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ABSTRACT 

 
 
 
 

Singular stress fields exist around the areas of the edge interface corners for two 

materials which are bonded together. And the presence of cracks affects the performances 

of a structure, and consequently causes a through-thickness crack which eventually results 

in the failure. The stress intensity factor is used to predict the stress state and the stable 

crack growth in fracture mechanics. Therefore, researches concerning the stress intensity 

factors of the edge interface cracks are the main focus of this research.  

The crack tip stress method based on FEM was improved to be able to solve the 

interface crack problems more efficiently. And a post-processing technology of linear 

extrapolation was proposed to improve the computational accuracy. Then, the improved 

crack tip stress method was applied to treat various edge interface crack problems.  

In this research, the stress intensity factors were computed for the whole range of 

material combinations and relative crack lengths. And the double logarithmic relationships 

between the stress intensity factors and the relative crack lengths were demonstrated for 

various material combinations. Then, approximate formulae of the stress intensity factors 

for arbitrary material combinations were given by fitting the computed results, for the 

single-edge cracked bonded dissimilar half-planes and shallow single edge-cracked bonded 

finite strips subjected to tensile and bending loading conditions. Furthermore, the contour 

map variations of the stress intensity factors in the whole material combinations space 

were demonstrated for a series of relative crack lengths. The maximum and minimum 

stress intensity factors were also obtained for various crack lengths. 

The single and double edge interface cracks were compared for the whole range of 

combination of materials and relative crack lengths. It was found that the stress intensity 

factors of a double-edge interface crack may possibly be larger than those of a single-edge 

interface crack for some specific material combinations and relative crack lengths. In 

addition, the stress intensity factors should be compared in three different zones according 

to the relative crack lengths. 
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Finally, the variations of the stress intensity factors of the adhesive joints for various 

thicknesses of adhesive layers were also demonstrated for various material combinations. 

Specifically, the three-layered adhesive joints composed of Si (IC chip), resin and 

FR-4.5(substrate) which are widely used in the chip scale packaging (CSP) technology 

were investigated. And the effects of the thickness of the adhesive layers for CSP were also 

discussed in this research. 
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任意の材料組み合わせを考慮した縁界面き裂の応力拡大係数に関する研究 

 

【論文の要旨】 

 複合材料や接着構造は工業界に広く使用されているが，異種材料を接合すると，

それぞれの材料の変形能や熱膨張率の相違により，界面端部に応力とひずみの集中

が生じ，しばしば破壊を引き起こす．このため，界面き裂の解析は古くから破壊力

学分野における重要な研究テーマとなっている．たとえば通常の均質材中のき裂で

は，同一長さ同一荷重を受ける内部き裂に対して，縁き裂が，√2×1.1215 倍危険

側の応力拡大係数（無限小き裂の厳しさ）となることが知られている．しかし，界

面き裂の場合には，このような内部き裂と縁き裂の厳しさの違いなど，基本的問題

がいまだ明らかとなっていない． 

本論文では，異種材料の接合端部では，き裂がない場合でも，多くの場合に特異

性が生じることにまず注目している．そして，その界面端部の特異場の中に生じた

界面き裂の特異応力場の強さを，二重の特異応力場を考慮することによって解析し，

その解を任意の材料組み合わせに対して与えている．  

 本論文は，全７章から構成されている． 

 まず，第１章では，本研究の背景として，界面の力学を電子実装の評価等に応用

した関連分野の研究をまとめている．特に，接着端部並びに，縁界面き裂の解析が

，特定の材料組合せに限定されていることや，き裂長さの影響に関する研究が不十

分であることを指摘している．そして，界面強度の定量的な予測技術の確立を目的

に，任意の材料組合せにおける界面縁き裂の応力拡大係数の解析を研究する必要性

を説明している． 

 第２章では有限要素法解析によるき裂先端節点における応力値に注目して，基準

解との比をとることにより応力拡大係数を決定する第ゼロ節点法を考察している．

まず，縁き裂が浅い場合には，報告されているように厳密解の得られている基準問

題と未知問題を同時に解析することで，有限要素寸法の誤差を打消すことが可能と

なり，き裂要素寸法に無関係に高精度の応力拡大係数が得られることを確認してい

る．しかし，縁き裂が深い場合には，要素寸法の影響が表れることを指摘し，その

影響を詳細に調べている．その結果，どのような要素寸法を用いて解析し，要素寸

法が無限小となる場合を外挿によって求めればよいかを明らかにしている．また，



ix 
 

この方法により，すべてのき裂の長さで精度よい結果が得られることを指摘すると

ともに，極端に細かい要素を用いずに，外挿による方法を用いることで解析時間も

節約できることも説明している． 

 第３章では前章に述べた方法を用いて，き裂長さが無限小に相当する，接合半無

限板が引張りと曲げ荷重を受ける問題を取り扱っている．具体的には，まず接合有

限板中の縁界面き裂を解析して，き裂長さが小さい場合を調べた結果，き裂長さと

応力拡大係数の関係が両対数グラフ上で直線関係となることを見出している．そし

て，その理由が，（１）き裂が存在しない完全接着界面端部近傍で，材料組み合わ

せにより界面の応力が無限大，有限値，ゼロに近づく領域が存在すること，（２）

その領域内に縁界面き裂がその応力場の影響を受けて存在しているためであるこ

とを説明している．  

 第４章では縁界面き裂を有する接合有限板が引張荷重と面内曲げ荷重を受ける

問題をすべてのき裂長さに対して考察している．特に，前章で扱った接合端部の特

異応力領域内に，微小な界面縁き裂が存在する場合に関して，その応力拡大係数の

漸近解を求めている．接合端部の特異応力領域外の界面縁き裂に対しては，あらゆ

る材料組合せに対して，応力拡大係数の値がどのように変化するか，どのような材

料組み合わせで最大値と最小値を与えるかを説明している． 

 第５章では接合有限板の両側に界面縁き裂がある問題を取り扱っている．まず接

合板の両端部の特異応力領域内に微小な両側界面縁き裂がある場合に，応力拡大係

数の漸近解を求めている．次に，片側き裂と両側き裂の結果を比較検討している．

均質材では，片側き裂の応力拡大係数が常に同じ長さの両側き裂の応力拡大係数よ

り大きい．しかし，接合板では両側き裂の干渉効果が大きいため，き裂長さによっ

ては，大小関係が逆転する場合があること等を明らかにしている． 

 第６章では，接着剤で接合された３層構造からなる接着接合板が引張りを受ける

場合の界面縁き裂の応力拡大係数について，接着層厚さと材料組合せを変化させて

議論している．電子デバイスの高密度パッケージを想定した材料の組み合わせを中

心に，接着層の厚さが界面縁き裂の応力拡大係数に与える影響について考察してい

る．また，界面強度は接着層が薄いほうが強いという実験結果が，接合端部に生じ

た微小き裂に注目したモデルから説明できることを示している． 

第７章では本研究で得られた主要な結論をまとめている．  
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a  length of the edge interface crack 
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mE  Young’s modulus of material m 
( )ijf θ  angular functions 
( )θIf  trigonometric function 
,I IIF F  dimensionless SIFs at the crack tip of an interface crack 
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H  intensity of stress singularity 
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CHAPTER 

Introduction
 
 
 
 

1.1 Research Backgrounds 

Modern technology has led to the employing of composites and bonded 

structures/multiple layers in automotive and aerospace industries as well as in 

microelectronics packaging. The significant size and weight reduction offered by the chip 

scale packages (CSP) makes it ideal for the use in mobile devices like cell phones, laptops, 

palmtops, and digital cameras. The advantages offered by CSP include smaller size 

(reduced footprint and thickness), lesser weight, relatively easier assembly process, lower 

over-all production costs and improvement in electrical performance. 

Fig.1 demonstrated a wire-bonded µBGA® ball grid array chip scale packaging 

solution [1]. A typical chip scale packaging process starts with the mounting of the die on 

the interposer using epoxy. The die is then wire-bonded to the interposer using gold or 

aluminum wires. Plastic encapsulation then follows to protect the die and wires, usually by 

transfer molding. After encapsulation, solder balls are attached to the bottom side of the 

interposer. Finally, the parts are singulated from the leadframe. 

As can be seen from Fig. 1.1, quite a lot interfaces exist inside the CSP assemblies. 

Stress concentration happens along the interfaces due to the discontinuous of material 

property and geometric configuration. And cyclic pressure and temperature as well as 

humidity will increase the speed of delamination. Therefore, there is an increasing concern 
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that the CSP assemblies may not meet the mechanical and the thermal cycling reliability 

requirements. In Fig. 1.2, the cross-section image reveals delamination after the 3× JEDEC 

260°C reflow test. Delamination initiates at the interface between the underfill and the flux 

residue, and then propagated along the solder mask [2]. Fig. 1.3a and b illustrate the solder 

die attach/silicon die interface with and without delamination respectively. And this 

delamination would imply a critical failure in applications requiring high thermal and 

electrical conductivity [3]. Therefore, Reliability evaluations based on fracture mechanics 

on the interface problems of CSP win quite a lot of attentions. 

 

 

 

 

 

Fig. 1.1 Demonstration of wire-bonded µBGA® ball grid array chip scale packaging 
solution (CSP) (Ref. [1]) 
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Fig. 1.2 Underfill delamination at the board level (Ref. [2]) 
 

(a)  

(b)  

 
Fig. 1.3 Typical SEM image of (a) 10 mμ  die attach with delamination and (b) 34 mμ  die 

attach without delamination (Ref. [3]) 
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For elastic fracture mechanics concepts to an interface crack between dissimilar 

materials, Williams [4] was the first to determine the characteristic oscillating stress 

singularity at the crack tip in the elastic interfacial crack problem. Then, elastic solutions 

around the interface crack tip to specific problems were discussed by Erdogan [5,6], 

England [7], and Rice and Sih [8]. Bogy [9] revealed that the stresses at the interface 

corner approach to infinity (stress singularity) in elastic bi-material planes. This 

qualitatively explained why the failures of the bonded structures mostly initiate from the 

interface corner in the engineering. However, the oscillation phenomenon (say, the 

oscillations of stresses and the overlap of crack surfaces/ the oscillations of displacements) 

were observed in the vicinity of a crack tip in the aforementioned solutions which lead to 

controversies base on the physical properties of the actual materials for practical purposes. 

Therefore, quite a lot modified solutions to the interface cracks free of contradictions 

(material may not overlap, normal tractions must be compressive in the contact zone) were 

proposed [10] by considering the contact of crack surfaces. Specifically, Comninou [11,12], 

Atkinson [13] and Mak [14] proposed formulations of the interface cracks with crack 

surfaces contacting around the interface crack tip to eliminate the contradictions. 

Comninou [11,12] also pointed out that one of the contact zones is much larger than the 

other because the interface is also subjected to some shear loading. Based on Comninou’s 

pioneering work, Dundurs and Gautesen [15] assumed that the crack is fully open at the 

end which leads to the oscillatory singularity (disregarded the short contact zone), and 

analyzed the situation at the end of the crack with the large contact zone. Then they found 

that the results predicted by the modified solutions coincide with those by the classical 

elastic solutions out of the interpenetration zone for the small scale contact zones. Finite 

element solutions for a small strain isotropic J2 -deformation plastic theory were obtained 

by Shih and Asaro [16,17]. They found that the interpenetration zone predicted by the 
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elastic solutions can be treated as a small scale nonlinearity. In any case, the actual 

situation is somewhat more optimistic than that suggested by the elasticity treatment. And 

the stress fields around the crack tip can be predicted by the linear elasticity solutions of 

comparable magnitude under small scale yielding conditions. Zywicz and Parks [18] also 

analyzed the small-scale yielding plastic zone around an interface crack tip. In 1988, Rice 

[19] re-examined the elastic fracture mechanics concepts for interfacial cracks and 

discussed the classical type of definitions of SIFs associated with interface cracks. 

Hutchinson and Suo [20] reviewed the application of the Stress intensity factor (SIF) to the 

mixed mode fracture of an interface crack. They found that the contradictions (crack faces 

overlap and the oscillations of the stresses) vanish in the elastic-plastic fields of an 

interface crack. Ichikawa [21] found that good agreement turns out for the classical elastic 

solutions and modified solutions within the extreme vicinity of an interface crack tip. From 

now on, the elastic fracture mechanics concepts are proved to be able used for estimating 

the fracture of an interface crack. And there has been a resurgence of interest in the elastic 

interface crack problems. Then quite a lot fracture criterions [22-28] have been proposed 

regarding the interface cracks.  

 
 

1.2 Research Purposes 

Fatigue cracks are normally observed around the areas of discontinuities and edge 

corners due to the high bending and residual stresses. The presence of cracks affects the 

performances of a structure, and consequently causes a through thickness crack which 

eventually results in the failure. For the bi-material systems, high stress singularity exists 

around the interface corner which leads to the initiation of edge interface cracks. In 

addition, in linear elastic fracture mechanics, the SIF is used to predict the stress state and 
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the stable crack growth caused by the remote load. Therefore, the analysis of the SIFs for 

edge interface cracks is fundamental to our understanding of the failure and fatigue of the 

bi-material/multi-layer systems. An exhaustive investigation on the stress intensity factors 

(SIFs) will contribute to a better understanding of the initiation and propagation of the 

interfacial cracks. 

Let’s consider a butt joint which is composed of two elastic materials, and the 

geometrical configuration is characterized by the angles θ1  and θ2  which the 

traction-free surfaces of the two elastic materials make with the interface. Many studies 

have considered the evaluation of the order of stress singularity λ −1  for various 

geometries and different combinations of materials [29-34]. Those researches were the 

pioneering works which qualitatively explained why edge interface cracks are normally 

observed from the free edge corner of the multi-layer systems. Then the computing of the 

intensity of stress singularity Kσ  also acquires a fair mount of attentions. Reedy and Guess 

[35] have determined the magnitude of the intensity of stress singularity for a thin elastic 

layer sandwiched between two rigid substrates. Akisanya and Fleck [36] applied the 

contour integral to evaluate H-field at the free-edge of a long bi-material strip subjected to 

uniform tension. Xu et al. [37] proposed numerical methods to determine the multiple 

stress singularities and the related stress intensity coefficients. However, as widely known, 

it is not easy to determine the SIFs for the interface cracks due to the multiple singularities 

(including the oscillatory stress singularities), so literatures concerning the evaluation of 

stress intensity factors of interfacial cracks appeared later. Till recently, various numerical 

methods [38-50] have been reported to determine the SIFs of an interface crack. 

Specifically, the crack tip stress method [49] has been reported to be able to determine the 

SIFs of the interface cracks using FE method with a high accuracy.  

In the aforementioned studies, none has considered the SIFs of the interface cracks for 
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arbitrary combination of materials. In this research, the study objects will be concentrated 

into several types of edge interface cracks in various bi-material systems subjected to 

tensile and bending loading conditions. And the crack tip stress method base on FEM 

proposed by Oda [49] will be reexamined by considering the robustness and convergence 

study. Highly accurate determination of SIFs for edge interface cracks based on FEM will 

be demonstrated by investigating the effects of FE model density and element sizes. Then, 

the SIFs for various edge interface cracks will be computed for the whole range of material 

combinations and crack lengths using the improved crack tip stress method. In addition, 

the effect of material combinations and relative crack lengths on the SIFs of various edge 

interface cracks will also be the main interest.  

 
 

1.3 Overview of Chapters 

Singular stress fields exist around the areas of the edge interface corners for two 

materials bonded together. This is the reason why fatigue cracks are normally observed 

from the edge corner. It was supposed that FE method was not suitable for the singular 

problems since the stresses approach infinity at the crack tip. However, Nishitani [51] 

proposed a novel numerical method based on FEM to evalute the SIF of a cracked 

homogenous strip. The computational accuracy is guaranteed by using the reference 

problems with highly accurate analytical solutions. This method is denoted as “crack tip 

stress method”. In 2009, Oda [49] successfully extended this method into the interface 

crack problems. Accurate results can be obtained by introducing a suitable shearing 

loading for the reference problem. However, considerable errors exist for some specific 

crack problems (Say, deep edge interface crack problems). The author of the current paper 

will re-examine the effect of the FE model density and the minimum element size, and 
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propose a post-processing technology of linear extrapolation to improve the accuracy. Then, 

the SIFs of various edge interface cracks will be investigated for arbitrary material 

combinations and crack lengths by using the improved “crack tip stress method”. In 

addition, the effect of material combinations and relative crack lengths on SIFs of various 

edge interface cracks will be discussed. 

The paper is composed of total 7 chapters and organized as follows. 

Chapter 1 introduces the application of composites and bonded structures/multiple 

layers in microelectronics packaging. After reviewing the issues of the linear elastic 

fracture mechanics on interface problems, Chapter 1 introduces the study object of this 

paper. Various types of edge interface crack problems need to be investigated because edge 

interface cracks are normally observed in the actual application. Specifically, according to 

the author’s best knowledge, little published literatures concentrate the discussions on the 

SIFs for arbitrary combination of materials. Therefore, the SIFs of various edge interface 

cracks for arbitrary material combinations are chosen as the main interest of this research. 

Chapter 2 introduces the crack tip stress method proposed by Oda, which is based on 

the concept introduced by Teranishi and Nishitani [51]. The limitations of the method are 

demonstrated and investigated by pursuing a convergence study. A post-processing 

technique of linear extrapolation is proposed to improve the computational accuracy. The 

new technique reduces the computational cost significantly since very refined meshes 

around the crack tip are no longer necessary. The accuracy and efficiency of the improved 

crack tip stress method are demonstrated by comparing the SIFs of several numerical 

examples with published data. In addition, the general procedure and precautions of the 

improved crack tip method are also discussed in this chapter. 

Chapter 3 In this chapter the SIFs at the crack tip of a bi-material bonded 

semi-infinite plate are investigated for arbitrary combination of materials. To obtain the 
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asymptotic solutions of the SIFs, the double logarithmic relationships between the SIF and 

the crack size are demonstrated with varying material combinations. Then, an approximate 

formula of the SIFs at the crack tip for the bonded dissimilar half-planes under arbitrary 

combination of materials is given by fitting the computed results. 

Chapter 4 restricts the discussion to the SIFs of the bi-material bonded finite strips 

subjected to tensile and bending loading conditions. The effect of material combinations 

and relative crack lengths to the SIFs are investigated. The formula for SIFs of the very 

shallow edge interface cracks in bi-material butt joints subjected to tension and bending 

loads are proposed. Furthermore, the contour map variations of the SIFs in the whole α β−  

space are demonstrated for a series of relative crack lengths. The maximum and minimum 

SIFs are also obtained for various crack lengths. 

Chapter 5 is devoted to the double-edge interface cracks. The effect of the relative 

crack lengths and material mismatch parameters are of special interest in this chapter. The 

SIFs for the single and double edge interface cracks will be compared for the whole range 

of combination of materials ( . , . .α β≤ ≤ − ≤ ≤0 0 95 0 2 0 45 ) and relative crack lengths ( .aW≤ ≤0 0 9 ). It 

is found that the SIFs of a double edge interface crack may be possibly larger than those of 

a single edge interface crack for some specific combination of materials and relative crack 

lengths. In addition, the transverse extent of the bonded strip should be divided into three 

different zones according to the dominance effect of the free edge singularity. 

Chapter 6 introduces the SIFs of the adhesive joints for various material 

combinations. In this chapter the SIFs are computed for both the left and right region in the 

α β−  space since no symmetry of the SIFs exists any more for the adhesive joints. The 

variations of the SIFs for various thicknesses of adhesive layer are also demonstrated. In 

addition, the three-layered adhesive joints composed by Si (IC chip), resin and 

FR-4.5(substrate) which are widely used in the chip size packaging (CSP) technology are 
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also investigated. The SIFs for various relative crack lengths and interlayer thicknesses are 

computed using the improved crack tip stress method. Furthermore, the effect of interlayer 

thickness on the SIFs are also discussed for CSP in this chapter. 

Chapter 7 gives an overview of the main conclusions and achievements in this paper. 
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CHAPTER 
The improved crack tip stress 

method for interface cracks and 

post-processing technique
 
 
 
 

2.1 Introduction 

In linear elastic fracture mechanics, the SIF is used to predict the stress state and the 

stable crack growth caused by the remote load. Therefore, quite a lot research has been 

devoted to the analysis of SIFs of the interface crack problems. Till recently, many 

researchers have tried to develop procedures to compute the generalized SIFs for interface 

cracks by using analytical or numerical methods. Just mention a few of those procedures, 

Yuuki and Cho [1] determined the SIFs of several interface crack problems by the 

boundary element method. Miyazakia et al. [2] presented the M1-integral method (an 

extended J-integral method) for SIF analyses of two-dimensional bimaterial interface crack 

problems, using the results obtained from the boundary element method. Wu [3] presented 

for calculating the SIFs at the tip of an interface crack based on an evaluation of the 

J-integral by the virtual crack extension method. Yang and Kuang [4] established a path 

independent contour integral method for the SIFs of the interface crack. Dong et al. [5] 

proposed procedures for SIF computation using traction singular quarter-point boundary 

elements. Qian and Sun [6] proposed an alternative and efficient method based on near-tip 

crack surface displacement ratio to obtain the SIFs of the inter-laminar cracks in composite 

laminates. Shbeeb and Binienda [7] formulated the singular integral equations with Cauchy 

kernels for the interface crack problem of a composite layer that consists of a 
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homogeneous substrate, coating and a nonhomogeneous functionally graded interphase. 

Then, mixed-mode SIFs and strain energy release rates were calculated. Matsumto et al. [8] 

evaluated the SIFs of bimaterial interface cracks based on the interaction energy release 

rates. Huang and Kardomateas [9] proposed a method for obtaining the mixed-mode SIFs 

for bimaterial interface cracks or cracks parallel to the bimaterial interface in half-plane 

configurations. The dislocation solutions in two different bimaterial half planes are 

presented, and then they were applied to calculate the mixed mode SIFs of cracks either at 

the interface or parallel to the interface. Ou [10] computed the singularities and near-tip 

field intensity factors of piezoelectric interface cracks in metal/piezoelectric bimaterials via 

Stroh's theory. Xuan et al. [11] presented a finite element approach for finding 

complementary bounds of SIFs in bimaterials. The SIF is formulated as an explicit 

computable linear function of displacements by means of the two-point extrapolation 

method. Liu [12] et al. developed a simple and effective numerical method to calculate the 

SIFs for an interface crack with one or two singularities. Treifi et al. [13, 14] computed the 

SIFs for different configurations of cracked/notched plates subjected to in-plane shear and 

bending loading conditions by the fractal-like finite element method. Panta et al. [15] 

demonstrated the implementation of element free Galerkin method for the stress analysis of 

structures having cracks at the interface of two dissimilar materials. 

In this research, the numerical method proposed by Oda [16], which is based on the 

concept of crack tip stress method introduce by Teranishi and Nisitani [17], will be 

re-examined and improved for solving several crack problems. The crack tip stress method 

was initially proposed to determine the SIFs of the cracked homogenous plates, by using 

the ratio of crack-tip stresses between the reference and target unknown problems. Then, in 

2009, Oda [16] extended the crack tip method to analyze the SIFs of interface crack 

problems by making the singular terms the same for the reference and target unknown 
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problems. This pioneering work provides a convenient manner to obtain the SIFs of 

interface crack problems by using FE method. However, recently it is found that the 

method sometimes does not provide reliable results for some specific crack lengths (say, 

the relative crack length .aW > 0 4  for the edge interface cracks). Therefore, the limitations 

of the crack tip stress method regarding the interface crack problems will be demonstrated 

and investigated by pursuing a convergence study in this research. A post-processing 

technique of linear extrapolation will be proposed to improve the computational accuracy. 

The new technique reduces the computational cost significantly since very refined meshes 

around the crack tip are no longer necessary. The accuracy and efficiency of the improved 

proportional method will be demonstrated by comparing the SIF results of several 

numerical examples with published data. In addition, the general procedure and 

precautions of the improved proportional method will also be discussed in this paper.  

 

2.2 Numerical analysis method 

2.2.1 The physical background of the crack tip stress method 

Nisitani et al. were the first [17] to propose a numerical method, which is named after 

the crack tip stress method, using the FE stress values to compute the SIF of a cracked 

homogenous plate. According to the theory of linear-elastic fracture mechanics (LEFM), 

mode I SIF near the crack tip in a homogenous plate is defined by the following equation. 

( ) ( ) ( ), 0
2

KIr f ryy Ir
σ θ θ

π
→ →  (2.1)
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Here, IK  is the mode I SIF, σ yy  is the normal stress component ahead of the crack tip, 

( )θIf  is trigonometric function to be derived analytically. Specifically, when 0θ = , 

Eq.(2.1) becomes 

( ) ( ), 002

KIr ry y yyr
σ σ σ θπ

→ = →=  (2.2)

Rearranging Eq.(2.2) gives ( )2 0σ π→ →I yK r r . For a given point at 0θ =  with a 

distance from the crack tip 0=r r , 02σ π=I yK r  is constant and a following relationship 

can be deduced theoretically for two different crack problems A and B. 

* *K KI y I yA B
σ σ⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (2.3)

Assuming the SIF for problem A is analytically given in advance, while that for problem B 

is yet to be solved. Problem A is denoted as the reference problem and problem B is denoted 

as the target unknown problem. Here, the superscript * is introduced to indicate the values 

of the reference problem A for notational convenience. Although the values of * ,σ σy y  in 

Eq.(2.3) for the singular problems cannot be computed by FE analysis accurately, the ratio 

of *σ σy y can be given without any difficulty. This is because the error for the two problems 

A and B are nearly the same if the same FE meshes are used for the two problems A and B.  

,
* * *

,

K y y FEMI B B B
KI y y FEMA A A

σ σ

σ σ

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= =
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 although ,y y FEMB B
σ σ⎡ ⎤ ⎡ ⎤≠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (2.4a)

It has been reported by Nisitani et al. [17] the stress distributions computed by FEM are 

almost the same under the same loading conditions of =IK const  for various crack 

problems, independent of the crack lengths. Then the SIF for problem B (the given 

unknown problem) can be accurately determined using Eq.(2.4b). It should be noted that 
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the same FE mesh grids have to be used in the singular region near the crack tip to 

compute * ,σ σy y  for problems A and B. 

, *
*

,

y FEM BK KI IB A
y FEM A

σ

σ

⎡ ⎤
⎢ ⎥⎣ ⎦⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎡ ⎤
⎢ ⎥⎣ ⎦

 (2.4b)

2.2.2 Formulation for the interface crack problems 

The method discussed in Section 2.2.1 can not be used directly into solving the interface 

crack problems since oscillatory singularity is observed along the interface. Oda et al. [16] 

extended this method to the interface crack problems by creating the same singular stress 

fields for the reference and target unknown problems. A definition of the SIFs for an 

interface crack in bonded dissimilar materials was proposed by Erdogan (1965). The stress 

distributions along the interface are defined as shown in Eq. (2.5).  

(a)

1xσ ∞

2xσ ∞

2 2
2 1 1 2 1

2 1 1

1 (1 ) 3 (3 )
1

σ κ σ κ κ σ
κ

∞ ∞ ∞⎡ ⎤⎧ ⎫
= + + − − −⎢ ⎥⎨ ⎬

+ ⎢ ⎥⎩ ⎭⎣ ⎦
x x y

G G
G G

y Tσ ∞ =

1 1 1, ,G E ν

xy Sτ ∞ =

yσ ∞

xyτ ∞

xyτ ∞

xyτ ∞

1xσ ∞

2xσ ∞

r

θ

2 2 2, ,G E ν

2a

1xσ ∞

2xσ ∞

1xσ ∞

2xσ ∞

2 2
2 1 1 2 1

2 1 1

1 (1 ) 3 (3 )
1

σ κ σ κ κ σ
κ

∞ ∞ ∞⎡ ⎤⎧ ⎫
= + + − − −⎢ ⎥⎨ ⎬

+ ⎢ ⎥⎩ ⎭⎣ ⎦
x x y

G G
G G

y Tσ ∞ =

1 1 1, ,G E ν

xy Sτ ∞ =

yσ ∞

xyτ ∞

xyτ ∞

xyτ ∞

1xσ ∞

2xσ ∞

r

θ

2 2 2, ,G E ν

2a

2 2
2 1 1 2 1

2 1 1

1 (1 ) 3 (3 )
1

σ κ σ κ κ σ
κ

∞ ∞ ∞⎡ ⎤⎧ ⎫
= + + − − −⎢ ⎥⎨ ⎬

+ ⎢ ⎥⎩ ⎭⎣ ⎦
x x y

G G
G G

y Tσ ∞ =

1 1 1, ,G E ν

xy Sτ ∞ =

yσ ∞

xyτ ∞

xyτ ∞

xyτ ∞

1xσ ∞

2xσ ∞

r

θ

2 2 2, ,G E ν

2a

                (b)

1 1,G νa

W

2 2,G ν

σ

σ

1 1,G νa

W

2 2,G ν

σ

σ  

 

Fig. 2.1 Demonstration of (a) the reference problem (problem C) and (b) a given unknown 
problem (problem D) 
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, 0
22

iK iK rI IIi ry xy ar

ε
σ τ

π

+ ⎛ ⎞+ = →⎜ ⎟
⎝ ⎠

 (2.5)

Here, ,σ τy xy  denote the stress components near the crack tip, r  is the radial distance from 

the crack tip, and ε  is the bi-elastic constant given by: 

1 1 11 2ln /
2 1 2 2 1G G G G

κ κ
ε

π

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟= + +
⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (2.6)

3 4 ( )
, ( 1,2)

3 1 ( )

plane strainm mm plane stressm m

ν
κ

ν ν

−⎧⎪= =⎨ − +⎪⎩
 (2.7)

where ( )1, 2=mG m , ( )1, 2ν =m m  and ( )1, 2κ =m m  are the shear moduli, Poisson’s ratios 

and Kolosov constant of either respective materials. The real and imaginary parts of the 

oscillatory SIFs +I IIK iK  in Eq.(2.5) may be separated as 

lim 2 cos sin
0

xyK r Q QI yr y

τ
π σ

σ

⎛ ⎞
⎜ ⎟= +⎜ ⎟⎜ ⎟→ ⎝ ⎠

 (2.8)

lim 2 cos sin
0

yK r Q QII xyr xy

σ
π τ

τ

⎛ ⎞
⎜ ⎟= −⎜ ⎟⎜ ⎟→ ⎝ ⎠

 (2.9)

and 

ln( )
2
rQ
a

ε=  (2.10)

Similarly, let’s consider two different interface crack problems C and D shown in Fig. 2.1 

with the same crack lengths 0=a a  and the same combination of materials 0ε ε= , 

assuming the SIFs of problem C are given in advance and those for problem D are yet to be 

solved. Problem C is termed the reference problem whose values are marked with *, and 

problem D is termed the given unknown problem. Examining the points with the same 
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radial distances 0=r r  for the two problems C and D, then gives [ ]* 0
0

0

ln( )
2

ε⎡ ⎤ = =⎣ ⎦ DC

r
Q Q

a
. 

Recall Eq.(2.8) and (2.9), a proportional relationship given in Eq.(2.11) is established if 

and only if Eq.(2.12) can be satisfied,  

, ,
,

* ** * * *
, ,

K Ky y FEM xy xy FEMI IID D D D D D
K KI IIy y FEM xy xy FEMC CC C C C

σ σ τ τ

σ σ τ τ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= = = =
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (2.11)

*

*
xy xy

yy DC

τ τ

σσ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

 (2.12)

Then the SIFs of the given unknown problem (problem D) can be computed using Eq.(2.13) 

in a similar manner as discussed in Section 2.2.1. The condition of Eq.(2.12) can be 

satisfied by choosing a suitable external load for the reference problem. The detailed 

information about how to make the condition Eq.(2.12) satisfied by using FEM will be 

discussed in section 2.2.3. 

[ ] [ ],* *[ ] [ ] [ ]* *[ ] [ ],
[ ] [ ],* *[ ] [ ] [ ]* *[ ] [ ],

y D y FEM DK K KI D I C I C
y C y FEM C

xy D xy FEM DK K KII D II C II C
xy C xy FEM C

σ σ

σ σ

τ τ

τ τ

= =

= =

 (2.13)

 

2.2.3 The determination of the reference problem and its external load 

In this method, a crack along the interface of two bonded dissimilar half-planes 

subjected to tension and shear as shown in Fig. 2.1a is treated as the reference problem. 

The analytical solution of the SIFs at the crack tip for the reference problem takes the form 
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( ) (1 2 )K iK i a iI II y xyσ τ π ε∗ ∗ ∞ ∞+ = + +  (2.14)

where ,σ τ∞ ∞
y xy  are the remote uniform tension and shear applied to the bonded dissimilar 

half-planes.  

Using the principle of superposition, the stress components of the reference problem 

subjected to remote tension and shear ,σ τ∞ ∞
y xy  can be expressed by using the values of that 

subjected to pure unit tension 1, 0σ τ∞ ∞= =y xy  and pure unit shear 0, 1σ τ∞ ∞= =y xy . Let 

0, 0,*, *σ τy FEM xy FEM , 1, 0 1, 0
0, 0,*, *σ τ σ τσ τ
∞ ∞ ∞ ∞= = = =y xy y xy

y FEM xy FEM  and 0, 1 0, 1
0, 0,*, *σ τ σ τσ τ
∞ ∞ ∞ ∞= = = =y xy y xy

y FEM xy FEM  denote the stress components at 

the crack tip of the reference problem subjected to combined remote tension and shear 

,σ τ∞ ∞
y xy , pure unit tension 1, 0σ τ∞ ∞= =y xy  and pure unit shear 0, 1σ τ∞ ∞= =y xy , respectively. Then 

0, 0,*, *σ τy FEM xy FEM  take the following form  

1, 0 0, 1
* * *0, 0, 0,

y xy y xy
y FEM y FEM y y FEM xy

σ τ σ τ
σ σ σ σ τ

∞ ∞ ∞ ∞= = = =
∞ ∞= × + ×  (2.15)

1, 0 0, 1
* * *0, 0, 0,

y xy y xy
xy FEM xy FEM y xy FEM xy

σ τ σ τ
τ τ σ τ τ

∞ ∞ ∞ ∞= = = =
∞ ∞= × + ×  (2.16)

Recall Eq.(2.12), the FE stress components at the crack tip for the problems C and D 

behave 

*0, 0,
*0, 0,

xy FEM xy FEM

y FEM y FEMC D

τ τ

σ σ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

 (2.17)

where, the superscript 0 stands for the node at the crack tip. Inserting Eq.(2.15), (2.16) into 

Eq.(2.17) gives the solution of τ σ∞ ∞
xy y  needed for determining the external loads applied to 

the reference problem. 

1, 0 1, 0
* *0, 0, 0, 0,

0, 1 0, 1
* *0, 0, 0, 0,

y xy y xy
xy y FEM xy FEM xy FEM y FEM

y y xy y xy
xy FEM y FEM y FEM xy FEM

σ τ σ τ
τ σ τ τ σ

σ σ τ σ τ
τ σ σ τ

∞ ∞ ∞ ∞= = = =
∞ × − ×

=
∞ ∞ ∞ ∞ ∞= = = =

× − ×

 (2.18)
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Let 1σ ∞ =y  so that τ ∞
xy  can be determined. Inserting 1,σ τ∞ ∞=y xy  into Eq.(2.14) gives the 

values of the oscillatory SIFs for the reference problem (problem C). Finally, the SIFs for 

the given unknown problem (problem D) can be yielded using the proportional relationship 

as given in Eq.(2.19). 

CII
CFEMxy

DFEMxy
DIICI

CFEMy

DFEMy
DI KKKK ][

][
][

][,][
][
][

][ *
*

,0

,0*
*

,0

,0

τ
τ

σ
σ

==  (2.19)

  Specially, when both materials for a bonded structure are identical, all the imaginary 

terms in the discussion vanish. Thus, the current method is also applicable to the 

homogenous crack problems. 
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Fig. 2.2 FE model geometric configurations for (a) the reference problem and (b) the target 
unknown problem (c) the FE mesh in the singular region used for the analysis 

 

2.3 Post-processing technique of linear extrapolation and numerical verification 

In this study, the efficiency and accuracy of the crack tip stress method mentioned 

above are demonstrated by pursuing a convergence study. The effects of the minimum 

element size e and the number of refined layers NL  in FE analysis will be investigated 

and depicted through several numerical examples.  
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2.3.1 Specifications and configurations of the FE models  

The MSC.MARC 2007 r1 [19] finite element analysis package is used to compute the 

stress components in this research. Fig. 2.2a shows the FE model geometric configurations 

for the reference problem shown in Fig. 2.1a. The crack length for the dissimilar bonded 

half-planes shown in Fig.2a (the reference problem) is set to 2 20=a mm in this research. It 

should be noted that the FE stress components at the crack tip for the reference problem 

converge as the width of the model is larger than 1500 times the crack length a  [16]. 

Then a plate width of 1620 2 32400= × =W a mm  and a length of 2 64800= =L W mm  are used to 

model the reference problem ( 2 , 1620= =L W W a ). Fig. 2.2b shows the FE model geometric 

configurations for the single-edge cracked bonded strip shown in Fig. 2.1b (an example for 

the target unknown problem). The crack length for the target unknown problem is fixed to 

a=10mm which is the same as the half crack length of the reference problem. The width of 

the bonded strip W  varies from 0.1 ~ 0.9=a W , the length L  is assumed to be much 

greater than the width W ( 2=L W is assumed in the FE model). Furthermore, the minimum 

element size e of the FE models are kept the same for the reference and given unknown 

problems.  

The singular regions around the crack tip of both the reference and the target 

unknown problems are well refined in a self-similar manner. Fig. 2.2c shows the FE mesh 

type in the singular region. The singular region is refined with increasing the number of 

layers and the element size for each inferior layer is one third of the superior one. The 

meshes shown in Fig. 2.2a and b are made of eight-node quadrilateral elements in plane 

stress or plane strain condition. Furthermore, the meshes for the reference and target 

unknown problems are kept the same to make sure a high computational accuracy of 

* *τ σ τ σ⎡ ⎤ ⎡ ⎤= ⎣ ⎦⎣ ⎦xy y xy y DC
. It should be noted that although highly accurate stress components 
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,σ τy xy  near the crack tip can’t be obtained for the two problems by FE analysis, the ratios 

of τ σxy y  are fairly accurate since the same FE mesh sizes and model density are assumed 

in the computation. 
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Fig. 2.3 (a) a single-edge-cracked homogenous strip subjected to tension and bending 
loading conditions , tensions at the top and bottom boundaries to counter the (b) tensile and 

(c) the bending loading conditions 
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Fig. 2.4 Extrapolation of normalized SIFs σ π=I IF K a  for a homogenous strip subjected 
to (a)(b) tensile and (c)(d) bending loads (Continue) 
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Fig. 2.4 Extrapolation of normalized SIFs σ π=I IF K a  for a homogenous strip subjected 
to (a)(b) tensile and (c)(d) bending loads 
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Table 2.1 Mode I SIFs σ πIK a  of a single edge cracked homogenous strip shown in Fig. 
2.3a for various relative crack lengths and different minimum element sizes 

 
a/W Uniform tension In-plane bending 

Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4 

e=a/243 e=a/729 e=a/2187 e=a/6561 e=a/243 e=a/729 e=a/2187 e=a/6561
0.1 1.1883 1.1886 1.1887 1.1887 1.0447 1.0450 1.0451 1.0452
0.2 1.3659 1.3665 1.3667 1.3668 1.0536 1.0541 1.0543 1.0544
0.3 1.6576 1.6588 1.6593 1.6594 1.1222 1.1232 1.1235 1.1237
0.4 2.1073 2.1098 2.1106 2.1109 1.2578 1.2596 1.2601 1.2603
0.5 2.8159 2.8210 2.8228 2.8234 1.4921 1.4951 1.4961 1.4965
0.6 4.0141 4.0253 4.0291 4.0304 1.9042 1.9100 1.9119 1.9126
0.7 6.3093 6.3374 6.3468 6.3500 2.7046 2.7173 2.7216 2.7231
0.8 11.8078 11.8997 11.9306 11.9410 4.6168 4.6539 4.6664 4.6706
0.9 33.6838 34.2870 34.4904 34.5588 12.1154 12.3359 12.4102 12.4352

 

 

Table 2.2 Normalized SIF σ πIK a  computed by linear extrapolation for Fig. 2.3a 
 

a

W
 

Uniform tension In-plane bending 
Present Original 

 
Kaya-

Erdogan 
(1987) [20]

Noda et 
al. (1992) 

[21] 

Present Original
 

Kaya- 
Erdogan 

(1987) [20] 

Noda et al. 
(1992) 
[21] 

0.1 1.189 1.188 1.1892 1.189 1.045 1.044 1.0472 1.046
0.2 1.367 1.366 1.3673 1.367 1.054 1.054 1.0553 1.054
0.3 1.659 1.658 1.6599 1.659 1.124 1.122 1.1241 1.123
0.4 2.111 (2.107) 2.1114 2.111 1.260 (1.258) 1.2606 1.259
0.5 2.824 (2.816) 2.8246 2.823 1.497 (1.492) 1.4972 1.495
0.6 4.031 (4.014) 4.0332 4.032 1.913 (1.904) 1.9140 1.913
0.7 6.352 (6.309) 6.3549 6.355 2.724 (2.705) 2.7252 2.725
0.8 11.946 (11.808) 11.955 11.95 4.673 (4.617) 4.6764 4.675
0.9 34.593 (33.6834) 34.633 34.62 12.448 (12.115) 12.462 12.46

 

 

2.3.2 Convergence study for the single-edge-cracked homogenous strip 

A single edge-cracked homogenous strip subjected to tensile and bending loads as 

shown in Fig. 2.3a is analyzed for various crack sizes (for a range of . ~ .aW = 0 1 0 9 ). Fig. 

2.3b and c show the tension applied at the top and the bottom boundaries to counter the 

tensile load and bending moment applied to the plate shown in Fig. 2.3a, respectively.  
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In order to investigate the effects of the minimum element size e and FE model 

density on the SIFs, four pairs of models (a pair of model is composed by one reference 

problem and one target unknown problem with the same model densities) with different 

minimum element sizes are tested to carry out the convergence study. The mesh pattern, 

model density and minimum element size for each pair of models are fixed the same. 

Namely, the minimum element size for each pair of models is , , ,a a a a5 6 7 83 3 3 3  which 

corresponding to the total number of mesh layers , , ,NL= 9 10 1112 , respectively.  

The results computed from different pairs of models are presented in Table 2.1. It can be 

seen from this table that the minimum element size (number of refined layers NL) has a 

significant effect on the accuracy especially when the crack length is considerably deep, 

say when .aW ≥ 0 4 . This effect becomes particularly prominent as the crack length 

increases. The SIFs for the extremely deep crack cases ( . , .aW = 0 8 0 9 ) are plotted against the 

minimum element size in Fig. 2.4. The accurete results obtained by the body force method 

(BFM) and the hypersingular equation method (HIEM) are plotted in dashed lines. It can 

be seen that increasing the number of refined layers (NL) can significantly improve the 

accuracy, however, this will lead to dramatic increase in the number of FE elements, and 

consequently the computational cost. Fig. 2.4 also demonstrates that accurate results can be 

obtained using linear extrapolation of SIFs from meshes with different minimum element 

sizes. Specifically, when increasing the number of refined layers NL→ ∞ , the minimum 

element size e→ 0 . Hence, the accurate SIFs for NL→ ∞  can be computed using the 

following equation.  

( ) ( )0 1 2
2 1 2 1 1 2, / 243== = − − ≠ ≤e e e

accuK K e K e K e e e e a  (2.20)

Where 0=eK  is the extrapolated SIF, and 1eK 2eK  are the SIFs computed by two 

different meshes with the minimum element sizes 1 2,e e  respectively. The values of SIFs 

computed by the present method are tabulated and compared to those predicted by 
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Kaya-Erdogan [20] and Noda et al. [21] in Table 2.2. It can be seen that the extrapolated 

results and those of Kaya-Erdogan [20] and Noda et al. [21] are in very good agreement, 

and their accuracy is much better than the original method [16]. 
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Fig. 2.5 (a) a central-cracked and (b) an edge-cracked dissimilar bonded strip subjected to 
uniform tension 

 

2.2.3 Convergence study for central and single-edge interface crack problems  

Two-dimensional plane-stress problems of central and single-edge interface crack 

problems are analyzed for various crack lengths. The problems are demonstrated in Fig. 

2.5a and b, respectively. The FE models are built in a similar manner as depicted in Section 

2.3.1. Fig. 2.6 shows the results for a central cracked bonded strip with a relative crack 

length of 0.8=a W . The elastic parameters in Fig. 2.6 are restricted to , .E E ν ν= = =1 2 1 24 0 3 . 

As can be seen from Fig. 2.6, extrapolation is not necessary for the central crack case since 

the results converge asymptotically with increasing the number of refined layers around the 

singular region when NL≥ 9 . The SIF values for others material combinations are tabulated 

in Table 2.3 together with those predicted by other researchers. As shown in the table, the 

improved crack tip stress method results almost coincide with those of the original one [16], 
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and they are in very good agreement with those of Yuuki and Cho [1] and Miyazaki et al. 

[2]. Therefore, the post-processing technique of extrapolation is not necessary for the 

central interface crack case. And accurate results can be obtained by using meshes with 

minimum element size smaller than 729a . 

The SIFs for the edge cracked dissimilar bonded strip . , .aW = 0 7 0 8  are plotted and 

compared with those of Yuuki and Cho [1] and Miyazaki et al. [2] in Fig. 2.7.  The elastic 

parameters in Fig. 2.7 are also restricted to , .E E ν ν= = =1 2 1 24 0 3 . The data of Yuuki and Cho 

[1] and Miyazaki et al. [2] are plotted in dashed lines. From this figure, it can be seen that 

the normalized SIF aKI πσ  also behave linear relationship with the minimum element 

size. Good results can be obtained by using linear extrapolation without adding too more 

refined layers. Here, it should be noted that the exact values for aKII πσ  should also be 

computed through linear extrapolation although a simple linear behavior is not observed 

for this case. For the not deep crack case, post-processing of extrapolation is also necessary 

since the effect of minimum element size e  to the SIFs is dominated by the bi-material 

elastic properties. This means the original method may also include un-ignored errors for 

the not deep crack case. In this study, models with the minimum element size ,e a a= 6 73 3  

are recommended since they have the best compromise between accuracy and 

computational cost. The normalized SIFs for other material combinations are tabulated in 

Table 2.4 together with those of Yuuki and Cho [1] and Miyazaki et al. [2]. Table 2.4 

illustrates that the SIF values computed by the current method are in very good agreement 

with those predicted by Yuuki and Cho [1] and Miyazaki et al. [2]. Furthermore, the results 

computed by the current method are much better than those predicted by the original 

method [16], especially for the deep crack cases. The results computed by the original 

method [16] for the deep crack case are given in parentheses in Table 2.4. Therefore, the 

current method can get accurate SIFs without using high model density (say, the total 
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number of layers is 10,11=NL  in this research), and it has a faster convergence speed than 

other numerical methods. 
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Fig. 2.6 Variations of normalized SIFs 1 1 2 2,σ π σ π= =F K a F K a with minimum element 

size e  of FE models for a bi-material bonded strip 
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Fig. 2.7 Variations of normalized SIFs 1 1 2 2,σ π σ π= =F K a F K a  with the minimum 
element size e  for a bonded strip (a) (b) .= 0 7a W  and (c) (d) .= 0 8a W  subjected to 

uniform tension. (Continue) 
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Fig. 2.7 Variations of normalized SIFs 1 1 2 2,σ π σ π= =F K a F K a  with the minimum 
element size e  for a bonded strip (a) (b) .= 0 7a W  and (c) (d) .= 0 8a W  subjected to 

uniform tension. 
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Table 2.3 Normalized SIFs for central interface crack ( .= =1 2 0 3v v ,Plane stress) 
 

  
I
K aσ π     

II
K aσ π    

E E2 1  a/W 
Present Oda et al. 

(2010) 
Yuuki-Cho 

(1989) 

Miyazaki 
et al. 

(1993) 
Present Oda et al. 

(2010) 
Yuuki-Cho 

(1989) 

Miyazaki 
et al. 

(1993) 

2 0.1 1.001 1.001 0.996 1.001 -0.072 -0.072 -0.072 -0.072 

 0.2 1.019 1.019 1.019 1.020 -0.071 -0.071 -0.071 -0.071 

 0.3 1.052 1.052 1.053 1.053 -0.071 -0.071 -0.072 -0.071 

 0.4 1.103 1.103 1.104 1.104 -0.073 -0.073 -0.073 -0.073 

 0.5 1.179 1.179 1.180 1.181 -0.078 -0.077 -0.078 -0.077 

 0.6 1.294 (1.293) 1.294 1.296 -0.086 (-0.086) -0.085 -0.085 

 0.7 1.475 (1.474) 1.477 1.478 -0.101 (-0.101) -0.100 -0.100 

 0.8 1.796 (1.793) 1.798 1.799 -0.132 (-0.131) -0.131 -0.131 

 0.9 2.542 (2.532) - - -0.215 (-0.213) - - 

4 0.1 0.987 0.987 0.983 0.987 -0.129 -0.129 -0.129 -0.129 

 0.2 1.006 1.006 1.005 1.006 -0.127 -0.127 -0.127 -0.127 

 0.3 1.038 1.038 1.038 1.031 -0.127 -0.127 -0.127 -0.127 

 0.4 1.088 1.088 1.088 1.089 -0.130 -0.130 -0.131 -0.130 

 0.5 1.161 1.161 1.162 1.163 -0.138 -0.137 -0.137 -0.137 

 0.6 1.271 (1.271) 1.272 1.273 -0.151 (-0.151) -0.151 -0.150 

 0.7 1.445 (1.443) 1.445 1.446 -0.177 (-0.176) -0.176 -0.176 

 0.8 1.750 (1.747) 1.751 1.752 -0.229 (-0.227) -0.229 -0.227 

 0.9 2.457 (2.448) - - -0.370 (-0.365) - - 

10 0.1 0.968 0.967 0.963 0.968 -0.175 -0.175 -0.173 -0.174 

 0.2 0.986 0.986 0.985 0.986 -0.172 -0.172 -0.170 -0.171 

 0.3 1.018 1.018 1.018 1.018 -0.171 -0.171 -0.171 -0.170 

 0.4 1.065 1.065 1.065 1.066 -0.174 -0.174 -0.174 -0.173 

 0.5 1.135 1.134 1.134 1.136 -0.183 -0.182 -0.183 -0.182 

 0.6 1.238 (1.238) 1.238 1.239 -0.199 (-0.199) -0.199 -0.198 

 0.7 1.400 (1.399) 1.400 1.402 -0.231 (-0.230) -0.230 -0.229 

 0.8 1.684 (1.682) 1.684 1.686 -0.295 (-0.293) -0.295 -0.293 

 0.9 2.338 (2.333) - - -0.470 (-0.463) - - 

100 0.1 0.946 0.945 0.940 0.946 -0.206 -0.207 -0.205 -0.206 

 0.2 0.964 0.964 0.962 0.964 -0.202 -0.202 -0.201 -0.201 

 0.3 0.995 0.996 0.994 0.994 -0.201 -0.200 -0.201 -0.200 

 0.4 1.039 1.039 1.038 1.039 -0.203 -0.204 -0.203 -0.203 

 0.5 1.105 1.104 1.104 1.104 -0.212 -0.212 -0.211 -0.210 

 0.6 1.200 (1.200) 1.201 1.201 -0.229 (-0.229) -0.228 -0.228 

 0.7 1.350 (1.349) 1.349 1.351 -0.262 (-0.261) -0.260 -0.260 

 0.8 1.610 (1.610) 1.610 1.612 -0.329 (-0.327) -0.328 -0.327 

 0.9 2.210 (2.209) - - -0.517 (-0.508) - - 
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Table 2.4 Normalized SIFs for edge interface cracks  
( .= =1 2 0 3v v ,Plane stress) 

 
  

I
K aσ π     

II
K aσ π    

E E2 1  a/W 
Present Oda et al. 

(2010) 
Yuuki-Cho 

(1989) 

Miyazaki 
et al. 

(1993) 
Present Oda et al. 

(2010) 
Yuuki-Cho 

(1989) 

Miyazaki 
et al. 

(1993) 

2 0.1 1.195 1.193 1.188 1.195 -0.129 -0.129 -0.128 -0.129 

 0.2 1.367 1.365 1.366 1.368 -0.137 -0.137 -0.137 -0.137 

 0.3 1.658 1.653 1.657 1.659 -0.158 -0.158 -0.157 -0.158 

 0.4 2.108 2.101 2.108 2.110 -0.198 -0.198 -0.198 -0.198 

 0.5 2.818 2.790 2.820 2.882 -0.267 -0.316 -0.268 -0.267 

 0.6 4.021 (4.003) 4.024 4.031 -0.396 (-0.398) -0.398 -0.397 

 0.7 6.331 (6.286) 6.348 6.353 -0.670 (-0.673) -0.673 -0.670 

 0.8 11.892 (11.747) 11.930 11.950 -1.406 (-1.411) -1.407 -1.410 

 0.9 34.330 (33.394) - - -4.891 (-4.871) - - 

4 0.1 1.209 1.207 1.201 1.209 -0.239 -0.240 -0.238 -0.239 

 0.2 1.368 1.365 1.387 1.368 -0.251 -0.251 -0.254 -0.250 

 0.3 1.653 1.644 1.653 1.654 -0.288 -0.286 -0.288 -0.288 

 0.4 2.100 2.093 2.100 2.101 -0.359 -0.359 -0.359 -0.359 

 0.5 2.805 2.791 2.807 2.807 -0.484 -0.484 -0.483 -0.483 

 0.6 3.998 (3.977) 4.000 4.006 -0.716 (-0.718) -0.701 -0.716 

 0.7 6.284 (6.235) 6.298 6.304 -1.208 (-1.212) -1.209 -1.208 

 0.8 11.768 (11.610) 11.785 11.820 -2.532 (-2.538) -2.534 -2.538 

 0.9 33.735 (32.741) - - -8.797 (-8.742) - - 

10 0.1 1.229 1.228 1.220 1.229 -0.340 -0.341 -0.338 -0.340 

 0.2 1.369 1.367 1.367 1.369 -0.349 -0.350 -0.349 -0.349 

 0.3 1.648 1.643 1.646 1.648 -0.399 -0.400 -0.398 -0.399 

 0.4 2.089 2.082 2.088 2.090 -0.495 -0.495 -0.495 -0.494 

 0.5 2.787 2.772 2.788 2.789 -0.664 -0.663 -0.664 0.663 

 0.6 3.967 (3.944) 3.966 3.974 -0.979 (-0.981) -0.980 -0.978 

 0.7 6.224 (6.168) 6.229 6.241 -1.648 (-1.652) -1.651 -1.648 

 0.8 11.611 (11.436) 11.590 11.660 -3.450 (-3.451) -3.454 -3.456 

 0.9 32.984 (31.921) - - -11.968 (-11.858) - - 

100 0.1 1.252 1.251 - 1.251 -0.425 -0.426 - -0.424 

 0.2 1.370 1.368 - 1.370 -0.428 -0.429 - -0.428 

 0.3 1.642 1.637 - 1.642 -0.485 -0.486 - -0.485 

 0.4 2.078 2.070 - 2.078 -0.598 -0.597 - -0.597 

 0.5 2.770 2.754 - 2.770 -0.799 -0.797 - -0.797 

 0.6 3.937 (3.912) - 3.940 -1.173 (-1.175) - -1.172 

 0.7 6.165 (6.104) - 6.177 -1.972 (-1.973) - -1.969 

 0.8 11.459 (11.270) - 11.500 -4.121 (-4.114) - -4.124 

 0.9 32.267 (31.146) - - -14.277 (-14.106) - - 
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2.3.4 Examples of axisymmetrical crack problems in a cylindrical bar 
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Fig. 2.8 (a) a penny-shaped crack and (b) a circumferential surface crack in a cylindrical 
bar under tension (c) 3-D FE mesh geometry of circumferential crack 

 

 

Table 2.5 Normalized stress intensity factors σ πIK a  of a single circumferential crack in 
a round bar 

 
a/R Penny-shaped crack Circumferential surface crack  

Axisy model 3-D model Ref [26] Axisy model 3-D model Ref[27] 
0.1 0.6369 0.6369 0.6369 1.1811 1.1825 1.180
0.2 0.6393 0.6394 0.6396 1.2620 1.2616 1.261
0.3 0.6462 0.6462 0.6468 1.3930 1.3928 1.393
0.4 0.6600 0.6600 0.6616 1.6017 1.6016 1.602
0.5 0.6855 0.6856 0.6881 1.9388 1.9387 1.940
0.6 0.7294 0.7294 0.7335 2.5142 2.5142 2.516
0.7 0.8067 0.8067 0.8123 3.6153 3.6152 3.618
0.8 0.9551 0.9552 0.9613 6.2381 6.2382 6.243
0.9 1.3218 1.3217 1.3251 16.6569 16.6566 16.67

 

The applicable possibility of treating the axisymmetrical crack problems by using the 

improved crack tip stress method is discussed in this section. Requirements of the mesh 

patterns are further investigated and discussed. Similarly, the 8-node quadrilateral element 

in plane strain condition is used to build the reference problem as discussed in section 2.3.1. 
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And two different mesh types as the 8-node axisymmetric solid element and eight-node 

hexahedral solid element are used to mesh the penny-shaped and circumferential surface 

crack problems as shown in Fig. 2.8a and b, respectively. The 2D axisymmetric model is 

refined in a similar way as shown in Fig. 2.2c, and the 3D FE model and its boundary 

conditions are demonstrated in Fig. 2.8c. A convergence study for the normalized SIFs 

with the minimum element sizes for the axisymmetrical crack problems under deep crack 

case 0.9=a R  is shown in Fig. 2.9. It can be seen from Fig. 2.9 that linear extrapolation 

should be used for both the penny-shaped and circumferential crack problems. The 

normalized SIFs for penny-shaped and circumferential cracks as well as those of Benthem 

[22] and Nishitani [23] are tabulated and compared in Table 2.5, respectively. It can be 

seen from this table that the normalized SIFs computed by axisymmetric models coincide 

with thosed predicted by 3-D solid models. Furthermore, the SIF values predicted by the 

current method for the penny-shaped crack and circumferential surface crack are in good 

agreement with those of Benthem[22] and Nishitani [23], respectively. This means the 

current method is also useful for the axisymmetrical crack problems. And the 

computational accuracy of the improved proportional method is independent with the FE 

element types for the reference and target unknown problems. 
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Fig. 2.9 Extrapolation of normalized SIFs σ π=I IF K a  
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Table 2.6 Normalized SIFs for single-edge interface cracks a/W=0.1 computed by different 
element types (υ1=υ2=0.3, Plane Stress) 

 

 E2/E1 

Reference 

Tension 

Reference 

Bending 

Unknown 

Tension 
Final SIF results 

σy τxy σy τxy σy τxy τ∞ FI FII 

4node 
 

1 20.6855 6.0E-10 0 11.7483 24.5812 0 0 1.1883 0 

2 20.0492 -2.5977 4.8652 11.4294 24.1942 -2.6533 0.0333 1.1941 0.1292

3 19.2508 -3.8644 7.2250 11.0285 23.7075 -3.9971 0.0505 1.2017 0.1971

4 18.6162 -4.6060 8.5995 10.7092 23.3198 -4.8142 0.0611 1.2082 0.2398

10 16.8208 -6.1570 11.447 9.8026 22.2191 -6.6430 0.0853 1.2285 0.3406

100 15.1168 -7.2287 13.383 8.9377 21.1701 -8.0673 0.1046 1.2512 0.4258

8node 

1 26.4101 0 -4.3E-09 17.0392 31.4000 0 0 1.1889 0 

2 25.4466 -4.2596 6.7703 16.4782 30.7417 -4.4474 0.0331 1.1946 0.129

3 24.2415 -6.3314 10.025 15.7714 29.9139 -6.6975 0.0502 1.2021 0.1967

4 23.2868 -7.5411 11.906 15.2074 29.2543 -8.0639 0.0607 1.2084 0.2393

10 20.6003 -10.056 15.744 13.6007 27.3803 -11.114 0.0847 1.2285 0.3399

100 18.0715 -11.772 18.286 12.0613 25.5920 -13.479 0.1039 1.2511 0.4248

 

2.4 Effect of element types on the SIFs 

The computational accuracy is greatly kept by the current method based on the 

concept of proportion. Errors of the FE stress components are eliminated to the largest 

extent in the proportional process in computing SIFs. However, effects of the variations on 

the element types on the SIFs have not been revealed yet. Therefore, a test was performed 

to verify the robustness of the method on element types. Various types of elements are 

available for the FE meshes. For the singular problems, it is suggested that the 8-node 

quadrilateral element (second order) can catch the stress concentration better than the 

4-node quadrilateral element (linear). Two-dimensional plane-stress problem of a 

single-edge interface crack problem a/W=0.1 is analyzed by using the linear and second 

order elements for various material combinations. The material properties of the bonded 
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strip are , , , , , , .E E ν ν= = =2 1 1 21 2 3 4 10 100 0 3 . The FE models are built in a similar manner as 

depicted in Section 2.3.1. The FE stress components and SIFs computed from the two 

types of elements are tabulated in Table 2.6. As can been seen from this table, although the 

FE stress components computed by the two types of elements are totally different, and the 

second order element can catch the stress concentration better than the linear element; the 

final SIFs values are almost the same. The SIFs computed by linear and second order 

models coincide with each other by 4 digits. This means the current method is firmly 

robust and independent of the element types.  

 

 

2.5 Conclusions 

The limitations of the use of the crack tip stess method was demonstrated and investigated 

by pursuing a convergence study. Then, a post-processing technique of extrapolation was 

proposed to get the high-precision SIFs of interface crack problems by using the Finite 

Element Method. The accuracy and robustness of the improved proportional method were 

tested via several numerical examples. The computational accuracy was greatly improved 

comparing with the original one. Furthermore, the FE modeling requirements as well as the 

general procedure and precautions were also depicted as follows: 

1. The crack length (half length) and material combinations of the target unknown problem 

and the reference problem should be kept the same. Furthermore, FE element sizes in each 

refined layer around the singular region should also be made the same for the reference and 

target unknown problems. 

2. The element types of FE meshes are not necessarily the same for the reference and target 

unknown problems. For example, in this research, the FE model of the reference problem 
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is made of two dimensional quadrilateral element, but that of the target unknown problem 

can be made of other types of elements. Say, the axisymmetrical solid element and 

hexahedral solid element in Section 2.3.4. However, it should be noted that the model 

density and minimum element size for the two problems should be the same. 

3. The post-processing technique of linear extrapolation should be employed in the analysis. 

Models with the minimum element size of ,e a a= 6 73 3  are recommended to get the best 

compromise between accuracy and computational cost. 
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3 

CHAPTER 

Stress intensity factors of the edge 

cracked bonded half-planes
 
 
 
 

3.1 Introductions 

Quiet a lot interface crack problems have been treated previously, and various 

numerical methods have been reported to determine the SIFs of an interface crack till 

recently. However, several fundamental questions are still unsettled for interface cracks. 

For example, the equivalent condition is well-known for the SIFs between the central and 

edge cracks in homogenous wide plate in Fig. 3.1a, b. Say, the SIF of Fig. 3.1b is 

equivalent to .×2 1 1215  times that of Fig. 3.1a when the two crack lengths are the same as 

'2 =a a . On the other hand, the similar equivalent condition has not been revealed yet for 

the central and edge interface cracks in the bonded dissimilar wide plates. In our previous 

studies, therefore, the central interface cracks in a dissimilar bonded plane in Fig. 3.1c have 

been treated for arbitrary material combinations [1, 2]. In this study an edge interface crack 

in bonded dissimilar half-planes will be considered as shown in Fig. 3.1d, which is the 

most fundamental counterpart problem for the central interface crack.  

In this chapter the SIFs at the crack tip in a bi-material bonded half-planes as shown 

in Fig. 3.1d will be investigated for arbitrary combination of materials. Then, finally an 

approximate formula for a shallow edge interface crack for arbitrary combination of 

materials and relative crack size will be given by fitting the computed results. 
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Fig. 3.1 (a) Central cracked and (b) edge cracked homogenous wide plate (c) central 
cracked and (d) edge cracked dissimilar bonded wide plate 
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Fig. 3.2 α β− space for the Dundurs’ material composite parameters 
 

3.2 Dundurs’ material composite parameters and typical material combinations 

Consider the bi-material half-planes shown in Fig. 3.1d. It is composed of two elastic, 



CHAPTER 3 
 

 

Mechanical Engineering Dept 46 Kyushu Institute of Technology 

isotropic and homogeneous semi-infinite plates that are perfectly bonded along the 

interface. The material above the interface is termed material 1, and the material below is 

termed material 2. In 1969, Dundurs showed that the stress distribution in such a body 

depends on only two combinations of the elastic constants. All the possible values of the 

composite parameters ( ),α β  are constrained in a parallelogram in the α β−  plane shown 

in Fig. 3.2. The four elastic parameters ,G ν1 1  and ,G ν2 2  for Fig. 3.1d determine an unique 

point in the α β−  plane, but one point in the α β−  plane may correspond to an infinite 

number of material combinations. In addition, the SIFs shown in Fig. 3.1d are only 

determined by ( ),α β , and they are point symmetrical about the origin of the coordinates 

for the α β−  plane. According to the singularity near the interface corner of a perfectly 

bonded strip, the composite parameters ( ),α β  in the α β−  space may be divided into 

three groups. Say, Good pair for ( )α α β− <2 0 , equal pair for ( )α α β− =2 0  and bad pair for 

( )α α β− >2 0 . The SIFs for the aforementioned problem in plane strain or plane stress are 

only determined on the two elastic mismatch parameters α  and β  [3]. Here, the 

Dundurs’ material composite parameters are defined as 

( ) ( )
( ) ( )
κ κ

α
κ κ

+ − +
=

+ + +

G G

G G

1 1
1 2 2 1

1 1
1 2 2 1

 (3.1)

 

( ) ( )
( ) ( )
κ κ

β
κ κ

− − −
=

+ + +

G G

G G

1 1
1 2 2 1

1 1
1 2 2 1

 (3.2)

where the subscripts denote material 1 or 2, ( ) ( ), ,
m m m

G E mν= + =2 1 1 2 , mG , mE and mν  denote 

shear modulus, Young’s modulus and Poisson’s ratio for material m, respectively. 

( ) ( )m m m
κ ν ν= − +3 1  for plane stress and ( )m m

κ ν= −3 4  for plane strain. In this chapter, only 

the SIFs for α ≥ 0 in α β−  space will be investigated since switching material 1 and 2 

(mat mat⇔1 2 ) will only reverse the signs of α  and β ( ( ) ( ), ,α β α β⇔ − − ).  

The SIFs for the whole range of material combinations in the α β−  space as shown 
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in Fig. 3.2 are our main research interests. And those for the typical engineering materials 

will also be discussed. The Stresses at the crack tip of an edge interface crack are given by  

 

( )
ε

σ τ
π

⎛ ⎞
+ = + ⋅ ⎜ ⎟

⎝ ⎠

i
r

i K i K
y xy I II ar

1
22

 (3.3)

 

Where the oscillatory index ε  (which is also denoted as bi-elastic constant) takes the 

form 

 
κ βε

π κ π β

+ ⎛ ⎞−
= = ⎜ ⎟+ +⎝ ⎠

ln ln
G G

G G

11 1 11 1 2
2 1 2 1

2 2 1
 (3.4)

 

Fixing β  to constants reflects the bonded strips behave the same characteristic oscillating 

properties, since the oscillatory index ε  depends only upon the Dundurs’ material 

composite parameter β . So, the SIFs are evaluated for various α  ( α< <0 1) by fixing β  

to constants . , ., , ., . , . , . , .β = − −0 2 0 1 0 0 1 0 2 0 3 0 4 0 45  as shown in Fig. 3.2. In addition, switching 

material 1 and 2 for the bonded strips shown in Fig. 3.1d only reverses the signs of 

Dundurs’ material composite parameters ( ),α β , therefore, we restrict our discussion to 

material combinations in the right part of the α β−  plane (α > 0 ) shown in Fig. 3.2. 

Suga et al. [4] investigated the ( ),α β  values for typical engineering materials. The 

results computed by Suga are given in Fig. 3.3 where β  is plotted against α . From this 

figure, the typical ( ),α β  values are concentrated along the β α= 4  line in the α β−  

space, and scattered distributed in a narrow band between .β α= −4 0 1 and .β α= +4 0 1 

lines. In addition, the α  values may arrange over the whole possible region of α< <0 1 , 

and β  values are between -0.05 and 0.24. 
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Fig. 3.3 α β− space for typical engineering materials (Suga,1988, Ref. [4]) 

 
 

3.3 Stress intensity factors of the edge cracked bonded half-planes subjected to tensile 

and bending loading conditions 

The normalized SIFs at the crack tip of the edge interface crack in bi-material bonded 

strips are systematically investigated by varying the relative crack lengths alW , as well as 

the material elastic parameters α  and β . Here, we restrict our discussion to material 

combinations with fixed β . The double logarithmic distributions are shown in Fig. 

3.4-3.11 for the normalized SIFs ,σ π σ π= =I I II IIF K a F K a  of 

. , ., , ., . , . , . , .β = − −0 2 0 1 0 0 1 0 2 0 3 0 4 0 45 , respectively. From those figures, it is found that the 

double logarithmic distributions behave linearity when .aW < 0 01  and differ within about 

%5  at .aW < 0 05 .  

After examining every material combination it is seen that the plus and minus of the 
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slope for each curve varies depending on the sign of ( )α α β− 2 . Specifically, the slope for 

each line is positive when ( )α α β− <2 0 , zero when ( )α α β− =2 0  and is negative when 

( )α α β− >2 0 . Furthermore the slope equals the order of stress singularity for a perfectly 

bi-material strip. It physically means the existence of stress singularity around the interface 

corner. For example, free-edge singularity exists when the slope is negative and vanishes 

when it is positive. In particular, uniform stress distribution appears when the slope is 0. As 

an example, the distributions of the composite parameters for different types of materials 

are plotted in Fig. A.1 [5] of the appendix. Thus, it can also be deduced for the limiting 

case, the values of ,σ π σ π= =I I II IIF K a F K a  for the bonded semi-infinite plate (aW → 0 ) 

take the form: 

( )
( )
( )

2 0 ,

2 0 ,

2 0 , 0

F FI II
F F finiteI II
F FI II

α α β

α α β

α α β

− > → ∞

− = →

− < →

：

：

：

 (3.5)

Although when ( )α α β− >2 0 , ,I IIF F→ ∞ → ∞  as aW → 0 , actual crack extension along the 

interface may be controlled by the stress intensity factors ,I IIK K  instead of ,I IIF F . In order 

to simulate the crack extension it is important to consider how the values of ,I IIK K  change 

depending on the crack length. The double logarithmic distributions of the general SIFs 

IK  and IIK  at the crack tip are plotted in Fig. 3.12. Linearity within the zone of the 

free-edge singularity can also be found from this figure. Here, it should be noted that all 

the SIFs increase monotonically with increasing relative crack lengths a W  for all the 

material combinations. Since ,
I II

F F  sometimes go to infinity, one may misunderstand that 

,
I II

K K  also approach infinity asaW → 0 . However, as shown in Fig. 3.12, ,
I II

K K  always 

approach zero independent of material combinations as aW → 0 .  
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Fig. 3.4 Double logarithmic distributions of (a) IF  and  (b) ( )IIabs F  for .β = −0 2  
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Fig. 3.5 Double logarithmic distributions of (a) IF  and (b) ( )IIabs F  for .β = −0 1 
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Fig. 3.6 Double logarithmic distributions of (a) IF  and (b) ( )IIabs F  for β = 0  
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Fig. 3.7 Double logarithmic distributions of (a) IF  and (b) ( )IIabs F  for .β = 0 1 
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Fig. 3.8 Double logarithmic distributions of (a) IF  and (b) ( )IIabs F  for .β = 0 2  
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Fig. 3.9 Double logarithmic distributions of (a) IF  and (b) ( )IIabs F  for .β = 0 3  
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Fig. 3.10 Double logarithmic distributions of (a) IF  and (b) ( )IIabs F  for .β = 0 4  
 

 

 



CHAPTER 3 
 

 

Mechanical Engineering Dept 57 Kyushu Institute of Technology 

 

 

(a)
10-6 10-5 10-4 10-3 10-2 10-1 100

10-1

100

101

10-6 10-5 10-4 10-3 10-2 10-1 100
10-1

100

101

F Ι  

a/W

F Ι  

a/W

 1 1,( ) ( )λ λ

σ π σ π
− −= =⋅ ⋅I II

I IIC C
K K

a a
a W a W

 σ π σ π= =I I II IIF K a F K a，

Tension
Bending β=0.45

1 1,νG

2 2,νG

a

Mat.1

Mat.2

Interfacial 
Crack

M

M
P

P

1 1,νG

2 2,νG2 2,νG

a

Mat.1Mat.1

Mat.2Mat.2

Interfacial 
Crack

M

M
P

P

α=0.95

α(α−2β)=0

α=0.85

α=0.9

 
 

(b)
10-6 10-5 10-4 10-3 10-2 10-1 100

0.1

0.2

0.3

0.4

0.5
0.6
0.7
0.8
0.9

1

10-6 10-5 10-4 10-3 10-2 10-1 100
0.1

0.2

0.3

0.4

0.5
0.6
0.7
0.8
0.9

1

ab
s(

F ΙΙ
 )

 

a/W

ab
s(

F ΙΙ
 )

 

a/W

 1 1,( ) ( )λ λ

σ π σ π
− −= =⋅ ⋅I II

I IIC C
K K

a a
a W a W

 σ π σ π= =I I II IIF K a F K a，

Tension
Bending β=0.45

1 1,νG

2 2,νG

a

Mat.1

Mat.2

Interfacial 
Crack

M

M
P

P

1 1,νG

2 2,νG2 2,νG

a

Mat.1Mat.1

Mat.2Mat.2

Interfacial 
Crack

M

M
P

P

α(α−2β)=0 α=0.9

α=0.85

α=0.95

 
 

Fig. 3.11 Double logarithmic distributions of (a) IF  and (b) ( )IIabs F  for .β = 0 45  
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Fig. 3.12 The double logarithmic distributions of the general SIFs (a) IK  and (b) IIK at the 
crack tip for shallow edge interface cracks 
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3.4 Singular stress field at the end of a bonded plate 

As shown in the Section 3.3, the SIFs of an edge interface crack may be affected by 

the singular stress field appearing at the interface corner of the bonded plate. It should be 

noted that more detailed investigation reveals that the slopes of the lines in Fig. 3.4-3.10 

correspond to the singular index λ  of the perfectly bonded plate without crack. It is 

known that the singularity at the end of bonded plate can be determined by the following 

relationships [6, 7]. 

 

( )2 0α α β− > : 1λ < , ( )0 0y yy rθσ σ == → ∞ →   Singularity exist 
( )2 0α α β− = : 1λ = , ( )0 0y yy finite rθσ σ == → →  Singularity = 0 

( )2 0α α β− < : 1λ > , ( )0 0 0y yy rθσ σ == → →   Singularity vanish 
(3.6)

 

Therefore the interface crack within this zone behaves in the following ways.  

 

( )α α β− >2 0 : ,σ π σ π→ ∞ → ∞I IIK a K a , 
( )α α β− =2 0 : ,I IIK a K aσ π σ π → finite values 

( )α α β− <2 0 : 0, 0σ π σ π→ →I IIK a K a . 
(3.7)

 

In this section, the singular stress fields near the free-edge corner will be described in 

detail. Let’s consider a perfectly dissimilar bonded plate without crack as shown in Fig. 

3.13 with a cylindrical polar coordinate ( ),r θ  centered at the interface corner. The singular 

field around the bonded end can be expressed in the following form [8].  

( ) ( )1 1, , ,Kr f r Kr f rr r
λ λσ θ τ θθ θθ θ θ

− −= =  (3.8)

Here K  is the intensity of stress singularity at the interface corner, r  is the radial 

distance from the corner, and λ  is the order of stress singularity. Also ( ) ( ), , ,rf r f rθθ θθ θ  

are known functions of θ,r  [8].  
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Many studies have considered the order of stress singularity for bonded corners with 

varying geometric configurations and material combinations [6-12]. For the bonded strip 

shown in Fig. 3.13, the angles which the traction-free surfaces make with the interface are 

2π , then the values of λ  can be obtained by solving the following equation  

( ) ( ) ( ) ( )

( ) ( )

2
2 2 22 2 2D , , cos 1 2 1 cos 1

2 2

2 2 2 2 21 1 1 cos sin 0
2 2

π πα β λ λ λ β λ λ λ αβ

λπ λπλ λ α

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞= − − + − − −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
⎛ ⎞ ⎛ ⎞⎡ ⎤+ − − − + =⎜ ⎟ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠ ⎝ ⎠

 (3.9)

Where, λ  is the zero of ( )D , ,α β λ  in ( )0 Re 1λ< < that has the smallest real part. In general, 

( )D , ,α β λ  is expected to have several zeros in ( )0 Re 1λ< < . In all cases where more than 

one zero of ( )D , ,α β λ  occurs only the smallest one will be exhibited [7]. The values of λ  

are computed for arbitrary material composite parameters ( ),α β , and the results are plotted 

and tabulated in Fig.3.14 and in Table 3.1, respectively. The contour plot of λ  is also 

demonstrated in Fig.3.15. Here, it should be noticed that λ  for any material combinations 

can be obtained from Table 3.1 since ( , ) ( , )λ α β λ α β= − − .  

Although the singular index has been discussed in many papers, the intensity of 

singular stress fields has just recently been obtained. Reedy and Guess [13] have 

determined the magnitude of intensity of stress singularity for a thin elastic layer 

sandwiched between two rigid substrates. Akisanya and Fleck [14] applied the contour 

integral to evaluate the singular stress field at the free-edge of a long bi-material strip 

subjected to uniform tension. Xu et al. [15] proposed numerical methods to determine the 

multiple stress singularities and the related stress intensity coefficients. Chen and Nisitani 

obtained the exact expression of the singular stress field for a bonded dissimilar strip [8]. 

From this paper, it is known that the root of Eq.(9) has a single real root λ< <0 1  when 

( )α α β− >2 0 . In this research, in order to examine the stress field around the free-edge corner, 

σK  is introduced to define the intensity of singular stress as 



CHAPTER 3 
 

 

Mechanical Engineering Dept 61 Kyushu Institute of Technology 

1lim | 20
K r

r
λ σσ θ θ π

⎡ ⎤−= ×⎢ ⎥=⎣ ⎦→
 (3.10)

The intensity of stress singularity K  for an un-cracked bonded dissimilar strip can be obtained 

using [8].  

( ) ( )( ) ( )( )2/ (4 cos( / 2)[ 1 cos( ) 1 2 1 2 1 ])K K λ λπ λ λβ λπ λ λβ λβ λ λ α βσ= + − + + − − + + −  (3.11)

The values of 1 λ
σ σ −K W  for λ ≤ 1  are calculated as a further work to the previous 

research [16]. And they are plotted in Fig. 3.16 and Fig. 3.17 against material 

composite parameters ,α β . It should be noted that τK  for the shear stress 

component also exists but is not demonstrated here since it is negligible in 

magnitude comparing with σK . The zone of free-edge singularity domains an 

extent of around 0.1 times the width of a bi-material strip. Therefore, the SIFs 

of very shallow edge interface cracks within the extent of singular zone will be mainly 

controlled by the free edge singularity. 
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Fig. 3.13 (a) The bi-material bonded semi-infinite plate and (b) finite strip 
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Fig. 3.14. Order of stress singularity λ − 1 
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Fig.3.15 Contour plots of λ for bonded strips  
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Fig. 3.16 Normalized intensity of stress singularity σK  for various material combinations 
of the tensile loading case 
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Fig. 3.17 Normalized intensity of stress singularity σK  for various material combinations 
of the bending loading case 
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Table 3.1 Singular index λ  for various combinations of materials 
 

α β=-0.2 β=-0.1 β=0 β=0.1 β=0.2 β=0.3 β=0.4 β=0.45 

0 1 1 1 1 1    

0.05 0.98378 0.99035 0.99800 1.00613 1.01403    

0.1 0.96593 0.97774 0.99205 1.00831 1.02512    

0.15 0.94684 0.96269 0.98253 1.00626 1.03279    

0.2 0.92685 0.94571 0.96987 1 1.03604 1.07562   

0.3  0.90752 0.93713 0.97605 1.02764 1.09640   

0.4  0.86549 0.89741 0.94025 1 1.09130   

0.5  0.82096 0.85320 0.89662 0.95796 1.05584   

0.6  0.77459 0.80597 0.84801 0.90711 1   

0.7   0.75644 0.79606 0.85104 0.93477 1.11741  

0.75   0.73090 0.76909 0.82169 0.90048 1.05468  

0.8   0.70481 0.74151 0.79163 0.86554 1  

0.85   0.67824 0.71331 0.76091 0.83006 0.94923 1.08125 

0.9   0.65105 0.68448 0.72953 0.79410 0.90075 1 

0.95   0.62320 0.65496 0.69745 0.75761 0.85364 0.93488 

1   0.59461 0.62466 0.66461 0.72053 0.80731 0.87624 

 
 

3.5 Fitting functions for the stress intensity factors of edge interface cracks in the 

bonded half-planes 

In Section 3.3 and 3.4, it has been proved that σ πIK a  and σ πIIK a  have finite 

non-zero values only when ( )α α β− =2 0 . Here, the normalized SIFs σ π=I IF K a  and 

σ π=II IIF K a  for an edge interface crack in a bonded semi-infinite plate for α β= 2  are 

plotted in Fig. 3.18. From the figure, it is clear that IF  and IIF  behave quadratic and 

linear relationship, respectively. The computed results for α β= 2  are also tabulated in 

Table 3.2. Then, the approximate expression as in Eq. (3.12) is given by fitting the 

computed results. Specifically, the result for the homogenous semi-infinite plate (when two 

materials are identical α β= = 0 ) computed in this research is 1.1208σ π =IK a , compared 

with the famous theoretical one 1.1215σ π =IK a , and it merely has an error of 0.062% . 
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21.121 0.0159 0.221

0.684

K aI
K aII

σ π β β

σ π β

= + −

= −
 (3.12)

 

In conclusion, the solution of SIFs at the crack tip for a bonded dissimilar half-planes 

takes the form  

0, 0 ( 2 <0;

21.121 0.0159 0.221 , 0.684 ( 2 =0;

, ( 2 >0.

K a K a whenI II

K a K a whenI II
K a K a whenI II

σ π σ π α α β

σ π β β σ π β α α β

σ π σ π α α β

⎧ → → −
⎪
⎪ = + − = − −⎨
⎪
⎪ → ∞ → ∞ −
⎩

）

）

）

 (3.13)

 
 
 

Table 3.2 Results of the dimensionless SIFs for α β= 2  
 

β  σ πIK a  σ πIIK a  

0 1.121 0 

0.1 1.120 -0.067 

0.2 1.115 -0.135 

0.3 1.106 -0.204 

0.4 1.092 -0.273 

0.45 1.083 -0.307 
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Fig. 3.18 Normalized SIFs (a) σ π=I IF K a  and (b) σ π=II IIF K a  for α β= 2  of an edge 

interface crack in a bonded semi-infinite plate 
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3.6 Conclusions 

In this paper an edge interface crack in a bonded semi-infinite plate were analyzed 

asymptotically with varying the crack lengths and material combinations systematically. 

The limiting solutions were provided for the tensile and bending loading conditions. And 

the following achievements have been concluded as follows: 

1. An empirical function of the SIFs for the single-edge cracked bonded dissimilar 

half-planes was proposed for arbitrary material combinations. The SIFs are expressed 

in the following form. 

( )

( )
( )

σ π σ π α α β

σ π β β σ π β α α β

σ π σ π α α β

⎧ → − <
⎪
⎪⎪ = + − = − − =⎨
⎪
⎪ → ∞ − >
⎪⎩

, ;

. . . , . ;

, ;

K a K a when

K a K a when

K a K a when

0 2 0
1 2

21 121 0 0159 0 221 0 684 2 0
1 2

2 0
1 2

  

2. The singular stress field for a bonded strip without crack is investigated for various 

material combinations since the SIFs for the shallow interface edge crack are controlled 

by this singular stress field.  
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4 

CHAPTER 
Stress intensity factors of the 

single-edge-cracked bonded finite 

strip
 
 
 
 

4.1 Introductions 

Multi-material systems are widely used in the designation of adhesive joints, bonded 

structures, thin film coating and composites. Failure of the multi-layer systems initiates at 

the corner where the interface intersects a traction-free edge as shown in Fig. 4.1 with a 

higher possibility, since a singular stress field develops at the interface corner. For a given 

interface crack, crack proporgation initiates as the SIFs increase to the critical values, and 

evently lead to the failure of the bonded structue. An exhaustive investigation on the 

variations of the SIFs of the bi-material strips for various crack lengths will contribute to a 

better understanding of the initiation and propagation of the interfacial cracks. 

In this chapter we will calculate the SIFs of the bi-material bonded finite isotropic 

elastic strips as shown in Fig. 4.1 subjected to tensile and bending loading conditions. The 

discussion will be separated into cracks within and out of the zone of free-edge singularity. 

Fitting functions will be proposed to evaluate the SIFs of the shallow edge interface cracks 

within the singular zone. The SIFs for other relative crack lengths will be demonstrated in 

contour plots for the whole range of material combinations in the α β−  space. And the 

combined effects of the relative crack lengths and material combinations to the SIFs of the 

bi-material strips will also be of special interests in this chapter.  
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Fig. 4.1 The (a) shallow and (b) deep edge interface cracks in a bonded strip 
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Fig. 4.2 Demonstration of the singular zone in a bi-material strip 
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4.2 The region of the zone of free-edge singularity  

For the bi-material strip shown in Fig. 4.2, let ( ),r θ  be polar coordinates centered at the 

interface corner o. The extent of the region dominated by the free-edge singularity is 

demonstrated using a dashed curve. The stress components ,θ θσ τ r  within the singular 

stress field near the interface corner are of the form 

( ) ( )1 1, , ,r f r r f rr r
λ λσ θ τ θθ θθ θ θ

− −∝ ∝  (4.1)

Furthermore, it is found that the normal stress component θσ  within the singularity zone 

reaches the maximum at the interface (θ = 0 ). Discussions on the extent of the singularity 

zone have been published in several literatures. For example, Bogy [1] evaluated the extent 

of the singular zone along the interface (θ = 0 ) for an infinitely long bi-material strip 

subjected to tension for elastic mismatch parameters . ,α β= − =0 8 0 . Reedy [2] calculated 

the region of singularity zone of the order of 0.6 times the interlayer thickness for a thin 

elastic layer sandwiched between two rigid substrates. Akisanya [3] determined the 

singularity zone size along the radial directions θ = °43  and .θ = °1 6  for a long bi-material 

strip for .α = 0 5  and .α = 0 8 , and for β = 0  and β α= 4 , by comparing the asymptotic 

and the finite element solutions for the normal stress component θθσ . And the extent of the 

singularity zone is 0.1 times the strip width along θ = °43 , and 0.03 times the strip width 

along .θ = °1 6 . It has been investigated in this research that the extent of the zone size in 

Fig. 4.2 varies with the radial direction θ  and the Dundurs’ material composite 

parameters ( ),α β .  

Let’s consider a shallow edge interface crack initiated within the zone of free-edge 

singularity shown in Fig. 4.1a, the stress state at the crack tip is dominated by the singular 

stress field for the bi-material strip shown in Fig. 4.2. As a result, the SIFs computed in this 

chapter will be discussed into two separate parts according to the relative crack length.  
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4.3 Stress intensity factors for edge interface cracks within the zone of free-edge 

singularity 

The SIFs for the shallow edge interface cracks within the singular zone in a 

bi-material strip subjected to tensile and bending loading conditions as shown in Fig. 4.1a 

are investigated using the improved crack tip stress method. The results of ( )1 λ−⋅IF W a  

and ( )1 λ−⋅IIF W a  are plotted against logarithmic relative crack length a W  in Fig. 4.3a 

and b, respectively. The values for the tensile loads are plotted in dashed lines and those for 

the bending loads are plotted in solid lines. In addition, the material composite parameter 

β  in Fig. 4.3 are restricted to .β = 0 3 , and similar phenomenon can be found from others 

material combinations of restricted β . As can be seen from these figures, the values for a 

given material combination approach constants with more than 3-digit when aW −< 310 , and 

differ only about 5% when aW −< 310 . That means the SIFs for the single-edge interface 

cracks within the singular zone have the same behavior due to the effect of free-edge 

singularity. Thus, we propose the following formula to calculate the SIFs at the crack tip 

for the very shallow edge interface cracks in a bi-material finite strip subjected to tension.  

1 1( ) , ( )

26

K KI IIa W C a W CI IIa a
P W for tensile loads

M W for bending loads

λ λ
σ π σ π
σ

σ

− −⋅ = ⋅ =

=

=

 (4.2)

Where, coefficients ,I IIC C  are constants depending upon the relative elastic properties of 

materials and the loading types. The values of the coefficients ,I IIC C  are listed against 

material composite parameters in Table 4.1 and Table 4.2 as well as in Table 4.3 and Table 

4.4 for the tensile and bending loads, respectively. And they are also plotted against ( ),α β  

in Fig.4.4 with the tensile and bending loads in dashed and solid line, respectively. It is 

easy to be found that the coefficient curves IC  in Fig. 4.4a are similar to the theoretical 
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singularity order ones in Fig. 3.14 since the stress field near the interface corner is mainly 

dominated by the eigenvalue λ . Furthermore, the results of ,I IIC C  for the tensile and 

bending loading conditions are compared for various material combinations. The SIFs 

agree quite well when ( )α α β− =2 0  for the two loading types.  
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Fig.4.3 Variations of (a) ( )1 λ−⋅IF W a  and (b) ( )1 λ−⋅IIF W a  for .β = 0 3  and tension 
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Table 4.1 Tabulated values of IC  for tension 

 
α β=-0.2 β=-0.1 β=0 β=0.1 β=0.2 β=0.3 β=0.4 β=0.45 

0.05 1.036 1.082 1.114 1.136     

0.1 0.979 1.043 1.094 1.146 1.187    

0.15 0.907 1.001 1.063 1.14 1.221    

0.2  0.958 1.025 1.12 1.24    

0.3  0.875 0.938 1.044 1.215    

0.4  0.798 0.852 0.947 1.115 1.528   

0.5  0.721 0.772 0.85 0.986 1.343   

0.6   0.7 0.763 0.863 1.106   

0.7   0.635 0.686 0.756 0.912 1.876  

0.75   0.604 0.651 0.709 0.833 1.356  

0.8   0.573 0.618 0.666 0.764 1.092  

0.85   0.542 0.586 0.626 0.704 0.925 1.589 

0.9   0.508 0.556 0.588 0.65 0.806 1.083 

0.95   0.46 0.527 0.553 0.602 0.715 0.867 

 
 
 

Table 4.2 Tabulated values of IIC  for tension 
 

α β=-0.2 β=-0.1 β=0 β=0.1 β=0.2 β=0.3 β=0.4 β=0.45 

0.05 -0.083 -0.06 -0.026 0.014     

0.1 -0.093 -0.079 -0.052 -0.013 0.031    

0.15 -0.098 -0.094 -0.074 -0.041 0.006    

0.2  -0.106 -0.094 -0.067 -0.023    

0.3  -0.124 -0.123 -0.113 -0.084    

0.4  -0.133 -0.141 -0.144 -0.135 -0.095   

0.5  -0.137 -0.151 -0.162 -0.169 -0.166   

0.6   -0.156 -0.172 -0.187 -0.204   

0.7   -0.156 -0.176 -0.194 -0.218 -0.318  

0.75   -0.155 -0.176 -0.195 -0.219 -0.288  

0.8   -0.153 -0.175 -0.194 -0.219 -0.273  

0.85   -0.15 -0.173 -0.193 -0.217 -0.262 -0.379 

0.9   -0.145 -0.171 -0.19 -0.214 -0.252 -0.307 

0.95   -0.136 -0.168 -0.187 -0.209 -0.243 -0.278 
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Table 4.3 Tabulated values of IC  for bending 

 
α β=-0.2 β=-0.1 β=0 β=0.1 β=0.2 β=0.3 β=0.4 β=0.45 

0.05 1.004 1.065 1.109 1.143 --    

0.1 0.925 1.009 1.081 1.157 1.219    

0.15 0.833 0.949 1.037 1.148 1.269    

0.2  0.888 0.982 1.120 1.295    

0.3  0.77 0.861 1.011 1.257    

0.4  0.664 0.742 0.875 1.115 1.718   

0.5  0.566 0.636 0.743 0.934 1.443   

0.6   0.542 0.627 0.766 1.106   

0.7   0.461 0.528 0.626 0.838 2.106  

0.75   0.423 0.485 0.566 0.734 1.45  

0.8   0.387 0.445 0.512 0.644 1.092  

0.85   0.351 0.408 0.463 0.568 0.867 1.72 

0.9   0.312 0.373 0.419 0.502 0.711 1.083 

0.95   0.262 0.341 0.379 0.445 0.594 0.799 

 
 
 

Table 4.4 Tabulated values of IIC  for bending 
 

α β=-0.2 β=-0.1 β=0 β=0.1 β=0.2 β=0.3 β=0.4 β=0.45 

0.05 -0.080 -0.059 -0.026 0.013 --    

0.1 -0.087 -0.076 -0.051 -0.014 0.032    

0.15 -0.090 -0.089 -0.072 -0.041 0.006    

0.2  -0.098 -0.089 -0.067 -0.024    

0.3  -0.109 -0.113 -0.109 -0.087    

0.4  -0.111 -0.123 -0.133 -0.135 -0.108   

0.5  -0.107 -0.124 -0.142 -0.160 -0.179   

0.6   -0.120 -0.142 -0.166 -0.204   

0.7   -0.113 -0.135 -0.160 -0.200 -0.370  

0.75   -0.108 -0.131 -0.155 -0.193 -0.309  

0.8   -0.103 -0.126 -0.150 -0.185 -0.273  

0.85   -0.097 -0.121 -0.143 -0.175 -0.245 -0.420 

0.9   -0.089 -0.115 -0.136 -0.165 -0.222 -0.307 

0.95   -0.077 -0.109 -0.128 -0.155 -0.202 -0.256 
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Fig. 4.4 Constants (a) IC  and (b) IIC  for bending and tensile loading conditions 
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The examples of the normalized SIFs for the edge interface cracks 0.001=a W  within the 

zone of free-edge singularity are computed and plotted against various Dundurs’ material 

composite parameters. Fig. 4.5 and 4.6 show variations of IF  and IIF  for bi-material 

bonded strips 0.001=a W  subjected to tensile and bending loads, respectively. It should be 

noted that the SIF values behave the similar varying tendency within the singular zone for 

each loading type. This is due to the fact that the stress distributions of the shallow 

single-edge interface cracks are determined by the free-edge singularity near the interface 

corner. 

The contour map variations of the SIFs can be obtained from the 3-dimensional plot 

as shown in Fig. 4.5 and 4.6. And it can be used to estimate the variation tendency for the 

whole range of material combinations for a fixed crack length. Say, Fig. 4.7 and 4.8 show 

the contour map variations for bi-material bonded strips 0.001=a W  for tensile and 

bending loads, respectively. Similar variation tendencies can be easily observed from these 

figures. In addition, it can be seen from Fig. 4.7a and 4.8a that the variation tendencies of 

IF  can be distinguished into two groups according to ( )2α α β− . Say, IF  decreases 

radioactively outward the pole centered at around ( ) ( ), , .α β = 1 0 05  when ( )2 0α α β− > , and 

increases downwardly in the α β−  space when ( )2 0α α β− < . However, different from the 

case of IF , the values of IIF  in Fig. 4.7b and 4.8b decrease radioactively and 

monotonously from the lower right corner to the upper left corner of the α β−  space from 

the pole centered at around ( ) ( ), , .α β = 1 0 1 . 
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(a)  

 

(b)   

 
Fig. 4.5 3-dimensional variations of (a) IF  and (b) IIF  for single edge interface crack 

0.001=a W  for tension  
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(a)  

 

(b)  

 
Fig. 4.6 3-dimensional variations of (a) IF  and (b) IIF  of single edge interface crack 

0.001=a W  for the bending loads 
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Fig. 4.7 Contour maps of (a) IF  and (b) IIF  of 0.001=a W  for the tensile case 
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Fig. 4.8 Contour maps of (a) IF  and (b) IIF  of 0.001=a W  for the bending case 
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Fig. 4.8 Contour maps of (a) IF  and (b) IIF  of 0.001=a W  for the bending case 
 
 

4.4 Stress intensity factors for edge interface cracks out of the zone of free-edge 

singularity 

4.4.1 The tensile loading case 

As depicted in Section 4.3, the SIFs of the shallow edge interface cracks within the 

singular zone can be well computed by using Eq.4.2. Here, the SIFs for crack lengths out 

of the zone of free-edge singularity ( 0.1 0.9≤ ≤a W ) will be investigated. 

The contour map variations of IF  and IIF  for 0.1 0.9≤ ≤a W  are plotted against 

Dundurs’ material composite parameters in Fig. 4.9 – 4.17. It can be seen from Fig. 4.9 that 

the varying tendencies of IF  and IIF  are similar to those in Fig. 4.7. This is due to the 

residual effect of the free-edge singularity since .aW = 0 1  is very close to the boundary of 

the singular zone. The contour plot of IF  for 0.2,0.3,0.4=a W  in Fig. 4.10-4.12 are 

almost similar in trend. The values of IF  increase radioactively outward from the pole 

around ( ) ( ), . , .α β = 0 98 0 45  in the α β−  space. However, there are two radiation centers in the 

α β−  space when .aW ≥ 0 5  in Fig. 4.13-4.17, one is located around ( ) ( ), . , .α β = 0 98 0 45 , and the 
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other is at ( ) ( ), ,α β = 1 0 . The IF  values increase gradually outward from the two poles. 

Furthermore, the values of material combinations around the line .β α= −4 0 1  are clearly 

interfered by the two radiation centers. This is caused by the bending effect for the deep 

edge crack cases.  

The contour lines of IIF  in Fig. 4.9b-4.17b for 0.2≥a W  behave linearity in the 

α β−  space. And all the lines in the α β−  space for a fixed relative crack length are parallel 

to each other. The trend of the IIF  lines rotate as the increase of the relative crack length. 

For example, the slope of the contour lines is -2.17326 for 0.2=a W  and then gradually 

increased to a positive value of 0.03378 for  0.2=a W . 

The maximum and minimum values of IF  and IIF  over . ~ .aW = 0 1 0 9  with varying 

material composite parameters can be obtained from the contour plots. And they are 

tabulated in Table 4.5 and 4.6 together with the corresponding ,α β  in brackets, 

respectively. Specifically, over the whole range of α β− space, Table 5 shows that IF  

peaks at the points in the β α= − .4 0 25 line when .aW < 0 4 , but peaks at around α β= =,0 0  

when .aW > 0 4 . Furthermore, IF  bottoms out at around 98 465α β= =. , .0 0  for .aW < 0 4 and 

α β= =,1 0  for .aW > 0 4  in the whole α β− space. However, for the case of IIF , the 

maximum values are always located at 5α β= =, .1 0  (the upper right corner of the 

α β− space) when > .aW 0 1 , and the minimum values are always located at 5α β= = −, .0 0 2  

(the lower left corner of the α β− space) when > .aW 0 2 . 

The maximum and minimum values of ,I IIF F  for typical engineering materials are 

listed in Table 4.6. As can be seen from this table, However, the lowest point of IF  for 

< .aW 0 4  is not situated at one unique ( ),α β . But, IF  always peaks at α β= =,1 0  and 

bottoms out at α β= =, .1 0 35 over the whole α β− space when .aW > 0 4 . Similarly, IIF  

always reach to its’ maximum at α β= =, .1 0 35  and minimum at α β= = −, .0 0 1  when 

> .aW 0 1 . 



CHAPTER 4 

 
 

Mechanical Engineering Dept 84 Kyushu Institute of Technology 

 

 

 

 

Table 4.5 Maximum and minimum values of IF  and IIF  of the tensile loading case for 
material combinations over the whole α β−  space 

 
 Whole α-β space 
a/W minIF    (α,β) 

maxIF   (α,β) 
minIIF     (α,β) 

maxIIF     (α,β) 

0.1 1.153  (0.7,0.425) 1.501  (1,0) -0.030  (0,0.23) 0.471  (1,0.1) 

0.2 1.350  (0.86,0.465) 1.493  (1,0) -0.033  (0,-0.214) 0.452  (1,0.5) 

0.3 1.639  (0.98,0.465) 1.709  (0.76,0.44) -0.129  (0,-0.25) 0.589  (1,0.5) 

0.4 2.077  (0.987,0.419) 2.146  (0.275,-0.184) -0.271  (0,-0.25) 0.805  (1,0.5) 

0.5 2.694  (1,0) 2.859  (0.034,0.259) -0.492  (0,-0.25) 1.167  (1,0.5) 

0.6 3.690  (1,0) 4.032  (0,0) -0.877  (0,-0.25) 1.823  (1,0.5) 

0.7 5.793  (1,0) 6.352  (0,0) -1.660  (0,-0.25) 3.189  (1,0.5) 

0.8 10.32  (1,0) 11.95  (0,0) -3.708  (0,-0.25) 6.800  (1,0.5) 

0.9 29.42  (1,0.5) 34.59  (0,0) -13.08  (0,-0.25) 23.42  (1,0.5) 

 
 
 
 

Table 4.6 Maximum and minimum values of IF  and IIF  of the tensile loading case for 
material combinations of typical engineering materials. 

 
 Typical engineering materials 
a/W minIF    (α,β) 

maxIF   (α,β) 
minIIF     (α,β) 

maxIIF     (α,β) 

0.1 1.185  (0.4,0.2) 1.385  (1,0.15) -0.014  (0,0.1) 0.471  (1,0.1) 

0.2 1.363  (0.56,0.39) 1.426  (1,0.15) -0.016  (0,-0.1) 0.437  (1,0.35) 

0.3 1.642  (0.98,0.495) 1.675  (1,0.15) -0.058  (0,-0.1) 0.496  (1,0.35) 

0.4 2.078  (0.987,0.346) 2.116  (0.114,-0.072) -0.118  (0,-0.1) 0.610  (1,0.35) 

0.5 2.769  (0.99,0.349) 2.825  (0,0.01) -0.214  (0,-0.1) 0.820  (1,0.35) 

0.6 3.935  (1,0.35) 4.032  (0,0) -0.380  (0,-0.1) 1.194  (1,0.35) 

0.7 6.158  (1,0.35) 6.352  (0,0) -0.697  (0,-0.1) 2.010  (1,0.35) 

0.8 11.44  (1,0.35) 11.95  (0,0) -1.580  (0,-0.1) 4.192  (1,0.35) 

0.9 32.14  (1,0.35) 34.59  (0,0) -5.590  (0,-0.1) 14.52  (1,0.35) 
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Fig. 4.9 Contour map of (a) IF  and (b) IIF  of 0.1=a W  for tension 
 

 (a) α

β

1.355
1.36

1.3651.37

1.37 1.39 1.41
1.43

1.45

FI , a/W = 0.2, Tension load

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.5

-0.4
-0.5

-0.2

-0.1
0

0.1

0.2

0.3
0.4

0.5

 
 

Fig. 4.10 Contour map of (a) IF  and (b) IIF  of 0.2=a W  for tension (Continue) 
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Fig. 4.10 Contour map of (a) IF  and (b) IIF  of 0.2=a W  for tension 
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Fig. 4.11 Contour map of (a) IF  and (b) IIF  of 0.3=a W  for tension 
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Fig. 4.12 Contour map of (a) IF  and (b) IIF  of 0.4=a W  for tension 
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Fig. 4.13 Contour map of (a) IF  and (b) IIF  of 0.5=a W  for tension (Continue) 
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Fig. 4.13 Contour map of (a) IF  and (b) IIF  of 0.5=a W  for tension 
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Fig. 4.14 Contour map of (a) IF  and (b) IIF  of 0.6=a W  for tension 
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Fig. 4.15 Contour map of (a) IF  and (b) IIF  of 0.7=a W  for the tension case 
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Fig. 4.16 Contour map of (a) IF  and (b) IIF  of 0.8=a W  for the tension case (Continue) 
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Fig. 4.16 Contour map of (a) IF  and (b) IIF  of 0.8=a W  for the tension case 
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Fig. 4.17 Contour map of (a) IF  and (b) IIF  of 0.9=a W  for tension 
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4.4.2 The bending loading case  

The contour map variations of IF  and IIF  for the bending loading conditions are plotted 

against Dundurs’ material composite parameters in Fig. 4.18–4.26. The contour plot of IF  

for 0.2,0.3,0.4=a W  in Fig. 4.18-4.21 are almost similar in trend. The values of IF  

increase radioactively outward from the pole around ( ) ( ), ,α β = 1 0  (the lower right corner in 

the α β−  space). Similarly, there are two radiation centers in the α β−  space when 

.aW ≥ 0 5 . However, this phenomenon is not as clear as that of the tensile loading case. This 

is maybe due to the enhanced bending effect for the bending loading case. The contour 

lines of IIF  in Fig. 4.19b-4.26b for 0.2≥a W  behave linearity in the α β−  space. And all 

the lines in the α β−  space for a fixed relative crack length are parallel to each other. The 

maximum and minimum values of IF  and IIF  over the whole range of material 

combinations can be obtained from the contour plots. And the maximum and minimum 

values of ,I IIF F  are tabulated in Table 4.7, and the corresponding material composite 

parameters ,α β  are also tabulated in the brackets. Specifically, over the whole range of 

α β− space, Table 4.7 shows that IF  peaks at the points in the β α= − .4 0 25  line when 

.aW < 0 2 , but peaks at around , .α β= =1 0 5  when . .aW< <0 4 0 7  and then peaks at ,α β= =0 0  

when .aW > 0 7 . Furthermore, IF  bottoms out at around ,α β= =1 0 for almost the whole 

range of relative crack lengths in the whole α β− space. The maximum values of IIF  are 

uniquely located at 5α β= =, .1 0  (the upper right corner of the α β− space), and the 

minimum values are uniquely located at 5α β= = −, .0 0 2  (the lower left corner of the 

α β− space) when > .aW 0 2  for the whole range of material combinations and relative 

crack lengths. 

The maximum and minimum values of ,I IIF F  for typical engineering materials are 

listed in Table 4.8. As can be seen from this table, the lowest point of IF  locates at 
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, .α β= =1 0 15  for each crack length when . .aW< <0 3 0 8 , and changes to , .α β= =1 0 35  when 

.aW > 0 8 . However, the maximum point for IF  is not situated at one unique ( ),α β . In 

addition, IIF  always reach to its’ maximum at α β= =, .1 0 35  and minimum at α β= = −, .0 0 1 

when > .aW 0 1 . 

 

 

Table 4.7 Maximum and minimum values of IF  and IIF  of the bending load case for 
material combinations over the whole α β−  space 

 

 Whole α-β space 
a/W minIF    (α,β) 

maxIF   (α,β) 
minIIF     (α,β) 

maxIIF     (α,β) 

0.1 0.754  (1,0) 1.061  (0,-0.25) -0.047  (0,-0.25) 0.301  (1,0.5) 

0.2 0.855  (1,0) 1.076  (1,-0.25) -0.114  (0,-0.25) 0.299  (1,0.5) 

0.3 0.982  (1,0) 1.159  (1,0.5) -0.172  (0,-0.25) 0.329  (1,0.5) 

0.4 1.154  (1,0) 1.305  (1,0.5) -0.239  (0,-0.25) 0.396  (1,0.5) 

0.5 1.323  (1,0) 1.543  (1,0.5) -0.331  (0,-0.25) 0.523  (1,0.5) 

0.6 1.645  (1,0) 1.944  (1,0.5) -0.481  (0,-0.25) 0.762  (1,0.5) 

0.7 2.398  (1,0) 2.724  (0,-0.015) -0.774  (0,-0.25) 1.258  (1,0.5) 

0.8 3.925  (1,0) 4.672  (0,0) -1.515  (0,-0.25) 2.547  (1,0.5) 

0.9 10.51  (1,0.5) 12.45  (0,0) -4.786  (0,-0.25) 8.301  (1,0.5) 

 
 
 

Table 4.8 Maximum and minimum values of IF  and IIF  of the tensile loading case for 
material combinations of typical engineering materials 

 
 Typical engineering materials 
a/W minIF    (α,β) 

maxIF   (α,β) 
minIIF     (α,β) 

maxIIF     (α,β) 

0.1 1.003  (1,0.22) 1.046  (0,-0.1) 0.021   (0,-0.1) 0.265  (1,0.35) 

0.2 1.007  (1,0.195) 1.056  (0,-0.1) (0,0.1) -0.049  (0,-0.1) 0.213  (1,0.35) 

0.3 1.081  (1,0.15) 1.125  (0,-0.1) (0,0.1) -0.073  (0,-0.1) 0.203  (1,0.35) 

0.4 1.220  (1,0.15) 1.261  (0,0.1) -0.101  (0,-0.1) 0.223  (1,0.35) 

0.5 1.454  (1,0.15) 1.496  (1,0.35) -0.140  (0,-0.1) 0.285  (1,0.35) 

0.6 1.863  (1,0.15) 1.908  (1,0.35) -0.203  (0,-0.1) 0.414  (1,0.35) 

0.7 2.658  (1,0.15) 2.724  (0,-0.015) -0.334  (0,-0.1) 0.701  (1,0.35) 

0.8 4.542  (1,0.35) 4.672  (0,0) -0.643  (0,-0.1) 1.475  (1,0.35) 

0.9 11.66  (1,0.35) 12.45  (0,0) -2.031  (0,-0.1) 5.036  (1,0.35) 
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Fig. 4.18 Contour map of (a) IF  and (b) IIF  of 0.1=a W  for bending 
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Fig. 4.19 Contour map of (a) IF  and (b) IIF  of 0.2=a W  for bending (Continue) 
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Fig. 4.19 Contour map of (a) IF  and (b) IIF  of 0.2=a W  for bending 
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Fig. 4.20 Contour map of (a) IF  and (b) IIF  of 0.3=a W  for bending 
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Fig. 4.21 Contour map of (a) IF  and (b) IIF  of 0.4=a W  for bending 
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Fig. 4.22 Contour map of (a) IF  and (b) IIF  of 0.5=a W  for bending (Continue) 
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Fig. 4.22 Contour map of (a) IF  and (b) IIF  of 0.5=a W  for bending 
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Fig. 4.23 Contour map of (a) IF  and (b) IIF  of 0.6=a W  for bending 
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Fig. 4.24 Contour map of (a) IF  and (b) IIF  of 0.7=a W  for the bending case 
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Fig. 4.25 Contour map of (a) IF  and (b) IIF  of 0.8=a W  for bending (Continue) 



CHAPTER 4 

 
 

Mechanical Engineering Dept 98 Kyushu Institute of Technology 

(b) α

β

-1
-0.5

0
0.5

1
1.5

2FII, a/W = 0.8, Bending load

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.5

-0.4
-0.5

-0.2

-0.1
0

0.1

0.2

0.3
0.4

0.5

 

 

Fig. 4.25 Contour map of (a) IF  and (b) IIF  of 0.8=a W  for bending 
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Fig. 4.26 Contour map of (a) IF  and (b) IIF  of 0.9=a W  for bending 
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4.5 Effects of relative crack lengths and material combinations to the stress intensity 

factors 

In order to examine the effect of relative crack lengths and material combinations 

more clearly, the values of IF  are normalized using those of the homogenous plate [4,5]. 

Fig. 4.27-Fig. 4.29 show the variations of ,I IIF F  with varying relative crack lengths for 

. , ., , .β = − −0 2 0 1 0 0 1  respectively. The values of the tensile loading are plotted in dashed lines 

and those of the bending loading are in solid lines. Fig. 4.27a-Fig. 4.29a clearly depict that 

there is an inflection point around .aW = 0 4  for arbitrary ,α β  regarding the tendency 

of ,homI I oF F  for the tensile loading conditions. Specifically, ,homI I oF F  increases with 

increasing α  under fixed β  before this point, but increases with decreasing α  after this 

point. However, similar inflections points for ,homI I oF F  can not be observed for the 

bending loading conditions, and ,homI I oF F  grows with decreasing α  by fixing β  to a 

constant.  

The variations of IIF  are plotted in Fig. 4.27b-Fig. 4.29b. As can be seen from these 

figures, inflection points regarding the relative crack lengths can be observed for the two 

loading conditions. And the inflection points are located at around .aW = 0 5  for the tensile 

loading, and at .aW = 0 25  for the bending loading. In addition, IIF  behave the similar 

varying tendencies for the two loading types. The values of IIF  increase with decreasing 

α  under fixed β  before the inflection points, but grow with increasing α  after these 

points. 
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Fig. 4.27 Variations of SIFs of single edge interface crack with aW for .β = −0 2  
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Fig. 4.28 Variations of SIFs of single edge interface crack with aW for β = 0  
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Fig. 4.29 Variations of SIFs of single edge interface crack with aW for .β = 0 1  
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4.6 Conclusions 

In this chapter we calculated the SIFs of the bi-material bonded finite isotropic elastic 
strips subjected to tensile and bending loads. Fitting functions were proposed to calculate 
the SIFs for shallow edge interface cracks within the singular zone. Then the variations of 
SIFs were demonstrated in contour map plots for the α β−  space. The maximum and 
minimum values of ,I IIF F  for the whole α β−  space and typical engineering materials 
were obtained, and their corresponding material combinations were also tabulated. Finally, 
the effects of the relative crack lengths and material combinations on the SIFs were also 
depicted. 
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CHAPTER 

Stress intensity factors of the double 

edge interface cracks
 
 
 
 

5.1 Introduction 

Composite materials and bonded structures are widely employed in the modern 

industrial context. The mechanical behavior of the bi-material interface is of great 

significance for the industrial application. Since the presence of cracks negatively affects a 

structure’s performance and may result in damage, basic studies about the interface cracks 

win quite a number of attentions. High stress concentration at the bonding edge corner 

caused by differences in the elastic properties of its material components may lead to the 

initiation of micro-cracks and then to the propagation.  

In the authors’ previous research, Noda et al. investigated the SIFs of an edge 

interface crack in a bonded dissimilar semi-infinite plane [1]. And Lan et al. discussed the 

effect of the material combinations and the relative crack lengths to the SIFs of a single 

edge cracked bonded strip [2].The SIFs of the single-edge cracked bi-material strip have 

been examined for various material combinations in Chapter 4. As a further research of the 

author’s previous work, the study object is extended to the double-edge interface crack of a 

bonded strip. In this chapter, therefore, the SIFs will be investigated for a bi-material 

bonded finite strip as shown in Fig. 5.1b by applying the finite element method with 

varying not only the material combinations but also the relative crack sizes. The SIFs will 

be computed and listed by varying various material combinations and relative crack 
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lengths. The material combinations ( ),α β  vary , . .α β≤ ≤ − ≤ ≤0 1 0 25 0 5  in the α β−  space, 

and the relative crack size aW varies from the very shallow crack to the very deep crack. 

Furthermore, we will show that the SIFs for the double-edge interface crack also behave a 

good double logarithmic linearity to the crack length within the zone of dominance of the 

free edge singularity. Then, a formula will be proposed to determine the SIFs for the 

shallow edge interface cracks under arbitrary combination of materials and relative crack 

size, by fitting the computed results. The effect of the relative crack lengths and material 

mismatch parameters are also discussed in this chapter. The SIF values for the single and 

double edge interface cracks will be compared for the whole range of combination of 

materials ( . , . .α β≤ ≤ − ≤ ≤0 0 95 0 2 0 45 ) and relative crack lengths ( .aW≤ ≤0 0 9 ). For the single and 

double edge cracked homogenous strips shown in Fig. 5.2, it is well known that the SIFs 

for the single crack are always no less than those of the double crack. However, this law 

should not be always true for the interfacial cracks. It will be shown that the SIFs of a 

double edge interface crack may be possibly larger than those of a single edge interface 

crack for some specific combination of materials and relative crack lengths. In addition, 

the SIFs should be compared in three different zones of relative crack lengths. 
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Fig. 5.1 (a) Single edge interface crack and (b) double edge interface crack in a 
bonded strip (c) bi-material bonded strip without crack 
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Fig. 5.2 (a) Single and (b) double edge cracks in homogenous strips 
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Fig. 5.3 FE mesh type and geometric configurations for a double-edge interface crack 

 
 

5.2 Numerical verification for the double edge crack problems  

The robustness and accuracy of the current method in treating double-edge cracked 

problems are investigated. The FE model for the double-edge cracked bi-material strip is 

created in a self-similar manner as depicted in Chapter 2. Fig. 5.3 shows the mesh type and 

geometric configurations for the double-edge cracked bonded strip. It is supposed that two 

edge interface cracks initiate at the left and right corner of the strip. And the crack lengths 

are kept the same and fixed to a=10mm which is the same as the half crack length of the 

reference problem. Then we vary the width of the bonded strip 2W  to make 0 1< <a W , 
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and keep the length two times the size of the width in the FE model. Furthermore, the 

minimum element size e of the FE models are kept the same for each pair of reference 

and given unknown problems. 

The SIFs for the extremely deep crack cases ( .aW = 0 8 ) of a double edge cracked 

homogenous strip (α β= = 0 , two materials are identical) are plotted against the minimum 

element size of the FE model in Fig. 5.4. As can be seen from this figure, accurate result 

can be obtained using linear extrapolation. The values for other relative crack lengths are 

tabulated and compared to those predicted by Nisitani [3] in Table 5.1. It can be seen from 

the table that the extrapolated results in this research and those of Nisitani [3] are in very 

good agreement. 

Fig. 5.5a and b show the variations of the normalized SIFs ,I IIF F  for a double edge 

cracked dissimilar bonded strips .aW = 0 8 , respectively. Similar to the discussion in Chapter 

2, the elastic parameters are restricted to , .G G ν ν= = =2 1 2 14 0 3  and plane stress condition is 

assumed in the analysis. As can be seen from Fig. 5.5a, a linear relationship can be 

observed for the case of IF . However, different from the case of single edge cracked 

bi-material strip, Fig. 5.5b shows that the values of IIF  converge from e a< 243 . This is 

maybe because less bending effects due to the symmetry of the double-edge interface 

cracks. Therefore, the post-processing technique of linear extrapolation is only employed 

to compute IF . And accurate results of IIF  can be obtained directly by using the minimum 

element size e a< 243 . The extrapolated values for a double edge cracked bonded strip 

shown in Fig. 5.1b are tabulated in Table 5.2. It should be noted that those results in Table 

5.2 appear to be new and there are no published data available to be compared with. As 

shown in the previous examples and discussions in Chapter 2, the current method is proved 

to produce accurate numerical results for mode I crack problems, and therefore it can be 

assumed that the results in Table 5.2 are also valid and reliable. 
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Fig. 5.4 Variations of the normalized stress intensity factors IF  with the minimum 
element size e  for a double-edge cracked homogenous strip .aW = 0 8  subjected to 

uniform tension 
 
 
 

Table 5.1 Normalized stress intensity factors IF  for the single and double edge cracked 
homogenous strips 

 
aW  Present Ref. [3] 
0.1 1.117 1.117
0.2 1.112 1.112
0.3 1.115 1.115
0.4 1.132 1.132
0.5 1.169 1.169
0.6 1.236 1.236
0.7 1.353 1.353
0.8 1.573 1.574
0.9 2.115 2.116
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Fig. 5.5 Variations of the normalized stress intensity factors (a) IF  and (b) IIF  with the 

minimum element size e  for a double-edge cracked bi-material strip .aW = 0 8  subjected to 
uniform tension 
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Table 5.2 Normalized stress intensity factors for a double edge cracked bonded strip shown 

in Fig. 1b ( .= =1 2 0 3v v , plane stress) 
 

aW  
E E =2 1 2  E E =2 1 4 E E =2 1 10 E E =2 1 100  

IF  IIF  IF IIF IF IIF IF  IIF  
0.1 1.131 -0.128 1.164 -0.241 1.212 -0.350 1.264 -0.447
0.2 1.115 -0.119 1.122 -0.219 1.132 -0.309 1.142 -0.382
0.3 1.115 -0.112 1.113 -0.204 1.112 -0.284 1.1109 -0.347
0.4 1.131 -0.106 1.128 -0.193 1.124 -0.268 1.120 -0.325
0.5 1.168 -0.103 1.166 -0.188 1.163 -0.259 1.159 -0.315
0.6 1.236 -0.104 1.235 -0.189 1.235 -0.261 1.234 -0.318
0.7 1.354 -0.111 1.356 -0.202 1.358 -0.280 1.361 -0.342
0.8 1.575 -0.133 1.580 -0.243 1.586 -0.338 1.591 -0.414
0.9 2.118 -0.207 2.122 -0.380 2.128 -0.531 2.133 -0.652

 

 

5.3 Stress intensity factors of the double-edge interface cracks within the singular 

zone 

In chapter 4, it has been confirmed that the normalized SIFs within the zone of 

free-edge singularity for a single-edge cracked bi-material strip behave a double 

logarithmic linearity to the relative crack length aW  [1,2]. Here, the double edge interface 

crack is the main interest. The SIFs will be investigated by varying the relative crack 

length aW , as well as the material composite parameters α  and β . Then the SIFs for the 

two interfacial cracks will be compared systematically. In this chapter, we restrict our 

discussion to the material combinations with .β = 0 3 . The double logarithmic distributions 

of the normalized SIFs IF  and IIF  are plotted against aW  as shown in Fig. 5.6a and b, 

respectively. By the way, the SIFs for the single-edge interface cracks are also plotted in 

Fig. 5.6 to be compared with. ,I IIF F  for the double-edge interface cracks are plotted in 

solid curves and those for the single-edge interface cracks are plotted in dashed ones. From 



CHAPTER 5 
 

 

Mechanical Engineering Dept 112 Kyushu Institute of Technology 

Fig. 5.6, it can be found that, similar double logarithmic linearity of ,I IIF F  can be observed 

when .aW < 0 01 . Furthermore, the slopes corresponding to the same material composite 

parameters of the two types of cracks are totally the same, and they are equal to the 

singular index λ − 1  of the perfectly bonded strip without crack as shown in Fig. 5.1c.  
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Fig. 5.6 Double logarithmic distributions of (a) IF  and (b) IIF  for the single and double 
edge interface cracks 
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Table 5.3 Tabulated values of IC  
 

α  .β = −0 2  .β = −0 1  β = 0 .β = 0 1 .β = 0 2 .β = 0 3 .β = 0 4  .β = 0 45

0.05 1.05 1.089 1.116 1.131   
0.1 1.002 1.059 1.1 1.139 1.166   
0.15 0.945 1.027 1.076 1.135 1.193   
0.2  0.994 1.046 1.12 1.209   
0.3  0.932 0.98 1.061 1.191   
0.4  0.875 0.914 0.987 1.115 1.434   
0.5  0.819 0.854 0.913 1.015 1.29   
0.6   0.8 0.847 0.92 1.106   
0.7   0.75 0.789 0.838 0.954 1.734  
0.75   0.729 0.762 0.802 0.892 1.302  
0.8   0.7 0.737 0.769 0.838 1.092  
0.85   0.674 0.713 0.738 0.791 0.959 1.505
0.9   0.645 0.69 0.709 0.749 0.864 1.083
0.95   0.6 0.667 0.681 0.711 0.791 0.907

 
 

Table 5.4 Tabulated values of IIC  
 

α  .β = −0 2  .β = −0 1  β = 0 .β = 0 1 .β = 0 2 .β = 0 3 .β = 0 4  .β = 0 45

0.05 -0.084 -0.061 -0.027 0.013   
0.1 -0.095 -0.08 -0.052 -0.013 0.031   
0.15 -0.102 -0.097 -0.075 -0.041 0.006   
0.2  -0.11 -0.096 -0.067 -0.022   
0.3  -0.132 -0.128 -0.114 -0.082   
0.4  -0.146 -0.151 -0.15 -0.135 -0.09   
0.5  -0.155 -0.167 -0.174 -0.174 -0.16   
0.6   -0.178 -0.191 -0.199 -0.204   
0.7   -0.184 -0.202 -0.215 -0.227 -0.29  
0.75   -0.186 -0.206 -0.22 -0.235 -0.277  
0.8   -0.186 -0.209 -0.224 -0.24 -0.273  
0.85   -0.187 -0.211 -0.227 -0.244 -0.271 -0.358
0.9   -0.183 -0.212 -0.229 -0.246 -0.27 -0.307
0.95   -0.175 -0.213 -0.23 -0.248 -0.269 -0.291

 

 

The double logarithmic discussions about the single-edge interface crack in Chapter 3 

[1] are also applicable to the double edge interface cracks. It has been proved that the 

empirical function Eq.(5.1) is also suitable for the double-edge cracks case by merely 

modifying the constants ,I IIC C . Here, what should be noticed is that ,I IIF F  are the same 
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within the singular zone for the two types of cracks when ( )α α β− =2 0 . See, the curves of 

. , .α β= =0 6 0 3  are coincide when .aW < 0 01 in Fig. 5.6 . The detailed information about 

Eq.(5.1) can be referred in Chapter 3 [1,2]. 

,( ) ( )
I III II
C CF FaW aWλ λ

• •
− −= =1 1  (5.1)

The constants ,I IIC C  in Eq. (5.1) for the double edge crack case are computed for 

various material composite parameters. The values of ,I IIC C  are plotted and tabulated 

against ( ),α β  in Fig. 5.7a and b as well as in Table 5.3 and Table 5.4, respectively. The 

parameters ,I IIC C  for the single-edge interface cracks are also plotted against ( ),α β  in 

dashed lines in Fig. 5.7 to be compared with. It has been seen that they have the same 

values when ( )α α β− =2 0  despite the crack differences. In addition, the detailed information 

about the corresponding intensity of stress singularity can be found in Chapter 3 [4,5].  
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Fig. 5.7 Values of ,I IIC C  of Eq.(16) for single and double edge interface cracks 
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Recall Eq. (5.1) and Fig. 5.7, the SIFs at the crack tip for the two types of cracks of 

the same relative crack length aW  within the singular zone (shallow crack, .alW < 0 01 ) 

have the following relationships. 

, , , ,,> >I Dbl I Sgl II Dbl II SglF F F F , when ( )α α β− >2 0 ; 

, , , ,,= =I Dbl I Sgl II Dbl II SglF F F F , when ( )α α β− =2 0 ; 

, , , ,,< <I Dbl I Sgl II Dbl II SglF F F F , when ( )α α β− <2 0 . 
(5.2)

Where, , ,,I Dbl II DblF F  denote the normalized SIFs for a double edge interface crack, and 

, ,,I Sgl II SglF F  denote those for a single edge interface crack.  

    The size of the zone of dominance of free-edge singularity can be determined in a 

manner as given below. The lines for the single and double edge interface cracks under the 

same material parameters should be parallel (the line slopes are equal to the order of stress 

singularity λ−1 ). Then, by examining the agreement of the slopes of the lines with the 

theoretical values of λ−1 , the size of the singular zone can be determined. Take .β = 0 3  as 

an example, extremely good agreement for the two slopes can be found for .aW < 0 001 

and an error within %5  for .alW < 0 01. So, the size of singular zone can be roughly 

decided as .alW < 0 01. More computations of the SIFs for . .aW< <0 001 0 01  are needed to 

determine the size of the singular zone accurately. It should be noted that the singular zone 

varies with the bi-elastic material combinations and the radial directions which is centered 

at the interface corner. 

 
 

5.4 Comparison of the stress intensity factors for the double and single edge 

interface cracks 

In this section, the SIFs at the crack tip for the double-edge and single-edge interface 

cracks are systematically investigated and compared for various material combinations and 

crack lengths. For the case of the single-edge and double-edge cracked homogenous strips 
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shown in Fig. 5.2, it is well known that the SIFs for the single crack are always no less than 

those of the double crack. However, this law should not be always true for the case of 

interfacial cracks. So, the SIFs for the single and double edge interface cracks will be 

compared for arbitrary combination of materials in the following section. 

The normalized SIF curves of three typical material combinations (good pair, equal 

pair and bad pair) shown in Fig. 5.6 are chosen and plotted in Fig. 5.8. As can be seen from 

the figure, the whole transverse region of the perfectly bonded strip shown in Fig. 5.1c can 

be separated into three different zones according to the dominance effect of the free-edge 

singularity. Namely, they are denoted as zone 1, 2 and 3 as shown in Fig. 5.8 for notational 

convenient. The boundaries of zone 1 and 2 as well as zone 2 and 3 are roughly defined as 

. W0 01 and .W0 1  respectively. Zone 1 is termed the zone of dominance of free-edge 

singularity, and it has been discussed in Section 5.3. Exact double logarithmic linearity 

exists within this zone and the SIFs can be obtained by Eq.(5.1) if the interface cracks 

initiate within zone 1 ( .alW ≤ 0 01 ). Zone 2 is regarded as the transitional zone between zone 1 

and 3. The SIFs are also affected by the free-edge singularity, since Zone 2 is close to the 

very vicinity of Zone 1. However, the double logarithmic distributions don’t behave exact 

linearity any more in Zone 2. Furthermore, Zone 3 is totally no affected by the free-edge 

singularity since it is too far away from Zone 1. As can be seen from Fig. 5.8, the SIFs of a 

single edge interface crack within zone 3 are always bigger than those of a double edge 

interface crack. This phenomenon is caused by the counterbalance effect due to symmetry 

of the double edge interface crack. However, when the crack is located in zone 2 (say, 

. .aW≤ ≤0 01 0 1 ), the relationships of the SIFs for the two types of cracks become complexity, 

and no unique or clear regular pattern can be followed. In this case, the SIFs are 

determined by the combined effect of the free-edge singularity and the counterbalance of 

symmetry. Generally, the left part of zone 2 is largely affected by the free-edge singularity 



CHAPTER 5 
 

 

Mechanical Engineering Dept 119 Kyushu Institute of Technology 

and the right part is largely dominated by the counterbalance effect. Specifically, ,I IIF F  for 

.aW = 0 1  (crack locates in zone 2) are plotted against various combination of materials in 

Fig. 5.9a and b respectively. It can be seen clearly seen that the SIFs for a double-edge 

interface crack can still be bigger than those of a single-edge crack for specific 

combination of materials. Fig. 5.10a and b show the variations of ,I IIF F  for .aW = 0 2  

(crack locates in zone 3) for various combination of materials respectively. Fig. 5.10a and 

b show that the absolute values of ,I IIF F  for a single edge crack are always bigger than 

those of a double edge crack. In addition, the SIFs of the double-edge cracks equal those of 

the single-edge crack within the singular zone for ( )α α β− =2 0 , and are always smaller than 

those of the single-edge crack within zone 3.  
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Fig. 5.8 Three different zones for a dissimilar bonded strip 
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Fig 5.9. (a) IF  and (b) IIF  for a single and a double edge interface cracks .aW = 0 1  

 
 
 



CHAPTER 5 
 

 

Mechanical Engineering Dept 122 Kyushu Institute of Technology 

 

 

(a)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

 1 1,( ) ( )λ λ
• •

− −= =I III IIC CF Fa W a W

β=0.45

F Ι  

α

β=−0.2

β=0.2

β=0β=−0.1

β=0.1

β=0.3 β=0.4

β=0.45

Double-Edge Crack
Single-Edge Crack

a/W=0.2

β=−0.2 β=−0.1
β=0

β=0.1

β=0.2

β=0.3 β=0.4

 
 

(b)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

-0.45

-0.40

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

 1 1,( ) ( )λ λ
• •

− −= =I III IIC CF Fa W a W

β=−0.2

F ΙΙ  

α

β=−0.2

β=0.3

β=0.3

β=0.2

β=0.2

β=−0.1

β=−0.1

β=0

β=0
Double-Edge Crack
Single-Edge Crack

a/W=0.2

β=0.4

β=0.4

β=0.45

β=0.45

β=0.1

β=0.1

 
 

Fig. 5.10 (a) IF  and (b) IIF  for a single and a double edge interface cracks .aW = 0 2  
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5.5 Conclusions 

In this chapter, variations of the normalized SIFs ,I IIF F  at the crack tip of the double 

edge interface cracks in a bi-material strip were investigated and indicated for various 

material combinations and relative crack lengths /a W . Then, the SIFs of the single-edge 

and double-edge interface cracks were systematically compared with the following 

conclusions listed. 

1. The normalized SIFs for the single and double edge cracked bi-material strips 

behave similar linear double logarithmic relationships within the zone of free-edge 

singularity. Especially, the slopes for the two types of cracks are the same for the same 

material combinations when ( )α α β− =2 0 . 

2. The empirical function Eq. (4.2) is also available to the double-edge interface 

cracks by merely re-computing the constants ,I IIC C . And the new results of ,I IIC C  for the 

double-edge interface cracks are computed and listed for various material combinations.  

3. The SIF values for the single-edge and double-edge interface cracks were compared 

for the whole range of combination of materials and relative crack lengths. The SIFs of a 

double-edge interface crack may be possibly larger than those of a single-edge interface 

crack for some specific combination of materials and relative crack lengths.  

4. The extent of the bonded strip can be divided into three different zones according to 

the dominance of the effect of free-edge singularity and counterbalance of bending. 
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6 

CHAPTER 

Stress intensity factors for 

adhesively bonded joints
 
 
 
 

6.1 Introductions 

The increasing demands of electronics nowadays request not only thin, short and 

small geometric configurations but also high reliable performances. There is an increasing 

concern that the Chip Scale Packaging (CSP) assemblies may not meet the critical 

mechanical and thermal cycling reliability requirements. Reliability evaluations of 

adhesive strength on the interface problems are important for IC packaging designation and 

CSP materials selection. It is not easy to get the real adhesive strengths using the 

traditional experimental manners. Generally, this is due to three reasons. Firstly, the 

adhesive strengths are largely dependent on the specifications and geometric 

configurations of the specimens. Secondly, singular stress field exists around the bonding 

corner which leads to non-uniform stress distribution. And thirdly, the conventional 

adhesion tests give merely the apparent adhesion strengths including the effect of residual 

stress and the results can not be used for design. Therefore, new testing manners and 

failure criteria based on fracture mechanics win quite a lot of attentions till recently [1-10]. 

Fig 6.1a shows the quasi-static fracture testing of Double Cantilever Beam (DCM) type 

specimen [4-8]. And Fig.6.1b shows the three-point bending tests of End Notch Flexure 

(ENF) specimens [9, 10] composed of an IC molding compound and Fe-42Ni lead frame 

material. Specifically, constant adhesion strengths without effects of residual stress were 
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obtained independently of specimen dimensions [10].  

Little research has considered the SIFs of the adhesively bonded joints for arbitrary 

material combinations till recently. In this chapter, the SIFs of three-layered joints/ 

adhesive joints will be computed for arbitrary material combinations and compared for 

tensile and bending loads. In addition, the effects of adhesive layer thickness on the SIFs 

for the three-layered joints which are wildly seen in the modern chip packaging technology 

will also be studied and demonstrated. Furthermore, the adhesion strength evaluation based 

on SIFs will be discussed in Appendix B. This chapter is to contribute the structural design 

and material selection of IC plastic packages.  
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Fig. 6.1 (a) Double cantilever beam test and (b) testing manner of adhesive strength for IC 
mold resin 

 



CHAPTER 6 
 

 

Mechanical Engineering Dept 128 Kyushu Institute of Technology 

 

(a)

L

1 1,G νa
W

2 2,G ν

σ

σ

Mat.2

Mat.1

L

1 1,G νa
W

2 2,G ν

σ

σ

Mat.2Mat.2

Mat.1Mat.1

              (b)

L

1 1,νG
a

W

σ

σ

Mat1

Mat1

t

Interface 1

Interface 2

L

1 1,νGAdherent2

Adhesive

Adherent1

Mat22 2,νG

L

1 1,νG
a

W

σ

σ

Mat1Mat1

Mat1Mat1

t

Interface 1

Interface 2

L

1 1,νGAdherent2

Adhesive

Adherent1

Mat2Mat22 2,νG

 

 
Fig. 6.2 (a) bi-material butt joints and (b) adhesive joints 

 

 

6.2 Numerical verification for the single-edge cracked adhesively bonded strips 

    The robustness and accuracy of the improved crack tip stress method in treating 

several edge interface crack problems have been investigated in the previous chapters. In 

order to achieve high accuracy, the exactly same mesh patterns for the reference and target 

unknown problems are employed in the FE models. However, it is difficult to keep exactly 

same mesh patterns due to the existence of the adhesive layer for the adhesively bonded 

strips. Therefore the FE modeling techniques on the adhesive layers will be discussed in 

this section and the numerical data will be compared to show the accuracy.  

    The adhesively bonded strip with a single-edge interface crack initiated on Interface I 

shown in Fig. 6.2b is investigated. The geometric specifications are .aW = 0 1  and .t W = 0 1 , 

and the crack length is fixed to a mm= 10 . The same central cracked dissimilar bonded 

planes depicted in Chapter 2 is chosen as the reference problem, and its crack length is 
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a mm=2 20 . The mesh patterns around the central crack for the reference problem are shown 

in Fig.6.3. For the convenience of understanding, the meshes with different materials in 

Fig. 6.3 are distinguished using different colors. In order to find a reliable modeling 

technique for the adhesively bonded strip, we presumed a comparison with two different 

types of models.  

Generally, there are two manners to create the FE models for the adhesively bonded 

strips. Fig. 6.4a and b show the two different meshing techniques manner 1 and manner 2, 

respectively. Specifically, as shown in Fig. 6.4a, manner 1 keeps the FE meshes around the 

crack exactly the same with those of the reference problem shown in Fig. 6.3. The adhesive 

layer is introduced by merely assigning the new material (material 2 in Fig. 6.4a) to the 

corresponding elements of the desired adhesive layer thickness. However, in Fig. 6.4b, 

manner 2 keeps the meshes of the most upper and lower layers (material 1) the same with 

those of the reference problem shown in Fig. 6.3. Then the adhesive layer is created by 

adding the new elements in cyan color shown in Fig. 6.4b. It should be noted that creating 

FE model in manner 1 doesn’t always turn to be success for arbitrary adhesive layer 

thickness, because exact line boundaries don’t exist in the model all the time. And manner 

1 in Fig. 6.4a has the best mesh similarity with the reference problem and the worst 

robustness in creating the Model, and vice versa for manner 2. Then we pursued the 

analysis for several material combinations of , , , , ,G G =2 1 1 2 3 4 10 100  by fixing .υ υ= =1 2 0 3  in 

plane stress conditions. The values obtained using different FE models in Fig. 6.4a and b 

are tabulated in Table 6.1. The FE stress components for the reference and target unknown 

problems are also included in this table. As can be seen from this table, the stress 

components computed by the FE models shown in Fig. 6.4a and b have 3-4 digits 

coincidence, and their corresponding SIFs have 4-5 digits coincidence. Therefore, the mesh 

pattern for the adhesive layer does not affect the computational accuracy too much. And 
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considering the flexibility and robustness in creating the model successfully, manner 2 in 

Fig. 6.4b is suggested and employed to creating the FE models in this chapter. 

 
 
 

Table 6.1 SIFs computed by using FE models in Fig.6.4a and b for an single-edge 
cracked adhesively bonded strips 

 
   Reference T Reference S Unknown Problem Final Results 

E2/E1 α β σy τxy σy τxy σy τxy ε τ∞ FI FII 

FE model in Fig.6.4a 

1 0 0 20.6855 6.0E-10 0 11.7483 24.5812 0 0 0 1.1883 0 

2 -0.3333 -0.1167 20.0492 -2.5977 4.8652 11.4294 26.4685 -2.5466 0.0373 0.0562 1.2970 0.1704

3 -0.5 -0.175 19.2508 -3.8644 7.2250 11.0285 27.0141 -3.9934 0.0563 0.0842 1.3474 0.2677

4 -0.6 -0.21 18.6162 -4.6060 8.5995 10.7092 27.1759 -4.9252 0.06786 0.1004 1.3761 0.3294

10 -0.8182 -0.2864 16.8208 -6.1570 11.447 9.8026 26.7761 -7.1430 0.0938 0.1299 1.4269 0.4643

100 -0.9802 -0.3431 15.1168 -7.2287 13.383 8.9378 23.5538 -8.6220 0.1138 0.1225 1.3665 0.4922

FE model in Fig. 6.4b 

1 0 0 20.6855 6.0E-10 0 11.7483 24.5823 0 0 0 1.1884 0 

2 -0.3333 -0.1167 20.0492 -2.5977 4.8652 11.4294 26.47 -2.5454 0.0373 0.0563 1.2970 0.1705

3 -0.5 -0.175 19.2508 -3.8644 7.2250 11.0285 27.0157 -3.9924 0.0563 0.0843 1.3474 0.2678

4 -0.6 -0.21 18.6162 -4.6060 8.5995 10.7092 27.1775 -4.9243 0.0679 0.1005 1.3761 0.3296

10 -0.8182 -0.2864 16.8208 -6.1567 11.447 9.8026 26.7771 -7.1425 0.0938 0.1299 1.4270 0.4643

100 -0.9802 -0.3431 15.1168 -7.2287 13.383 8.9378 23.5537 -8.6219 0.1138 0.1225 1.3665 0.4922
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Fig. 6.3 FE mesh pattern for the reference problem (central cracked dissimilar infinite 

plate ) 
 
 

(a) (b)  
 

Fig. 6.4 The meshing techniques for the adhesively bonded strips: (a) manner 1 and (b) 
manner 2 
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Fig. 6.5 The whole Dundurs’ parameters α β−  space 
 
 

6.3 Stress intensity factors for bi-material adhesive joints 

The single edge cracked bonded strip shown in Fig. 6.2a has been well investigated in 

Chapter 4. And the discussions here will concentrate into the adhesively bonded joints 

shown in Fig. 6.2b. Fig. 6.2b shows the geometric configurations. The adhesive joint 

consists of two identical adherents which are adhesively bonded together by the adhesive 

layer. The width of the strip is W , and the heights of the adherents and adhesive are L  

and t , respectively. An edge interface crack of length a  is assumed to initiate on 

interface 1. For the adhesive joints shown in Fig. 6.2b, the SIFs are also uniquely 

determined by the Dundurs’ material composite parameters. However, different from the 

case of bi-material joints shown in Fig. 6.2a, the SIFs for combinations in the left (α < 0 ) 

and right region (α > 0 ) in the α β−  space are not point symmetry. Thus, the SIFs for 

various material combinations should be computed for the whole α β−  space as shown in 

Fig. 6.5.  

The shallow edge interface cracks within the singular zone as .aW = 0 001  are 
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investigated for the adhesive joints for the whole range of material combinations in the 

α β−  space ( , , . , .α β⎡ ⎤ ⎡ ⎤∈ − ∈ −⎣ ⎦ ⎣ ⎦11 0 5 0 5 ). In addition, the SIFs for various thicknesses of 

adhesive layers are also calculated. Fig. 6.6-6.10 show the SIFs for the adhesive joints 

shown in Fig. 6.4b with the adhesive layer thickness of ,, ., . , .t W = 2 1 0 1 0 01 0 001  respectively. 

As can be seen from Fig. 6.6, the values of IF  for t W = 2  are strictly mirror symmetric 

about α = 0  and those for IIF  are reflection symmetric about ,α β= =0 0  in the α β−  

space. In addition, the SIF values are identical with those of the bi-material joints shown in 

Fig. 6.4a. However, the values for t W = 1 are not strictly symmetric although similar 

varying tendency can be observed in Fig. 6.7. This means the SIFs of adhesive joints is not 

affected by adherent 2 when the thickness of adhesive layer is long enough comparing with 

the strip width. Symmetries are not observed for ., . , .t W = 0 1 0 01 0 001 as shown in Fig. 

6.8-6.10. This is due to the interference of the two singular fields around the adjacent 

interface corners. The values for material combinations in the left α β−  space (α < 0 ) 

have bigger varying magnitude than those in the right α β−  space ( α > 0 ). For 

. , .t W = 0 01 0 001 in Fig. 6.9a and 6.10a, IF  grows monotonously with the decrease of α  

for a fixed β . The amplitude of the variation for IIF  decreases as the decrease of the 

thickness of adhesive layer. The SIFs for the bending loads are demonstrated in Fig. 

6.11-6.15. Similar conclusions can be found for the bending loading conditions. 

Furthermore, the contour plot SIF distributions for Fig. 6.6-6.15 are given in Appendix C. 
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Fig. 6.6 Stress intensity factors  (a) IF  and (b) IIF  of adhesive joints . ,aW tW= =0 001 2  
for the tensile loading case 
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Fig. 6.7 Stress intensity factors (a) IF  and (b) IIF  of adhesive joints . ,aW tW= =0 001 1  
for the tensile loading case 
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Fig. 6.8 Stress intensity factors (a) IF  and (b) IIF  of adhesive joints . , .aW tW= =0 001 0 1  
for the tensile loading case 
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Fig.6.9 Stress intensity factors (a) IF  and (b) IIF  of adhesive joints . , .aW tW= =0 001 0 01  
for the tensile loading case 
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Fig. 6.10 Stress intensity factors (a) IF  and (b) IIF  of adhesive joints 
. , .aW tW= =0 001 0 001  for the tensile loading case 
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Fig. 6.11 Stress intensity factors (a) IF  and (b) IIF  of adhesive joints . ,aW tW= =0 001 2  
for the bending loading case 
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Fig. 6.12 Stress intensity factors (a) IF  and (b) IIF  of adhesive joints . ,aW tW= =0 001 1  
for the bending loading case 
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Fig. 6.13 Stress intensity factors (a) IF  and (b) IIF  of adhesive joints 
. , .aW tW= =0 001 0 1  for the bending loading case 
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Fig.6.14 Stress intensity factors (a) IF  and (b) IIF  of adhesive joints 
. , .aW tW= =0 001 0 01  for the bending loading case 
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Fig. 6.15 Stress intensity factors (a) IF  and (b) IIF  of adhesive joints 
. , .aW tW= =0 001 0 001  for the bending loading case 
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6.4 The effect of interlayer thickness on the stress intensity factors for three-layered 

joints in CSP 

Two-dimensional plane-strain problems of the single-edge cracked three-layered 

joints in CSP shown in Fig. 6.16 are analyzed for various crack lengths and interlayer 

thicknesses. It is supposed that a crack of length a has initiated at the interface 1 and 2 of 

the three-layered strips. The geometric configurations of the analytical models are 

demonstrated in Fig. 6.16a and b, respectively. Eight-node quadrilateral elements in plane 

strain are used for both the reference and the target unknown problems. The three-layered 

strips are composed of Si (IC chip), resin and FR-4.5(substrate) which are widely observed 

in the chip size packaging technology of electronic devices. The elastic parameters are 

tabulated in Table 6.2 [11]. The post-processing technique is also employed for this 

problem. The normalized SIFs of the problems shown in Fig. 6.16a and b predicted by the 

current method for different crack lengths and interlayer thicknesses are tabulated in Table 

6.3 and 6.4 as well as in Table 6.5 and 6.6, respectively. The SIFs for the dissimilar bonded 

strips in Fig. 6.16c and d are tabulated in brackets in the last row of each table. As can be 

seen from the tables, the SIFs of Fig. 6.16c and d are in good agreement with those of Fig. 

6.16a and b when t W > 1 , respectively. It should be noted that these results appear to be 

new and that there are no published data with which to compare them. Furthermore, the 

SIF values are also plotted in Fig. 6.17 and 6.18 for the edge interface cracks in interface 1 

and 2, respectively. The SIFs of the tensile loads are plotted in solid lines and those for the 

bending loads are plotted in dashed lines. The figures show that the SIF values increase 

monotonically as the increase of the thickness of interlayer for a fixed crack length, and 

they reach to upper limit values asymptotically when the thickness of interlayer is bigger 

than the width of the strip ( t W > 1 ). 
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Fig.6.16 Single-edge interface crack on (a) interface 1 and (b) interface 2 of an adhesively 
bonded strip 
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Table 6.2 Material properties for adhesively bonded joint (CSP in the electronic device) 
(Koguchi and Nakajima 2010) 

 
Material Property Silicon Resin FR-4.5
Young’s modulus (GPa) 166 2.74 15.34
Poisson’s ratio 0.26 0.38 0.15

 

 

 

 Table 6.3 Normalized SIFs of cracks on interface I in Fig.8a for tensile loads 
 

 .aW = 0 001  .aW = 0 01  .aW = 0 1  .aW = 0 2  .aW = 0 3  

t W  IF  IIF  IF  IIF  IF  IIF  IF  IIF  IF  IIF  

0.001 0.998 -0.206 0.661 -0.027 0.568 0.060 0.656 0.099 0.830 0.141 

0.01 1.566 -0.203 0.782 -0.154 0.605 -0.009 0.677 0.018 0.821 0.036 

0.04 2.180 -0.216 0.991 -0.176 0.684 -0.060 0.758 -0.030 0.921 -0.022 

0.1 2.769 -0.258 1.529 -0.207 0.794 -0.126 0.880 -0.079 1.076 -0.067 

0.2 3.454 -0.317 1.875 -0.211 0.929 -0.166 1.034 -0.135 1.280 -0.108 

0.4 4.412 -0.404 2.100 -0.213 1.169 -0.168 1.253 -0.140 1.491 -0.098 

1 5.146 -0.473 2.473 -0.239 1.399 -0.125 1.450 -0.064 1.696 0.005 

2 5.148 -0.474 2.476 -0.240 1.409 -0.118 1.460 -0.053 1.705 0.017 

4 5.148 -0.474 2.476 -0.240 1.409 -0.118 1.460 -0.053 1.705 0.017 

Fig.6.14c (5.148) (-0.474) (2.476) (-0.240) (1.409) (-0.118) (1.460) (-0.053) (1.705) (0.017) 

 

 

 

Table 6.4 Normalized SIFs of cracks on interface I in Fig.8a for bending loads 
 

 .aW = 0 001  .aW = 0 01  .aW = 0 1  .aW = 0 2  .aW = 0 3  

t W  IF  IIF  IF  IIF  IF  IIF  IF  IIF  IF  IIF  

0.001 0.872 -0.176 0.589 -0.014 0.478 0.073 0.492 0.106 0.549 0.135 

0.01 1.368 -0.179 0.706 -0.120 0.513 0.022 0.509 0.048 0.546 0.062 

0.04 1.957 -0.195 0.913 -0.147 0.588 -0.009 0.572 0.021 0.612 0.031 

0.1 2.522 -0.237 1.250 -0.153 0.688 -0.045 0.673 0.004 0.722 0.021 

0.2 3.011 -0.280 1.505 -0.154 0.830 -0.042 0.806 0.007 0.867 0.039 

0.4 3.368 -0.313 1.641 -0.155 0.982 0.002 0.953 0.070 0.994 0.107 

1 3.435 -0.320 1.680 -0.156 1.030 0.025 1.011 0.115 1.074 0.178 

2 3.434 -0.320 1.680 -0.156 1.030 0.025 1.011 0.115 1.074 0.178 

4 3.434 -0.320 1.680 -0.156 1.030 0.025 1.011 0.115 1.074 0.178 

Fig.6.14c (3.434) (-0.320) (1.680) (-0.156) (1.030) (0.025) (1.011) (0.115) (1.074) (0.178)
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Table 6.5 Normalized SIFs of cracks on interface II in Fig.8b for tensile loads 
 

 .aW = 0 001  .aW = 0 01  .aW = 0 1  .aW = 0 2  .aW = 0 3  

t W  IF  IIF  IF  IIF  IF  IIF  IF  IIF  IF  IIF  

0.001 0.942 0.101 0.583 0.181 0.415 0.303 0.444 0.405 0.563 0.571 

0.01 0.945 0.168 0.743 0.094 0.533 0.182 0.574 0.254 0.681 0.340 

0.04 1.128 0.171 0.792 0.147 0.722 0.140 0.698 0.186 0.840 0.253 

0.1 1.384 0.194 1.054 0.192 0.767 0.137 0.842 0.162 1.027 0.211 

0.2 1.702 0.232 1.266 0.203 0.879 0.167 1.005 0.173 1.248 0.194 

0.4 2.184 0.295 1.407 0.207 1.064 0.184 1.207 0.175 1.465 0.162 

1 2.628 0.356 1.711 0.239 1.277 0.158 1.395 0.116 1.668 0.072 

2 2.641 0.358 1.722 0.240 1.292 0.152 1.409 0.105 1.679 0.060 

4 2.641 0.358 1.722 0.240 1.292 0.152 1.409 0.105 1.679 0.060 

Fig.6.14d (2.641) (0.358) (1.722) (0.240) (1.292) (0.152) (1.409) (0.105) (1.679) (0.060)

 

 

 

 

 

Table 6.6 Normalized SIFs of cracks on interface II in Fig.8b for bending loads 
 

 .aW = 0 001  .aW = 0 01  .aW = 0 1  .aW = 0 2  .aW = 0 3  

t W  IF  IIF  IF  IIF  IF  IIF  IF  IIF  IF  IIF  

0.001 0.826 0.096 0.517 0.170 0.338 0.273 0.316 0.328 0.352 0.409 

0.01 0.898 0.159 0.680 0.105 0.444 0.176 0.421 0.216 0.439 0.254 

0.04 1.175 0.174 0.803 0.145 0.553 0.131 0.521 0.161 0.549 0.189 

0.1 1.494 0.207 1.020 0.165 0.513 0.813 0.647 0.124 0.689 0.143 

0.2 1.787 0.244 1.215 0.173 0.832 0.094 0.802 0.086 0.859 0.087 

0.4 2.019 0.275 1.335 0.177 0.986 0.054 0.967 0.010 1.009 -0.007 

1 2.072 0.283 1.376 0.180 1.038 0.033 1.034 -0.036 1.101 -0.083 

2 2.072 0.283 1.375 0.180 1.039 0.033 1.035 -0.037 1.102 -0.083 

4 2.072 0.283 1.375 0.180 1.039 0.033 1.035 -0.037 1.102 -0.083 

Fig.6.14d (2.072) (0.283) (1.375) (0.180) (1.039) (0.033) (1.035) (-0.037) (1.102) (-0.083) 
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Fig.6.17 Variation of SIFs for edge interface cracks in interface 1 for various crack lengths 

and thicknesses of adhesive layer 
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Fig. 6.18 Variation of SIFs for edge interface cracks in interface 2 for various crack lengths 
and thicknesses of adhesive layer 
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6.5 Conclusions 

In this chapter, the SIFs of three-layered joints/ adhesive joints were computed for 

arbitrary material combinations. The effects of adhesive layer thickness on the SIFs for the 

three-layered joints in CSP were studied and demonstrated. Furthermore, the adhesion 

strength evaluation based on SIFs were discussed in Appendix B. The following 

conclusions have been made as follows. 

1. The SIFs of an adhesive joint which two identical adherents bonded by adhesive 

agent are uniquely determined by the Dundurs’ material composite parameters. And the 

values of IF  are strictly mirror symmetric about α = 0  and those for IIF  are reflection 

symmetric about ,α β= =0 0  in the α β−  space when adhesive thickness is long enough 

(say, t W = 2 ). 

2. The three-layered strips in CSP which are composed of Si (IC chip), resin and 

FR-4.5(substrate) were investigated. The SIF values of edge interface cracks in CSP 

increase monotonically as the increase of the thickness of interlayer for a fixed crack 

length, and they reach to upper limit values asymptotically when the thickness of interlayer 

is bigger than the width of the strip ( t W > 1 ). 
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7 

CHAPTER 

Conclusions
 
 
 
 

Composite materials and bonded structures are widely employed in the modern 

industrial context. The mechanical behavior of the bi-material interface is of great 

significance for the industrial application. Singular stress fields exist around the areas of 

the edge interface corners for two materials bonded together. High stress concentration at 

the edge interface corner caused by differences in the elastic properties may lead to the 

initiation of micro-cracks and then to the propagation. Therefore basic studies about the 

interface cracks win quite a number of attentions. Little research was found regarding the 

SIFs for arbitrary material combinations. And this paper was devoted to the SIFs for edge 

interface cracks.  

Several types of edge interface cracks were treated in this paper. The SIFs were 

calculated using the numerical method proposed by Oda, the method is denoted as “Crack 

tip stress method” which is based on Nisitani’s concept. The effects of material 

combinations and relative crack lengths were investigated in this paper.  

The following conclusions have been obtained as follows. 

(1) In Chapter 2: The computational accuracy of the extended “crack tip stress 

method” proposed by Oda were reexamined by pursuing a convergence study. The 

limitations of the method were demonstrated and investigated. Then, a post-processing 

technique of linear extrapolation was proposed to improve the computational accuracy. The 
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accuracy and efficiency of the improved crack tip stress method were demonstrated by 

comparing the SIF results of several numerical examples with published data. It was 

certified that the new technique could determine the SIFs of interface cracks more 

accurately with less computational coat. 

(2)In Chapter 3: The asymptotic solutions of the SIFs at the crack tip of a bi-material 

bonded semi-infinite plate were pursued for under arbitrary combination of materials. It 

was found that the double logarithmic distributions of the SIFs against relative crack 

lengths behave good linearity within the singular zone. In addition, an approximate 

formula calculating the SIFs for the bonded dissimilar half-planes under arbitrary 

combination of materials was proposed by fitting the computed results. 

(3)In Chapter 4: The SIFs of the dissimilar bonded finite strips subjected to tensile 

and bending loading conditions were investigated. Relationships as 1( ) λ

σ π
− =⋅ I

I C
K

a
a W  and 

1( ) λ

σ π
− =⋅ II

II C
K

a
a W  exist for the very shallow edge interface cracks in bi-material butt joints 

subjected to tensile and bending loads. And the coefficients ,I IIC C  are merely determined 

upon the relative elastic properties of materials and the loading types. In addition, the 

effects of material combinations and relative crack lengths to the SIFs were also 

investigated. Furthermore, the contour map variations of the SIFs for the whole α β−  

space were demonstrated. 

(4)In Chapter 5: The SIFs for the single and double edge interface cracks were 

compared for the whole range of combination of materials ( . , . .α β≤ ≤ − ≤ ≤0 0 95 0 2 0 45 ) and 

relative crack lengths ( .aW≤ ≤0 0 9 ). It was found that the SIFs of a double edge interface 

crack may be possibly larger than those of a single edge interface crack for some specific 

combination of materials and relative crack lengths. In addition, the SIFs should be 

compared in three different zones of relative crack lengths. 

(6)In Chapter 6: The SIFs of the adhesive joints for various material combinations 
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were calculated. In this chapter the SIFs are computed for the whole region of the α β−  

space since no symmetry of the SIFs exists any more for the adhesive joints. The variations 

of the SIFs for various thicknesses of adhesive layer were also demonstrated. The SIFs for 

the three-layered adhesive joints composed of Si (IC chip), resin and FR-4.5(substrate) 

which are used in CSP were also investigated for various interlayer thicknesses. It was found 

that the SIFs reach to constants for the adhesive joints when the interlayer thickness is 

bigger that the joint width. 



 
A 

APPENDIX 

Dundurs’ composite parameters for 

engineering materials
 
 
 
 

Till recently, several studies have considered the Dundurs’ composite parameters of 

typical engineering materials. Suga, (1988) investigated the parameters and mechanical 

compatibility of various material joints. Yuuki (1993) showed the variations of the 

parameters in the α β−  space for the materials combinations among metal, ceramics, resin, 

and glass. The results are tabulated in Table A1 and re-plotted in Fig.A1. Consider the 

symmetry of α β−  space for the bi-material joints, only the right part (α > 0 ) is given in 

Fig.A1. The origin α β= = 0  represents combinations of identical materials, and the α β−  

space is located within the parallelogram region which is composed by the lines 

( ), ,β α α α= ± = =1 4 1 0 1. Material combinations of α β= 2  are plotted in the dashed line. 

Uniform stress distributions can be observed forα β= 2 . And the α β−  space can be 

divided into two regions by the lineα β= 2 . Each pair of ( ),α β  above the line has no 

singularity and is denoted as good pair ( ( )α α β− <2 0 ). And the one below the line is 

denoted as bad pair ( ( )α α β− >2 0 ) since stress singularity exists near the interface corner.  

As can been seen from Fig. A.1, most material combinations are located in the so 

called “bad pair” region. However, metal-to-glass joints distribute along the lineα β= 2 , 

and a considerable number of metal-to-glass joints can be found in the “good pair” region. 

In addition, metal/metal, ceramics/ceramics and glass/glass joints are also found to have 

“good pair” material combinations.  
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Table A1. Elastic properties of several engineering materials (Yuuki, 1993) 
 

 Material Young’s Modulus (GPa) Poisson’s Ratio 

Metal Fe 206 0.30 

Al 70.3 0.345 

Ti 115.7 0.321 

Cu 129.8 0.343 

Zn 108.4 0.249 

Si 200 0.30 

Ceramics Al2O3 359 0.20 

SiC 440 0.16 

Si3N4 304 0.27 

MgO 303 0.175 

Resin Epoxy Resin 4.93 0.33 

Polyester 3.0 0.38 

Glass Crystal 73.1 0.17 

LF5 59.0 0.226 

SF53 58.0 0.236 

BaSF64 105.0 0.262 

BK7 81.5 0.208 

CaNa 70.3 0.240 
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Fig. A.1 Material combinations for typical engineering materials 
 



 

B 

APPENDIX 
De-bonding strength evaluation 

based on the stress intensity factors 

for adhesive joints
 
 
 
 

B.1 Introduction 

Bonded structures are widely used in industrial fields. It has been certified that the 

adhesive strength increases with decreasing the adhesive thickness. The previous studies 

suggested that this is because more defects and cavities appear in the thick adhesive layer 

when large amount of adhesive agents are used. Suzuki [1] evaluated the de-bonding 

strength experimentally using bonded tensile specimen as shown in Fig.1a; He pointed out 

that the adhesive strength is affected by the adhesive thickness for the adhesive joint which 

S35C JIS medium carbon steel plates bonded by epoxy resin Epikote 871. 

In this appendix, de-bonding criterions will be considered in terms of the intensities of 

the singular stress and stress intensity factors on the basis of two types of models. One is 

the perfectly-bonded model as shown in Fig. B.1b, and the other is the partially-debonded 

model shown in Fig. B.1c. Then the critical de-bonding conditions will be discussed. 
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B.2 Experimental data used in the study 

In this appendix, the specimen used in Suzuki [1] which the adherents S35C are 

bonded with adhesive epoxy resin Epikote 871 as shown in Fig. B.1a is analyzed. The 

elastic parameters of the adherent and adhesives are tabulated in Table B.1. The 

experimental results of the adhesion strengths and their standard deviations obtained by 

Suzuki [1] are tabulated in Table B.2 against various adhesive thicknesses. In Table B.2, 

the adhesion strengths are computed using the mean values of the experimental results, and 

the relative standard deviations are given behind. 

 
Table B.1 Material property of adherent and adhesives 

 
β  Elastic modulus

 E (GPa) 
Poisson’s
ratio ν  λ  α  β  

Adherent: Medium carbon steel S35C 210 0.3 － － － 
Adhesive A: Epikote828 3.14 0.37 0.69 0.97 0.20
Adhesive B: Epikote871 2.16 0.38 0.67 0.98 0.19

 

 

Table B.2 The experimental adhesive strength ( )y Averageσ  obtained by Suzuki [1] 
 

  Material A Material B
h  h W  yσ

∞ (Average) yσ
∞ (Average) 

0.05 0.0039 57.2±7.34 76.8±2.96
0.1 0.0078 53.5±6.52 71.4±0.981
0.3 0.024 32.5±2.72 49.7±3.03
0.6 0.047 25.9±2.71 41.2±1.94
1.0 0.079 22.6±1.18 25.3±3.09
2.0 0.16 18.4±2.08 19.7±1.31
5.0 0.39 13.4±1.76 13.4±1.71 

 

 

B.3Failure criterion using the perfectly-bonded model 
For the perfectly-bonded model shown in Fig. B.1b, the singular stress can be 

expressed as ( )11
y yK r F W r λλ

σ σσ σ −− ∞= = . The values of Fσ  for various adhesive 

thicknesses  were computed by Zhang et al. [2]. Then, the intensity of singular stress field 
cKσ  can be obtained using Eq. (B.1). The values of Fσ  and cKσ  are tabulated in Table 

B.3. The values of cKσ  for perfectly bonded model are plotted in Fig. B.2 against various 
adhesive thicknesses. Fig. B.2 indicates that the critical values of the intensity of singular 
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stress field cKσ  are almost constant with varying the adhesive thickness h W . The mean 
values of the intensity of singular stress field and their standard deviations are 

0.3158.04 1.42[ ]± MPa mi  for adhesive A, and are 0.3269.79 1.33[ ]± iMPa m  for adhesive B. 

The critical intensity of the singular stress fields cKσ  of the perfectly-bonded strip 

shown in Fig. B.1b was computed for various thicknesses of adhesive layer h W , by using 

the values of tensile adhesive strength yσ  from experiment. It is found that the average 

values of cKσ =9.79±1.33 0.326[ ]MPa mi . It can be clearly seen that the standard deviations are 

within 17.6%. The mean values of cKσ  and its deviation are tabulated in Table B.3 for 

Adhesives A and B. It can be seen from this table that cKσ  and its deviation are 

( )0.3158.04 1.42± ⋅MPa m  for adhesive A, and ( )0.3269.79 1.33± ⋅MPa m  for adhesive B. Failure 

condition as cK constσ =  is available for the estimation of de-bonding for perfectly bonded 

models. 

 

1
ycK F W λ

σ σσ ∞ −=  (B.1)

 
 
 

Table B.3 Debonding stress yσ  and critical value of cKσ  using perfectly-bonded model 
for (a) Adhesive A and (b) Adhesive B (Experimental results, *6 1

c yFK W
σ

λ
σ σ −= ) 

 
 Adhesive A Adhesive B 

h W  yσ
∞ (Average) Fσ cKσ yσ

∞ (Average) Fσ  cKσ
0.001 － 0.048 － － 0.048 －

0.0039 57.2 0.054 6.89 ± 1.45 76.8 0.054 8.10 ± 1.72
0.0078 53.5 0.062 7.34 ± 1.13 71.4 0.062 8.79 ± 0.10
0.01 － 0.066 － － 0.066 －
0.024 32.5 0.092 6.70 ± 1.45 49.7 0.092 9.79 ± 0.60
0.047 25.9 0.132 7.63 ± 0.89 41.2 0.132 11.8 ± 2.08
0.079 22.6 0.171 8.60 ± 0.72 25.3 0.171 9.76 ± 1.19
0.1 － 0.192 － － 0.192 －

0.16 18.4 0.231 9.46 ± 1.78 19.7 0.231 10.3 ± 0.855
0.39 13.4 0.323 9.64 ± 2.05 13.4 0.323 10.0 ± 1.27
0.5 － 0.343 － － 0.343 －

,σ c aveK    8.04 ± 1.42   9.79 ± 1.33
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Fig. B.2 Relationship between of cKσ  and h  for adhesives A and B 
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B.4 Failure criterion using the partially-debonded model 

Two different partially-debonded models with relative crack lengths 0.01,0.1a W =  are 

used to evaluate the bondng strength. For the partially-debonded moadel, the singular 

stress can be expressed in Eq. (B.2). The values of 
xy

τ  and 
II
K  are ignored due to tiny 

value magnitude compared with 
y

σ  and 
I
K . The dimensionless SIFs FⅠ  are calculated 

as shown in Reference [3,4]. Then the critical SIFs can be obtained using Eq. B.3. Fig. B.3 

and B.4 indicate that the critical values of the stress intensity factors KⅠc  are almost 

constant with varying the adhesive thickness h W  (see Eq. (B.2)). 

 

( ) ( )/ 2 0i
y xyi K iK r W r rεσ τ π+ = + → Ⅰ Ⅱ  (B.2)

y aK F πσ ∞=Ⅰc Ⅰ  (B.3)

 

The critical stress intensity factors cKⅠ  were computed for adhesives A and B with 
varying the interlayer thicknesses, using the partially-debonded model of 0.01a W = and 

0.1a W = . The values are tabulated in Table B.4. As can be seen from this table, the 

average values of cKσ  and their standard deviations are ( )0.54.04 0.537± ⋅MPa m  of model 

0.01a W =  and ( )0.54.98 0.622± ⋅MPa m  of model 0.1a W =  for adhesive A, as well as 

( )0.57.69 1.13± ⋅MPa m  of model 0.01a W =  and ( )0.59.36 1.09± ⋅MPa m  of model 0.1a W =  

for adhesive B, respectively . In addition, the errors of the standard deviations are 
within 20%, therefore, the failure condition as IcK const=  is also available for the 
estimation of the de-bonding for partially-bonded models. 
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Fig. B.3 Relationship between of cKⅠ  and h ( 0.01a W = ) for adhesives A and B 
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Fig. B.4 Relationship between of cKⅠ  and h ( 0.1a W = ) for adhesives A and B 
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Table B.4 Debonding stress yσ  and fracture toughness cKσ  assuming partially-debonded 

model 0.01,0.1a W =  (Experimental results, c yK F aσ π=Ⅰ Ⅰ ) 
 

 Material A Material B 
  0.01a W =  0.1a W = 0.01a W = 0.1a W =

h W  yσ
∞  IF  IcK  IF IcK yσ

∞
IF IcK IF  IcK

0.001 － 0.266 － 0.231 － － 0.266 － 0.231 －
0.0039 57.2 0.364 3.69 ± 0.588 0.255 8.18 ± 1.16 76.8 0.364 4.44 ± 0.566 0.255 9.64 ± 0.465

 － － － － － － － － － －
0.0078 53.5 0.460 4.35 ± 0.615 0.283 8.46 ± 1.29 71.4 0.460 5.44 ± 0.475 0.283 10.3 ± 0.903

 － － － － － － － － －
0.01 － 0.509 － 0.300 － － 0.509 － 0.300 －

0.024 32.5 0.660 3.84 ± 0.395 0.358 6.53 ± 1.29 49.7 0.660 5.48 ± 0.602 0.358 9.80 ±0.742
 － － － － － － － － － －

0.047 25.9 0.810 3.72 ± 0.500 0.459 6.67 ± 1.23 41.2 0.810 5.65 ± 0.723 0.459 10.4 ± 1.14
 － － － － － － － － － －

0.079 22.6 0.990 3.96 ± 0.222 0.600 7.59 ± 0.41 25.3 0.990 4.32 ± 0.841 0.600 7.87 ± 1.77
 － － － － － － － － － －

0.1 － 1.09 － 0.663 － － 1.09 － 0.663 －
0.16 18.4 1.30 4.24 ± 0.517 0.790 8.14 ± 1.02 19.7 1.30 4.68 ± 0.429 0.790 9.01 ± 0.691

 － － － － － － － － － －
0.39 13.4 1.90 4.51 ± 0.758 1.10 8.26 ± 1.23 13.4 1.90 4.82 ± 0.621 1.10 8.56 ± 1.33

 － － － － － － － － － －

0.5 － 2.10 － 1.19 － － 2.10 － 1.19 － 

,σ c aveK    
4.04 ± 0.537 7.69 ± 1.13 4.98 ± 0.622 

 
9.36 ± 1.09

 
 

B.5 Discussions on the adhesion strength 

In this section, the critical intensity of singular stress cKσ  and critical SIF cKⅠ  

obtained in Section B.3 and B.4 will be re-examined. The adhesion strength yσ
∞  for the 

perfectly-bonded model can be obtained using Eq. (B.4), and that for the 

partially-debonded model 0.01, 0.001a W a W= =  can be computed using Eq. (B5). 

( )
1

c average
y

K

F W
σ

λ
σ

σ∞
−=  (B.4)

( )c average
y

K

F a
σ

π
∞ =

Ⅰ

Ⅰ

 (B.5)

Where ( ) ( ),c average Ic averageK Kσ  are the mean critical values of the intensity of singular stress and 

SIF respectively. The estimated values of the adhesion strength calculated from different 

models for the two adhesive materials A and B are plotted in Fig. B.5 together with the 

experimental results. As can be seen from Fig. B.5, the errors are within % %−12 20  for 

those models. 
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Fig. B.5 Relationship between yσ  and h for adhesives A and B 
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Contour plot of the stress intensity 

factors for various adhesive joints
 
 
 
 

C.1 Tensile Loading Case 

In this appendix, the contour plots of the SIFs of the adhesive joints subjected to 

tension as shown in Fig. C.1 for various material combinations and interlayer thicknesses 

will be demonstrated. Here, all the relative crack lengths of the adhesive joints are fixed to 

0.001a W = , then by varying the thickness of the adhesive layers, the SIFs are computed for 

the whole range of material combinations. Fig. C.2 ~ Fig. C.6 show the contour plots of the 

SIFs for the adhesive joints 0.001a W =  with the adhesive layer thickness as 

2, 1, 0.1, 0.01, 0.001t W =  respectively.  
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Fig. C.1 Adhesively bonded strip subjected to tension 
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Fig. C.2 Contour map of (a) IF  and (b) IIF  of 0.001, 2= =a W t W  for tension 
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Fig. C.3 Contour map of (a) IF  and (b) IIF  of 0.001, 1= =a W t W  for tension 
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Fig. C.4 Contour map of (a) IF  and (b) IIF  of 0.001, 0.1= =a W t W  for tension 

(Continue) 
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Fig. C.4 Contour map of (a) IF  and (b) IIF  of 0.001, 0.1= =a W t W  for tension 
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Fig. C.5 Contour map of (a) IF  and (b) IIF  of 0.001, 0.01= =a W t W  for tension 
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Fig. C.6 Contour map of (a) IF  and (b) IIF  of 0.001, 0.001= =a W t W  for tension 
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C.2 Bending Loading Case 

In this section, the contour plots of the SIFs of the adhesive joints subjected to 

bending loads as shown in Fig. C.7 are demonstrated. Similarly, all the relative crack 

lengths of the adhesive joints are fixed to 0.001a W = , then the SIFs are computed for the 

whole -α β  space by varying the thickness of the adhesive layers. Fig. C.8 ~ Fig. C.12 

show the contour plots of the SIFs for the adhesive joints 0.001a W =  with the adhesive 

layer thickness of 2, 1, 0.1, 0.01, 0.001t W =  respectively.  
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Fig. C.7 Adhesively bonded strip subjected to bending moment 
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Fig. C.8 Contour map of (a) IF  and (b) IIF  of 0.001, 2= =a W t W  for bending loads 
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Fig. C.9 Contour map of (a) IF  and (b) IIF  of 0.001, 1= =a W t W  for bending loads 
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Fig. C.10 Contour map of (a) IF  and (b) IIF  of 0.001, 0.1= =a W t W  for bending loads 

(Continue) 
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Fig. C.10 Contour map of (a) IF  and (b) IIF  of 0.001, 0.1= =a W t W  for bending loads 
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Fig. C.11 Contour map of (a) IF  and (b) IIF  of 0.001, 0.01= =a W t W  for bending loads 
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Fig. C.12 Contour map of (a) IF  and (b) IIF  of 0.001, 0.001= =a W t W  for bending loads 
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