe-relation can be obtained as a side e¤ect by solving the definability

of a total set OB. We have implemented this program as a constraint satisfaction prob-

lem [51]. Then, we merge obtained pe-relations for generating peqðATRÞ ðATRJAT).

Like this, we have reduced the computational complexity [52]. Even though, the

program for examining the definability is time-consuming.

Selection: 2.

yes

?- go.

Original File Name: flu.pl.

Pe-relation (temperature)

[1] [[1,2,4,5],[3,6,7,8]] 1

[2] [[1,4,5],[2],[3,6,7,8]] 1

[3] [[1,2,4,5,8],[3,6,7]] 1

: : :

[17] [[1,4,5,8],[2,3],[6,7]] 1

[18] [[1,4,5],[2,3,8],[6,7]] 1

POSSIBLE CASES 18

Pe-relation (headache)

[1] [[1,2,4,5,6,8],[3,7]] 1

[2] [[1,2,4,6,8],[3,5,7]] 1

[3] [[1,3,5,7],[2,4,6,8]] 1

[4] [[1,3,7],[2,4,5,6,8]] 1

POSSIBLE CASES 4

Pe-relation (nausea)

[1] [[1,3,4,6,8],[2,5,7]] 1

[2] [[1,3,4,6],[2,5,7,8]] 1

: : :

[8] [[1,3],[2,4,5,6,7,8]] 1

POSSIBLE CASES 8

Pe-relation (flu)

[1] [[1,2,3,4,6,8],[5,7]] 1

[2] [[1,2,3,4,8],[5,6,7]] 1

: : :

[8] [[1,2,8],[3,4,5,6,7]] 1

POSSIBLE CASES 8
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EXEC_TIME = 0.0(sec)

yes

Now, we generate peqðftemperature; headache; nauseagÞ. We specify the definition

for merging pe-relations in a file, and we execute the following.

Selection: 3.

Merging 1.pe ...

Merging 2.pe ...

Merging 3.pe ...

EXEC_TIME = 0.000(sec)

yes

After this execution, a file 123.pe is stored in a folder. In reality, there are 576

derived DISs, but the number of di¤erent pe-relations is reduced to 51 cases, because

some derived DISs have the same pe-relation.

In the above execution, the program of pe-relations is implemented in Prolog, and

the execution time is in the form of �:�(sec). On the other hand, the program of

merging pe-relations is implemented in C, and the execution time is in the form of

�:���(sec).

5.4. (B) The minimum and the maximum degrees of data dependency

In a NIS, the degree of dependency is related to each derived DIS, therefore we

need to consider the minimum and the maximum degrees. The actual degree of de-

pendency is between the minimum and the maximum degrees. If the di¤erence between

two degrees is small, the actual degree may not be influenced by the information

incompleteness in a NIS.

By merging program, we obtained peqðftemperature; headache; nauseagÞ consisting

of 51 elements. Since there are 4 pe-relations on DEC ¼ fflug, we can calculate each

degree of dependency for 4806 derived DISs by considering 204 (¼ 51� 4) combina-

tions. We have the following.

Selection: 4.

File Name for Condition: 123.pe

File Name for Decision: 4.pe

--- Dependency Check ------------

CRITERION 1(Num_of_Consistent_DISs/Num_of_All_DISs)

Number of Derived DISs: 4608

Number of Derived Consistent DISs: 1812

Degree of Consistent DISs: 0.393
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CRITERION 2(Total_Min_and_Max_Degrees)

Minimum Degree of Dependency: 0.125

Maximum Degree of Dependency: 1.000

--- Consistency Ratio for Every Object ---

Consistent ratio of the object 1: 0.792(= 3648 / 4608)

Consistent ratio of the object 2: 0.688(= 3168 / 4608)

Consistent ratio of the object 3: 0.917(= 4224 / 4608)

Consistent ratio of the object 4: 0.583(= 2688 / 4608)

Consistent ratio of the object 5: 0.656(= 3024 / 4608)

Consistent ratio of the object 6: 0.917(= 4224 / 4608)

Consistent ratio of the object 7: 1.000(= 4608 / 4608)

Consistent ratio of the object 8: 0.771(= 3552 / 4608)

EXEC_TIME = 0.000(sec)

yes

According to the above execution, we know there are 1812 derived DISs, where

each object is consistent. Object 7 is consistent in each c A DDðF3Þ, and object 4 is

consistent in about 58% of all derived DISs. Since the di¤erence between the maximum

degree and the minimum degree is large, it seems di‰cult to decide that there is a

dependency from ftemperature; headache; nausesg to fflug in this F3.

5.5. (C) Certain and possible rules, and rule generation

We apply Theorem 1 to Apriori algorithm [1], and proposed NIS-apriori algorithm

[54]. Since minsuppðtxÞ; . . . ;maxaccðtxÞ do not depend upon the number of derived

DISs, the computational complexity of NIS-apriori is almost the same as the original

Apriori. The following is real execution report for F3 (decision attribute: flu). The

threshold values are fixed to a ¼ 0:3 and b ¼ 0:5, namely the following is criterion-based

rule generation in Definition 6.

File = [tflu|pl] Support= 0.3, Accuracy = 0.5

--- 1st STEP --------------

===== Lower System ============================

The Rest Candidates: []

(Lower System Terminated)

===== Upper System ============================

[1] [temperature,normal]=>[flu,yes] (0.375, 0.75)

Objects: [3,6,8]

[2] [temperature,normal]=>[flu,no] (0.375, 1.0)

Objects: [3,6,7]

: : :
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[13] [nausea,no]=>[flu,yes] (0.625, 1.0)

Objects: [1,3,4,6,8]

[14] [nausea,no]=>[flu,no] (0.375, 0.75)

Objects: [3,4,6]

The Rest Candidates: []

(Upper System Terminated)

EXEC_TIME = 0.0(sec)

yes

In this execution, we know there are no certain rule and 12 possible rules. (The

assigned number means the ordinal number for each implication, and some of them

may not satisfy the constraint. In this case, 6th and 9th implications do not satisfy

constraint.) If we change the value of support and accuracy, we have other implica-

tions. Here, we fix a ¼ 0:0 and b ¼ 1:0, namely the following is consistency-based rule

generation in Definition 6.

File = [tflu|pl] Support= 0.0, Accuracy = 1.0

--- 1st STEP --------------

===== Lower System ============================

The Rest Candidates: [[[1,1],[4,1]],[[1,1],[4,2]], :::

(Next Candidates are Remained)

===== Upper System ============================

[2] [temperature,normal]=>[flu,no] (0.375, 1.0)

Objects: [3,6,7]

[5] [temperature,very_high]=>[flu,yes] (0.375, 1.0)

Objects: [2,3,8]

[6] [temperature,very_high]=>[flu,no] (0.125, 1.0)

Objects: [3]

: : :

[13] [nausea,no]=>[flu,yes] (0.625, 1.0)

Objects: [1,3,4,6,8]

The Rest Candidates: [[[1,1],[4,1]],[[1,2],[4,1]], :::

(Next Candidates are Remained)

EXEC_TIME = 0.0(sec)

--- 2nd STEP --------------

===== Lower System ============================

[30] [headache,no]&[nausea,yes]=>[flu,no] (0.125, 1.0)

Objects: [7]

The Rest Candidates: [[[1,1],[2,1],[4,1]],[[1,1],[2,1],[4,2]], :::
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(Next Candidates are Remained)

===== Upper System ============================

[1] [temperature,normal]&[headache,yes]=>[flu,yes] (0.25, 1.0)

Objects: [6,8]

[2] [temperature,normal]&[headache,yes]=>[flu,no] (0.125, 1.0)

Objects: [6]

[21] [headache,no]&[nausea,no]=>[flu,yes] (0.25, 1.0)

Objects: [1,3]

[22] [headache,no]&[nausea,no]=>[flu,no] (0.125, 1.0)

Objects: [3]

The Rest Candidates: [[[1,1],[2,2],[4,1]],[[1,1],[3,1],[4,1]], :::

(Next Candidates are Remained)

EXEC_TIME = 0.0(sec)

yes

In the above execution, an implication ½headache; no�5½nausea; yes� ) ½ flu; no� ob-
tained in the 2nd step lower system is consistent in each of 4608 derived DISs.

5.6. (D) Stability factor of rules and its calculation

The lower system detects implications which satisfy support and accuracy constraint

in each c A DDðFÞ. On the other hand, the upper system detects implications which

satisfy support and accuracy constraint in a c A DDðFÞ. Namely, if an implication tx

(for an x A OB) satisfies constraint in a derived DIS, this t is a possible rule. Even

though tx satisfies constraint in most of derived DIS, this t is also a possible rule. In

order to discriminate such possible rules, we have introduced a degree below:

SF ðt;FÞ ¼ jfc A F j t satisfies constraintgj=jfc A F j t appears in cgj

We name this degree Stability factor for t [58]. For example in F3, let us consider a

certain rule in support ¼ 0:0 and accuracy ¼ 1:0 below:

½headache; no�5½nausea; yes� ) ½ flu; no�.
The following is actual execution. Since certain rule is consistent in each derived DIS,

the stability factor for a certain rule is always 1.0.

?- sf([[headache,no],[nausea,yes]],[flu,no]).

[1] PE_CON:[7], PE_DEC:[5,7], Intersection:[7]

Possible Combination:1, Number of DISs in This Case:1

Condition_SUPPORT:0.0, Current_SUPPORT:0.125

Condition_ACCURACY:1.0, Current_ACCURACY:1.0
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both, DENO=1, NUME=1

: : :

[16] PE_CON:[7,5], PE_DEC:[5,7,3,4,6], Intersection:[7,5]

Possible Combination:16, Number of DISs in This Case:1

Condition_SUPPORT:0.0, Current_SUPPORT:0.25

Condition_ACCURACY:1.0, Current_ACCURACY:1.0

both, DENO=16, NUME=16

SF = 1.0 =(16/16)

EXEC_TIME = 1.0(sec)

yes

As for possible rules in support ¼ 0:0 and accuracy ¼ 1:0,

½temperature; normal � ) ½ flu; no� ð�Þ,
½temperature; very_high� ) ½ flu; yes� ð��Þ,

we conclude that ð��Þ will be more reliable than ð�Þ according to the following

execution.

?- sf([[temperature,normal]],[flu,no]).

: : :

SF = 0.2777777778 =(20/72)

EXEC_TIME = 0.0(sec)

yes

?- sf([[temperature,very_high]],[flu,yes]).

: : :

SF = 0.8461538462 =(88/104)

EXEC_TIME = 1.0(sec)

yes

5.7. (E) Management of missing values

There are several important directions of research on DISs with missing values or

Incomplete Information Systems. For example, LERS system [13, 15] by Grzymała-

Busse and a framework of reduction-based rule generation [22] by Kryszkiewicz are well

known. In both cases, some interpretations are assumed for missing values, and rule

extraction methods are investigated.

In [43], we are showing the execution logs. In Mammographic data set in [10],

there are 960 objects and 6 attributes (assessment, age, shape, margin, density and

severity). The decision attribute is severity, and its attribute values are benign (0) and

malignant (1). There are 2, 5, 31, 48 and 67 missing values (? is employed to denote

them) on 5 remaining attributes, respectively. Since each set of attribute values is
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discrete and finite, we can convert this data set to a NIS by replacing each ? with a

set of attribute values. The number of derived DISs is more than 10 power 90, but

NIS-Apriori could handle such data sets easily [43].

Generally, a NIS-Apriori rule generator is also applicable to DISs with missing

values. In most of tables with categorical data, each domain of attribute values is a

finite set. Since any missing value is an element of this finite domain, we replace each

missing value with this domain. Then, we can apply our rule generator to such an

adjusted NIS. In our framework, the interpretation of missing values seems clear, but

instead we needed to face the problem of exponential order of the number of derived

DISs. We have solved this exponential order problem successfully in the NIS-Apriori

algorithm.

5.8. (F) Management of an actual value by using intervals

We see an interval ½lower; upper� [16, 17] takes the role of non-deterministic

information in numerical values. Namely, we see an actual value val actual satisfies

lowera val actual a upper. By using this consideration, we can handle the information

incompleteness in numerical values.

However, we have a problem for handling numerical attribute values. Namely, the

concept defined in Fig. 2 is vague. A set of real numbers is infinite and uncountable.

It is necessary to control the figure in a numerical value. We introduced the concept

of resolution g ð>0Þ into numerical attributes. An interval ½lower; upper� is definite,

if ðupper� lowerÞa g. Otherwise, we may have infinite number of derived interval

½lower 0; upper 0� (lowera lower 0, upper 0 a upper and ðupper 0 � lower 0Þ ¼ g). By using

resolutions, we can have a chart similar to Fig. 2 for numerical values [57], but we

have another problem. For each discrete set of attribute values VALA, we can

naturally define a descriptor ½A; val � (val A VALA). In a set of numerical attribute

values, the definition of descriptors is vague. Even though we are currently specifying

descriptors for numerical values, we need to consider what are the proper descriptors in

a set of numerical attribute values.

In [43], we are showing an execution log for an exemplary data set, which consists

of non-deterministic information and intervals.

5.9. (G) Management of numerical patterns and figures

Now, we consider information incompleteness for numerical values, again. Infor-

mation incompleteness is a relative concept. For example, let us consider number

p. The value 3.14 will be enough for students, but it will be too simple for

researcher. This example will also be related to granularity and granular computing

[39, 73].

We introduced two symbols @ and a, which represent numeric from 0 to 9. A

numerical pattern is a sequence of @ and a, for example @@@, @@a, @aa, @@.@
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and @a.a. Here, ‘:’ denotes a decimal point, and @ does not occur after a. We see

@@@, @@a, @aa and aaa have the same type ???. Three patterns @@.@, @@.a
@a.a have the same type ??.?, too. Here, @ denotes a significant figure anda denotes

a figure, which we do not care.

For example, students are seeing p by a numerical pattern @.@@aa. . . , and

researchers must be seeing p by a numerical pattern @.@@@@. . . . Furthermore in

baseball games, we often see a season batting average higher than .300 is considered to

be excellent player. In this case, we are seeing .300 by a numerical pattern .@aa. If

we see two players’ averages 0.309 and 0.310 by .@aa, these two players belong to the

same equivalence class. However, if we employ a numerical pattern .@@a, the two

players belong to the di¤erent equivalence class.

If we employ a fine numerical pattern (with much @ symbols), we obtain the

large number of equivalence classes. On the other hand, if we employ a coarse

numerical pattern (with less @ symbols), we obtain the small number of equivalence

classes. Namely, numerical patterns control the size of equivalence classes, support and

accuracy values. In [55], we coped with numerical patterns, and implemented a soft-

ware tool.

5.10. (H) Direct question-answering

If the condition 5
i
½Ai; vali� matches with the condition part of an obtained certain

or possible rule 5
i
½Ai; vali� ) ½DEC; valj�, we have a decision ½DEC; valj� with certainty

or possibility.

However, if the condition 5
i
½Ai; vali� does not match with the condition part of

any obtained rules, we may not have decision from the data set, because 5
i
½Ai; vali� may

not conclude unique decision attribute value. In such case, we apply direct question-

answering, and we know all ½DEC; valj� with minsuppðtjÞ, minaccðtjÞ, maxsuppðtjÞ and

maxaccðtjÞ which characterize the validity of valj. Direct question-answering can

provide all information for decision making in such case. The following is the actual

execution for F3.

?- qa([[temperature,very_high],[headache,yes]]).

----- Direct Question/Answering Mode --------

[1] [temperature,very_high]&[headache,yes]=>[flu,yes]

MINSUPP=0.0, MINACC=0.0

MAXSUPP=0.25, MAXACC=1.0

[2] [temperature,very_high]&[headache,yes]=>[flu,no]

MINSUPP=0.0, MINACC=0.0

MAXSUPP=0.0, MAXACC=0.0

EXEC_TIME = 0.0(sec)

yes
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For condition ½temperature; very_high�5½headache; yes�, there are two decision at-

tribute values, i.e., ½ flu; yes� and ½ flu; no�. We know there are no objects which support

an implication whose decision is ½ flu; no�. Probably, we will have a decision ½ flu; yes�
for this condition.

6. Concluding remarks

This paper surveyed the foundations of Rough Non-deterministic Information

Analysis (RNIA) including DISs and NISs. As far as authors know, we have not

seen any system with specified functionalities in this paper.

RNIA will take the complementary role in statistical data analysis, and RNIA is

a new attempt to analyze data sets in addition to statistical data analysis. We are

currently coping with RNIA web version [44].
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Hassanien, D. Ślęzak, W. Zhu (eds.) Rough Sets, Fuzzy Sets, Data Mining and Granular Computing,

LNAI, 5908, Springer (2009), 313–320.
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Chung (eds.) Database Theory and Application, Communications in Computer and Information Science,

64, Springer (2009), 151–162.
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