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ABSTRACT

Singular stress fields exist around the areas of the edge interface corners for two
materials which are bonded together. And the presence of cracks affects the performances
of a structure, and consequently causes a through-thickness crack which eventually results
in the failure. The stress intensity factor is used to predict the stress state and the stable
crack growth in fracture mechanics. Therefore, researches concerning the stress intensity
factors of the edge interface cracks are the main focus of this research.

The crack tip stress method based on FEM was improved to be able to solve the
interface crack problems more efficiently. And a post-processing technology of linear
extrapolation was proposed to improve the computational accuracy. Then, the improved
crack tip stress method was applied to treat various edge interface crack problems.

In this research, the stress intensity factors were computed for the whole range of
material combinations and relative crack lengths. And the double logarithmic relationships
between the stress intensity factors and the relative crack lengths were demonstrated for
various material combinations. Then, approximate formulae of the stress intensity factors
for arbitrary material combinations were given by fitting the computed results, for the
single-edge cracked bonded dissimilar half-planes and shallow single edge-cracked bonded
finite strips subjected to tensile and bending loading conditions. Furthermore, the contour
map variations of the stress intensity factors in the whole material combinations space
were demonstrated for a series of relative crack lengths. The maximum and minimum
stress intensity factors were also obtained for various crack lengths.

The single and double edge interface cracks were compared for the whole range of
combination of materials and relative crack lengths. It was found that the stress intensity
factors of a double-edge interface crack may possibly be larger than those of a single-edge
interface crack for some specific material combinations and relative crack lengths. In
addition, the stress intensity factors should be compared in three different zones according

to the relative crack lengths.
vi



Finally, the variations of the stress intensity factors of the adhesive joints for various
thicknesses of adhesive layers were also demonstrated for various material combinations.
Specifically, the three-layered adhesive joints composed of Si (IC chip), resin and
FR-4.5(substrate) which are widely used in the chip scale packaging (CSP) technology
were investigated. And the effects of the thickness of the adhesive layers for CSP were also

discussed in this research.
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Introduction

1.1 Research Backgrounds

Modern technology has led to the employing of composites and bonded
structures/multiple layers in automotive and aerospace industries as well as in
microelectronics packaging. The significant size and weight reduction offered by the chip
scale packages (CSP) makes it ideal for the use in mobile devices like cell phones, laptops,
palmtops, and digital cameras. The advantages offered by CSP include smaller size
(reduced footprint and thickness), lesser weight, relatively easier assembly process, lower
over-all production costs and improvement in electrical performance.

Fig.1 demonstrated a wire-bonded pBGA® ball grid array chip scale packaging
solution [1]. A typical chip scale packaging process starts with the mounting of the die on
the interposer using epoxy. The die is then wire-bonded to the interposer using gold or
aluminum wires. Plastic encapsulation then follows to protect the die and wires, usually by
transfer molding. After encapsulation, solder balls are attached to the bottom side of the
interposer. Finally, the parts are singulated from the leadframe.

As can be seen from Fig. 1.1, quite a lot interfaces exist inside the CSP assemblies.
Stress concentration happens along the interfaces due to the discontinuous of material
property and geometric configuration. And cyclic pressure and temperature as well as

humidity will increase the speed of delamination. Therefore, there is an increasing concern



CHAPTER 1

that the CSP assemblies may not meet the mechanical and the thermal cycling reliability
requirements. In Fig. 1.2, the cross-section image reveals delamination after the 3x JEDEC
260°C reflow test. Delamination initiates at the interface between the underfill and the flux
residue, and then propagated along the solder mask [2]. Fig. 1.3a and b illustrate the solder
die attach/silicon die interface with and without delamination respectively. And this
delamination would imply a critical failure in applications requiring high thermal and
electrical conductivity [3]. Therefore, Reliability evaluations based on fracture mechanics

on the interface problems of CSP win quite a lot of attentions.

Silicon chip
Encapsulant

Soldemask Solder ball
Wirebonds
Adhesive Substrate

Fig. 1.1 Demonstration of wire-bonded uBGA® ball grid array chip scale packaging
solution (CSP) (Ref. [1])
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Fig. 1.2 Underfill delamination at the board level (Ref. [2])

(@)

(b)

Fig. 1.3 Typical SEM image of (a) 10 um die attach with delamination and (b) 34 um die
attach without delamination (Ref. [3])
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For elastic fracture mechanics concepts to an interface crack between dissimilar
materials, Williams [4] was the first to determine the characteristic oscillating stress
singularity at the crack tip in the elastic interfacial crack problem. Then, elastic solutions
around the interface crack tip to specific problems were discussed by Erdogan [5,6],
England [7], and Rice and Sih [8]. Bogy [9] revealed that the stresses at the interface
corner approach to infinity (stress singularity) in elastic bi-material planes. This
qualitatively explained why the failures of the bonded structures mostly initiate from the
interface corner in the engineering. However, the oscillation phenomenon (say, the
oscillations of stresses and the overlap of crack surfaces/ the oscillations of displacements)
were observed in the vicinity of a crack tip in the aforementioned solutions which lead to
controversies base on the physical properties of the actual materials for practical purposes.
Therefore, quite a lot modified solutions to the interface cracks free of contradictions
(material may not overlap, normal tractions must be compressive in the contact zone) were
proposed [10] by considering the contact of crack surfaces. Specifically, Comninou [11,12],
Atkinson [13] and Mak [14] proposed formulations of the interface cracks with crack
surfaces contacting around the interface crack tip to eliminate the contradictions.
Comninou [11,12] also pointed out that one of the contact zones is much larger than the
other because the interface is also subjected to some shear loading. Based on Comninou’s
pioneering work, Dundurs and Gautesen [15] assumed that the crack is fully open at the
end which leads to the oscillatory singularity (disregarded the short contact zone), and
analyzed the situation at the end of the crack with the large contact zone. Then they found
that the results predicted by the modified solutions coincide with those by the classical
elastic solutions out of the interpenetration zone for the small scale contact zones. Finite
element solutions for a small strain isotropic ., -deformation plastic theory were obtained

by Shih and Asaro [16,17]. They found that the interpenetration zone predicted by the
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elastic solutions can be treated as a small scale nonlinearity. In any case, the actual
situation is somewhat more optimistic than that suggested by the elasticity treatment. And
the stress fields around the crack tip can be predicted by the linear elasticity solutions of
comparable magnitude under small scale yielding conditions. Zywicz and Parks [18] also
analyzed the small-scale yielding plastic zone around an interface crack tip. In 1988, Rice
[19] re-examined the elastic fracture mechanics concepts for interfacial cracks and
discussed the classical type of definitions of SIFs associated with interface cracks.
Hutchinson and Suo [20] reviewed the application of the Stress intensity factor (SIF) to the
mixed mode fracture of an interface crack. They found that the contradictions (crack faces
overlap and the oscillations of the stresses) vanish in the elastic-plastic fields of an
interface crack. Ichikawa [21] found that good agreement turns out for the classical elastic
solutions and modified solutions within the extreme vicinity of an interface crack tip. From
now on, the elastic fracture mechanics concepts are proved to be able used for estimating
the fracture of an interface crack. And there has been a resurgence of interest in the elastic
interface crack problems. Then quite a lot fracture criterions [22-28] have been proposed

regarding the interface cracks.

1.2 Research Purposes

Fatigue cracks are normally observed around the areas of discontinuities and edge
corners due to the high bending and residual stresses. The presence of cracks affects the
performances of a structure, and consequently causes a through thickness crack which
eventually results in the failure. For the bi-material systems, high stress singularity exists
around the interface corner which leads to the initiation of edge interface cracks. In

addition, in linear elastic fracture mechanics, the SIF is used to predict the stress state and
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the stable crack growth caused by the remote load. Therefore, the analysis of the SIFs for
edge interface cracks is fundamental to our understanding of the failure and fatigue of the
bi-material/multi-layer systems. An exhaustive investigation on the stress intensity factors
(SIFs) will contribute to a better understanding of the initiation and propagation of the
interfacial cracks.

Let’s consider a butt joint which is composed of two elastic materials, and the
geometrical configuration is characterized by the angles ¢ and ¢, which the
traction-free surfaces of the two elastic materials make with the interface. Many studies
have considered the evaluation of the order of stress singularity 2-1 for various
geometries and different combinations of materials [29-34]. Those researches were the
pioneering works which qualitatively explained why edge interface cracks are normally
observed from the free edge corner of the multi-layer systems. Then the computing of the
intensity of stress singularity «, also acquires a fair mount of attentions. Reedy and Guess
[35] have determined the magnitude of the intensity of stress singularity for a thin elastic
layer sandwiched between two rigid substrates. Akisanya and Fleck [36] applied the
contour integral to evaluate H-field at the free-edge of a long bi-material strip subjected to
uniform tension. Xu et al. [37] proposed numerical methods to determine the multiple
stress singularities and the related stress intensity coefficients. However, as widely known,
it is not easy to determine the SIFs for the interface cracks due to the multiple singularities
(including the oscillatory stress singularities), so literatures concerning the evaluation of
stress intensity factors of interfacial cracks appeared later. Till recently, various numerical
methods [38-50] have been reported to determine the SIFs of an interface crack.
Specifically, the crack tip stress method [49] has been reported to be able to determine the
SIFs of the interface cracks using FE method with a high accuracy.

In the aforementioned studies, none has considered the SIFs of the interface cracks for
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arbitrary combination of materials. In this research, the study objects will be concentrated
into several types of edge interface cracks in various bi-material systems subjected to
tensile and bending loading conditions. And the crack tip stress method base on FEM
proposed by Oda [49] will be reexamined by considering the robustness and convergence
study. Highly accurate determination of SIFs for edge interface cracks based on FEM will
be demonstrated by investigating the effects of FE model density and element sizes. Then,
the SIFs for various edge interface cracks will be computed for the whole range of material
combinations and crack lengths using the improved crack tip stress method. In addition,
the effect of material combinations and relative crack lengths on the SIFs of various edge

interface cracks will also be the main interest.

1.3 Overview of Chapters

Singular stress fields exist around the areas of the edge interface corners for two
materials bonded together. This is the reason why fatigue cracks are normally observed
from the edge corner. It was supposed that FE method was not suitable for the singular
problems since the stresses approach infinity at the crack tip. However, Nishitani [51]
proposed a novel numerical method based on FEM to evalute the SIF of a cracked
homogenous strip. The computational accuracy is guaranteed by using the reference
problems with highly accurate analytical solutions. This method is denoted as “crack tip
stress method”. In 2009, Oda [49] successfully extended this method into the interface
crack problems. Accurate results can be obtained by introducing a suitable shearing
loading for the reference problem. However, considerable errors exist for some specific
crack problems (Say, deep edge interface crack problems). The author of the current paper

will re-examine the effect of the FE model density and the minimum element size, and
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propose a post-processing technology of linear extrapolation to improve the accuracy. Then,
the SIFs of various edge interface cracks will be investigated for arbitrary material
combinations and crack lengths by using the improved “crack tip stress method”. In
addition, the effect of material combinations and relative crack lengths on SIFs of various
edge interface cracks will be discussed.

The paper is composed of total 7 chapters and organized as follows.

Chapter 1 introduces the application of composites and bonded structures/multiple
layers in microelectronics packaging. After reviewing the issues of the linear elastic
fracture mechanics on interface problems, Chapter 1 introduces the study object of this
paper. Various types of edge interface crack problems need to be investigated because edge
interface cracks are normally observed in the actual application. Specifically, according to
the author’s best knowledge, little published literatures concentrate the discussions on the
SIFs for arbitrary combination of materials. Therefore, the SIFs of various edge interface
cracks for arbitrary material combinations are chosen as the main interest of this research.

Chapter 2 introduces the crack tip stress method proposed by Oda, which is based on
the concept introduced by Teranishi and Nishitani [51]. The limitations of the method are
demonstrated and investigated by pursuing a convergence study. A post-processing
technique of linear extrapolation is proposed to improve the computational accuracy. The
new technique reduces the computational cost significantly since very refined meshes
around the crack tip are no longer necessary. The accuracy and efficiency of the improved
crack tip stress method are demonstrated by comparing the SlIFs of several numerical
examples with published data. In addition, the general procedure and precautions of the
improved crack tip method are also discussed in this chapter.

Chapter 3 In this chapter the SIFs at the crack tip of a bi-material bonded

semi-infinite plate are investigated for arbitrary combination of materials. To obtain the
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asymptotic solutions of the SIFs, the double logarithmic relationships between the SIF and
the crack size are demonstrated with varying material combinations. Then, an approximate
formula of the SIFs at the crack tip for the bonded dissimilar half-planes under arbitrary
combination of materials is given by fitting the computed results.

Chapter 4 restricts the discussion to the SIFs of the bi-material bonded finite strips
subjected to tensile and bending loading conditions. The effect of material combinations
and relative crack lengths to the SIFs are investigated. The formula for SIFs of the very
shallow edge interface cracks in bi-material butt joints subjected to tension and bending
loads are proposed. Furthermore, the contour map variations of the SIFs in the whole «-p
space are demonstrated for a series of relative crack lengths. The maximum and minimum
SIFs are also obtained for various crack lengths.

Chapter 5 is devoted to the double-edge interface cracks. The effect of the relative
crack lengths and material mismatch parameters are of special interest in this chapter. The
SIFs for the single and double edge interface cracks will be compared for the whole range
of combination of materials (o<« <0.95-0.2<p<0.45) and relative crack lengths (o<amw <o0.9). It
is found that the SIFs of a double edge interface crack may be possibly larger than those of
a single edge interface crack for some specific combination of materials and relative crack
lengths. In addition, the transverse extent of the bonded strip should be divided into three
different zones according to the dominance effect of the free edge singularity.

Chapter 6 introduces the SIFs of the adhesive joints for various material
combinations. In this chapter the SIFs are computed for both the left and right region in the
a—-p space since no symmetry of the SIFs exists any more for the adhesive joints. The
variations of the SIFs for various thicknesses of adhesive layer are also demonstrated. In
addition, the three-layered adhesive joints composed by Si (IC chip), resin and

FR-4.5(substrate) which are widely used in the chip size packaging (CSP) technology are
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also investigated. The SIFs for various relative crack lengths and interlayer thicknesses are
computed using the improved crack tip stress method. Furthermore, the effect of interlayer
thickness on the SIFs are also discussed for CSP in this chapter.

Chapter 7 gives an overview of the main conclusions and achievements in this paper.
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The improved crack tip stress
CHAPTER

method for interface cracks and

post-processing technique

2.1 Introduction

In linear elastic fracture mechanics, the SIF is used to predict the stress state and the
stable crack growth caused by the remote load. Therefore, quite a lot research has been
devoted to the analysis of SIFs of the interface crack problems. Till recently, many
researchers have tried to develop procedures to compute the generalized SIFs for interface
cracks by using analytical or numerical methods. Just mention a few of those procedures,
Yuuki and Cho [1] determined the SIFs of several interface crack problems by the
boundary element method. Miyazakia et al. [2] presented the M1-integral method (an
extended J-integral method) for SIF analyses of two-dimensional bimaterial interface crack
problems, using the results obtained from the boundary element method. Wu [3] presented
for calculating the SIFs at the tip of an interface crack based on an evaluation of the
J-integral by the virtual crack extension method. Yang and Kuang [4] established a path
independent contour integral method for the SIFs of the interface crack. Dong et al. [5]
proposed procedures for SIF computation using traction singular quarter-point boundary
elements. Qian and Sun [6] proposed an alternative and efficient method based on near-tip
crack surface displacement ratio to obtain the SIFs of the inter-laminar cracks in composite
laminates. Shbeeb and Binienda [7] formulated the singular integral equations with Cauchy

kernels for the interface crack problem of a composite layer that consists of a
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homogeneous substrate, coating and a nonhomogeneous functionally graded interphase.
Then, mixed-mode SIFs and strain energy release rates were calculated. Matsumto et al. [8]
evaluated the SIFs of bimaterial interface cracks based on the interaction energy release
rates. Huang and Kardomateas [9] proposed a method for obtaining the mixed-mode SIFs
for bimaterial interface cracks or cracks parallel to the bimaterial interface in half-plane
configurations. The dislocation solutions in two different bimaterial half planes are
presented, and then they were applied to calculate the mixed mode SIFs of cracks either at
the interface or parallel to the interface. Ou [10] computed the singularities and near-tip
field intensity factors of piezoelectric interface cracks in metal/piezoelectric bimaterials via
Stroh's theory. Xuan et al. [11] presented a finite element approach for finding
complementary bounds of SIFs in bimaterials. The SIF is formulated as an explicit
computable linear function of displacements by means of the two-point extrapolation
method. Liu [12] et al. developed a simple and effective numerical method to calculate the
SIFs for an interface crack with one or two singularities. Treifi et al. [13, 14] computed the
SIFs for different configurations of cracked/notched plates subjected to in-plane shear and
bending loading conditions by the fractal-like finite element method. Panta et al. [15]
demonstrated the implementation of element free Galerkin method for the stress analysis of
structures having cracks at the interface of two dissimilar materials.

In this research, the numerical method proposed by Oda [16], which is based on the
concept of crack tip stress method introduce by Teranishi and Nisitani [17], will be
re-examined and improved for solving several crack problems. The crack tip stress method
was initially proposed to determine the SIFs of the cracked homogenous plates, by using
the ratio of crack-tip stresses between the reference and target unknown problems. Then, in
2009, Oda [16] extended the crack tip method to analyze the SIFs of interface crack

problems by making the singular terms the same for the reference and target unknown
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problems. This pioneering work provides a convenient manner to obtain the SIFs of
interface crack problems by using FE method. However, recently it is found that the
method sometimes does not provide reliable results for some specific crack lengths (say,
the relative crack length a/w >o0.4 for the edge interface cracks). Therefore, the limitations
of the crack tip stress method regarding the interface crack problems will be demonstrated
and investigated by pursuing a convergence study in this research. A post-processing
technique of linear extrapolation will be proposed to improve the computational accuracy.
The new technique reduces the computational cost significantly since very refined meshes
around the crack tip are no longer necessary. The accuracy and efficiency of the improved
proportional method will be demonstrated by comparing the SIF results of several
numerical examples with published data. In addition, the general procedure and

precautions of the improved proportional method will also be discussed in this paper.

2.2 Numerical analysis method

2.2.1 The physical background of the crack tip stress method

Nisitani et al. were the first [17] to propose a numerical method, which is named after
the crack tip stress method, using the FE stress values to compute the SIF of a cracked
homogenous plate. According to the theory of linear-elastic fracture mechanics (LEFM),

mode | SIF near the crack tip in a homogenous plate is defined by the following equation.

o, (n0)>—==1(6) (r—>0) (2.1)
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Here, K, isthe mode I SIF, o, isthe normal stress component ahead of the crack tip,
f, () is trigonometric function to be derived analytically. Specifically, when ¢=0,

Eq.(2.1) becomes

KI
o =0

(N> 9y yy‘<9=0(

r—0) (2.2)

Rearranging Eq.(2.2) gives K, /o, »~2zr (r—0). For a given point at =0 with a
distance from the crack tip r=r,, K, /o, =221, is constant and a following relationship

can be deduced theoretically for two different crack problems A and B.

[KI/“y}A:[KI/Gy}B (2:3)
Assuming the SIF for problem A is analytically given in advance, while that for problem B

is yet to be solved. Problem A is denoted as the reference problem and problem B is denoted

as the target unknown problem. Here, the superscript * is introduced to indicate the values

of the reference problem A for notational convenience. Although the values of o,,0, in

Eq.(2.3) for the singular problems cannot be computed by FE analysis accurately, the ratio

of o, /o, can be given without any difficulty. This is because the error for the two problems

A and B are nearly the same if the same FE meshes are used for the two problems A and B.

"y}B ["’y, FEM }

[K*] :[0'*} L ) although [GY}Bi[O—y,FEM}B (2.4a)

—
~
[
vs)
—

It has been reported by Nisitani et al. [17] the stress distributions computed by FEM are
almost the same under the same loading conditions of K, =const for various crack
problems, independent of the crack lengths. Then the SIF for problem B (the given

unknown problem) can be accurately determined using Eq.(2.4b). It should be noted that
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the same FE mesh grids have to be used in the singular region near the crack tip to

compute o,,0, for problems A and B.

2.2.2 Formulation for the interface crack problems

(2.4b)

The method discussed in Section 2.2.1 can not be used directly into solving the interface

crack problems since oscillatory singularity is observed along the interface. Oda et al. [16]

extended this method to the interface crack problems by creating the same singular stress

fields for the reference and target unknown problems. A definition of the SIFs for an

interface crack in bonded dissimilar materials was proposed by Erdogan (1965). The stress

distributions along the interface are defined as shown in Eq. (2.5).

©
O-xl

U

- i(1-;- K)o +{3—K2 —6—2(3—K1)0';° H
1

@) - 1+1;<2 [ G,

Ox2

pA44444

Fig. 2.1 Demonstration of (a) the reference problem (problem C) and (b) a given unknown

problem (problem D)
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K, +iK oy ie
o +ir =—[—j ,r—>0 (2.5)
y Xy 27zr \2a

Here, s, z, denote the stress components near the crack tip, - is the radial distance from

the crack tip, and & is the bi-elastic constant given by:

e=—In|| =+—|/| ==+— (2.6)
2z [{Gl G2 G2 Gl

{3_4Vm (plane strain)
K =
m

3—vm/1+vm(plane stress)’ (m=12) (2.7)

where G,(m=12), v,(m=12) and «,(m=12) are the shear moduli, Poisson’s ratios

and Kolosov constant of either respective materials. The real and imaginary parts of the

oscillatory SIFs K, +iK, in EQ.(2.5) may be separated as

T
K, = lim J2rro [cosQ+ﬂsinQJ (2.8)
r—-o0 y %y
: %
K| :rlinO\/Zﬁery cosQ—ast (2.9)
and
Q:gln(z—ra) (2.10)

Similarly, let’s consider two different interface crack problems C and D shown in Fig. 2.1
with the same crack lengths a=a, and the same combination of materials ¢=¢,,
assuming the SIFs of problem C are given in advance and those for problem D are yet to be
solved. Problem C is termed the reference problem whose values are marked with *, and

problem D is termed the given unknown problem. Examining the points with the same
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radial distances r=r, for the two problems C and D, then gives[Q”]C =[Q], =& |n(%)-

0

Recall Eqg.(2.8) and (2.9), a proportional relationship given in Eq.(2.11) is established if

and only if Eq.(2.12) can be satisfied,

D_-°D__~° e L (2.11)
e 1ol Lvren ) [k 5l [vrem
Gy c y D

Then the SIFs of the given unknown problem (problem D) can be computed using Eq.(2.13)
in a similar manner as discussed in Section 2.2.1. The condition of Eq.(2.12) can be
satisfied by choosing a suitable external load for the reference problem. The detailed
information about how to make the condition Eq.(2.12) satisfied by using FEM will be

discussed in section 2.2.3.

loylp w9y remlp

%ylc loy FemIc )13
K Iyl K [y remIp K -
[ II]D_ r* [ II]C_ r* [ II]C
xy-C xy, FEM -C

2.2.3 The determination of the reference problem and its external load

In this method, a crack along the interface of two bonded dissimilar half-planes
subjected to tension and shear as shown in Fig. 2.1a is treated as the reference problem.

The analytical solution of the SIFs at the crack tip for the reference problem takes the form
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K|*+iK“*=(0;O+if;(“;/)\/g(1+2i8) (2.14)

where o7,7; are the remote uniform tension and shear applied to the bonded dissimilar
half-planes.

Using the principle of superposition, the stress components of the reference problem
subjected to remote tension and shear o7,z2 can be expressed by using the values of that

yroxy

subjected to pure unit tension oy =1r;=0 and pure unit shear o;=07;=1. Let

Cporem ™ Tuorem ¥r Ororen S Tonmm % AN oy ov™x 70 S+ denote the stress components at

the crack tip of the reference problem subjected to combined remote tension and shear
o7 ,7;, pure unit tension o =17; =0 and pure unit shear o) =0,z; =1, respectively. Then

xy !

Gorm ™ Toorew © taKe the following form

awzl,r;;:O " cr;ozo,r;'&zl w (2 15)
* _ * * .
%y0,FEM ~ °y0,FEM *Ty * 90, FEM Ty
o0 o0 o0 o0
o =17 =0 o =07_=1
T *=7 Xy *xo° 41 X wg® (216)
xy0, FEM xy0, FEM y  xy0,FEM Xy

Recall Eq.(2.12), the FE stress components at the crack tip for the problems C and D

behave

"xy0,FEM xy0, FEM
= (2.17)
c

*
%0, FEM ?y0, FEM

where, the superscript 0 stands for the node at the crack tip. Inserting Eq.(2.15), (2.16) into

Eq.(2.17) gives the solution of /o7 needed for determining the external loads applied to

the reference problem.

o0 e} o0 o0
o =1Lz =0 c” =177 =0
* & xz Y Xy *—r xo Y Xy *
xy ~y0,FEM " "xy0,FEM xy0, FEM y0, FEM 218
o oe] o] o] o] ( ' )
O'y O'y :O,rxy =1 o-y :O,rxy =1
*_ *
xy0,FEM *°y0, FEM %y0,FEM ™ “xy0, FEM
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Let o;=1 so that r; can be determined. Inserting o; =17, into Eq.(2.14) gives the
values of the oscillatory SIFs for the reference problem (problem C). Finally, the SIFs for
the given unknown problem (problem D) can be yielded using the proportional relationship
as given in Eq.(2.19).

[KiIb ZI:O-ZO’i]D[KT]C! [Kilo ZM[K;]C (2.19)

[O-yO,FEM Ic [TxyO,FEM I
Specially, when both materials for a bonded structure are identical, all the imaginary
terms in the discussion vanish. Thus, the current method is also applicable to the

homogenous crack problems.
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Fig. 2.2 FE model geometric configurations for (a) the reference problem and (b) the target
unknown problem (c) the FE mesh in the singular region used for the analysis

2.3 Post-processing technique of linear extrapolation and numerical verification

In this study, the efficiency and accuracy of the crack tip stress method mentioned
above are demonstrated by pursuing a convergence study. The effects of the minimum
element size e and the number of refined layers . in FE analysis will be investigated

and depicted through several numerical examples.
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2.3.1 Specifications and configurations of the FE models

The MSC.MARC 2007 r1 [19] finite element analysis package is used to compute the
stress components in this research. Fig. 2.2a shows the FE model geometric configurations
for the reference problem shown in Fig. 2.1a. The crack length for the dissimilar bonded
half-planes shown in Fig.2a (the reference problem) is set to 2a=2ommin this research. It
should be noted that the FE stress components at the crack tip for the reference problem
converge as the width of the model is larger than 1500 times the crack length a [16].
Then a plate width of w =1620x2a=32400mm and a length of L=2w =64s800mm are used to
model the reference problem (L=2w w/a=1620). Fig. 2.2b shows the FE model geometric
configurations for the single-edge cracked bonded strip shown in Fig. 2.1b (an example for
the target unknown problem). The crack length for the target unknown problem is fixed to
a=10mm which is the same as the half crack length of the reference problem. The width of
the bonded strip w varies from aw =01~09, the length L is assumed to be much
greater than the width w (L=2w is assumed in the FE model). Furthermore, the minimum
element size e of the FE models are kept the same for the reference and given unknown
problems.

The singular regions around the crack tip of both the reference and the target
unknown problems are well refined in a self-similar manner. Fig. 2.2c shows the FE mesh
type in the singular region. The singular region is refined with increasing the number of
layers and the element size for each inferior layer is one third of the superior one. The
meshes shown in Fig. 2.2a and b are made of eight-node quadrilateral elements in plane
stress or plane strain condition. Furthermore, the meshes for the reference and target

unknown problems are kept the same to make sure a high computational accuracy of

[73/0y].=[7s/o,],- It should be noted that although highly accurate stress components
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0,7, hear the crack tip can’t be obtained for the two problems by FE analysis, the ratios

y'oxy

of ¢, /o, are fairly accurate since the same FE mesh sizes and model density are assumed

in the computation.

P 6M
O-:VV Oy W
i prafhes el
1 W W
w
a a
a
Edgﬁ](;rack g ;I G L gl Gy L
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(a)

Fig. 2.3 (a) a single-edge-cracked homogenous strip subjected to tension and bending
loading conditions , tensions at the top and bottom boundaries to counter the (b) tensile and
(c) the bending loading conditions
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Fig. 2.4 Extrapolation of normalized SIFs F, =k, /oza for a homogenous strip subjected
to (a)(b) tensile and (c)(d) bending loads (Continue)
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Fig. 2.4 Extrapolation of normalized SIFs F, =k, /oza for a homogenous strip subjected
to (a)(b) tensile and (c)(d) bending loads
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Table 2.1 Mode | SIFs k,/ovza of a single edge cracked homogenous strip shown in Fig.

2.3a for various relative crack lengths and different minimum element sizes

a/W Uniform tension

In-plane bending

Casel Case2 Case3 Case 4 Casel Case 2 Case 3 Case 4

e=al243 e=a/729 e=a/2187 e=a/6561 e=a/243 e=a/729 e=a/2187 e=a/6561
0.1 1.1883 1.1886 1.1887 1.1887 1.0447 1.0450 1.0451 1.0452
0.2  1.3659 1.3665 1.3667 1.3668 1.0536 1.0541 1.0543 1.0544
0.3 16576 1.6588 1.6593 1.6594 1.1222 1.1232 1.1235 1.1237
04 21073 2.1098 2.1106 2.1109 1.2578 1.2596 1.2601 1.2603
05 2.8159 2.8210 2.8228 2.8234 1.4921 1.4951 1.4961 1.4965
06 4.0141 4.0253 4.0291 4.0304 1.9042 1.9100 1.9119 1.9126
0.7 6.3093 6.3374 6.3468 6.3500 2.7046 2.7173 2.7216 2.7231
0.8 11.8078 11.8997 11.9306 11.9410 4.6168 4.6539 4.6664 4.6706
0.9 33.6838 34.2870 34.4904 34.5588 12.1154  12.3359  12.4102 12.4352

Table 2.2 Normalized SIF K, /ov/za computed by linear extrapolation for Fig. 2.3a

Uniform tension

In-plane bending

% Present Original Kaya- Noda et Present  Original Kaya- Noda et al.
Erdogan &l (1992) Erdogan (1992)
(1987) [20] [21] (1987) [20] [21]
0.1 1.189 1.188 1.1892 1.189 1.045 1.044 1.0472 1.046
0.2 1.367 1.366 1.3673 1.367 1.054 1.054 1.0553 1.054
0.3 1.659 1.658 1.6599 1.659 1.124 1.122 1.1241 1.123
04 2111 (2.107) 21114 2111 1.260 (1.258) 1.2606 1.259
05 2824 (2.816) 2.8246 2.823 1.497 (1.492) 1.4972 1.495
0.6 4.031 (4.014) 4.0332 4.032 1.913 (1.904) 1.9140 1.913
0.7 6.352 (6.309) 6.3549 6.355 2.724 (2.705) 2.7252 2.725
0.8 11.946 (11.808) 11.955 11.95 4.673 (4.617) 4.6764 4.675
09 34593 (33.6834) 34.633 34.62 12.448  (12.115)  12.462 12.46

2.3.2 Convergence study for the single-edge-cracked homogenous strip

A single edge-cracked homogenous strip subjected to tensile and bending loads as

shown in Fig. 2.3a is analyzed for various crack sizes (for a range of a/w=0.1~0.9). Fig.

2.3b and c¢ show the tension applied at the top and the bottom boundaries to counter the

tensile load and bending moment applied to the plate shown in Fig. 2.3a, respectively.
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In order to investigate the effects of the minimum element size ¢ and FE model
density on the SIFs, four pairs of models (a pair of model is composed by one reference
problem and one target unknown problem with the same model densities) with different
minimum element sizes are tested to carry out the convergence study. The mesh pattern,
model density and minimum element size for each pair of models are fixed the same.
Namely, the minimum element size for each pair of models is a/3%2a/3°,4/3",a/3* which
corresponding to the total number of mesh layers w -9101112, respectively.

The results computed from different pairs of models are presented in Table 2.1. It can be
seen from this table that the minimum element size (number of refined layers az) has a
significant effect on the accuracy especially when the crack length is considerably deep,
say when aw=>04. This effect becomes particularly prominent as the crack length
increases. The SIFs for the extremely deep crack cases (a/w =0.8,0.9) are plotted against the
minimum element size in Fig. 2.4. The accurete results obtained by the body force method
(BFM) and the hypersingular equation method (HIEM) are plotted in dashed lines. It can
be seen that increasing the number of refined layers (a2) can significantly improve the
accuracy, however, this will lead to dramatic increase in the number of FE elements, and
consequently the computational cost. Fig. 2.4 also demonstrates that accurate results can be
obtained using linear extrapolation of SIFs from meshes with different minimum element
sizes. Specifically, when increasing the number of refined layers ~ —«, the minimum
element size e—o. Hence, the accurate SIFs for m -« can be computed using the
following equation.

s = K0 =(e,K" —eK?) (e, ~¢), e #e,<a/243 (2.20)
Where k= is the extrapolated SIF, and k= k= are the SIFs computed by two

different meshes with the minimum element sizes e,e, respectively. The values of SIFs

computed by the present method are tabulated and compared to those predicted by
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Kaya-Erdogan [20] and Noda et al. [21] in Table 2.2. It can be seen that the extrapolated
results and those of Kaya-Erdogan [20] and Noda et al. [21] are in very good agreement,

and their accuracy is much better than the original method [16].

144454444 pA44444
W > Mat.1
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Fig. 2.5 (a) a central-cracked and (b) an edge-cracked dissimilar bonded strip subjected to
uniform tension

2.2.3 Convergence study for central and single-edge interface crack problems

Two-dimensional plane-stress problems of central and single-edge interface crack
problems are analyzed for various crack lengths. The problems are demonstrated in Fig.
2.5a and b, respectively. The FE models are built in a similar manner as depicted in Section
2.3.1. Fig. 2.6 shows the results for a central cracked bonded strip with a relative crack
length of aw =o0.8. The elastic parameters in Fig. 2.6 are restricted to £,/£,=4,v,=v,=03.
As can be seen from Fig. 2.6, extrapolation is not necessary for the central crack case since
the results converge asymptotically with increasing the number of refined layers around the
singular region when az>9. The SIF values for others material combinations are tabulated
in Table 2.3 together with those predicted by other researchers. As shown in the table, the

improved crack tip stress method results almost coincide with those of the original one [16],
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and they are in very good agreement with those of Yuuki and Cho [1] and Miyazaki et al.
[2]. Therefore, the post-processing technique of extrapolation is not necessary for the
central interface crack case. And accurate results can be obtained by using meshes with
minimum element size smaller than a/729.

The SIFs for the edge cracked dissimilar bonded strip a/w=0.7,08 are plotted and
compared with those of Yuuki and Cho [1] and Miyazaki et al. [2] in Fig. 2.7. The elastic
parameters in Fig. 2.7 are also restricted to £,/£, -4, -v,-0.3. The data of Yuuki and Cho
[1] and Miyazaki et al. [2] are plotted in dashed lines. From this figure, it can be seen that
the normalized SIF K,/o+za also behave linear relationship with the minimum element
size. Good results can be obtained by using linear extrapolation without adding too more
refined layers. Here, it should be noted that the exact values for K, /cvza should also be
computed through linear extrapolation although a simple linear behavior is not observed
for this case. For the not deep crack case, post-processing of extrapolation is also necessary
since the effect of minimum element size e to the SIFs is dominated by the bi-material
elastic properties. This means the original method may also include un-ignored errors for
the not deep crack case. In this study, models with the minimum element size e=a/3°,a/3’
are recommended since they have the best compromise between accuracy and
computational cost. The normalized SIFs for other material combinations are tabulated in
Table 2.4 together with those of Yuuki and Cho [1] and Miyazaki et al. [2]. Table 2.4
illustrates that the SIF values computed by the current method are in very good agreement
with those predicted by Yuuki and Cho [1] and Miyazaki et al. [2]. Furthermore, the results
computed by the current method are much better than those predicted by the original
method [16], especially for the deep crack cases. The results computed by the original
method [16] for the deep crack case are given in parentheses in Table 2.4. Therefore, the

current method can get accurate SIFs without using high model density (say, the total
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number of layers is NL=10,11 in this research), and it has a faster convergence speed than

other numerical methods.
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Fig. 2.6 Variations of normalized SIFs F, =K,/ov7a |F,|=|K,|/ovza With minimum element
size e of FE models for a bi-material bonded strip
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Fig. 2.7 Variations of normalized SIFs F =K,/ovza,F,=K,/ovza With the minimum
element size e for a bonded strip (a) (b) aw =07 and (c) (d) aw =08 subjected to
uniform tension. (Continue)
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Table 2.3 Normalized SIFs for central interface crack (v,-v,-0.3,Plane stress)

K//m/g K, /m/g
E[E aW Present Oda et al. Yuuki-Cho ML);aazlaki Present Oda et al. Yuuki-Cho Mgaazlaki
(2010) (1989) (1993;) (2010) (1989) (1993;)

2 0.1 1.001 1.001 0.996 1.001 -0.072 -0.072 -0.072 -0.072
0.2 1.019 1.019 1.019 1.020 -0.071 -0.071 -0.071 -0.071
0.3 1.052 1.052 1.053 1.053 -0.071 -0.071 -0.072 -0.071
0.4 1.103 1.103 1.104 1.104 -0.073 -0.073 -0.073 -0.073
0.5 1.179 1.179 1.180 1.181 -0.078 -0.077 -0.078 -0.077
0.6 1.294 (1.293) 1.294 1.296 -0.086 (-0.086) -0.085 -0.085
0.7 1.475 (1.474) 1.477 1.478 -0.101 (-0.101) -0.100 -0.100
0.8 1.796 (1.793) 1.798 1.799 -0.132 (-0.131) -0.131 -0.131
0.9 2.542 (2.532) - - -0.215 (-0.213) - -

4 0.1 0.987 0.987 0.983 0.987 -0.129 -0.129 -0.129 -0.129
0.2 1.006 1.006 1.005 1.006 -0.127 -0.127 -0.127 -0.127
0.3 1.038 1.038 1.038 1.031 -0.127 -0.127 -0.127 -0.127
0.4 1.088 1.088 1.088 1.089 -0.130 -0.130 -0.131 -0.130
0.5 1.161 1.161 1.162 1.163 -0.138 -0.137 -0.137 -0.137
0.6 1.271 (1.271) 1.272 1.273 -0.151 (-0.151) -0.151 -0.150
0.7 1.445 (1.443) 1.445 1.446 -0.177 (-0.176) -0.176 -0.176
0.8 1.750 (1.747) 1.751 1.752 -0.229 (-0.227) -0.229 -0.227
0.9 2.457 (2.448) - - -0.370 (-0.365) - -

10 0.1 0.968 0.967 0.963 0.968 -0.175 -0.175 -0.173 -0.174
0.2 0.986 0.986 0.985 0.986 -0.172 -0.172 -0.170 -0.171
0.3 1.018 1.018 1.018 1.018 -0.171 -0.171 -0.171 -0.170
0.4 1.065 1.065 1.065 1.066 -0.174 -0.174 -0.174 -0.173
0.5 1.135 1.134 1.134 1.136 -0.183 -0.182 -0.183 -0.182
0.6 1.238 (1.238) 1.238 1.239 -0.199 (-0.199) -0.199 -0.198
0.7 1.400 (1.399) 1.400 1.402 -0.231 (-0.230) -0.230 -0.229
0.8 1.684 (1.682) 1.684 1.686 -0.295 (-0.293) -0.295 -0.293
0.9 2.338 (2.333) - - -0.470 (-0.463) - -

100 0.1 0.946 0.945 0.940 0.946 -0.206 -0.207 -0.205 -0.206
0.2 0.964 0.964 0.962 0.964 -0.202 -0.202 -0.201 -0.201
0.3 0.995 0.996 0.994 0.994 -0.201 -0.200 -0.201 -0.200
0.4 1.039 1.039 1.038 1.039 -0.203 -0.204 -0.203 -0.203
0.5 1.105 1.104 1.104 1.104 -0.212 -0.212 -0.211 -0.210
0.6 1.200 (1.200) 1.201 1.201 -0.229 (-0.229) -0.228 -0.228
0.7 1.350 (1.349) 1.349 1.351 -0.262 (-0.261) -0.260 -0.260
0.8 1.610 (1.610) 1.610 1.612 -0.329 (-0.327) -0.328 -0.327
0.9 2.210 (2.209) - - -0.517 (-0.508) - -
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Table 2.4 Normalized SIFs for edge interface cracks
(v, =v,=03,Plane stress)

K//U\/E K/,/GN/E
E[6 AW Present Odacetal. Yuuki-Cho Mze;zlaki Present Oda et al. Yuuki-Cho Mgaazlaki
(2010) (1989) (1993;) (2010) (1989) (1993;)

2 0.1 1.195 1.193 1.188 1.195 -0.129 -0.129 -0.128 -0.129
0.2 1.367 1.365 1.366 1.368 -0.137 -0.137 -0.137 -0.137
0.3 1.658 1.653 1.657 1.659 -0.158 -0.158 -0.157 -0.158
0.4 2.108 2.101 2.108 2.110 -0.198 -0.198 -0.198 -0.198
0.5 2.818 2.790 2.820 2.882 -0.267 -0.316 -0.268 -0.267
0.6 4.021 (4.003) 4.024 4.031 -0.396 (-0.398) -0.398 -0.397
0.7 6.331 (6.286) 6.348 6.353 -0.670 (-0.673) -0.673 -0.670
0.8 11.892 (11.747) 11.930 11.950 -1.406 (-1.411) -1.407 -1.410
0.9 34.330 (33.394) - - -4.891 (-4.871) - -

4 0.1 1.209 1.207 1.201 1.209 -0.239 -0.240 -0.238 -0.239
0.2 1.368 1.365 1.387 1.368 -0.251 -0.251 -0.254 -0.250
0.3 1.653 1.644 1.653 1.654 -0.288 -0.286 -0.288 -0.288
0.4 2.100 2.093 2.100 2.101 -0.359 -0.359 -0.359 -0.359
0.5 2.805 2.791 2.807 2.807 -0.484 -0.484 -0.483 -0.483
0.6 3.998 (3.977) 4.000 4.006 -0.716 (-0.718) -0.701 -0.716
0.7 6.284 (6.235) 6.298 6.304 -1.208 (-1.212) -1.209 -1.208
0.8 11.768 (11.610) 11.785 11.820 -2.532 (-2.538) -2.534 -2.538
0.9 33.735 (32.741) - - -8.797 (-8.742) - -

10 0.1 1.229 1.228 1.220 1.229 -0.340 -0.341 -0.338 -0.340
0.2 1.369 1.367 1.367 1.369 -0.349 -0.350 -0.349 -0.349
0.3 1.648 1.643 1.646 1.648 -0.399 -0.400 -0.398 -0.399
0.4 2.089 2.082 2.088 2.090 -0.495 -0.495 -0.495 -0.494
0.5 2.787 2.772 2.788 2.789 -0.664 -0.663 -0.664 0.663
0.6 3.967 (3.944) 3.966 3.974 -0.979 (-0.981) -0.980 -0.978
0.7 6.224 (6.168) 6.229 6.241 -1.648 (-1.652) -1.651 -1.648
0.8 11.611 (11.436) 11.590 11.660 -3.450 (-3.451) -3.454 -3.456
0.9 32.984 (31.921) - - -11.968 (-11.858) - -

100 0.1 1.252 1.251 - 1.251 -0.425 -0.426 - -0.424
0.2 1.370 1.368 - 1.370 -0.428 -0.429 - -0.428
0.3 1.642 1.637 - 1.642 -0.485 -0.486 - -0.485
0.4 2.078 2.070 - 2.078 -0.598 -0.597 - -0.597
0.5 2.770 2.754 - 2.770 -0.799 -0.797 - -0.797
0.6 3.937 (3.912) - 3.940 -1.173 (-1.175) - -1.172
0.7 6.165 (6.104) - 6.177 -1.972 (-1.973) - -1.969
0.8 11.459 (11.270) - 11.500 -4.121 (-4.114) - -4.124
0.9 32.267 (31.146) - - -14.277 (-14.106) - -
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2.3.4 Examples of axisymmetrical crack problems in a cylindrical bar

?azl ?0':1

O/\_/C O/_\—,

71

@ v7 w v ©

Fig. 2.8 (a) a penny-shaped crack and (b) a circumferential surface crack in a cylindrical
bar under tension (c) 3-D FE mesh geometry of circumferential crack

Table 2.5 Normalized stress intensity factors k,/ovza of a single circumferential crack in

a round bar
a/R  Penny-shaped crack Circumferential surface crack
Axisy model  3-D model Ref [26] Axisy model  3-D model Ref[27]
0.1 0.6369 0.6369 0.6369 1.1811 1.1825 1.180
0.2 0.6393 0.6394 0.6396 1.2620 1.2616 1.261
0.3 0.6462 0.6462 0.6468 1.3930 1.3928 1.393
0.4 0.6600 0.6600 0.6616 1.6017 1.6016 1.602
0.5 0.6855 0.6856 0.6881 1.9388 1.9387 1.940
0.6 0.7294 0.7294 0.7335 2.5142 2.5142 2.516
0.7 0.8067 0.8067 0.8123 3.6153 3.6152 3.618
0.8 0.9551 0.9552 0.9613 6.2381 6.2382 6.243
0.9 1.3218 1.3217 1.3251 16.6569 16.6566 16.67

The applicable possibility of treating the axisymmetrical crack problems by using the
improved crack tip stress method is discussed in this section. Requirements of the mesh
patterns are further investigated and discussed. Similarly, the 8-node quadrilateral element

in plane strain condition is used to build the reference problem as discussed in section 2.3.1.
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And two different mesh types as the 8-node axisymmetric solid element and eight-node
hexahedral solid element are used to mesh the penny-shaped and circumferential surface
crack problems as shown in Fig. 2.8a and b, respectively. The 2D axisymmetric model is
refined in a similar way as shown in Fig. 2.2c, and the 3D FE model and its boundary
conditions are demonstrated in Fig. 2.8c. A convergence study for the normalized SIFs
with the minimum element sizes for the axisymmetrical crack problems under deep crack
case a/R=0.9 Is shown in Fig. 2.9. It can be seen from Fig. 2.9 that linear extrapolation
should be used for both the penny-shaped and circumferential crack problems. The
normalized SIFs for penny-shaped and circumferential cracks as well as those of Benthem
[22] and Nishitani [23] are tabulated and compared in Table 2.5, respectively. It can be
seen from this table that the normalized SIFs computed by axisymmetric models coincide
with thosed predicted by 3-D solid models. Furthermore, the SIF values predicted by the
current method for the penny-shaped crack and circumferential surface crack are in good
agreement with those of Benthem[22] and Nishitani [23], respectively. This means the
current method is also useful for the axisymmetrical crack problems. And the
computational accuracy of the improved proportional method is independent with the FE

element types for the reference and target unknown problems.
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Fig. 2.9 Extrapolation of normalized SIFs F, =K,/o/za
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Table 2.6 Normalized SIFs for single-edge interface cracks a/W=0.1 computed by different
element types (v 1=v 2=0.3, Plane Stress)

Reference Reference Unknown )
EJ/E; Tension Bending Tension Final SIF results
Gy Tyy Oy Tyy Gy Tyy 700 Fi Fi
1  20.6855 6.0E-10 0 11.7483  24.5812 0 0 1.1883 0
2 20.0492 -2.5977 4.8652 114294 24.1942 -2.6533 0.0333 1.1941 0.1292
dnode 3 19.2508 -3.8644 7.2250 11.0285 23.7075 -3.9971 0.0505 1.2017 0.1971
4 186162 -4.6060 85995 10.7092 23.3198 -4.8142 0.0611 1.2082 0.2398
10 16.8208 -6.1570  11.447  9.8026 22.2191 -6.6430 0.0853 1.2285 0.3406
100 15.1168 -7.2287 13.383  8.9377 21.1701 -8.0673 0.1046 1.2512 0.4258
1 26.4101 0 -4.3E-09 17.0392 31.4000 0 0 1.1889 0
2 254466 -4.2596 6.7703 16.4782 30.7417 -4.4474 0.0331 1.1946 0.129
8node 242415 -6.3314 10.025 15.7714 299139 -6.6975 0.0502 1.2021 0.1967

4 23.2868 -7.5411 11906 15.2074 29.2543 -8.0639 0.0607 1.2084 0.2393
10  20.6003 -10.056 15.744 13.6007 27.3803 -11.114 0.0847 1.2285 0.3399
100 18.0715 -11.772 18.286 12.0613 25.5920 -13.479 0.1039 1.2511 0.4248

2.4 Effect of element types on the SIFs

The computational accuracy is greatly kept by the current method based on the
concept of proportion. Errors of the FE stress components are eliminated to the largest
extent in the proportional process in computing SIFs. However, effects of the variations on
the element types on the SIFs have not been revealed yet. Therefore, a test was performed
to verify the robustness of the method on element types. Various types of elements are
available for the FE meshes. For the singular problems, it is suggested that the 8-node
quadrilateral element (second order) can catch the stress concentration better than the
4-node quadrilateral element (linear). Two-dimensional plane-stress problem of a
single-edge interface crack problem a/W=0.1 is analyzed by using the linear and second

order elements for various material combinations. The material properties of the bonded
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strip are £,/£,-123410100,v,=v,=0.3. The FE models are built in a similar manner as
depicted in Section 2.3.1. The FE stress components and SIFs computed from the two
types of elements are tabulated in Table 2.6. As can been seen from this table, although the
FE stress components computed by the two types of elements are totally different, and the
second order element can catch the stress concentration better than the linear element; the
final SIFs values are almost the same. The SIFs computed by linear and second order
models coincide with each other by 4 digits. This means the current method is firmly

robust and independent of the element types.

2.5 Conclusions

The limitations of the use of the crack tip stess method was demonstrated and investigated
by pursuing a convergence study. Then, a post-processing technique of extrapolation was
proposed to get the high-precision SIFs of interface crack problems by using the Finite
Element Method. The accuracy and robustness of the improved proportional method were
tested via several numerical examples. The computational accuracy was greatly improved
comparing with the original one. Furthermore, the FE modeling requirements as well as the
general procedure and precautions were also depicted as follows:

1. The crack length (half length) and material combinations of the target unknown problem
and the reference problem should be kept the same. Furthermore, FE element sizes in each
refined layer around the singular region should also be made the same for the reference and
target unknown problems.

2. The element types of FE meshes are not necessarily the same for the reference and target

unknown problems. For example, in this research, the FE model of the reference problem
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is made of two dimensional quadrilateral element, but that of the target unknown problem
can be made of other types of elements. Say, the axisymmetrical solid element and
hexahedral solid element in Section 2.3.4. However, it should be noted that the model
density and minimum element size for the two problems should be the same.

3. The post-processing technique of linear extrapolation should be employed in the analysis.
Models with the minimum element size of ¢-a/s4/57 are recommended to get the best

compromise between accuracy and computational cost.
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CHAPTER
Stress intensity factors of the edge

cracked bonded half-planes

3.1 Introductions

Quiet a lot interface crack problems have been treated previously, and various
numerical methods have been reported to determine the SIFs of an interface crack till
recently. However, several fundamental questions are still unsettled for interface cracks.
For example, the equivalent condition is well-known for the SIFs between the central and
edge cracks in homogenous wide plate in Fig. 3.1a, b. Say, the SIF of Fig. 3.1b is
equivalentto +2x1.1215 times that of Fig. 3.1a when the two crack lengths are the same as
2a=a . On the other hand, the similar equivalent condition has not been revealed yet for
the central and edge interface cracks in the bonded dissimilar wide plates. In our previous
studies, therefore, the central interface cracks in a dissimilar bonded plane in Fig. 3.1c have
been treated for arbitrary material combinations [1, 2]. In this study an edge interface crack
in bonded dissimilar half-planes will be considered as shown in Fig. 3.1d, which is the
most fundamental counterpart problem for the central interface crack.

In this chapter the SIFs at the crack tip in a bi-material bonded half-planes as shown
in Fig. 3.1d will be investigated for arbitrary combination of materials. Then, finally an
approximate formula for a shallow edge interface crack for arbitrary combination of

materials and relative crack size will be given by fitting the computed results.
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Fig. 3.1 (a) Central cracked and (b) edge cracked homogenous wide plate (c) central
cracked and (d) edge cracked dissimilar bonded wide plate
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Fig. 3.2 «- s space for the Dundurs’ material composite parameters

3.2 Dundurs’ material composite parameters and typical material combinations

Consider the bi-material half-planes shown in Fig. 3.1d. It is composed of two elastic,
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isotropic and homogeneous semi-infinite plates that are perfectly bonded along the
interface. The material above the interface is termed material 1, and the material below is
termed material 2. In 1969, Dundurs showed that the stress distribution in such a body

depends on only two combinations of the elastic constants. All the possible values of the

composite parameters (=) are constrained in a parallelogram in the «-p plane shown
in Fig. 3.2. The four elastic parameters G,v, and G,v, for Fig. 3.1d determine an unique
point in the «-p plane, but one point in the « - plane may correspond to an infinite
number of material combinations. In addition, the SIFs shown in Fig. 3.1d are only
determined by («.), and they are point symmetrical about the origin of the coordinates
for the «-p plane. According to the singularity near the interface corner of a perfectly
bonded strip, the composite parameters («.4) in the «-p space may be divided into
three groups. Say, Good pair for «(«-24)<0, equal pair for «(«-2p)=0 and bad pair for
a(a-2p)>0. The SIFs for the aforementioned problem in plane strain or plane stress are
only determined on the two elastic mismatch parameters « and s [3]. Here, the

Dundurs’ material composite parameters are defined as

1(K2+1)_62(K1+1)

a= (3.1
1(K2+1)+62(K1+1)
G (1( —l)—G (K —1)

p=-12 221 (3.2)
Gl(/cz +1) + GZ (K1+l)

where the subscripts denote material 1 or 2, G, =£,/2(1+v,).(m=12), G,,£,and v, denote

shear modulus, Young’s modulus and Poisson’s ratio for material », respectively.

x,=(3-v,)/(1+v,) for plane stress and « =(3-4v) for plane strain. In this chapter, only

the SIFs for «>0in «-p space will be investigated since switching material 1 and 2

(mat1< mar2) will only reverse the signs of « and g ((a.p) = (-a.-8)).

The SIFs for the whole range of material combinations in the «-p space as shown
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in Fig. 3.2 are our main research interests. And those for the typical engineering materials

will also be discussed. The Stresses at the crack tip of an edge interface crack are given by

/e
, 1 , r
o-y+/er —@(K/+/-K//)[Za] 3.3)

Where the oscillatory index « (which is also denoted as bi-elastic constant) takes the

form

&

2/7277™1

Fixing g to constants reflects the bonded strips behave the same characteristic oscillating
properties, since the oscillatory index ¢ depends only upon the Dundurs’ material
composite parameter . So, the SIFs are evaluated for various « (0<a<1) by fixing s
to constants p=-0.2,-0.10,0.10.2,0.3,0.4,0.45 as shown in Fig. 3.2. In addition, switching
material 1 and 2 for the bonded strips shown in Fig. 3.1d only reverses the signs of
Dundurs’ material composite parameters (a.s), therefore, we restrict our discussion to
material combinations in the right part of the « -4 plane (« >0) shown in Fig. 3.2.

Suga et al. [4] investigated the («,8) values for typical engineering materials. The
results computed by Suga are given in Fig. 3.3 where g is plotted against «. From this
figure, the typical () values are concentrated along the p=a/4 line in the o-p
space, and scattered distributed in a narrow band between g=«o/4-0.1 and g=a/4+0.1
lines. In addition, the « values may arrange over the whole possible region of 0<a <1,

and g values are between -0.05 and 0.24.
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Fig. 3.3 «- s space for typical engineering materials (Suga,1988, Ref. [4])

3.3 Stress intensity factors of the edge cracked bonded half-planes subjected to tensile

and bending loading conditions

The normalized SIFs at the crack tip of the edge interface crack in bi-material bonded
strips are systematically investigated by varying the relative crack lengths amw , as well as
the material elastic parameters « and z. Here, we restrict our discussion to material
combinations with fixed . The double logarithmic distributions are shown in Fig.
3.4-3.11 for the normalized SIFs F =K,/ovra,F, =K, [o/za of
f=-0.2-0.10,0.10.2,0.3,0.4,0.45, respectively. From those figures, it is found that the
double logarithmic distributions behave linearity when a/w <o0.01 and differ within about
5% ata/w <0.05.

After examining every material combination it is seen that the plus and minus of the
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slope for each curve varies depending on the sign of «(«-25). Specifically, the slope for
each line is positive whena(«-2p)<0, zero when «(a-2p)=0 and is negative when
a(a-2p)>0. Furthermore the slope equals the order of stress singularity for a perfectly
bi-material strip. It physically means the existence of stress singularity around the interface
corner. For example, free-edge singularity exists when the slope is negative and vanishes
when it is positive. In particular, uniform stress distribution appears when the slope is 0. As
an example, the distributions of the composite parameters for different types of materials
are plotted in Fig. A.1 [5] of the appendix. Thus, it can also be deduced for the limiting
case, the values of F =K,/oJza,F, =K, /ovza for the bonded semi-infinite plate (a/w —o0)

take the form:

a(a-2p8)>0: FoFy 2

a(a-2p)=0: F,F, - finite (3.5)
a(la-2B)<0: F F 0

Although when «(a-2p)>0, £ >«F >« as aw o, actual crack extension along the
interface may be controlled by the stress intensity factors «,,k, instead of F,F,. In order
to simulate the crack extension it is important to consider how the values of k,,k, change
depending on the crack length. The double logarithmic distributions of the general SIFs
K, and Kk, at the crack tip are plotted in Fig. 3.12. Linearity within the zone of the
free-edge singularity can also be found from this figure. Here, it should be noted that all
the SIFs increase monotonically with increasing relative crack lengths aw for all the
material combinations. Since £,/ sometimes go to infinity, one may misunderstand that
K.k, also approach infinity asa/w — 0. However, as shown in Fig. 3.12, «,«, always

approach zero independent of material combinations as a/Ww —o0.
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3.4 Singular stress field at the end of a bonded plate

As shown in the Section 3.3, the SIFs of an edge interface crack may be affected by
the singular stress field appearing at the interface corner of the bonded plate. It should be
noted that more detailed investigation reveals that the slopes of the lines in Fig. 3.4-3.10
correspond to the singular index . of the perfectly bonded plate without crack. It is
known that the singularity at the end of bonded plate can be determined by the following

relationships [6, 7].

a(a-2p)>0° i<l, o,=0 —o (r—0) Singularity exist

yy |9:0

a(a-2p)=0" A1=1, o,=0,],,— finitt (r—0) Singularity =0 (3.6)
a(a-2p)<0: A>1, o,=0,],,>0 (r—0) Singularity vanish

Therefore the interface crack within this zone behaves in the following ways.

a(a72ﬁ)>02 Kl/O'\/E—)OO,K”/O'\/g—)OO,
a(a-2p)=0: K,/oVra, K,/ora - finite values 3.7
a(a-2p)<0: K,/ovra—>0K,/ora—0.

In this section, the singular stress fields near the free-edge corner will be described in
detail. Let’s consider a perfectly dissimilar bonded plate without crack as shown in Fig.
3.13 with a cylindrical polar coordinate (-.¢) centered at the interface corner. The singular

field around the bonded end can be expressed in the following form [8].

o =Kttt (1), 1 =Kt Th(r0) (3.8)
Here k is the intensity of stress singularity at the interface corner, r is the radial
distance from the corner, and 2 is the order of stress singularity. Also f,(r.6), f,,(r.0)

are known functions of ¢ [8].
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Many studies have considered the order of stress singularity for bonded corners with
varying geometric configurations and material combinations [6-12]. For the bonded strip
shown in Fig. 3.13, the angles which the traction-free surfaces make with the interface are

z/2 , then the values of 2 can be obtained by solving the following equation

D(a,3,2) = {cosz[;r/lj —(1—/1)2}2 B2+ 2(1—2)2{c032 (Zi)—(l—l)z}aﬂ

(3.9)
+(1- /1)2 [(l— /1)2 —1}12 +cos? [%[]sinz (’%ﬁ) =0

Where, 2 is the zero of D(«,5,4) in 0<Re(1)<1that has the smallest real part. In general,
D(a,p,4) is expected to have several zeros in 0<Re(4)<1. In all cases where more than
one zero of D(e,p,4) occurs only the smallest one will be exhibited [7]. The values of 2
are computed for arbitrary material composite parameters(«.5), and the results are plotted
and tabulated in Fig.3.14 and in Table 3.1, respectively. The contour plot of 2 is also
demonstrated in Fig.3.15. Here, it should be noticed that 2 for any material combinations
can be obtained from Table 3.1 since i(a, g) = A(-a,-A) .

Although the singular index has been discussed in many papers, the intensity of
singular stress fields has just recently been obtained. Reedy and Guess [13] have
determined the magnitude of intensity of stress singularity for a thin elastic layer
sandwiched between two rigid substrates. Akisanya and Fleck [14] applied the contour
integral to evaluate the singular stress field at the free-edge of a long bi-material strip
subjected to uniform tension. Xu et al. [15] proposed numerical methods to determine the
multiple stress singularities and the related stress intensity coefficients. Chen and Nisitani
obtained the exact expression of the singular stress field for a bonded dissimilar strip [8].
From this paper, it is known that the root of Eq.(9) has a single real root o<i<1 when
«(«-2p)>0. In this research, in order to examine the stress field around the free-edge corner,

K, is introduced to define the intensity of singular stress as

a
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K, = lim [rl_lxangﬁ/z} (3.10)

The intensity of stress singularity k for an un-cracked bonded dissimilar strip can be obtained
using [8].

K =K_ /(44cos(ir | 2)[(4 +1-2)cos(Ax) +(A+1)(248-1) - 2B + 222 (2 +1)(a - B)]) (3.11)

The values of Kk /ow** for i<1 are calculated as a further work to the previous
research [16]. And they are plotted in Fig. 3.16 and Fig. 3.17 against material
composite parameters « . It should be noted that k, for the shear stress
component also exists but is not demonstrated here since it is negligible in
magnitude comparing with k_ . The zone of free-edge singularity domains an
extent of around 0.1 times the width of a bi-material strip. Therefore, the SIFs
of very shallow edge interface cracks within the extent of singular zone will be mainly

controlled by the free edge singularity.

1444444
W

A I2] (r,a)
5
(o]

/ G,,v
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Fig. 3.13 (a) The bi-material bonded semi-infinite plate and (b) finite strip
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Table 3.1 Singular index 2 for various combinations of materials

a B=-0.2 B=-01 B =0 B=0.1 8=0.2 8=03 =04 B =0.45
0 1 1 1 1 1

0.05 0.98378 0.99035 0.99800 1.00613 1.01403

0.1 0.96593 0.97774 0.99205 1.00831 1.02512

0.15 0.94684 0.96269 0.98253 1.00626 1.03279

0.2 0.92685 0.94571 0.96987 1 1.03604 1.07562

0.3 0.90752 0.93713 0.97605 1.02764 1.09640

0.4 0.86549 0.89741 0.94025 1 1.09130

05 0.82096 0.85320 0.89662 0.95796 1.05584

0.6 0.77459 0.80597 0.84801 0.90711 1

0.7 0.75644 0.79606 0.85104 0.93477 1.11741

0.75 0.73090 0.76909 0.82169 0.90048 1.05468

0.8 0.70481 0.74151 0.79163 0.86554 1

0.85 0.67824 0.71331 0.76091 0.83006 0.94923 1.08125
0.9 0.65105 0.68448 0.72953 0.79410 0.90075 1

0.95 0.62320 0.65496 0.69745 0.75761 0.85364 0.93488
1 0.59461 0.62466 0.66461 0.72053 0.80731 0.87624

3.5 Fitting functions for the stress intensity factors of edge interface cracks in the

bonded half-planes

In Section 3.3 and 3.4, it has been proved that k,/ovza and K,/ovza have finite
non-zero values only when «(a-28)-0. Here, the normalized SIFs F =K, /oJza and
F, =K,/oza for an edge interface crack in a bonded semi-infinite plate for «=25 are
plotted in Fig. 3.18. From the figure, it is clear that F and F, behave quadratic and
linear relationship, respectively. The computed results for «-2p are also tabulated in
Table 3.2. Then, the approximate expression as in Eq. (3.12) is given by fitting the
computed results. Specifically, the result for the homogenous semi-infinite plate (when two
materials are identical «=p=0) computed in this research is K,/o+ra=1.1208, compared

with the famous theoretical one K, /o+za =1.1215, and it merely has an error of 0.062% .
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K, [oma =1.121+0.0159/ - 0.22152

12
K|, /m/E:—o.684ﬂ (8.12)

In conclusion, the solution of SIFs at the crack tip for a bonded dissimilar half-planes
takes the form

KI/JJE—)O,K”/JJE—W when  a(a —28)<0;
KI/JJE:1.121+0.0159,3—0.221,32,K”/m/%:—o.ssarﬂ when  a(a —2p)=0; (3.13)
KI/U\/E—MO,K”/OK/E—)OO when a(a —2)>0.

Table 3.2 Results of the dimensionless SIFs for « =2z

B KI/O-\/a K /6\/5

0 1.121 0

0.1 1.120 -0.067
0.2 1.115 -0.135
0.3 1.106 -0.204
0.4 1.092 -0.273
0.45 1.083 -0.307
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3.6 Conclusions

In this paper an edge interface crack in a bonded semi-infinite plate were analyzed

asymptotically with varying the crack lengths and material combinations systematically.

The limiting solutions were provided for the tensile and bending loading conditions. And

the following achievements have been concluded as follows:

1. An empirical function of the SIFs for the single-edge cracked bonded dissimilar
half-planes was proposed for arbitrary material combinations. The SIFs are expressed
in the following form.

K JoNza K, [oza >0 when a(a-2p)<0
Kl/m/E:1.121+0.0159ﬁ—0.221ﬁ'2,Kz/m/E:—o.esw when a(a-2p)=0;

K JoNza K, [ora > = when a(a-2p)>0

2. The singular stress field for a bonded strip without crack is investigated for various
material combinations since the SIFs for the shallow interface edge crack are controlled

by this singular stress field.
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CHAPTER Stress intensity factors of the

single-edge-cracked bonded finite

strip

4.1 Introductions

Multi-material systems are widely used in the designation of adhesive joints, bonded
structures, thin film coating and composites. Failure of the multi-layer systems initiates at
the corner where the interface intersects a traction-free edge as shown in Fig. 4.1 with a
higher possibility, since a singular stress field develops at the interface corner. For a given
interface crack, crack proporgation initiates as the SIFs increase to the critical values, and
evently lead to the failure of the bonded structue. An exhaustive investigation on the
variations of the SIFs of the bi-material strips for various crack lengths will contribute to a
better understanding of the initiation and propagation of the interfacial cracks.

In this chapter we will calculate the SIFs of the bi-material bonded finite isotropic
elastic strips as shown in Fig. 4.1 subjected to tensile and bending loading conditions. The
discussion will be separated into cracks within and out of the zone of free-edge singularity.
Fitting functions will be proposed to evaluate the SIFs of the shallow edge interface cracks
within the singular zone. The SIFs for other relative crack lengths will be demonstrated in
contour plots for the whole range of material combinations in the « - space. And the
combined effects of the relative crack lengths and material combinations to the SIFs of the

bi-material strips will also be of special interests in this chapter.
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4.2 The region of the zone of free-edge singularity

For the bi-material strip shown in Fig. 4.2, let (r,6) be polar coordinates centered at the
interface corner o. The extent of the region dominated by the free-edge singularity is
demonstrated using a dashed curve. The stress components o,z, within the singular

stress field near the interface corner are of the form

A1-1 A-1
oo t™ T H o (r0). 7 ot T (1,6) (4.1

Furthermore, it is found that the normal stress component o, within the singularity zone
reaches the maximum at the interface (¢ =0). Discussions on the extent of the singularity
zone have been published in several literatures. For example, Bogy [1] evaluated the extent
of the singular zone along the interface (¢=0) for an infinitely long bi-material strip
subjected to tension for elastic mismatch parameters « =-0.8,4=0. Reedy [2] calculated
the region of singularity zone of the order of 0.6 times the interlayer thickness for a thin
elastic layer sandwiched between two rigid substrates. Akisanya [3] determined the
singularity zone size along the radial directions ¢=43> and ¢=1.6> for a long bi-material
strip for «=0.5 and «=0.8, and for g=0 and p=qa/4, by comparing the asymptotic
and the finite element solutions for the normal stress component o,,. And the extent of the
singularity zone is 0.1 times the strip width along ¢ =43, and 0.03 times the strip width
along ¢ =1.6°. It has been investigated in this research that the extent of the zone size in
Fig. 4.2 varies with the radial direction ¢ and the Dundurs’ material composite
parameters (a.p).

Let’s consider a shallow edge interface crack initiated within the zone of free-edge
singularity shown in Fig. 4.1a, the stress state at the crack tip is dominated by the singular
stress field for the bi-material strip shown in Fig. 4.2. As a result, the SIFs computed in this

chapter will be discussed into two separate parts according to the relative crack length.
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4.3 Stress intensity factors for edge interface cracks within the zone of free-edge

singularity

The SIFs for the shallow edge interface cracks within the singular zone in a

bi-material strip subjected to tensile and bending loading conditions as shown in Fig. 4.1a
are investigated using the improved crack tip stress method. The results of F, -(w/a)™

1-1

and F,-(w/a) " are plotted against logarithmic relative crack length a/w in Fig. 4.3a

and b, respectively. The values for the tensile loads are plotted in dashed lines and those for
the bending loads are plotted in solid lines. In addition, the material composite parameter
g in Fig. 4.3 are restricted to s=o0.3, and similar phenomenon can be found from others
material combinations of restricted . As can be seen from these figures, the values for a
given material combination approach constants with more than 3-digit when a/w <10, and
differ only about 5% when a/w <10°. That means the SIFs for the single-edge interface
cracks within the singular zone have the same behavior due to the effect of free-edge
singularity. Thus, we propose the following formula to calculate the SIFs at the crack tip

for the very shallow edge interface cracks in a bi-material finite strip subjected to tension.

J—(a/W)l ‘-c,, J—(a/W)l ‘=c,

o=P/W for tensile loads (4.2)

o—=6M/W2 for bending loads
Where, coefficients C,,C, are constants depending upon the relative elastic properties of
materials and the loading types. The values of the coefficients C,,C, are listed against

material composite parameters in Table 4.1 and Table 4.2 as well as in Table 4.3 and Table

4.4 for the tensile and bending loads, respectively. And they are also plotted against (. 3)

in Fig.4.4 with the tensile and bending loads in dashed and solid line, respectively. It is

easy to be found that the coefficient curves C, in Fig. 4.4a are similar to the theoretical
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singularity order ones in Fig. 3.14 since the stress field near the interface corner is mainly
dominated by the eigenvalue .. Furthermore, the results of c,,c, for the tensile and

bending loading conditions are compared for various material combinations. The SIFs

agree quite well when «(«-2p)=0 for the two loading types.
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Table 4.1 Tabulated values of c, for tension

a B=-02 B =-0.1 B=0 B =0.1 B =02 B =03 B =0.4 B =0.45

0.05 1.036 1.082 1.114 1.136

0.1 0.979 1.043 1.094 1.146 1.187

0.15 0.907 1.001 1.063 1.14 1.221

0.2 0.958 1.025 1.12 124

0.3 0.875 0.938 1.044 1.215

0.4 0.798 0.852 0.947 1.115 1.528

0.5 0.721 0.772 0.85 0.986 1.343

0.6 0.7 0.763 0.863 1.106

0.7 0.635 0.686 0.756 0.912 1.876

0.75 0.604 0.651 0.709 0.833 1.356

0.8 0.573 0.618 0.666 0.764 1.092

0.85 0.542 0.586 0.626 0.704 0.925 1.589

0.9 0.508 0.556 0.588 0.65 0.806 1.083

0.95 0.46 0.527 0.553 0.602 0.715 0.867
Table 4.2 Tabulated values of c, for tension

a B =-0.2 B=-0.1 B=0 B=0.1 B=0.2 B=0.3 B=0.4 B=0.45

0.05 -0.083 -0.06 -0.026 0.014

0.1 -0.093 -0.079 -0.052 -0.013 0.031

0.15 -0.098 -0.094 -0.074 -0.041 0.006

0.2 -0.106 -0.094 -0.067 -0.023

0.3 -0.124 -0.123 -0.113 -0.084

0.4 -0.133 -0.141 -0.144 -0.135 -0.095

0.5 -0.137 -0.151 -0.162 -0.169 -0.166

0.6 -0.156 -0.172 -0.187 -0.204

0.7 -0.156 -0.176 -0.194 -0.218 -0.318

0.75 -0.155 -0.176 -0.195 -0.219 -0.288

0.8 -0.153 -0.175 -0.194 -0.219 -0.273

0.85 -0.15 -0.173 -0.193 -0.217 -0.262 -0.379

0.9 -0.145 -0.171 -0.19 -0.214 -0.252 -0.307

0.95 -0.136 -0.168 -0.187 -0.209 -0.243 -0.278

Mechanical Engineering Dept 75 Kyushu Institute of Technology



CHAPTER 4

Table 4.3 Tabulated values of ¢, for bending

a B=-02 B =-0.1 B=0 B =0.1 B =02 B =03 B =0.4 B =0.45

0.05 1.004 1.065 1.109 1.143 -

0.1 0.925 1.009 1.081 1.157 1.219

0.15 0.833 0.949 1.037 1.148 1.269

0.2 0.888 0.982 1.120 1.295

0.3 0.77 0.861 1.011 1.257

0.4 0.664 0.742 0.875 1.115 1.718

0.5 0.566 0.636 0.743 0.934 1.443

0.6 0.542 0.627 0.766 1.106

0.7 0.461 0.528 0.626 0.838 2.106

0.75 0.423 0.485 0.566 0.734 1.45

0.8 0.387 0.445 0.512 0.644 1.092

0.85 0.351 0.408 0.463 0.568 0.867 1.72

0.9 0.312 0.373 0.419 0.502 0.711 1.083

0.95 0.262 0.341 0.379 0.445 0.594 0.799
Table 4.4 Tabulated values of c, for bending

a B =-0.2 B=-0.1 B=0 B=0.1 B=0.2 B=0.3 B=0.4 B=0.45

0.05 -0.080 -0.059 -0.026 0.013 -

0.1 -0.087 -0.076 -0.051 -0.014 0.032

0.15 -0.090 -0.089 -0.072 -0.041 0.006

0.2 -0.098 -0.089 -0.067 -0.024

0.3 -0.109 -0.113 -0.109 -0.087

0.4 -0.111 -0.123 -0.133 -0.135 -0.108

0.5 -0.107 -0.124 -0.142 -0.160 -0.179

0.6 -0.120 -0.142 -0.166 -0.204

0.7 -0.113 -0.135 -0.160 -0.200 -0.370

0.75 -0.108 -0.131 -0.155 -0.193 -0.309

0.8 -0.103 -0.126 -0.150 -0.185 -0.273

0.85 -0.097 -0.121 -0.143 -0.175 -0.245 -0.420

0.9 -0.089 -0.115 -0.136 -0.165 -0.222 -0.307

0.95 -0.077 -0.109 -0.128 -0.155 -0.202 -0.256
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The examples of the normalized SIFs for the edge interface cracks a/w =0.001 within the
zone of free-edge singularity are computed and plotted against various Dundurs’ material
composite parameters. Fig. 4.5 and 4.6 show variations of F, and F, for bi-material
bonded strips a/w =0.001 subjected to tensile and bending loads, respectively. It should be
noted that the SIF values behave the similar varying tendency within the singular zone for
each loading type. This is due to the fact that the stress distributions of the shallow
single-edge interface cracks are determined by the free-edge singularity near the interface
corner.

The contour map variations of the SIFs can be obtained from the 3-dimensional plot
as shown in Fig. 4.5 and 4.6. And it can be used to estimate the variation tendency for the
whole range of material combinations for a fixed crack length. Say, Fig. 4.7 and 4.8 show
the contour map variations for bi-material bonded strips a/w =0.001 for tensile and
bending loads, respectively. Similar variation tendencies can be easily observed from these

figures. In addition, it can be seen from Fig. 4.7a and 4.8a that the variation tendencies of

F can be distinguished into two groups according t0 «(a-2p). Say, F, decreases
radioactively outward the pole centered at around («,p)=(10.05) when «(a-28)>0, and
increases downwardly in the «-4 space when «o(a-28)<0. However, different from the
case of F, the values of F, in Fig. 4.7b and 4.8b decrease radioactively and
monotonously from the lower right corner to the upper left corner of the «- s space from

the pole centered at around («,8)=(10.1).
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Fig. 4.5 3-dimensional variations of (a) F, and (b) F, for single edge interface crack
a/W =0.001 for tension
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Fig. 4.6 3-dimensional variations of (a) F, and (b) F, of single edge interface crack
a/W =0.001 for the bending loads
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4.4 Stress intensity factors for edge interface cracks out of the zone of free-edge

singularity

4.4.1 The tensile loading case

As depicted in Section 4.3, the SIFs of the shallow edge interface cracks within the
singular zone can be well computed by using Eq.4.2. Here, the SIFs for crack lengths out
of the zone of free-edge singularity (0.1<a/Ww <0.9) will be investigated.

The contour map variations of F, and F, for 0.1<a/W <09 are plotted against
Dundurs’ material composite parameters in Fig. 4.9 — 4.17. It can be seen from Fig. 4.9 that
the varying tendencies of F, and F, are similar to those in Fig. 4.7. This is due to the
residual effect of the free-edge singularity since a/w =o0.1 is very close to the boundary of
the singular zone. The contour plot of F, for aWw =0.2,0.3,04 in Fig. 4.10-4.12 are
almost similar in trend. The values of F, increase radioactively outward from the pole
around («.p)-(0.98045) inthe «-z space. However, there are two radiation centers in the

«-p Space when zw =05 inFig. 4.13-4.17, one is located around (a,5)-(0.980.45), and the
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other is at (ap)-(x0). The F, values increase gradually outward from the two poles.
Furthermore, the values of material combinations around the line s-s/4-01 are clearly
interfered by the two radiation centers. This is caused by the bending effect for the deep
edge crack cases.

The contour lines of F, in Fig. 4.9b-4.17b for a/w >0.2 behave linearity in the
«-p space. And all the lines in the «-5 space for a fixed relative crack length are parallel
to each other. The trend of the F, lines rotate as the increase of the relative crack length.
For example, the slope of the contour lines is -2.17326 for a/w =0.2 and then gradually
increased to a positive value of 0.03378 for a/Ww =0.2.

The maximum and minimum values of F, and F, over aw=0.1~0.9 With varying
material composite parameters can be obtained from the contour plots. And they are
tabulated in Table 4.5 and 4.6 together with the corresponding «.p in brackets,
respectively. Specifically, over the whole range of «-pspace, Table 5 shows that F,
peaks at the points in the p=«/4-0.25line when a/w <o0.4, but peaks at around «=0=0
when a/w >o0.4. Furthermore, F, bottoms out at around «-o0.985-0.465 for aw <o0.4and
a=1p=0 for aws>o04 in the whole «-pspace. However, for the case of F,, the
maximum values are always located at «-1p-05 (the upper right corner of the
a - psSpace) when a/w>o.1, and the minimum values are always located at «=0,5=-0.25
(the lower left corner of the «- pspace) when a/w>o0.2.

The maximum and minimum values of F,F, for typical engineering materials are
listed in Table 4.6. As can be seen from this table, However, the lowest point of F, for
a/w<0.4 Is not situated at one unique(«.p). But, F always peaks at «=15=-0 and
bottoms out at «-15-0.35 over the whole «-pspace when a/w>o04. Similarly, F,
always reach to its’ maximum at «-=1p=-035 and minimum at «-0p=-0.1 when

a/W>0.1.
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Table 4.5 Maximum and minimum values of F, and F, of the tensile loading case for
material combinations over the whole -5 space

Whole «-B space

aw Fowm  (a,5) Fron (@, /) Frow (@, /) Frome (a7
0.1 1.153 (0.7,0.425) 1501 (L0) -0.030 (0,0.23) 0471 (1,0.1)
02 1.350 (0.86,0.465)  1.493 (1,0) -0.033 (0,-0.214) 0.452 (1,0.5)
0.3 1.639 (0.98,0.465)  1.709 (0.76,0.44) -0.129 (0,-0.25) 0589 (1,0.5)
0.4 2077 (0.987,0419) 2.146 (0.275-0.184)  -0.271 (0,-0.25) 0.805 (1,0.5)
05 2,694 (1,0) 2.859 (0.034,0.259) -0.492 (0,-0.25) 1167 (1,0.5)
0.6 3.690 (1,0) 4032 (0,0) -0.877 (0,-0.25) 1.823 (1,05)
0.7 5793 (1,0) 6.352 (0,0) -1.660 (0,-0.25) 3.189 (1,05)
08 1032 (1,0 11.95 (0,0) -3.708  (0,-0.25) 6.800 (1,0.5)
0.9 2942 (1,05) 3459 (0,0) -13.08 (0,-0.25) 23.42 (1,05)

Table 4.6 Maximum and minimum values of F, and F, of the tensile loading case for

material combinations of typical engineering materials.

Typical engineering materials
aw  F (4,5 Frow (@) Frow (a8 Frow (a0
0.1 1.185 (0.4,0.2) 1.385 (1,0.15) -0.014 (0,0.1) 0.471 (1,0.1)
0.2 1.363 (0.56,0.39) 1.426 (1,0.15) -0.016 (0,-0.1) 0.437 (1,0.35)
0.3 1.642 (0.98,0.495) 1.675 (1,0.15) -0.058 (0,-0.1) 0.496 (1,0.35)
0.4 2.078 (0.987,0.346) 2116 (0.114,-0.072) -0.118 (0,-0.1) 0.610 (1,0.35)
0.5 2.769 (0.99,0.349)  2.825 (0,0.01) -0.214 (0,-0.1) 0.820 (1,0.35)
0.6 3.935 (1,0.35) 4.032 (0,0 -0.380 (0,-0.1) 1.194 (1,0.35)
0.7 6.158 (1,0.35) 6.352 (0,0) -0.697 (0,-0.1) 2.010 (1,0.35)
0.8 11.44 (1,0.35) 11.95 (0,0) -1.580 (0,-0.1) 4192 (1,0.35)
0.9 32.14 (1,0.35) 3459 (0,0 -5.590 (0,-0.1) 1452 (1,0.35)
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4.4.2 The bending loading case

The contour map variations of F, and F, for the bending loading conditions are plotted
against Dundurs’ material composite parameters in Fig. 4.18-4.26. The contour plot of F,
for a/w =0.2,03,04 in Fig. 4.18-4.21 are almost similar in trend. The values of F,
increase radioactively outward from the pole around («.s)-(10) (the lower right corner in
the »-5 space). Similarly, there are two radiation centers in the «~-s space when
a/w >0.5 . However, this phenomenon is not as clear as that of the tensile loading case. This
is maybe due to the enhanced bending effect for the bending loading case. The contour
lines of F, in Fig. 4.19b-4.26b for a/W >0.2 behave linearity in the »-s space. And all
the lines in the »-5 space for a fixed relative crack length are parallel to each other. The
maximum and minimum values of F and F, over the whole range of material
combinations can be obtained from the contour plots. And the maximum and minimum
values of F,F, are tabulated in Table 4.7, and the corresponding material composite
parameters « s are also tabulated in the brackets. Specifically, over the whole range of
« - pspace, Table 4.7 shows that F, peaks at the points in the g=«/4-0.25 line when
a/w <0.2, but peaks at around «=15-=05 when o04<aw <07 andthen peaksat «=0,=0
when a/w >o0.7. Furthermore, F, bottoms out at around «-=1p-=o0for almost the whole
range of relative crack lengths in the whole «- g space. The maximum values of F, are
uniquely located at «-1s-05 (the upper right corner of the «-p space), and the
minimum values are uniquely located at «-o04--0.25 (the lower left corner of the
«-pspace) when a/w>o0.2 for the whole range of material combinations and relative
crack lengths.

The maximum and minimum values of F,F, for typical engineering materials are

listed in Table 4.8. As can be seen from this table, the lowest point of F locates at
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a=1p=-0.15 for each crack length when o03<aw<0.8, and changes to «-15-0.35 when

a/w >0.8. However, the maximum point for F is not situated at one unique(a.s). In
addition, F, always reach to its’ maximum at «-15-0.35 and minimum at «-0,8--0.1

when a/w>o0.1.

Table 4.7 Maximum and minimum values of F, and F, of the bending load case for
material combinations over the whole -5 space

Whole a-B space

aw Fowm  (a,5) Frne (a./) N )] Frow (a7
0.1 0.754 (1,0) 1.061 (0,-0.25) -0.047 (0,-0.25) 0301 (1,05)
0.2 0.855 (1,0) 1.076 (1,-0.25) 0.114 (0,-0.25) 0299 (1,0.5)
03 0982 (1,0) 1159 (1,0.5) -0.172 (0,-0.25) 0329 (1,05)
0.4 1154 (1,0) 1.305 (1,0.5) -0.239  (0,-0.25) 0.396 (1,0.5)
05 1.323 (1,0) 1543 (1,0.5) -0.331 (0,-0.25) 0523 (1,05)
06 1.645 (1,0) 1.944 (1,05) -0.481 (0,-0.25) 0.762 (1,0.5)
0.7 2398 (1,0) 2.724 (0,-0.015) -0.774 (0,-0.25) 1.258 (1,0.5)
08 3.925 (1,0) 4672 (0,0) 1515 (0,-0.25) 2547 (1,05)
0.9 1051 (1,0.5) 1245 (0,0) -4.786  (0,-0.25) 8.301 (1,05)

Table 4.8 Maximum and minimum values of F, and F, of the tensile loading case for
material combinations of typical engineering materials

Typical engineering materials

aWw  F. (4.5 Frow (@) N ) Frow (2,8
0.1 1.003 (1,0.22) 1.046 (0,-0.1) 0021 (0,-0.1) 0.265 (1,0.35)
02 1.007 (1,0.195) 1.056 (0,-0.1)(0,0.1)  -0.049 (0,-0.1) 0.213 (1,0.35)
0.3 1.081 (1,0.15) 1125 (0,-0.1)(0,0.1)  -0.073 (0,-0.1) 0.203 (1,0.35)
0.4 1.220 (1,0.15) 1.261 (0,0.1) 0.101 (0,-0.1) 0223 (1,0.35)
05 1.454 (1,0.15) 1.496 (1,0.35) -0.140 (0,-0.1) 0.285 (1,0.35)
0.6 1.863 (1,0.15) 1.908 (1,0.35) -0.203 (0,-0.1) 0414 (1,0.35)
0.7 2,658 (1,0.15) 2.724 (0,-0.015) -0.334 (0,-0.1) 0.701 (1,0.35)
08 4542 (1,0.35) 4672 (0,0) -0.643 (0,-0.1) 1475 (1,0.35)
0.9 11.66 (1,0.35) 12.45 (0,0) -2.031 (0,-0.1) 5.036 (1,0.35)
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4.5 Effects of relative crack lengths and material combinations to the stress intensity

factors

In order to examine the effect of relative crack lengths and material combinations
more clearly, the values of F, are normalized using those of the homogenous plate [4,5].
Fig. 4.27-Fig. 4.29 show the variations of F,,F, with varying relative crack lengths for
B =-0.2-0.10,0.1 respectively. The values of the tensile loading are plotted in dashed lines
and those of the bending loading are in solid lines. Fig. 4.27a-Fig. 4.29a clearly depict that
there is an inflection point around a/w=0.4 for arbitrary «p regarding the tendency
increases with

of F /F, for the tensile loading conditions. Specifically, F /F

I,homo I,homo

increasing « under fixed s before this point, but increases with decreasing o after this

point. However, similar inflections points for F /F can not be observed for the

1 homo
bending loading conditions, and F /F .., grows with decreasing « by fixing s to a
constant.

The variations of F, are plotted in Fig. 4.27b-Fig. 4.29b. As can be seen from these
figures, inflection points regarding the relative crack lengths can be observed for the two
loading conditions. And the inflection points are located at around a/w =0.5 for the tensile
loading, and at a/w -o0.25 for the bending loading. In addition, F, behave the similar
varying tendencies for the two loading types. The values of F, increase with decreasing

« under fixed p before the inflection points, but grow with increasing « after these

points.
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4.6 Conclusions

In this chapter we calculated the SIFs of the bi-material bonded finite isotropic elastic
strips subjected to tensile and bending loads. Fitting functions were proposed to calculate
the SIFs for shallow edge interface cracks within the singular zone. Then the variations of
SIFs were demonstrated in contour map plots for the « - space. The maximum and
minimum values of F,F, for the whole «-p space and typical engineering materials
were obtained, and their corresponding material combinations were also tabulated. Finally,
the effects of the relative crack lengths and material combinations on the SIFs were also
depicted.
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CHAPTER
Stress intensity factors of the double

edge interface cracks

5.1 Introduction

Composite materials and bonded structures are widely employed in the modern
industrial context. The mechanical behavior of the bi-material interface is of great
significance for the industrial application. Since the presence of cracks negatively affects a
structure’s performance and may result in damage, basic studies about the interface cracks
win quite a number of attentions. High stress concentration at the bonding edge corner
caused by differences in the elastic properties of its material components may lead to the
initiation of micro-cracks and then to the propagation.

In the authors’ previous research, Noda et al. investigated the SIFs of an edge
interface crack in a bonded dissimilar semi-infinite plane [1]. And Lan et al. discussed the
effect of the material combinations and the relative crack lengths to the SIFs of a single
edge cracked bonded strip [2].The SIFs of the single-edge cracked bi-material strip have
been examined for various material combinations in Chapter 4. As a further research of the
author’s previous work, the study object is extended to the double-edge interface crack of a
bonded strip. In this chapter, therefore, the SIFs will be investigated for a bi-material
bonded finite strip as shown in Fig. 5.1b by applying the finite element method with
varying not only the material combinations but also the relative crack sizes. The SIFs will

be computed and listed by varying various material combinations and relative crack
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lengths. The material combinations («.8) vary 0<a<1-025<p<0.5 inthe «-4 space,
and the relative crack size a/w varies from the very shallow crack to the very deep crack.
Furthermore, we will show that the SIFs for the double-edge interface crack also behave a
good double logarithmic linearity to the crack length within the zone of dominance of the
free edge singularity. Then, a formula will be proposed to determine the SIFs for the
shallow edge interface cracks under arbitrary combination of materials and relative crack
size, by fitting the computed results. The effect of the relative crack lengths and material
mismatch parameters are also discussed in this chapter. The SIF values for the single and
double edge interface cracks will be compared for the whole range of combination of
materials (o<«<095-02<p<04s5) and relative crack lengths (o<aw<0.9). For the single and
double edge cracked homogenous strips shown in Fig. 5.2, it is well known that the SIFs
for the single crack are always no less than those of the double crack. However, this law
should not be always true for the interfacial cracks. It will be shown that the SIFs of a
double edge interface crack may be possibly larger than those of a single edge interface
crack for some specific combination of materials and relative crack lengths. In addition,

the SIFs should be compared in three different zones of relative crack lengths.
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Fig. 5.3 FE mesh type and geometric configurations for a double-edge interface crack

5.2 Numerical verification for the double edge crack problems

The robustness and accuracy of the current method in treating double-edge cracked
problems are investigated. The FE model for the double-edge cracked bi-material strip is
created in a self-similar manner as depicted in Chapter 2. Fig. 5.3 shows the mesh type and
geometric configurations for the double-edge cracked bonded strip. It is supposed that two
edge interface cracks initiate at the left and right corner of the strip. And the crack lengths
are kept the same and fixed to a=10mm which is the same as the half crack length of the

reference problem. Then we vary the width of the bonded strip 2w to make o<aw <1,
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and keep the length two times the size of the width in the FE model. Furthermore, the
minimum element size e of the FE models are kept the same for each pair of reference
and given unknown problems.

The SIFs for the extremely deep crack cases (aw-o0s) of a double edge cracked
homogenous strip (« = s =0, two materials are identical) are plotted against the minimum
element size of the FE model in Fig. 5.4. As can be seen from this figure, accurate result
can be obtained using linear extrapolation. The values for other relative crack lengths are
tabulated and compared to those predicted by Nisitani [3] in Table 5.1. It can be seen from
the table that the extrapolated results in this research and those of Nisitani [3] are in very
good agreement.

Fig. 5.5a and b show the variations of the normalized SIFs F,F, for a double edge
cracked dissimilar bonded strips aw -o.s, respectively. Similar to the discussion in Chapter
2, the elastic parameters are restricted t0 ¢,/ -4v,-v,-03 and plane stress condition is
assumed in the analysis. As can be seen from Fig. 5.5a, a linear relationship can be
observed for the case of F . However, different from the case of single edge cracked
bi-material strip, Fig. 5.5b shows that the values of F, converge from e<a/243. This is
maybe because less bending effects due to the symmetry of the double-edge interface
cracks. Therefore, the post-processing technique of linear extrapolation is only employed
to compute F,. And accurate results of F, can be obtained directly by using the minimum
element size e<a/243. The extrapolated values for a double edge cracked bonded strip
shown in Fig. 5.1b are tabulated in Table 5.2. It should be noted that those results in Table
5.2 appear to be new and there are no published data available to be compared with. As
shown in the previous examples and discussions in Chapter 2, the current method is proved
to produce accurate numerical results for mode | crack problems, and therefore it can be

assumed that the results in Table 5.2 are also valid and reliable.
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Fig. 5.4 Variations of the normalized stress intensity factors F, with the minimum
element size e for a double-edge cracked homogenous strip aw -0.s subjected to
uniform tension

Table 5.1 Normalized stress intensity factors F, for the single and double edge cracked
homogenous strips

a/Ww  Present Ref. [3]
0.1 1.117 1.117
0.2 1.112 1.112
0.3 1.115 1.115
0.4 1.132 1.132
0.5 1.169 1.169
0.6 1.236 1.236
0.7 1.353 1.353
0.8 1.573 1.574
0.9 2.115 2.116

Mechanical Engineering Dept 109 Kyushu Institute of Technology



CHAPTER 5

1.5800
o FEM:F, o =15799 a/W=0.8
Le, ' 4444444
1.5795 | w
a Gl,l/l a
I 07
15790 //
)
wo I Y
1.5785}|
1.5780
L e
e =a/3’, e,=a/3", e ,=a/3’, e,=a/3° '
1.5775 - . - . - . - . -
0.00 0.01 0.02 0.03 0.04 0.05
(2) minimum element size (e)
0.246 _ T
[ 4444444
0.245[ w
L a G,v, a
0.244 | 7
[ FEM:F =0.243 /
[extrapolate
_0.243 /.:- - / 7
w €2 & © —e: ’
0.242 |
0.241
e =a/3’, e,=a/3", e,=a/3’, e ,=a/3"
0.2401L ; ! ; ! ; ! ; ! ;
0.00 0.01 0.02 0.03 0.04 0.05
(b) minimum element size (e)

Fig. 5.5 Variations of the normalized stress intensity factors (a) F, and (b) F, with the
minimum element size e for a double-edge cracked bi-material strip aw -0 subjected to
uniform tension

Mechanical Engineering Dept 110 Kyushu Institute of Technology



CHAPTER 5

Table 5.2 Normalized stress intensity factors for a double edge cracked bonded strip shown
in Fig. 1b (v,=v,-0.3, plane stress)

E,[E, =2 E,JE =4 E,/E, =10 E,/E, =100

F FII FI FII FI FII FI FII

0.1 1.131 -0.128 1.164 -0.241 1.212 -0.350 1.264 -0.447
0.2 1.115 -0.119 1.122 -0.219 1.132 -0.309 1.142 -0.382
0.3 1.115 -0.112 1.113 -0.204 1.112 -0.284 1.1109 -0.347
04 1.131 -0.106 1.128 -0.193 1.124 -0.268 1.120 -0.325
0.5 1.168 -0.103 1.166 -0.188 1.163 -0.259 1.159 -0.315
0.6 1.236 -0.104 1.235 -0.189 1.235 -0.261 1.234 -0.318
0.7 1.354 -0.111 1.356 -0.202 1.358 -0.280 1.361 -0.342
0.8 1.575 -0.133 1.580 -0.243 1.586 -0.338 1.591 -0.414
0.9 2.118 -0.207 2.122 -0.380 2.128 -0.531 2.133 -0.652

a/w

5.3 Stress intensity factors of the double-edge interface cracks within the singular

zone

In chapter 4, it has been confirmed that the normalized SIFs within the zone of
free-edge singularity for a single-edge cracked bi-material strip behave a double
logarithmic linearity to the relative crack length = [1,2]. Here, the double edge interface
crack is the main interest. The SIFs will be investigated by varying the relative crack
length aw , as well as the material composite parameters » and . Then the SIFs for the
two interfacial cracks will be compared systematically. In this chapter, we restrict our
discussion to the material combinations with s-0.3. The double logarithmic distributions
of the normalized SIFs Fr, and F, are plotted against zw as shown in Fig. 5.6a and b,
respectively. By the way, the SIFs for the single-edge interface cracks are also plotted in
Fig. 5.6 to be compared with. F,F, for the double-edge interface cracks are plotted in

solid curves and those for the single-edge interface cracks are plotted in dashed ones. From
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Fig. 5.6, it can be found that, similar double logarithmic linearity of F,F, can be observed
when aw <0.01. Furthermore, the slopes corresponding to the same material composite
parameters of the two types of cracks are totally the same, and they are equal to the

singular index .-1 of the perfectly bonded strip without crack as shown in Fig. 5.1c.
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Table 5.3 Tabulated values of c,

a f=-02 A=-01 £=0 A=0.1 £=02 £=03 £=04 £ =045
0.05 1.05 1.089 1.116 1.131

0.1 1.002 1.059 1.1 1.139 1.166

0.15 0.945 1.027 1.076 1.135 1.193

0.2 0.994 1.046 112 1.209

0.3 0.932 0.98 1.061 1.191

0.4 0.875 0.914 0.987 1.115 1.434

0.5 0.819 0.854 0.913 1.015 1.29

0.6 0.8 0.847 0.92 1.106

0.7 0.75 0.789 0.838 0.954 1.734

0.75 0.729 0.762 0.802 0.892 1.302

0.8 0.7 0.737 0.769 0.838 1.092

0.85 0.674 0.713 0.738 0.791 0.959 1.505
0.9 0.645 0.69 0.709 0.749 0.864 1.083
0.95 0.6 0.667 0.681 0.711 0.791 0.907

Table 5.4 Tabulated values of c,

a B =-02 p=-01 B=0 p=0.1 p=0.2 £=0.3 p=0.4 B =0.45
0.05 -0.084 -0.061 -0.027 0.013

0.1  -0.095 -0.08 -0.052 -0.013 0.031

0.15 -0.102 -0.097 -0.075 -0.041 0.006

0.2 -0.11 -0.096 -0.067 -0.022

0.3 -0.132 -0.128 -0.114 -0.082

04 -0.146 -0.151 -0.15 -0.135 -0.09

0.5 -0.155 -0.167 -0.174 -0.174 -0.16

0.6 -0.178 -0.191 -0.199 -0.204

0.7 -0.184 -0.202 -0.215 -0.227 -0.29

0.75 -0.186 -0.206 -0.22 -0.235 -0.277

0.8 -0.186 -0.209 -0.224 -0.24 -0.273

0.85 -0.187 -0.211 -0.227 -0.244 -0.271 -0.358
0.9 -0.183 -0.212 -0.229 -0.246 -0.27 -0.307
0.95 -0.175 -0.213 -0.23 -0.248 -0.269 -0.291

The double logarithmic discussions about the single-edge interface crack in Chapter 3
[1] are also applicable to the double edge interface cracks. It has been proved that the
empirical function Eq.(5.1) is also suitable for the double-edge cracks case by merely

modifying the constants c,,c,. Here, what should be noticed is that F,F, are the same
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within the singular zone for the two types of cracks when «(«-25)-0. See, the curves of
«=0.6,4=0.3 are coincide when a/w <0.01 in Fig. 5.6 . The detailed information about

Eq.(5.1) can be referred in Chapter 3 [1,2].
FlaW)y*-c.F,.(aW)"=c, (5.1)
The constants c,,c, in Eq. (5.1) for the double edge crack case are computed for
various material composite parameters. The values of c,c, are plotted and tabulated

against («.5) in Fig. 5.7a and b as well as in Table 5.3 and Table 5.4, respectively. The

parameters c,.c, for the single-edge interface cracks are also plotted against (a.s) in

dashed lines in Fig. 5.7 to be compared with. It has been seen that they have the same

values when «(«-2p)-0 despite the crack differences. In addition, the detailed information

about the corresponding intensity of stress singularity can be found in Chapter 3 [4,5].
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Recall Eqg. (5.1) and Fig. 5.7, the SIFs at the crack tip for the two types of cracks of
the same relative crack length aw within the singular zone (shallow crack, amw <o.01)

have the following relationships.
FI‘DbI > FI,SgI‘FII‘DbI > FII,SgI ' when a(“_zﬂ) >0,
FI‘DbI = FI,SgI‘FII‘DbI = FII,SgI , when a(“_zﬂ) =0, (5.2)

Fi oo < Fisgis Firoor < Fursgr s when a(a-2p)<0.

Where, F ,,.F, ., denote the normalized SIFs for a double edge interface crack, and

Fa Fuse denote those for a single edge interface crack.

The size of the zone of dominance of free-edge singularity can be determined in a
manner as given below. The lines for the single and double edge interface cracks under the
same material parameters should be parallel (the line slopes are equal to the order of stress
singularity 1-.). Then, by examining the agreement of the slopes of the lines with the
theoretical values of 1-., the size of the singular zone can be determined. Take s-03 as
an example, extremely good agreement for the two slopes can be found for a/w <0.001
and an error within 5% for aw <o0.01. So, the size of singular zone can be roughly
decided as amw <0.01. More computations of the SIFs for 0.001<a/Ww <0.01 are needed to
determine the size of the singular zone accurately. It should be noted that the singular zone
varies with the bi-elastic material combinations and the radial directions which is centered

at the interface corner.

5.4 Comparison of the stress intensity factors for the double and single edge

interface cracks

In this section, the SIFs at the crack tip for the double-edge and single-edge interface
cracks are systematically investigated and compared for various material combinations and

crack lengths. For the case of the single-edge and double-edge cracked homogenous strips
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shown in Fig. 5.2, it is well known that the SIFs for the single crack are always no less than
those of the double crack. However, this law should not be always true for the case of
interfacial cracks. So, the SIFs for the single and double edge interface cracks will be
compared for arbitrary combination of materials in the following section.

The normalized SIF curves of three typical material combinations (good pair, equal
pair and bad pair) shown in Fig. 5.6 are chosen and plotted in Fig. 5.8. As can be seen from
the figure, the whole transverse region of the perfectly bonded strip shown in Fig. 5.1c can
be separated into three different zones according to the dominance effect of the free-edge
singularity. Namely, they are denoted as zone 1, 2 and 3 as shown in Fig. 5.8 for notational
convenient. The boundaries of zone 1 and 2 as well as zone 2 and 3 are roughly defined as
oow and ow respectively. Zone 1 is termed the zone of dominance of free-edge
singularity, and it has been discussed in Section 5.3. Exact double logarithmic linearity
exists within this zone and the SIFs can be obtained by Eq.(5.1) if the interface cracks
initiate within zone 1 (aw <o0.01). Zone 2 is regarded as the transitional zone between zone 1
and 3. The SIFs are also affected by the free-edge singularity, since Zone 2 is close to the
very vicinity of Zone 1. However, the double logarithmic distributions don’t behave exact
linearity any more in Zone 2. Furthermore, Zone 3 is totally no affected by the free-edge
singularity since it is too far away from Zone 1. As can be seen from Fig. 5.8, the SIFs of a
single edge interface crack within zone 3 are always bigger than those of a double edge
interface crack. This phenomenon is caused by the counterbalance effect due to symmetry
of the double edge interface crack. However, when the crack is located in zone 2 (say,
0.01<a/w <0.1), the relationships of the SIFs for the two types of cracks become complexity,
and no unique or clear regular pattern can be followed. In this case, the SIFs are
determined by the combined effect of the free-edge singularity and the counterbalance of

symmetry. Generally, the left part of zone 2 is largely affected by the free-edge singularity
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and the right part is largely dominated by the counterbalance effect. Specifically, r,F, for
aw =01 (crack locates in zone 2) are plotted against various combination of materials in
Fig. 5.9a and b respectively. It can be seen clearly seen that the SIFs for a double-edge
interface crack can still be bigger than those of a single-edge crack for specific
combination of materials. Fig. 5.10a and b show the variations of F,F, for zw-o2
(crack locates in zone 3) for various combination of materials respectively. Fig. 5.10a and
b show that the absolute values of F,F, for a single edge crack are always bigger than
those of a double edge crack. In addition, the SIFs of the double-edge cracks equal those of
the single-edge crack within the singular zone for «(«-2s)-0, and are always smaller than

those of the single-edge crack within zone 3.
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5.5 Conclusions

In this chapter, variations of the normalized SIFs F,,F, at the crack tip of the double
edge interface cracks in a bi-material strip were investigated and indicated for various
material combinations and relative crack lengths a/w . Then, the SIFs of the single-edge
and double-edge interface cracks were systematically compared with the following
conclusions listed.

1. The normalized SIFs for the single and double edge cracked bi-material strips
behave similar linear double logarithmic relationships within the zone of free-edge
singularity. Especially, the slopes for the two types of cracks are the same for the same
material combinations when «(a-28)=0.

2. The empirical function Eq. (4.2) is also available to the double-edge interface
cracks by merely re-computing the constants c,,c,. And the new results of c,,c, for the
double-edge interface cracks are computed and listed for various material combinations.

3. The SIF values for the single-edge and double-edge interface cracks were compared
for the whole range of combination of materials and relative crack lengths. The SIFs of a
double-edge interface crack may be possibly larger than those of a single-edge interface
crack for some specific combination of materials and relative crack lengths.

4. The extent of the bonded strip can be divided into three different zones according to

the dominance of the effect of free-edge singularity and counterbalance of bending.
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CHAPTER
Stress intensity factors for

adhesively bonded joints

6.1 Introductions

The increasing demands of electronics nowadays request not only thin, short and
small geometric configurations but also high reliable performances. There is an increasing
concern that the Chip Scale Packaging (CSP) assemblies may not meet the critical
mechanical and thermal cycling reliability requirements. Reliability evaluations of
adhesive strength on the interface problems are important for IC packaging designation and
CSP materials selection. It is not easy to get the real adhesive strengths using the
traditional experimental manners. Generally, this is due to three reasons. Firstly, the
adhesive strengths are largely dependent on the specifications and geometric
configurations of the specimens. Secondly, singular stress field exists around the bonding
corner which leads to non-uniform stress distribution. And thirdly, the conventional
adhesion tests give merely the apparent adhesion strengths including the effect of residual
stress and the results can not be used for design. Therefore, new testing manners and
failure criteria based on fracture mechanics win quite a lot of attentions till recently [1-10].
Fig 6.1a shows the quasi-static fracture testing of Double Cantilever Beam (DCM) type
specimen [4-8]. And Fig.6.1b shows the three-point bending tests of End Notch Flexure
(ENF) specimens [9, 10] composed of an IC molding compound and Fe-42Ni lead frame

material. Specifically, constant adhesion strengths without effects of residual stress were
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obtained independently of specimen dimensions [10].

Little research has considered the SIFs of the adhesively bonded joints for arbitrary
material combinations till recently. In this chapter, the SIFs of three-layered joints/
adhesive joints will be computed for arbitrary material combinations and compared for
tensile and bending loads. In addition, the effects of adhesive layer thickness on the SIFs
for the three-layered joints which are wildly seen in the modern chip packaging technology
will also be studied and demonstrated. Furthermore, the adhesion strength evaluation based
on SIFs will be discussed in Appendix B. This chapter is to contribute the structural design

and material selection of IC plastic packages.
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Fig. 6.1 (a) Double cantilever beam test and (b) testing manner of adhesive strength for IC
mold resin
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6.2 Numerical verification for the single-edge cracked adhesively bonded strips

The robustness and accuracy of the improved crack tip stress method in treating
several edge interface crack problems have been investigated in the previous chapters. In
order to achieve high accuracy, the exactly same mesh patterns for the reference and target
unknown problems are employed in the FE models. However, it is difficult to keep exactly
same mesh patterns due to the existence of the adhesive layer for the adhesively bonded
strips. Therefore the FE modeling techniques on the adhesive layers will be discussed in
this section and the numerical data will be compared to show the accuracy.

The adhesively bonded strip with a single-edge interface crack initiated on Interface |
shown in Fig. 6.2b is investigated. The geometric specifications are a/w-0.1 and #w-o0.1,
and the crack length is fixed to a=10mm. The same central cracked dissimilar bonded

planes depicted in Chapter 2 is chosen as the reference problem, and its crack length is
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2a =20mm . The mesh patterns around the central crack for the reference problem are shown
in Fig.6.3. For the convenience of understanding, the meshes with different materials in
Fig. 6.3 are distinguished using different colors. In order to find a reliable modeling
technique for the adhesively bonded strip, we presumed a comparison with two different
types of models.

Generally, there are two manners to create the FE models for the adhesively bonded
strips. Fig. 6.4a and b show the two different meshing techniques manner 1 and manner 2,
respectively. Specifically, as shown in Fig. 6.4a, manner 1 keeps the FE meshes around the
crack exactly the same with those of the reference problem shown in Fig. 6.3. The adhesive
layer is introduced by merely assigning the new material (material 2 in Fig. 6.4a) to the
corresponding elements of the desired adhesive layer thickness. However, in Fig. 6.4b,
manner 2 keeps the meshes of the most upper and lower layers (material 1) the same with
those of the reference problem shown in Fig. 6.3. Then the adhesive layer is created by
adding the new elements in cyan color shown in Fig. 6.4b. It should be noted that creating
FE model in manner 1 doesn’t always turn to be success for arbitrary adhesive layer
thickness, because exact line boundaries don’t exist in the model all the time. And manner
1 in Fig. 6.4a has the best mesh similarity with the reference problem and the worst
robustness in creating the Model, and vice versa for manner 2. Then we pursued the
analysis for several material combinations of G,/G -12,3410100 by fixing v -v,-0.3 in
plane stress conditions. The values obtained using different FE models in Fig. 6.4a and b
are tabulated in Table 6.1. The FE stress components for the reference and target unknown
problems are also included in this table. As can be seen from this table, the stress
components computed by the FE models shown in Fig. 6.4a and b have 3-4 digits
coincidence, and their corresponding SIFs have 4-5 digits coincidence. Therefore, the mesh

pattern for the adhesive layer does not affect the computational accuracy too much. And
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considering the flexibility and robustness in creating the model successfully, manner 2 in

Fig. 6.4b is suggested and employed to creating the FE models in this chapter.

Table 6.1 SIFs computed by using FE models in Fig.6.4a and b for an single-edge
cracked adhesively bonded strips

Reference T Reference S Unknown Problem Final Results
Eo/Ey a B oy Xy oy T Xy oy T Xy € T > Fi Fu
FE model in Fig.6.4a
1 0 0 20.6855 6.0E-10 0O  11.7483 24.5812 0 0 0 11883 O
2 -0.3333 -0.1167 20.0492 -2.5977 4.8652 11.4294 26.4685 -2.5466 0.0373 0.0562 1.2970 0.1704
3 -0.5 -0.175 19.2508 -3.8644 7.2250 11.0285 27.0141 -3.9934 0.0563 0.0842 1.3474 0.2677
4 -0.6  -0.21 18.6162 -4.6060 8.5995 10.7092 27.1759 -4.9252 0.06786 0.1004 1.3761 0.3294
10 -0.8182 -0.2864 16.8208 -6.1570 11.447 9.8026 26.7761 -7.1430 0.0938 0.1299 1.4269 0.4643
100 -0.9802 -0.3431 15.1168 -7.2287 13.383 8.9378 23.5538 -8.6220 0.1138 0.1225 1.3665 0.4922
FE model in Fig. 6.4b
1 0 0 20.6855 6.0E-10 0  11.7483 24.5823 0 0 0 11884 O
2 -0.3333 -0.1167 20.0492 -2.5977 4.8652 11.4294 26.47 -2.5454 0.0373 0.0563 1.2970 0.1705
3 -0.5  -0.175 19.2508 -3.8644 7.2250 11.0285 27.0157 -3.9924 0.0563 0.0843 1.3474 0.2678
4 -0.6  -0.21 18.6162 -4.6060 8.5995 10.7092 27.1775 -4.9243 0.0679 0.1005 1.3761 0.3296
10 -0.8182 -0.2864 16.8208 -6.1567 11.447 9.8026 26.7771 -7.1425 0.0938 0.1299 1.4270 0.4643
100 -0.9802 -0.3431 15.1168 -7.2287 13.383 8.9378 23.5537 -8.6219 0.1138 0.1225 1.3665 0.4922
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Fig. 6.3 FE mesh pattern for the reference problem (central cracked dissimilar infinite
plate )

| | | 1
Singular region

NN

(@) (b)

Fig. 6.4 The meshing techniques for the adhesively bonded strips: (a) manner 1 and (b)
manner 2
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Fig. 6.5 The whole Dundurs’ parameters « - space

6.3 Stress intensity factors for bi-material adhesive joints

The single edge cracked bonded strip shown in Fig. 6.2a has been well investigated in
Chapter 4. And the discussions here will concentrate into the adhesively bonded joints
shown in Fig. 6.2b. Fig. 6.2b shows the geometric configurations. The adhesive joint
consists of two identical adherents which are adhesively bonded together by the adhesive
layer. The width of the strip is w, and the heights of the adherents and adhesive are L
and t, respectively. An edge interface crack of length a is assumed to initiate on
interface 1. For the adhesive joints shown in Fig. 6.2b, the SIFs are also uniquely
determined by the Dundurs’ material composite parameters. However, different from the
case of bi-material joints shown in Fig. 6.2a, the SIFs for combinations in the left (« <0)
and right region («>0) in the «-p space are not point symmetry. Thus, the SIFs for
various material combinations should be computed for the whole « - space as shown in
Fig. 6.5.

The shallow edge interface cracks within the singular zone as a/w =o0.001 are
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investigated for the adhesive joints for the whole range of material combinations in the
a-p space (ae<[-11],#€[-0.505]). In addition, the SIFs for various thicknesses of
adhesive layers are also calculated. Fig. 6.6-6.10 show the SIFs for the adhesive joints
shown in Fig. 6.4b with the adhesive layer thickness of /W =2,10.1,0.01,0.001 respectively.
As can be seen from Fig. 6.6, the values of F, for ¢/w =2 are strictly mirror symmetric
about «=0 and those for F, are reflection symmetric about «=0,5=0 in the a-5
space. In addition, the SIF values are identical with those of the bi-material joints shown in
Fig. 6.4a. However, the values for /w =1 are not strictly symmetric although similar
varying tendency can be observed in Fig. 6.7. This means the SIFs of adhesive joints is not
affected by adherent 2 when the thickness of adhesive layer is long enough comparing with
the strip width. Symmetries are not observed for #/w =0.10.000.001 as shown in Fig.
6.8-6.10. This is due to the interference of the two singular fields around the adjacent
interface corners. The values for material combinations in the left «-s space («<0)
have bigger varying magnitude than those in the right «-p space («>0). For
t/w =0.010.001 in Fig. 6.9a and 6.10a, F, grows monotonously with the decrease of «
for a fixed p. The amplitude of the variation for F, decreases as the decrease of the
thickness of adhesive layer. The SIFs for the bending loads are demonstrated in Fig.
6.11-6.15. Similar conclusions can be found for the bending loading conditions.

Furthermore, the contour plot SIF distributions for Fig. 6.6-6.15 are given in Appendix C.
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Fig. 6.6 Stress intensity factors (a) F and (b) F, of adhesive joints a/w =0.001t/W =2
for the tensile loading case

Mechanical Engineering Dept 134 Kyushu Institute of Technology



CHAPTER 6

7
! ot a/W=0.001
L Gl,l/1 al =
6 il T WL
E 777,
SK AT 02 F pe02
[ L
G,v, Matl -
T =0.1
i |
[/=—0.45 \3=—0.4 ‘p=—0.3 B=03 =04 p=0.45
O [ . 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N
-10 -08 -06 -04 -02 00 02 04 06 08 10
(a) ¢
25
a/W=0.001 al
20 e G,vi  Matl
- t /W=1 ' )
1.5 PR =0.1 S ,
Loy 0 220
W L

0.5} f=0.1
: =0.2 503 g

_ 0.0 p=-0.45 =04y, =
e o

-1.0F

15f

-2.05_

_2_55.1.1.1.1.1.1.1.1.1.

1.0 -08 -06 -04 -02 00 02 04 06 08 1.0
(b) *

Fig. 6.7 Stress intensity factors (a) F, and (b) F, of adhesive joints a/w =0.001¢/W =1
for the tensile loading case
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Fig. 6.8 Stress intensity factors (a) F, and (b) F, of adhesive joints a/w =0.001#/W =0.1
for the tensile loading case
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Fig.6.9 Stress intensity factors (a) r and (b) F, of adhesive joints a/w =0.001¢/W =0.01
for the tensile loading case
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Fig. 6.10 Stress intensity factors (a) F, and (b) F, of adhesive joints
a/w =0.001t/Ww =0.001 for the tensile loading case
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Fig. 6.11 Stress intensity factors (a) F, and (b) F, of adhesive joints a/w =0.001t/W =2
for the bending loading case
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Fig. 6.12 Stress intensity factors (a) F, and (b) F, of adhesive joints a/w =0.001¢/W =1
for the bending loading case
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Fig. 6.13 Stress intensity factors (a) F, and (b) F, of adhesive joints
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Fig.6.14 Stress intensity factors (a) F, and (b) F, of adhesive joints
a/w =0.001t/w =0.01 for the bending loading case
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Fig. 6.15 Stress intensity factors (a) F, and (b) F, of adhesive joints
a/w =0.001¢/w =0.001 for the bending loading case
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6.4 The effect of interlayer thickness on the stress intensity factors for three-layered

joints in CSP

Two-dimensional plane-strain problems of the single-edge cracked three-layered
joints in CSP shown in Fig. 6.16 are analyzed for various crack lengths and interlayer
thicknesses. It is supposed that a crack of length 2 has initiated at the interface 1 and 2 of
the three-layered strips. The geometric configurations of the analytical models are
demonstrated in Fig. 6.16a and b, respectively. Eight-node quadrilateral elements in plane
strain are used for both the reference and the target unknown problems. The three-layered
strips are composed of Si (IC chip), resin and FR-4.5(substrate) which are widely observed
in the chip size packaging technology of electronic devices. The elastic parameters are
tabulated in Table 6.2 [11]. The post-processing technique is also employed for this
problem. The normalized SIFs of the problems shown in Fig. 6.16a and b predicted by the
current method for different crack lengths and interlayer thicknesses are tabulated in Table
6.3 and 6.4 as well as in Table 6.5 and 6.6, respectively. The SIFs for the dissimilar bonded
strips in Fig. 6.16¢ and d are tabulated in brackets in the last row of each table. As can be
seen from the tables, the SIFs of Fig. 6.16¢ and d are in good agreement with those of Fig.
6.16a and b when «w 1, respectively. It should be noted that these results appear to be
new and that there are no published data with which to compare them. Furthermore, the
SIF values are also plotted in Fig. 6.17 and 6.18 for the edge interface cracks in interface 1
and 2, respectively. The SIFs of the tensile loads are plotted in solid lines and those for the
bending loads are plotted in dashed lines. The figures show that the SIF values increase
monotonically as the increase of the thickness of interlayer for a fixed crack length, and
they reach to upper limit values asymptotically when the thickness of interlayer is bigger

than the width of the strip (/w >1).
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Table 6.2 Material properties for adhesively bonded joint (CSP in the electronic device)
(Koguchi and Nakajima 2010)

Material Property Silicon Resin  FR-4.5
Young’s modulus (GPa) 166 2.74 15.34
Poisson’s ratio 0.26 0.38 0.15

Table 6.3 Normalized SIFs of cracks on interface | in Fig.8a for tensile loads

a/W =0.001 a/Ww =0.01 a/w=0.1 a/w =0.2 a/w =0.3

Hw £ £y £ £ £ £y £ £y £ £y
0.001 0998 0206 0661  -0.027 0568 0060 0656 0099  0.830 0.141
0.01 1566  -0203 0782  -0154 0605  -0.009 0677 0018  0.821 0.036
0.04 2180 0216 0991  -0176 0684  -0060 0758  -0030 0921  -0.022
0.1 2769 0258 1529  -0.207 0794  -0.126 0880  -0079 1076  -0.067
0.2 3454  -0317 1875  -0211 0929  -0.166  1.034  -0.135 1280  -0.108
04 4412 -0404 2100  -0213 1169  -0.168 1253  -0.140 1491  -0.098
1 5146 0473 2473  -0.239 1399  -0125 1450  -0.064  1.696 0.005
2 5148  -0474 2476  -0240 1409  -0.118 1460  -0.053  1.705 0.017
4 5148 0474 2476  -0.240 1409  -0.118  1.460  -0.053  1.705 0.017
Fig.6.14c  (5.148) (-0.474) (2476) (-0.240) (1.409) (-0.118) (1.460) (-0.053) (1.705)  (0.017)

Table 6.4 Normalized SIFs of cracks on interface | in Fig.8a for bending loads

a/W =0.001 a/W =0.01 a/Ww =0.1 a/Ww =0.2 a/Ww =0.3

tw £ A 7 £ £ A £ £ £ £
0.001 0.872 -0.176 0.589 -0.014 0.478 0.073 0.492 0.106 0.549 0.135
0.01 1.368 -0.179 0.706 -0.120 0.513 0.022 0.509 0.048 0.546 0.062
0.04 1.957 -0.195 0.913 -0.147 0.588 -0.009 0.572 0.021 0.612 0.031
0.1 2.522 -0.237 1.250 -0.153 0.688 -0.045 0.673 0.004 0.722 0.021
0.2 3.011 -0.280 1.505 -0.154 0.830 -0.042 0.806 0.007 0.867 0.039
0.4 3.368 -0.313 1.641 -0.155 0.982 0.002 0.953 0.070 0.994 0.107
1 3.435 -0.320 1.680 -0.156 1.030 0.025 1.011 0.115 1.074 0.178
2 3.434 -0.320 1.680 -0.156 1.030 0.025 1.011 0.115 1.074 0.178
4 3.434 -0.320 1.680 -0.156 1.030 0.025 1.011 0.115 1.074 0.178
Fig.6.14c  (3.434) (-0.320)  (1.680)  (-0.156)  (1.030)  (0.025)  (1.011)  (0.115)  (1.074) (0.178)
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Table 6.5 Normalized SIFs of cracks on interface Il in Fig.8b for tensile loads

a/W =0.001 a/W =0.01 a/W =0.1 alw =0.2 a/w =0.3
yw £ £ £ £ £ £ £ £ £ £
0.001 0.942 0.101 0.583 0.181 0.415 0.303 0.444 0.405 0.563 0.571
0.01 0.945 0.168 0.743 0.094 0.533 0.182 0.574 0.254 0.681 0.340
0.04 1.128 0.171 0.792 0.147 0.722 0.140 0.698 0.186 0.840 0.253
0.1 1.384 0.194 1.054 0.192 0.767 0.137 0.842 0.162 1.027 0.211
0.2 1.702 0.232 1.266 0.203 0.879 0.167 1.005 0.173 1.248 0.194
0.4 2.184 0.295 1.407 0.207 1.064 0.184 1.207 0.175 1.465 0.162
1 2.628 0.356 1.711 0.239 1.277 0.158 1.395 0.116 1.668 0.072
2 2.641 0.358 1.722 0.240 1.292 0.152 1.409 0.105 1.679 0.060
4 2.641 0.358 1.722 0.240 1.292 0.152 1.409 0.105 1.679 0.060

Fig6.14d  (2641) (0.358)  (1.722)  (0.240)  (1292)  (0.152)  (1.409)  (0.105)  (1.679)  (0.060)

Table 6.6 Normalized SIFs of cracks on interface Il in Fig.8b for bending loads

a/w =0.001 a/w =0.01 alw =0.1 a/w =0.2 a/w =03
t/w £ £ £ £y £ s £ s £ s
0.001 0.826 0.096 0.517 0170 0338 0273 0316  0.328 0.352  0.409
0.01 0.898 0.159 0.680 0105 0444 0176 0421 0216 0.439  0.254
0.04 1.175 0.174 0.803 0.145 0553 0131 0521  0.161 0549  0.189
0.1 1.494 0.207 1.020 0.165 0513 0813 0647  0.124 0.689  0.143
0.2 1.787 0.244 1.215 0173 0832  0.094 0802  0.086 0.859  0.087
0.4 2.019 0.275 1.335 0.177 0.986 0.054 0.967 0.010 1.009 -0.007
1 2.072 0.283 1.376 0.180 1.038 0033  1.034  -0036 1101  -0.083
2 2.072 0.283 1.375 0.180 1.039 0.033 1.035 -0.037 1.102 -0.083
4 2.072 0.283 1.375 0.180 1.039 0.033 1.035 -0.037 1.102 -0.083

Fig.6.14d (2.072)  (0.283)  (1.375)  (0.180) (1.039) (0.033) (1.035) (-0.037) (1.102) (-0.083)
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Fig.6.17 Variation of SIFs for edge interface cracks in interface 1 for various crack lengths
and thicknesses of adhesive layer
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Fig. 6.18 Variation of SIFs for edge interface cracks in interface 2 for various crack lengths
and thicknesses of adhesive layer
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6.5 Conclusions

In this chapter, the SIFs of three-layered joints/ adhesive joints were computed for
arbitrary material combinations. The effects of adhesive layer thickness on the SIFs for the
three-layered joints in CSP were studied and demonstrated. Furthermore, the adhesion
strength evaluation based on SIFs were discussed in Appendix B. The following
conclusions have been made as follows.

1. The SIFs of an adhesive joint which two identical adherents bonded by adhesive
agent are uniquely determined by the Dundurs’ material composite parameters. And the
values of F, are strictly mirror symmetric about « =0 and those for F, are reflection
symmetric about «=0,4=0 inthe «-p space when adhesive thickness is long enough
(say, t/w=2).

2. The three-layered strips in CSP which are composed of Si (IC chip), resin and
FR-4.5(substrate) were investigated. The SIF values of edge interface cracks in CSP
increase monotonically as the increase of the thickness of interlayer for a fixed crack
length, and they reach to upper limit values asymptotically when the thickness of interlayer

is bigger than the width of the strip (/w >1).
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CHAPTER

Conclusions

Composite materials and bonded structures are widely employed in the modern
industrial context. The mechanical behavior of the bi-material interface is of great
significance for the industrial application. Singular stress fields exist around the areas of
the edge interface corners for two materials bonded together. High stress concentration at
the edge interface corner caused by differences in the elastic properties may lead to the
initiation of micro-cracks and then to the propagation. Therefore basic studies about the
interface cracks win quite a number of attentions. Little research was found regarding the
SIFs for arbitrary material combinations. And this paper was devoted to the SIFs for edge
interface cracks.

Several types of edge interface cracks were treated in this paper. The SIFs were
calculated using the numerical method proposed by Oda, the method is denoted as “Crack
tip stress method” which is based on Nisitani’s concept. The effects of material
combinations and relative crack lengths were investigated in this paper.

The following conclusions have been obtained as follows.

(1) In Chapter 2: The computational accuracy of the extended “crack tip stress
method” proposed by Oda were reexamined by pursuing a convergence study. The
limitations of the method were demonstrated and investigated. Then, a post-processing

technique of linear extrapolation was proposed to improve the computational accuracy. The
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accuracy and efficiency of the improved crack tip stress method were demonstrated by
comparing the SIF results of several numerical examples with published data. It was
certified that the new technique could determine the SIFs of interface cracks more
accurately with less computational coat.

(2)In Chapter 3: The asymptotic solutions of the SIFs at the crack tip of a bi-material
bonded semi-infinite plate were pursued for under arbitrary combination of materials. It
was found that the double logarithmic distributions of the SIFs against relative crack
lengths behave good linearity within the singular zone. In addition, an approximate
formula calculating the SIFs for the bonded dissimilar half-planes under arbitrary
combination of materials was proposed by fitting the computed results.

(3)In Chapter 4: The SIFs of the dissimilar bonded finite strips subjected to tensile

K,

oNra

and bending loading conditions were investigated. Relationships as (aW)*-c, and

L-(a/w)l-‘ -c, exist for the very shallow edge interface cracks in bi-material butt joints

oNrza

subjected to tensile and bending loads. And the coefficients C,,C, are merely determined
upon the relative elastic properties of materials and the loading types. In addition, the
effects of material combinations and relative crack lengths to the SIFs were also
investigated. Furthermore, the contour map variations of the SIFs for the whole «-p
space were demonstrated.

(4)In Chapter 5: The SIFs for the single and double edge interface cracks were
compared for the whole range of combination of materials (o<«<0.95-02<p5<045) and
relative crack lengths (o<am <o0.9). It was found that the SIFs of a double edge interface
crack may be possibly larger than those of a single edge interface crack for some specific
combination of materials and relative crack lengths. In addition, the SIFs should be
compared in three different zones of relative crack lengths.

(6)In Chapter 6: The SIFs of the adhesive joints for various material combinations
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were calculated. In this chapter the SIFs are computed for the whole region of the «-p
space since no symmetry of the SIFs exists any more for the adhesive joints. The variations
of the SIFs for various thicknesses of adhesive layer were also demonstrated. The SIFs for
the three-layered adhesive joints composed of Si (IC chip), resin and FR-4.5(substrate)
which are used in CSP were also investigated for various interlayer thicknesses. It was found
that the SIFs reach to constants for the adhesive joints when the interlayer thickness is

bigger that the joint width.
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APPENDIX
Dundurs’ composite parameters for

engineering materials

Till recently, several studies have considered the Dundurs’ composite parameters of
typical engineering materials. Suga, (1988) investigated the parameters and mechanical
compatibility of various material joints. Yuuki (1993) showed the variations of the
parameters in the « - space for the materials combinations among metal, ceramics, resin,
and glass. The results are tabulated in Table Al and re-plotted in Fig.Al. Consider the
symmetry of «-p space for the bi-material joints, only the right part (« >0) is given in
Fig.Al. The origin « =p=0 represents combinations of identical materials, and the « -z
space is located within the parallelogram region which is composed by the lines
B=14(a+1).a =0a=1. Material combinations of «=2p are plotted in the dashed line.
Uniform stress distributions can be observed fora=25. And the «-p space can be
divided into two regions by the line«=25. Each pair of (o) above the line has no
singularity and is denoted as good pair («(«-28)<0). And the one below the line is
denoted as bad pair («(a-28) > 0) since stress singularity exists near the interface corner.

As can been seen from Fig. A.1, most material combinations are located in the so
called “bad pair” region. However, metal-to-glass joints distribute along the linea =25,
and a considerable number of metal-to-glass joints can be found in the “good pair” region.
In addition, metal/metal, ceramics/ceramics and glass/glass joints are also found to have

“good pair” material combinations.
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Table Al. Elastic properties of several engineering materials (Yuuki, 1993)

Material Young’s Modulus (GPa) Poisson’s Ratio
Metal Fe 206 0.30
Al 703 0.345
Ti 115.7 0.321
Cu 129.8 0.343
Zn 108.4 0.249
Si 200 0.30
Ceramics  Al,O; 359 0.20
Sic 440 0.16
SisN, 304 0.27
MgO 303 0.175
Resin Epoxy Resin 4.93 0.33
Polyester 3.0 0.38
Glass Crystal 73.1 0.17
LF5 59.0 0.226
SF53 58.0 0.236
BaSF64 105.0 0.262
BK7 815 0.208
CaNa 70.3 0.240
0.5 - _ ,
| Good Pair, No Singularity, a(a—2f)<0 ~—
041} Equal Pair, a=28 >
0.3} »
* K %
T x ¥y 3K ¥ -
0.2} ¥ ™
+ w @fr ok . -
L & o ¢ o5 O
0.1 4 T o P
= Lo >§<Em+qj800 =l oo . .
0.0 3 On Bad Pair, Singularity Exists, a(a—2p)>(
L
0.1k o) = Ceramics/Resin
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-0.2 Metal/Resin A Res?n/Resin
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o

Fig. A.1 Material combinations for typical engineering materials
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APPENDIX De-bonding strength evaluation

based on the stress intensity factors

for adhesive joints

B.1 Introduction

Bonded structures are widely used in industrial fields. It has been certified that the
adhesive strength increases with decreasing the adhesive thickness. The previous studies
suggested that this is because more defects and cavities appear in the thick adhesive layer
when large amount of adhesive agents are used. Suzuki [1] evaluated the de-bonding
strength experimentally using bonded tensile specimen as shown in Fig.1a; He pointed out
that the adhesive strength is affected by the adhesive thickness for the adhesive joint which
S35C JIS medium carbon steel plates bonded by epoxy resin Epikote 871.

In this appendix, de-bonding criterions will be considered in terms of the intensities of
the singular stress and stress intensity factors on the basis of two types of models. One is
the perfectly-bonded model as shown in Fig. B.1b, and the other is the partially-debonded

model shown in Fig. B.1c. Then the critical de-bonding conditions will be discussed.
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B.2 Experimental data used in the study

In this appendix, the specimen used in Suzuki [1] which the adherents S35C are
bonded with adhesive epoxy resin Epikote 871 as shown in Fig. B.la is analyzed. The
elastic parameters of the adherent and adhesives are tabulated in Table B.1. The
experimental results of the adhesion strengths and their standard deviations obtained by
Suzuki [1] are tabulated in Table B.2 against various adhesive thicknesses. In Table B.2,
the adhesion strengths are computed using the mean values of the experimental results, and

the relative standard deviations are given behind.

Table B.1 Material property of adherent and adhesives

5 Elastic modulus  Poisson’s P

E (GPa) ratio VY @ B
Adherent: Medium carbon steel S35C 210 0.3 — — —
Adhesive A: Epikote828 3.14 0.37 0.69 0.97 0.20
Adhesive B: Epikote871 2.16 0.38 0.67 0.98 0.19

Table B.2 The experimental adhesive strength o, (Average) obtained by Suzuki [1]

Material A Material B

h h/W o (Average) o (Average)
0.05 0.0039 57.2+£7.34 76.8+2.96

01 0.0078 53.5+6.52 71.440.981

03 0.024 3254272 49.7+3.03

06  0.047 25.9+2.71 41.2+1.94

10 0079 22.6+1.18 25.3+3.09

20 0.16 18.4+2.08 19.7+1.31

5.0 0.39 13.4+1.76 13.44+1.71

B.3Failure criterion using the perfectly-bonded model
For the perfectly-bonded model shown in Fig. B.1b, the singular stress can be

expressed as o, =K, /" =Fo (W/r)" . The values of F, for various adhesive

thicknesses were computed by Zhang et al. [2]. Then, the intensity of singular stress field
K, can be obtained using Eq. (B.1). The values of F and K_, are tabulated in Table

oC

B.3. The values of K__ for perfectly bonded model are plotted in Fig. B.2 against various
adhesive thicknesses. Fig. B.2 indicates that the critical values of the intensity of singular
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stress field K_, are almost constant with varying the adhesive thickness nw. The mean

values of the intensity of singular stress field and their standard deviations are
g.o4ax1.42[MPa.m®®] for adhesive A, and are 9.79+1.33mPa.m**] for adhesive B.

The critical intensity of the singular stress fields K_, of the perfectly-bonded strip
shown in Fig. B.1b was computed for various thicknesses of adhesive layer h/w , by using
the values of tensile adhesive strengtho, from experiment. It is found that the average
values of K, =9.79+1.33[mpa-m**]. It can be clearly seen that the standard deviations are
within 17.6%. The mean values of K . and its deviation are tabulated in Table B.3 for

Adhesives A and B. It can be seen from this table that K and its deviation are
8.04+1.42(MPa-m***) for adhesive A, and 9.79+1.33(MPa-m°**) for adhesive B. Failure

condition as K_, = const is available for the estimation of de-bonding for perfectly bonded

models.

Koe = Foo W2 (B.1)

Table B.3 Debonding stress o, and critical value of K_  using perfectly-bonded model
for (a) Adhesive A and (b) Adhesive B (Experimental results, “k . =Fow*")

Adhesive A Adhesive B

h/W o> (Average) F, K. o (Average) F. K.,

0.001 — 0.048 - - 0.048 —
0.0039 57.2 0.054 6.89% 1.45 76.8 0.054 8.10t1.72
0.0078 53.5 0.062 7.34%1.13 71.4 0.062 8.79%0.10

0.01 - 0.066 — — 0.066 -
0.024 32.5 0.092 6.70T 1.45 49.7 0.092 9.79% 0.60
0.047 25.9 0.132 7.6310.89 41.2 0.132 11.8*£2.08
0.079 22.6 0.171 8.60*0.72 25.3 0.171 9,76 1.19

0.1 — 0.192 — — 0.192 —
0.16 18.4 0.231 9.46T1.78 19.7 0.231 10.3* 0.855
0.39 134 0.323 9.64%* 2.05 13.4 0.323 10.0t 1.27

0.5 — 0.343 - - 0.343 —
K 8.04% 1.42 9.79%1.33

oc,ave
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B.4 Failure criterion using the partially-debonded model

Two different partially-debonded models with relative crack lengths aw -o.0101 are
used to evaluate the bondng strength. For the partially-debonded moadel, the singular
stress can be expressed in Eq. (B.2). The values of :, and «, are ignored due to tiny
value magnitude compared with o, and «,. The dimensionless SIFs F, are calculated
as shown in Reference [3,4]. Then the critical SIFs can be obtained using Eq. B.3. Fig. B.3
and B.4 indicate that the critical values of the stress intensity factors K, are almost

constant with varying the adhesive thickness nw (see Eq. (B.2)).

o, +ir, =K, —HK,,(I‘/W)iS/\/Zm‘ (r—0) (B.2)
K,,=F,07Jra (B.3)

The critical stress intensity factors K, were computed for adhesives A and B with
varying the interlayer thicknesses, using the partially-debonded model of a/w =o0.01and
a/W =0.1. The values are tabulated in Table B.4. As can be seen from this table, the

average values of K _ and their standard deviations are 4.04i0.537(MPa~m°‘5) of model
a/W =001 and 4.98+0622(MPa-m**) of model aw =0.1 for adhesive A, as well as

7.69+1.13(MPa-m**) of model aw =001 and 9.36+1.09(MPa-m**) of model aWw =01

for adhesive B, respectively . In addition, the errors of the standard deviations are
within 20%, therefore, the failure condition as K, =const is also available for the

estimation of the de-bonding for partially-bonded models.
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Table B.4 Debonding stress o, and fracture toughness K, assuming partially-debonded
model a/W =0.01,0.1 (Experimental results, K, = F,o,v/ra)

Material A Material B

a/W =0.01 a/W =0.1 a/W =0.01 a/W =01

h/\N oy F Ky F K oy F Ky F K

0.001 — 0.266 — 0.231 — — 0.266 — 0.231 —
0.0039 57.2 0.364 3.69*f0588 0255 8.18*¥1.16 76.8 0.364 4.44FT0566 0.255 9.64%0.465
0.0078 535 0460 4.35*0615 0283 846F¥129 714 0460 5440475 0.283 10.3%¥0.903

0.01 — 0.509 — 0.300 — — 0.509 — 0.300 —
0.024 325 0660 3.84*0395 0358 6.53f1.29 49.7 0.660 548*0.602 0.358 9.80--0.742
0.047 259 0810 3.72*0500 0459 6.67£1.23 412 0.810 565*0.723 0.459 10.4*1.14

0.079 226 0990 3.96%*0.222 0.600 7.59*t041 253 0990 4.32t0.841 0.600 7.87*1.77

0.1 - 1.09 — 0.663 - - 1.09 - 0.663 -
0.16 184 130 4.24*0517 0790 8.14*102 197 130 46810429 0.790 9.01%0.691

0.39 134 190 451*0.758 110 826%*123 134 190 482%*0621 110 856*1.33

0.5 - 2.10 — 1.19 - - 2.10 - 1.19 -

Koeave 4.04%0.537 760t 1.13 4.98%0.622 9.36 £ 1.09

B.5 Discussions on the adhesion strength

In this section, the critical intensity of singular stress K and critical SIF K,
obtained in Section B.3 and B.4 will be re-examined. The adhesion strength o for the

perfectly-bonded model can be obtained using Eg. (B.4), and that for the

partially-debonded model a/w =0.01,a/W =0.001 can be computed using Eqg. (B5).

K c
oo oc(average)
O'y —W (B4)
KI
. c(average)
o = —Laerne) B.5)
! F,~/ma (

Where K_, K are the mean critical values of the intensity of singular stress and

average)’ " " lc(average)

SIF respectively. The estimated values of the adhesion strength calculated from different
models for the two adhesive materials A and B are plotted in Fig. B.5 together with the
experimental results. As can be seen from Fig. B.5, the errors are within 12%-20% for

those models.
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APPENDIX
Contour plot of the stress intensity

factors for various adhesive joints

C.1 Tensile Loading Case

In this appendix, the contour plots of the SIFs of the adhesive joints subjected to
tension as shown in Fig. C.1 for various material combinations and interlayer thicknesses
will be demonstrated. Here, all the relative crack lengths of the adhesive joints are fixed to
a/W =0.001, then by varying the thickness of the adhesive layers, the SIFs are computed for
the whole range of material combinations. Fig. C.2 ~ Fig. C.6 show the contour plots of the

SIFs for the adhesive joints a/Ww =0.001 with the adhesive layer thickness as

o1

t/W =2,1,0.1,0.01 0.001 respectively.

G, Matl 1
L

a
4 A 4
AN
Gz/ Mat2f |t
7 N2
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—W <an
GV, Matl \)

Fig. C.1 Adhesively bonded strip subjected to tension
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Fig. C.2 Contour map of (8) F, and (b) F, of a/w =0.00Lt/W =2 for tension
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Fig. C.3 Contour map of (a) F, and (b) F, of a/w =0.00Lt/w =1 for tension
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Fig. C.4 Contour map of (a) F, and (b) F, of a/W =0.001t/w =0.1 for tension
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C.2 Bending Loading Case

In this section, the contour plots of the SIFs of the adhesive joints subjected to
bending loads as shown in Fig. C.7 are demonstrated. Similarly, all the relative crack
lengths of the adhesive joints are fixed to a/w =0.001, then the SIFs are computed for the
whole «-p space by varying the thickness of the adhesive layers. Fig. C.8 ~ Fig. C.12
show the contour plots of the SIFs for the adhesive joints a/w =0.001 with the adhesive

layer thickness of t/W =2,1,0.1,0.01,0.001 respectively.
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Fig. C.7 Adhesively bonded strip subjected to bending moment
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Fig. C.8 Contour map of (a) F, and (b) F, of a/w =0.00Lt/W =2 for bending loads
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Fig. C.10 Contour map of (a) F, and (b) F, of a/Ww =0.00Lt/w =0.1 for bending loads
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Fig. C.11 Contour map of (a) F, and (b) F, of a/w =0.00Lt/W =0.01 for bending loads
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Fig. C.12 Contour map of (a) F, and (b) F, of a/Ww =0.001t/W =0.001 for bending loads

Mechanical Engineering Dept 177 Kyushu Institute of Technology



	0.pdf
	01.pdf
	02.pdf
	03.pdf
	04.pdf
	05.pdf
	06.pdf
	07.pdf
	08.pdf
	09.pdf
	10.pdf
	11.pdf
	12.pdf
	13.pdf
	14.pdf
	15.pdf



