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Semiclassical study on tunneling processes via complex-domain chaos
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We investigate the semiclassical mechanism of tunneling processes in nonintegrable systems. The significant
role of complex-phase-space chaos in the description of the tunneling processes is elucidated by studying a
kicked scattering model. Behaviors of tunneling orbits are encoded into symbolic sequences based on the
structure of a complex homoclinic tangle. By means of the symbolic coding, the phase space itineraries of
tunneling orbits are related with the amounts of imaginary parts of actions gained by the orbits, so that the
systematic search of dominant tunneling orbits becomes possible.
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I. INTRODUCTION

Tunneling is one of the most typical and important ph
nomena in quantum physics, and for the past several y
there is growing interest in natures of tunneling proces
inherent in multidimensions. Quantum properties in multi
mensional systems have been investigated extensivel
terms of classical dynamical concepts in the field ofquantum
chaos@1#, where the role of chaos, which is a generic pro
erty in multidimensional classical systems, has been el
dated. It was found that quantum tunnelings are also stron
influenced by whether underlying classical dynamics is c
otic or not @2–8#, though tunneling processes have no cl
sical counterpart.

Tunneling occurs typically between classical invaria
components separated in phase space, such as between
lar tori or chaotic seas. On one hand, mechanism of tun
ing between distinct tori separated by chaotic seas has
studied in the context ofchaos-assisted tunneling@4#, and its
semiquantum analysis has been done, in which the diffus
process in the chaotic sea accompanied with tunneling p
from and into the tori around the boundaries of the sea
considered to dominate the tunneling transport@6#. Experi-
ments have also been performed by measuring microw
spectra in the superconducting cavity@9# and measuring mo
mentum distributions of cold atoms, which was theoretica
proposed in Ref.@10#, in an amplitude-modulated standin
wave of light @11,12#.

On the other hand, tunneling between two chaotic s
separated by an energy barrier was studied by symm
double wells@7#. It was shown that the spectra of tunn
splittings are reproduced by the orbits which consist of
stanton processes under the barrier and homoclinic exp
tions in each chaotic well.

Generic aspects of the link between tunneling proces
and real-domain ones in nonintegrable systems were ex
ined in oscillatory scattering systems@13#. They made an
energy-domain analysis for a model with continuous flow
while in the present study we make a time-domain one fo
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scattering map. The semiclassical interpretation of com
cated wave functions was given in terms of oscillations
the stable manifold and an inherent property in flow syste
the divergent behavior of movable singularities of classi
solutions on a complex time plane.

In the near-integrable regime, the role of resonances
been elucidated in the tunneling transport between symm
ric tori by means of classical and quantum perturbation th
ries @14#.

In any case, if one wants to know the mechanism of tu
neling in chaotic systems by relating it with underlying cla
sical structures, the use of complex orbits is inevitable@15#,
since tunneling is a purely quantum-mechanical process
is not describable in terms of real classical dynamics. F
account of such a process should, therefore, be given
complex classical dynamics. An attempt to make a full com-
plex semiclassical analysis using the complex classical
namics has been performed to understand which kinds
complex trajectories describe characteristic features of
neling in the presence of chaos, and how the complex c
sical dynamics actually enters into real physical proces
@5,16,17#.

In Ref. @5#, it was found that the initial values of orbit
which play a semiclassically primary role form chainlik
structures on an initial-value plane. A phenomenology
scribing tunneling in the presence of chaos based on s
structures has been developed.

In Ref. @16#, the first evidence was reported which dem
onstrates a crucial role ofcomplex-phase-space chaosin the
description of tunneling processes by analyzing a kick
scattering model. A hierarchy was found in the configu
tions of chainlike structures on the initial-value plane, a
was interpreted as the manifestation of the emergence
chaos in the complex domain.

Very recently, the chainlike structures were shown to
closely related to theJulia setin complex dynamical system
@18#. The Julia set is defined as the boundary between
orbits which diverge to infinity and those which are bou
for an indefinite time. Chaos occurs only on the Julia
@19#. In Ref. @18#, it was proved that a class of orbits whic
potentially contribute to semiclassical wave functions
identified as the Julia set. It was also shown that the tra
©2003 The American Physical Society11-1
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tivity of dynamics and high density of trajectories on t
Julia set characterize chaotic tunneling.

However, there still remains a problem in complex sem
classical descriptions. Dominant tunneling orbits are alw
characterized by a property that the amounts of imagin
parts of classical actions gained by the orbits are minim
among the whole candidates. It is, however, difficult to fi
such dominant orbits out of the candidates, because an e
nential increase of the number of candidates with time p
vents us from evaluating the amount of imaginary part
action for every candidate.

To solve this problem, in this paper, we investigate
structure of complex phase space for a kicked scatte
model, and relate the structure to the amounts of imagin
parts of actions gained by tunneling orbits. Our main idea
to relate the symbolic dynamics of a homoclinic tang
emerging in complex domain to the behavior of tunneli
orbits. It enables us to estimate the imaginary parts of act
gained by the orbits from symbolic sequences.

The organization of the paper is as follows. In Sec. II, t
symbolic description of tunneling orbits is developed. Th
description requires an effective symbolic dynamics c
structed on a complex homoclinic tangle. In this section,
emphasize the importance of the application of symbolic
namics to tunneling problems, and the details of how
construct the symbolic dynamics itself is deferred to Sec.
So it should be noted that in Sec. II we use the results in S
III without any technical details.

More precisely, in Sec. II, tunneling processes are inv
tigated by a time-domain approach of complex semiclass
method. We introduce a scattering map which would be
simplest possible map modeling an energy-barrier tunne
in more than one degree of freedom. Though real-dom
chaos is absent in this model, it is shown that tunneling w
functions exhibit the features possessed by the tunne
ones in the presence of real-domain chaos, such as the
tence of plateaus and cliffs in the tunneling amplitudes a
erratic oscillations on the plateaus.

It is elucidated that such tunneling features originate fr
chaotic classical dynamics in the complex domain; in ot
words, the emergence of a homoclinic tangle in the comp
domain. The symbolic description of the tangle is introduc
and is applied to the symbolic encoding of the behavi
exhibited by semiclassical candidate orbits. The amount
imaginary parts of actions gained by the orbits are evalua
in terms of symbolic sequences assigned to the initial po
of the orbits. Dominant tunneling orbits are determined
cording to the evaluated actions.

In the final part of Sec. II, tunneling wave functions a
reproduced in terms of such dominant orbits, and the c
acteristic features appearing in tunneling amplitudes are
plained by the interference among such dominant orbits.

In Sec. III, the technical aspects which are skipped in S
II are described in full detail. We first investigate the co
struction of a partition of complex phase space, which
codes the homoclinic points into symbolic sequences. T
some numerical observations are presented which relate
symbolic sequences and the locations of homoclinic point
phase space. On the basis of the observations, we stud
05621
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relation between the symbolic sequences and the imagi
parts of actions for the homoclinic orbits. A symbolic fo
mula for the estimation of imaginary parts of actions is
nally derived.

In Sec. IV, we first conclude our present study, and th
discuss the role of complex-domain chaos played in se
classical descriptions of tunneling processes in nonintegr
systems. In a wide range of the tunneling processes, the
portant role of the complex-domain chaos is suggested.
nally some future problems are presented.

II. SEMICLASSICAL STUDY ON TUNNELING
PROCESSES VIA COMPLEX-DOMAIN CHAOS

A. Tunneling in a kicked scattering model

We introduce a model which will be used in our stud
The Hamiltonian of the model is given as follows:

H~q,p,t !5T~p!1V~q! (
n52`

1`

d~ t2n!, ~1a!

T~p!5p2/2, ~1b!

V~q!5k exp~2gq2!, ~1c!

wherek andg are some parameters with positive values, a
the height and width of an energy barrier are given byk and
1/A2g, respectively. A set of classical equations of motion
given by

~qj 11 ,pj 11!5 f ~qj ,pj !, ~2a!

f :R2→R2u~q,p!°„q1T8~p!,p2V8~q1p!…, ~2b!

where j is an integer denoting a time step and the prim
denotes a differentiation with respect to the correspond
argument.R2 denotes real phase space.

This model has the following characteristics. First,
chaotic motion and no periodic orbit except a fixed po
(q,p)5(0,0) is found in real phase space, in contrast to, e
the real phase space of the standard map@20#. Such a simple
situation can always be realized whenV(q) is unimodal~see
Appendix A!. Of course, topological entropy in real pha
space is null. Second, no singularity is found in the solutio
of Eq. ~2! when f is extended toC2, since ourV(q) is an
entire function. As seen later, the structure of complex ph
space is our main concern. However, the singularities wo
make the structure overcomplicated. The present study
cuses on the features of wave functions which are obse
irrespective of the existence of singularities inV(q), e.g.,
observed for ourV(q) andV(q)5k sech2gq which has sin-
gularities at q5 ip(n11/2)/g (k,g.0,nPZ). Hence our
model is suitable to study typical aspects of energy-barr
tunneling processes without real-domain chaos. For
analysis to be generic, consideration must be given to
case of real-domain chaos. In the aspect of the numbe
semiclassically significant orbits, differences do exist b
tween such case and our case, as mentioned in Sec.
1-2
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However, the study in our case is necessary for the first
to the semiclassical understanding of energy-barrier tun
ing in nonintegrable systems.

Figure 1~a! shows the real phase space of our model. T
stable and unstable manifolds of the fixed point at the ori
are denoted byW s andW u, respectively. As a direct conse
quence of the absence of real-domain chaos, both manif
do not create homoclinic intersections.

The quantum-mechanical propagation for a single ti
step is given by the unitary operator

Û5expF2
i

\
V~ q̂!GexpF2

i

\
T~ p̂!G , ~3!

where q̂ and p̂ denote position and momentum operato
respectively, which satisfy the uncertainty relation@ q̂,p̂#
5 i\. An incident wave packet is given by a coherent state
the form

FIG. 1. ~a! Real-domain stable and unstable manifolds of
origin (k5500, g50.005). The origin is an unstable fixed poi
when k,g.0. ~b! The time dependence of the wave functio
evaluated quantum mechanically forn50 –12 in every four time
steps@\51, s510, qa52123, pa523, with the samek andg as
in ~a!#. Dotted lines representq50. The center of mass, whos
positions are indicated by arrows, is reflected by the potential
rier, and so the amplitudes observed in the transmitted region
resent tunneling effects. A characteristic action of the classical
tem, which we evaluated numerically by the phase-space
corresponding to a single oscillation of the stable manifold@the
hatched area in~a!#, is 153.
05621
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^quqa ,pa&5
1

~p\s2!1/4
expF2

~q2qa!2

2\s2
2 i

pa~qa22q!

2\ G ,

~4!

wheres is a positive parameter and the width of the wa
packet in theq direction is given byA\s. qa andpa are the
position and momentum of the center of mass, respectiv
Figure 1~b! shows the propagation of the wave packet@see
also Fig. 6~a! for an enlarged one#.

Our semiclassical argument based on the analysis for
lated in Sec. II B requires a large amount of numerical tr
and errors even for a single set of parameter valu
Throughout the present study, we fixed the parame
k,g,s,qa ,pa , and\, as given in Fig. 1. The parameter va
ues selected here are favorable to us in the following sen
First, \51 realizes large tunneling amplitudes, though t
system is in the semiclassical regime. In fact, it is obser
that the minimum tunneling actions@;101; see the caption
of Fig. 6~b!# are much smaller than the characteristic act
of real-domain classical dynamics (;102), as given in the
caption of Fig. 1~b!. The instanton trajectory of an integrab
limit with null energy has the imaginary part of action
Im*2`

1`@T(p)2V(q)#p21dq5A4pk/g'1121, however,
this action is not useful for estimating the minimum tunn
ing actions in our time-domain approach. Second, largk
makes complex classical dynamics highly unstable and t
allows us to discuss the symbolic coding of complex orb
The other parameters were selected to fit simultaneously
configuration of scattering problems and our requireme
that tunneling processes occur as early as possible in ord
reduce the amount of semiclassical computations.

Tunneling wave functions in Fig. 1~b! exhibit amplitude
crossovers, plateaus and cliffs, and erratic oscillations on
plateaus. The same features have been reported in the ca
dynamical tunneling processes in mixed phase space@5#.
These are called the ‘‘plateau-cliff structure,’’ which ha
been confirmed in several systems as a typical structur
tunneling wave functions in the presence of real-dom
chaos@5#. However, as seen in our model, the existence
the plateau-cliff structure does not always need chaotic
namics in real phase space. So, the features of wave f
tions observed here would be beyond our intuitive expec
tion based on the real classical dynamics. This stron
motivates the use of complex trajectories and complex se
classical analysis.

B. Formulation of complex semiclassical analysis

To simplify our formulation, we begin with the definition
of a pair of canonical variables

~Q,P!5
s

A2
~2 ip1qs22,p2 iqs22!. ~5!

For (q0 ,p0) and (qa ,pa), which are the initial values of the
map f and the center of wave packet~4!, respectively, we
denote

~Q0 ,P0!5„Q~q0 ,p0!, P~q0 ,p0!…, ~6a!

r-
p-
s-
ea
1-3
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~Qa ,Pa!5„Q~qa ,pa!,P~qa ,pa!…. ~6b!

The wave function̂ quUnuqa ,pa& is represented by the
n-fold multiple integral

AnE dq0•••dqn21exp
i

\
Sn , ~7!

which is a discrete analog of Feynman path integral, wh

An5~p\s2!21/4~2p i\!2n/2, ~8a!

Sn5(
j 50

n

L j , ~8b!

L j5T~pj 21!2V~qj !~ j >1,pj 215qj2qj 21!, ~8c!

L05 i ~q02c1Pa!~q02c2Pa!/~2s2!2QaPa/2

@c65 is~A261!#. ~8d!

The saddle point approximation for the integral is imp
mented to derive the semiclassical Van Vleck’s formula,
which the wave function is expressed by purely classic
dynamical quantities. Each saddle point (q0 , . . . ,qn21)
PCn should satisfy a set of classical equations of motion a
boundary conditions

~qj 11 ,pj 11!5 f ~qj ,pj ! ~0< j ,n!, ~9a!

~q0 ,p0! PI, ~9b!

~qn ,pn!PF, ~9c!

where f :C2→C2 is the classical map extended into compl
phase space, andI, F stand for manifolds defined by

I5$~q,p!PC2uP~q,p!5Pa%, ~10a!

F5$~q,p!PC2uIm q50%. ~10b!

Since the initial ‘‘momentum’’P0 is fixed by Eq.~10a!, the
shooting problem~9! will be solved by adjusting the initia
‘‘position’’ Q0 in I. Condition~9c! is required since we wan
to see here the wave function as a function of a real fi
positionqn . A set of initial points satisfying Eqs.~9! is given
by

Mn5Iù f 2n~F!. ~11!

Then the semiclassical Van Vleck’s formula
^qnuUnuqa ,pa& takes the form

~2p\!21/4 (
(q0 ,p0)PMn

U ]2Gn

]qn]Pa
U1/2

exp
i

\ S Sn2
fn

2 D ,

~12!

where the sum is over the complex orbits whose initial poi
are located onMn just defined.fn(q0 ,p0) is the Maslov
index of each complex orbit.Gn(qn ,P0)5Sn1 i (q0
2c1P0)(q02c2P0)/(2s2) is a generating function which
05621
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yields a set of canonical transformations]Gn /]qnuP0
5pn

and]Gn /]P0uqn
52Q0. The outline of the derivation of Eq

~12! follows the conventional one@21#, so we omit the de-
scription of it. For details, readers refer to the Appendix
Ref. @5#.

C. Hierarchical configuration of initial values

The complex phase space of model~1! has a complicated
structure in contrast to the real phase space. Figure~a!
shows a typical pattern ofMn , which consists of a huge
number of strings. The finest scale structure ofMn is shown
schematically in Fig. 2~b!. Each string covers the whol
range (2`,1`) of the finalqn axis, so we call it abranch.
In the latter figure, branches are linked to each other in
horizontal direction with narrow gaps, and they are said
form a chainlike structure@5,16# ~the authors in Ref.@5#
called it a Laputa chain!. Our classical and semiclassic
discussions are concerned with the branches which f
chainlike structures. The other branches are found in b
sides of each chainlike structure, which look like a pair
sea anemones as shown in the left-hand inset of Fig.~a!
@they are omitted in Figs. 2~b! and 2~d!#. The semiclassica
contribution from them is negligible, see the discussion
Sec. II F. Here we will explain the morphology ofMn in
terms of these notions, and by relating it to the manifoldsW s

and W u which are extended to the complex domain. Mo
precisely, the following three facts will be explained: Firs
the chainlike structure is created by the orbits propaga
alongW s andW u; second, branches inMn have a hierar-
chical configuration onI; and third, the intersection

M5IùW s, ~13!

is the main frame of the configuration of branches. Herea
we identify C2 with R4, and mean a ‘‘curve’’ as a one
dimensional manifold inR4, and a ‘‘disk’’ as a two-
dimensional one in there.

When the mapf in Eqs. ~2! is extended toC2, both W s

andW u are two-dimensional manifolds in there at least
cally. SinceI is also a two-dimensional manifold, the dime
sion of the intersectionM is lower than 1 in general, i.e., th
intersection is neither a set of curves nor a surface, but m
be fractal such as the Cantor set, the Hausdorf dimensio
which is less than one.

We begin with the creation of the chainlike structure. F
a point in W s denoted byw and a small diskD which in-
cludes w, the dynamics ofD is described as follows. By
definition, the orbit ofw converges to the origin. Alsof k(D)
first approaches the origin ask increases, however, it in turn
spreads alongW u, and finally almost converges toW u.

This process is described in more detail. Fork@1, the
intersection betweenf k(D) and the neighborhood off k(w) is
approximated by a small diskD8 which is tangent toW u at
the origin. Then the points onD8 are parametrized by a sma
complex numberz such that „q(z),p(z)…5„z,(l21)z…,
wherel is the maximal eigenvalue of the tangent map off at
the origin and is a real number. Theq component of
f m
„q(z),p(z)…, denoted byqm(z), is a holomorphic function
1-4
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FIG. 2. ~a! Mn for n510 plotted onI. Bro-
ken curves around Im(Q02Qa)50 are the
branches finally used for the construction
semiclassical wave functions~see Fig. 6!. There
are two insets: the right-hand one enlarging
small area indicated by a solid arrow and the le
hand one enlarging a small area indicated by
dotted arrow. ~b! Schematic representation o
branches which form the horizontal center line
the left-hand inset of~a!. The center dot repre-
sents an element ofM defined in Eq. ~13!.
Hatched and nonhatched parts are mapped byf n

to the bold and thin parts in~c!, respectively.
There is a causticQ0 defined by ]qn /]Q0uP0

50 in a narrow gap between every neighborin
branches.~c! The images of the branches in~b!
by f n for n510, projected on real phase spac
Bold and thin parts almost agree with the re
domain W u and the nonrealW u, respectively
~for the real domainW u, see Fig. 1!. The parts of
images which have quite largeuImpnu ’s are omit-
ted. The creation of caustics in~b! are due to the
oscillations of the real-domainW u. ~d! The con-
figuration of chainlike structures included in th
right-hand inset of~a!. A solid square at the cen
ter of each chainlike structure represents an e
ment of M. ~e! A variety of behaviors exhibited
by orbits launching fromM. Solid and broken
lines represent Req and Imq, respectively. In the
right column, the initial points of the trajectorie
belong to the sixth, eighth, and tenth generatio
respectively, from top to bottom.
f

he
in

th

g
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ng
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of

like
of z for any m.0. Then due to the reflection principle o
holomorphic functions, the intersectionD8ù f 2m(F) @see
Eq. ~10! for the definition ofF] includes, on thez plane, the
real axis Imz50, and a set of curves symmetric about t
axis and perpendicular to the axis at the points satisfy
dqm(z)/dz50.

The approximation used above allows one to consider
Dù f 2n(F) for n5k1m includes f 2k

„D8ù f 2m(F)…. Re-
placing f k aroundw by its linear approximation, and takin
Q0 as a coordinate onD, one can relateQ0 and z linearly.
05621
g

at

Then in a similar way,Dù f 2n(F) includes, on theQ0 plane,
a line throughw and a set of curves symmetric about the li
and perpendicular to the line at the points satisfyi
dqn(Q0)/dQ050. The last equation is equivalent to the co
dition which defines caustics onI in the original problem
~9!. Finally, by takingD on I, the configuration of a line and
curves on theQ0 plane just described explains the creation
a chainlike structure.

The mechanism mentioned above suggests that chain
structures are created around any elements ofM as the time
1-5
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step increases. We numerically confirmed that the invers
true, that is, any chainlike structures are created around
ments ofM, as shown in Fig. 2~b!. Figure 2~c! shows that
f n(D) almost convergesW u even forn510. In this way, the
creation of chainlike structures is explained by the dynam
of a small disk first approaching real phase space with
guide of W s, then spreading overW u. It should be noted
that this process is not specific to our dynamics, but is
one that the stable and unstable manifolds always h
Hence the process can take place also in real-domain dyn
ics and even in integrable one, whether one takes ti
domain approaches or energy-domain ones@13#.

Next we discuss the configuration of branches onI. Fig-
ure 2~d! shows the schematic representation of chainl
structures inMn . As shown there, small chainlike structur
are arranged on both sides of the central large one, and
same arrangement repeats around each of the small cha
structures. This observation means that the branches inMn
have a hierarchical configuration. Then it may be natura
assign agenerationto each chainlike structure in the hiera
chy. For example, in Fig. 2~d!, we can say that the first fou
generations are displayed.

Since chainlike structures are created around elemen
M, these elements also have a hierarchical configuratio
shown in Fig. 2~d!, and it can be said thatM constitutes the
main frame ofMn . Generations are assigned to the eleme
of M in the same way as to chainlike structures. The struc
of the orbits launched fromM is important for our semiclas
sical analysis because of the following reasons. The firs
that these orbits describe well the behaviors of the or
launched from chainlike structures toward real phase sp
The second is that the study of orbits on the stable~or un-
stable! manifold is suitable for more canonical argumen
since they are compatible with the theory of dynamical s
tems@22#.

Figure 2~e! shows a variety of itineraries of the orbi
launched fromM. In the left column, the top row shows
typical behavior observed inM, where both Req and Imq
oscillate in an erratic manner for some initial time steps a
eventually approach the origin. Regular itineraries such
periodic oscillations coexist among stochastic itineraries
shown in the middle row, where an approximately tw
periodic behavior is seen. Another type of orbit is shown
the bottom row, where the trajectory first oscillates with p
riod 2 and then turns into a three-periodic motion. The clo
relation between itinerating behaviors and the notion of g
eration can be seen clearly in the case of periodic osc
tions, as shown in the right column of the figure. In each ro
the length of time for which a trajectory keeps oscillati
agrees with the generation of the initial point of the traje
tory.

D. Emergence of a homoclinic tangle in complex phase space

The hierarchical structure ofM is the manifestation of
chaos. To see this, two facts are shown here. The first is
the homoclinic tangle ofW s and W u emerges in complex
phase space. The second is that the hierarchical structu
M is created as a consequence of the emergence of
tangle.
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We study phase-space structures in terms of a coordi
on W s defined as follows. LetF be a conjugation map from
C to W s, which satisfies the relation

~F21f F!~j!5l21j for jPC, ~14!

wherel denotes the maximal eigenvalue of the tangent m
of f at the origin@23#. Thej coordinate is normalized in the
sense thatf is represented by a linear transformation on t
coordinate. Note that a similar coordinate is defined onW u

by taking F:C→W u and replacingl21 in Eq. ~14! by l.
Hereafter we denotel21j5 f s(j).

Figure 3~a! shows a set of homoclinic points of the origin
obtained numerically on thej coordinate. In the figure, en
larging the neighborhood of any homoclinic point, one c
find the configuration of homoclinic points similar to th
original one with finer scale@for enlarged figures, see Fig
4~b!#. The set of homoclinic points looks basically the sam
on W u, and also one can find there the self-similarity ju
described. Hence it is numerically confirmed that aho-
moclinic tangle emerges in complex phase space. T
present model tells us that null topological entropy in re
phase space does not always exclude the existence of c
in complex domain.

Figure 3~b! showsM plotted on the same coordinate wit
different scale. Similarity to Fig. 3~a! is evident, which sug-
gests that the creation of the hierarchical configuration ofM,
as shown in Fig. 2~d!, is due to the emergence of the h
moclinic tangle in complex domain. The relation between
structures ofM and of the homoclinic tangle is made mo
clear by the notion of generation introduced in Sec. II C.
see the relation, we give the precise definition of generatio
Let D be a connected domain in thej plane which satisfies
the conditions

~0,0!PD, ~15a!

f s~D !,D. ~15b!

DenotingD85D2 f s(D), the j plane is decomposed into
family of disjoint domains as follows:

t
nPZ

f s
n~D8!5C2$~0,0!%, ~16a!

f s
m~D8!ù f s

n~D8!5f ~mÞn!. ~16b!

Thus for any pointj in this plane except (0,0), there exists
unique integern such thatjP f s

2n(D8). Then the generation
of the point j is defined as the integern. This definition
allows us to assign generations to the homoclinic points.

Figure 3~a! shows the shape ofD. Note that under the
conditions in Eqs.~15!, the relations in Eqs.~16! hold irre-
spective of the shape. In our earlier publication@16#, D was
chosen as a disk. In the present study, another choice ofD is
proposed. We describe the shape in a specified manne
Sec. II.

For any point in D which is sufficiently close toj
5(0,0), the forward orbit approaches the origin straightf
wardly at an exponential rate in the original coordina
1-6
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(q,p). For any point in thenth generation (n>1), it takes at
leastn steps until the orbit starts to approach the origin e
ponentially, and thus it can exhibit a variety of behavio
during its itinerary. That is why the oscillations shown in F
2~e! are related with the generations.

The similarity between Figs. 3~a! and 3~b! suggests tha
the behaviors of orbits launched fromM are similar to those
of homoclinic orbits. Actually, we numerically checked th
for any element ofM, a homoclinic point is found in the
same generation as the element, such that the orbit of
element is well approximated by the homoclinic orbit. This
the working principle of our symbolic description for th
elements ofM, as seen later. Therefore the hierarchical c
figuration ofM displayed onI represents, via similarity be
tweenM and a set of homoclinic points, the structure of t
homoclinic tangle, in other words, is a piece of evidence
complex-domain chaos.

More generically, one can say that the hierarchical c
figuration ofM on I is the manifestation of chaos, wheth
the configuration emerges in real domain or in complex
main. Figure 3~c! shows an analogy of our present situati
with a horse-shoe map on a plane. In the case of this m
IùW s and IùW u form the Cantor sets, and the fract
structures of these intersections are originated from

FIG. 3. ~a! The set of homoclinic points,W sùW u, plotted on
W s. The center of the figure corresponds to (q,p)5(0,0), and the
points on the horizontal axis are included in real phase space.
domainD in Eq. ~15! is enclosed by solid curves.~b! The intersec-
tion M plotted onW s. ~c! The horse-shoe map on a plane.W s and
W u for a fixed pointO creates a homoclinic tangle. A solid lin
across the tangle and a bold curve onW s are analogous with ourI
andD, respectively. A dotted line is the boundary of partition whi
creates binary codes. Due to the horse-shoe dynamics,W s in the
nth generation has 2n intersection points withI.
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tangle ofW s andW u. ReplacingC in Eq. ~16a! by R, one
can define generations in a similar way.

Once we know that chaos exists also in the complex
main, the methodology studying chaos in the real dom
can be applied to the analysis on the complex domain
particular, symbolic dynamical description of orbits, which
available if one finds a proper partition of phase space
define it, is a standard technique in the theory of dynam
systems@22#, and can be a very useful tool to analyze co
plicated phase-space structures. Homoclinic orbits are
describable in terms of the symbolic dynamics, so our st
egy to study the hierarchical configuration ofM hereafter is

he

FIG. 4. ~a! Intersection between theq plane and the boundarie
of the partition. Each boundary is a three-dimensional manif
according to Eq.~19!, so that the intersection is a set of curves. T
curves labeled bya,b,c, and d indicate the boundaries with
(x,y,n)5(1,1,1),(1,1,2),(1,1,3), and (1,21,1), respectively.~b!
Boundaries of~b1! P and~b2! f (P) plotted in the same range of th
j plane, with homoclinic points superposed. The generations of
homoclinic points displayed are lower than or equal to 1.~b3! The
enlarged figure of the hatched part of~b2!. The boundaries off (P)
fail to divide the set of homoclinic points clearly, in the hatched p
of ~b3!. ~b4! The enlarged figure of the hatched part of~b3!. Ho-
moclinic points are aggregated densely like a thick band. T
boundary curves might touch the set of homoclinic points.
1-7
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to take the symbolic description of homoclinic orbits.

E. Symbolic description of complex orbits

We will explain the symbolic descriptions of complex h
moclinic orbits and semiclassical candidate orbits. For
description of complex homoclinic orbits, we construct
symbolic dynamics which works effectively and estimat
the imaginary parts of actions for the homoclinic orbits. T
final results of this study are presented here, and the deta
explanation is given in Sec. III. On the basis of the resu
the symbolic description of semiclassical candidate orbit
developed in the following way. First, the elements ofM are
encoded into symbolic sequences. We compare both con
rations of homoclinic points and the elements ofM, on thej
coordinate defined onW s. A clear similarity between both
configurations enables us to find, for each element ofM, a
homoclinic point located in the neighborhood of the elem
of M. Since the homoclinic point is already encoded into
symbolic sequence, we encode the element ofM into this
symbolic sequence. Next, semiclassical candidate orbits
encoded into symbolic sequences. Since the behaviors o
bits launched from a single chainlike structure are descri
by the orbit of an element ofM located at the center of th
chainlike structure, we assign the symbolic sequence of
element ofM to all initial points in the chainlike structure.

Symbolic dynamics is usually constructed by finding
generating partitionG, which is the partition of phase spac
satisfying the relation

~
n52`

1`

f n~G!5e0 , ~17!

where the left-hand side~lhs! is the product of all partitions
created byf n(G), and the right-hand side~rhs! is the parti-
tion of phase space into its individual points@22# ~here we
should consider the ‘‘phase space’’ as the closure of a se
homoclinic points of the origin!. Roughly speaking,G is the
partition of phase space such that each separated comp
of phase space corresponds to a symbol, and for every
infinite sequence of symbols there may at most exist
trajectory of the original map. In our case, a partition
complex phase space is defined in terms of the phase pa
V8(q) which appears in the form

V8~q!522gk exp@2A~q!2 iB~q!#, ~18!

where A(q),B(q)PR. The boundaries of the partition ar
defined by

$~q,p!PC2uB~q!5@2nxy2~3x11!y/2#p%, ~19!

where (x,y,n) is an element of the set

T5$~x,y,n!u~x,y!P$11,21%,nPN%. ~20!

The intersection between theq plane and the boundaries o
the partition are shown in Fig. 4~a!. x and y in Eq. ~19!
represent the signs of Req and Imq of the points on a
boundary respectively, i.e., the pair ofx and y specifies the
quadrant of theq plane where theq component of the bound
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ary is included.n is the squared ‘‘distance’’ between th
boundary and the origin, in the sense that the axis Rq
5Im q on the q plane intersects the boundary atq
'(xAnp/g,yAnp/g) for n@1.

Then our partition, denoted byP, is defined as a set o
phase-space components as follows:

P5$U~x,y,n!u~x,y,n!PS%, ~21a!

S5Tø$~0,0,0!%, ~21b!

whereU(x,y,n) for (x,y,n)PT, whoseq component is dis-
played in Fig. 4~a!, denotes the region enclosed by tw
boundaries associated with (x,y,n) and (x,y,n11), and
U(0,0,0) denotes the complement of the union of all pha
space components encoded to the elements ofT. The origin,
(q,p)5(0,0), is included inU(0,0,0).

Figure 4~b! shows thej plane divided byf n(P) for n
50 and 1. The central domain in Fig. 4~b1! is the domainD,
which was introduced in Sec. II D. The domainD is defined
on the j plane as a connected domain ofU(0,0,0)ùW s

which includesj50. If f n(P) for any n>0 divides clearly
the set of homoclinic points displayed here, thenP is the
generating partition, i.e., relation~17! holds forP @it is suf-
ficient to consider the case ofn>0 since any homoclinic
point is mapped to the region displayed in Fig. 4~b1! by the
iterations off ].

On one hand,f n(P) for n50 divides a set of homoclinic
points clearly as shown in Fig. 4~b1!. This means that our
partition is a reasonable approximation of the generating p
tition. So by means ofP, we can construct a symbolic dy
namics which works effectively. On the other hand, there
some regions in thej plane wheref n(P) for n>1 fails to
divide the set of homoclinic points clearly. In such regions
may be necessary to improve our partition to obtain the g
erating partition, and it is our future problem. Note that o
complex dynamics is not proved to be hyperbolic, and t
the existence of the generating partition for nonhyperbo
systems is an open problem. The improvement of the pa
tion is of mathematical interest, however, as actually dem
strated below, the present definition ofP is sufficient for our
semiclassical analysis.

In terms ofP, each homoclinic point is encoded into
bi-infinite symbolic sequence of the form

. . . OOa2na2(n21) . . . a21 .a0a1 . . . anOO . . . ,
~22!

where O5(0,0,0), nPN, and akPS(uku<n). The symbol
ak represents that the image of the homoclinic point byf k is
included in a phase-space componentU(ak) defined in Eqs.
~21!. The finite sequence ofak’s is accompanied with semi
infinite sequences ofO’s on both sides. It reflects that an
homoclinic point approaches the origin of phase space
forward and backward iterations off. In particular, ho-
moclinic points included inD are encoded into symbolic
sequences of the form

. . . OOa2na2(n21) . . . a21 .OO . . . , ~23!
1-8
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wherenPN andakPS(0,k<n). Any symbol on the rhs of
the decimal point isO, since the forward orbits are alway
included in a componentU(O) due to Eq.~15b!.

For a homoclinic pointw, which has a symbolic sequenc
of form ~22!, let us consider the imaginary part of action
the form

s~w!5 (
k51

1`

Im@T„pk21~w!…2V„qk~w!…#, ~24!

where „qk(w),pk(w)… stands for f k(w). When we denote
ak5(xk ,yk ,nk) for kPZ, s(w) is estimated by

p

g (
k51

1`

~xknk
1/22xk21nk21

1/2 !~yknk
1/22yk21nk21

1/2 !, ~25!

whereg is a parameter ofV(q). The derivation of formula
~25! is presented in Sec. III.

From these results, we discuss the symbolic descriptio
semiclassical candidate orbits. LetMn be a subset ofM
whose members belong to generations lower thann. Then we
observe numerically the following two facts: first, the cle
similarity between Figs. 3~a! and 3~b! enables us to find, for
any element ofMn and in its neighborhood on thej plane, a
homoclinic point which has a symbolic sequence of the fo

. . . OO.a0a1 . . . an23OO . . . ~an23ÞO!. ~26!

For n52, Mn has only a single element, and a homoclin
point which has . . .OO.O . . . OO . . . corresponds to the
element. Forn51, Mn is a null set. Second, on the planeI,
the elements ofMn are located at the centers of chainlik
structures inMn @see Fig. 2~d!#.

From the first fact, to each point ofMn , we assign a
semi-infinite symbolic sequence of the form

a0a1 . . . an23OO . . . . ~27!

Figure 5 shows some trajectories launched fromM and sym-
bolic sequences of form~27! assigned to the initial points o
the trajectories. The signs and amplitudes of theq compo-
nents at each time step are well described by (x,y)’s andn ’s
of the corresponding symbols. This means that the behav
of forward orbits launched fromM are well approximated by
those of homoclinic orbits.

From the second fact, to each chainlike structure
Mn(,I), we assign the same symbolic sequence as the
ement ofMn(,W s) located at the center of the chainlik
structure. This assignment is reasonable since, as state
Sec. II C, the motions of orbits launched from the chainl
structure are well approximated, till they start to spread o
W u, by the motion of an orbit launched from the element
M. Then chainlike structures inMn are also described b
symbolic sequences of form~27!.

For any trajectory launched from a single chainlike stru
ture inMn , we approximate the imaginary part of action
that of the trajectory launching from the element ofMn lo-
cated at the center of the chainlike structure. Hence, by u
Eqs.~25!–~27!, the estimation of the imaginary parts of a
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tions for semiclassical candidate orbits is attributed to
estimation of those for homoclinic orbits. There are branc
not included in any chainlike structure, and no symbolic
quence is assigned to them. However, semiclassical co
butions from them are negligible. This issue is discussed
the following Sec. II F.

F. Reproduction of tunneling wave functions

Semiclassical wave functions are constructed from s
nificant complex orbits selected according to the amounts
imaginary parts of actions. The semiclassical mechanism
the tunneling processes is explained by the structure of c
plex phase space.

The sum in Eq.~12! is evaluated in three steps: Firs
branches not included in chainlike structures are remo
from Mn ; second, elements ofMn(,M ) are put in order
according to the amounts of imaginary parts of actions e
mated by Eq.~25!; and finally, the sum is evaluated for th
initial points in chainlike structures associated with the e
ments ofMn for which the above estimations are small.

The first step is necessary due to the following reason.
orbits launched fromMn but not from chainlike structures
there is no orbit launched fromM which guides them to rea
phase space withinn time steps. This means that these orb
have large imaginary parts of momenta at the time stepn, so
that they gain sufficiently large amounts of imaginary pa
of actions. If the imaginary parts of actions are positive
large, the contributions from the orbits are small enough
be negligible, or if they are negatively large the contributio
from the orbits are unphysical due to the Stokes phenome
@24#, so that the orbits should be excluded from the wh
candidates.

In the second step, some elements are removed fromMn
also due to the Stokes phenomenon. Following the presc
tion given in Ref.@25#, we found that chainlike structure

FIG. 5. The trajectories launched fromM, and symbolic se-
quences assigned to their initial points~elements of each column
vector arex,y, and n from top to bottom!. A semi-infinite part,
OOO . . . , is omitted in each sequence. Solid and broken lin
represent Req and Imq, respectively. The trajectories show~a!
erratic motions,~b! approximately two-periodic motions, and~c!
monotonical approach to real phase space.
1-9
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which have unphysical contributions to wave functions,
cluding the case of exponentially large semiclassical am
tudes, are associated with the elements ofMn whose sym-
bolic sequences include symbols of the form (1,21,n) or
(21,1,n) with nPN. The justification is our future problem
See the Discussion in Sec. IV.

After removing such elements fromMn , we have the or-
dering for elements ofMn :

w0 w1 w2 . . . , ~28!

such that the inequalities hold:

0<s~w0!<s~w1!<s~w2!<•••, ~29!

wheres(wk) for k>0 represents the imaginary part of actio
estimated by Eq.~25! for the forward trajectory ofwk .

From Appendix B, it is seen thatw0, which is primarily
significant in Mn for wave functions, has the symbolic s
quence

OOO . . . , ~30!

and the members of$w1 ,w2 , . . . ,w2(n22)%, which are sec-
ondarily significant inMn , have symbolic sequences of th
form

bbb . . . bbOOO. . . , ~31!

where bP$(1,1,1),(21,21,1)%, and the length of
bbb . . . bb ranges from 1 ton22. Due to form~27!, the
length is bounded above byn22, and the member o
$w1 ,w2 , . . . ,w2(n22)% which hasbbb . . . bb of length k
22(k<n) belongs to thekth generation. Formula~25! tells
us thats(w1)5s(w2)5•••5s(w2(n22)).

We observed that the orbits ofw0 ,w1 , . . . ,w2(n22) be-
have as follows. The orbit ofw0 converges to the origin
exponentially, so that it gains the smallest imaginary par
action. The orbits ofw1 ,w2 , . . . ,w2(n22) first explore the
vicinity of real phase space till the sequencebbb . . . bb ter-
minates and then converge to the origin exponentially. S
motions yield much smaller imaginary parts of actions th
flipping motions in complex domain, which are observed
generic trajectories launched fromM. The motions of ho-
moclinic orbits whose symbolic sequences include sub
quences of form~31! are investigated in Sec. III. There it i
found that such homoclinic orbits explore the vicinity of re
phase space. The motions of the orbits
w1 ,w2 , . . . ,w2(n22) reflect those of homoclinic orbits.

Figure 6~a! shows quantum and semiclassical wave fu
tions for n510, the latter of which is constructed by takin
account of the contributions from chainlike structures as
ciated withw0 ,w1 , . . . ,w2(n22) . Both functions are in ex-
cellent agreement. The contributions from the other chain
structures are much smaller than those taken account of h
Their squared amplitudes are of the order of;10250 at most.
In particular, the contributions from trajectories which e
hibit flipping or oscillatory motions are negligible, as show
in Fig. 6~c!.
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It is remarkable that only a small number of branches
significant to describe the tunneling processes@the significant
branches are represented by broken curves in Fig. 2~a!#.
More precisely, the numbers of branches that we need
creases algebraically with time stepn, while the total number
of chainlike structures and that of branches inMn increase
exponentially withn. The algebraic increase of significan
orbits results from linear increases of significant chainl
structures and of branches included in individual chainl
structures. The former linear increase is due to the symb
form ~31!. The latter is due to the oscillating structure of re
domainW u by which the number of folding points of an
manifold initially put in real domain increases at most li
early with time step. In other words, the algebraic increas
a consequence of the absence of real-domain chaos. W
the real domain is chaotic, a small piece of a comple
domain manifold is, after it approached the real domain
the iterations of the map, stretched and folded by re
domain chaotic dynamics without gaining additional ima
nary part of action, so that the number of significant orb
can increase exponentially with time@5,18#. It should be
noted that in the integrable limit of our model, there is
increase in the number of branches with time. Hence in
case, the algebraic increase is the reflection of nonintegra
ity.

The excellent agreement between both quantum and s
classical calculations enables us to interpret semiclassic
the features of tunneling wave functions. Figure 6~b! clearly
shows that the contributions from many chainlike structu
reproduce the crossovers of amplitudes in reflected and tr
mitted regions. We found that erratic oscillations on ea
semiclassical component are due to the interferences
tween branches included in a single chainlike structu
Since the length ofbbb . . . bb decides the generations o
w1 ,w2 , . . . ,w2(n22) , it can be said that the crossovers
amplitudes are created by the interferences between ch
like structures belonging to different generations. In this w
the complicated tunneling amplitudes are explained se
classically by the creations of chainlike structures on
plane I and by the exponential increase of the number
chainlike structures with time~though linear increase for sig
nificant ones!, which is due to the emergence of a compl
homoclinic tangle.

The semiclassical mechanism of the tunneling proces
in our model is summarized as follows. Stable and unsta
manifolds of a real-domain unstable fixed point create
tangle in complex domain. The initial manifold representi
a quantum initial state is located through the tangle, so
the intersection points between the initial manifold and
stable manifold form a hierarchical structure on the init
manifold. The orbits launched from the neighborhood
each intersection point are guided to real phase space by
stable manifold and then spread over the unstable manif
The number of the orbits guided to real phase space incre
exponentially with time~though significant ones increase a
gebraically!, reflecting the hierarchical structure formed b
the intersection points on the initial manifold. Then the i
terferences between these orbits create complicated pat
in the tunneling amplitudes.
1-10



ace
lic
ef-

lu-
re-

n of

e
ted
le-
uch
.

o-

d

e

s

h

he
far

er,

Th

ica

p
-
p

is

f

un

SEMICLASSICAL STUDY ON TUNNELING PROCESSES . . . PHYSICAL REVIEW E 68, 056211 ~2003!
FIG. 6. ~a! Quantum and semiclassical wave functions forn
510, represented by dotted and solid curves, respectively.
solid one is shifted by 104 to distinguish both functions.~b! Indi-
vidual contributions from chainlike structures to the semiclass
wave function shown in~a!. The crossovers of amplitudes far from
the origin and near the origin are mainly reproduced by the com
nents displayed in~b1! and ~b2!, respectively. For some compo
nents, symbolic sequences assigned to chainlike structures are
sented, whereb5(21,21,1). Each of the components 1–5
dominated by a single-orbit contribution atq50, whose imaginary
part of action is 26.9, 17.9, 14.3, 15.9, and 22.7, respectively.~c!
Squared amplitudes of the semiclassical components~lhs! which
come from chainlike structures associated with the elements oM
whose trajectories exhibit oscillatory motions~rhs!. Solid and bro-
ken lines on the rhs represent Req and Imq, respectively. Flipping
or oscillatory motions in complex phase space gain large amo
of imaginary parts of actions due to large complex momenta.
05621
III. SYMBOLIC DESCRIPTION OF A COMPLEX
HOMOCLINIC TANGLE

A. Construction of partition of phase space

Here we construct a partition of complex phase sp
which encodes homoclinic points of the origin into symbo
sequences and defines symbolic dynamics which works
fectively. The behaviors of homoclinic orbits and the eva
ation of imaginary parts of actions for the orbits are p
sented in Secs. III B and III C, respectively.

There have been extensive studies on the constructio
generating partition in real phase space@26# even in nonhy-
perbolic regimes@27#. In such real-domain studies, th
boundaries of generating partition are roughly approxima
by a set of folding points of flat manifolds, created by sing
step iterations of maps. However, the extension of s
working principle to complex phase space is not obvious

In order to find the generating partition for our mapf, we
consider the single-step dynamics off 21 for flat manifolds
of the form $(q,p)PC2up5p0% with p0PC. We found that
the dynamics is well understood by relating it to the exp
nent A(q)1 iB(q) of V8(q), where A(q)5g@(Req)2

2(Im q)2#2 lnuqu and B(q)52g(Req)(Im q)2argq @the
notation is the same as in Eq.~18!#. The contour curves of
both functions are shown in Figs. 7~a! and 7~b!.

First, the single-step dynamics off 21 is considered far
from the origin, (q,p)5(0,0), and then is considered aroun
the origin. Far from the origin,A(q) andB(q) are controlled
linearly by variablesu andv:

~u,v !5„@~Req!22~ Im q!2#/2,~Req!~ Im q!…. ~32!

On this coordinate, one obtains the estimations

A~q!52gu1O~ lnuuu! ~v:fixed,uuu→`!, ~33a!

B~q!52gv1O~ lnuvu! ~u:fixed,uvu→`!, ~33b!

or 2gv1O~ uuu21! ~v:fixed,uuu→`!, ~33c!

whereg is a parameter inV(q).
In a region of phase space whereuuu@1, the dynamics of

f 21 is discussed as follows. Whenu@1, V8(q) almost van-
ishes due to Eq.~33a!, so that the behavior of any orbit in th
region is of a free motion, as shown in Fig. 7~c! ~the dynam-
ics of f is shown there, and that off 21 is basically the same!.
When u!21, a small rectangle on the (u,v) coordinate,
centered at (u,v) with sides of lengthsDu and Dv, is
mapped by the functionV8(q) approximately to an annulu
on the q plane „with radii 2gk exp(22gu) and
2gk exp@22g(u1Du)#…. Hence when we put a rectangle wit
Dv5np/g on a flat manifold withp5p0, since thisDv is
approximatelyn periods of the phaseB(q), the image of the
rectangle byf 21 looks like ann-fold annulus when projected
on the q plane. In order to distinguish each branch of t
n-fold annulus, we propose the boundaries of the partition
from the origin as the form$(q,p)PC2uv5v01np/g%, with
v0 andn being a fixed real number and an arbitrary integ
respectively.
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FIG. 7. Contour curves of the functions~a! A(q) and~b! B(q).
Each curve is given, in~a!, by A(q)5@11 ln(2g)#/210.4n for n
PZ and, in ~b!, by B(q)5pn/6 for nPZ with a branch2p
<argq,p. Far fromq50, these curves are approximated by h
perbolic curves. In~b!, a bold part in the side of Req.0 corre-
sponds to the case ofB(q)50, and that in the other side corre
sponds to the cases ofB(q)52p(Im q.0) andp(Im q<0). In
these bold parts, the real axis and the others intersect atq5

61/A2g. ~c! Successive images of small pieces of a flat manifo
$(q,p)PC2up5p0% with p05100.01 i50.0, by the mapf. Contour
curves of theu component of the (u,v) coordinate are superpose
For one of the pieces,m1, its images are always in a region whe
u@1, so that their behavior is of a free motion. For the other o
m2, its images expand over a wide range of phase space~a hatched
region!, as soon as they enter a region whereu!1.
05621
Around the origin, we estimate the locations of the boun
aries by considering a set of real-domain folding points
the flat manifolds, created byf 21. For a flat manifold with
p5p0PR, we define a folding point on the manifold (q,p0)
by the conditiondp21(q)/dq50, wherep21 is thep com-
ponent off 21(q,p0). For p0 ranging from2` to 1`, a set
of folding points is obtained as two lines,$(q,p)PR2uq
561/A2g%. Hence the boundaries of the partition in com
plex domain are expected to intersect the real domain aro
these lines.

We propose a partition of phase space which satisfies
rough estimations presented above both in complex and
domains. To this end, we use the notations

U~x,y!5$~q,p!PC2ux Req.0, y Im q.0%, ~34a!

b~x,y,n!5@2nxy2~3x11!y/2#p, ~34b!

where (x,y,n) is an element ofT defined in Eq.~20!. U(x,y)
covers a single quadrant of theq plane andb(x,y,n) always
takes an integer timesp. For (x,y,n)PT, a phase-space
componentU(x,y,n) is defined by

U~x,y,n!5$~q,p!u~q,p!PU~x,y!,

@B~q!2b~x,y,n!#@B~q!2b~x,y,n11!#<0% ~35!

and, for (x,y,n)5(0,0,0), by

U~x,y,n!5C22 ø
(x8,y8,n8)PT

U~x8,y8,n8!. ~36!

Then our partitionP is defined as a set of the abov
phase-space components@see Eq.~19! for the definition of
boundaries#. Such definition of partition satisfies our roug
estimation for the locations of the boundaries. In fact, in
complex domain far from the origin, due to Eqs.~33!, the
relation B(q)5b(x,y,n) leads tov'v01np/g when we
set v052(3x11)yp/4g and n5nxy. Moreover, Fig. 7~b!
shows that the boundaries ofP indicated by B(q)
5b(x,y,n) for x,yP$11,21% and n51 intersect the rea
phase space atq561/A2g.

B. Properties of homoclinic orbits

By the partition constructed above, homoclinic points a
encoded into symbolic sequences of form~22!. In order to
estimate imaginary parts of actions, it is necessary to un
stand typical behaviors exhibited by the homoclinic orbi
Here we present such typical behaviors as two observat
obtained from numerical computations. The first observat
is concerned with the relation betweenn, which is a member
of the symbol (x,y,n), and the flipping amplitude of the
corresponding trajectory. The other one is concerned with
relation between the length of a consecutive p
bb . . . b(bPS) in a symbolic sequence and the behavior
the corresponding trajectory. These are numerical obse
tions and we have no mathematical proof, but the pha
space itinerary of any homoclinic orbit can be well explain
by the combinations of the behaviors presented in these
servations.

,

,
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Before presenting the observations, we estimate the lo
tions of homoclinic points in phase space by consider
single-step folding processes of flat manifolds. Letmi and
mf be complex planes defined byp5pi and p5pf
(pi ,pfPC), respectively. The intersectionf (mi)ùmf
is given by $(q,pf)PC2uA(q)52 lnucu,B(q)52argc
62np,n50,1,2, . . . %, whereA(q) and B(q) are the func-
tions appearing in Eqs.~33!, andc5(pf2pi)/(2gk). Since
the q components of the intersection points are located o
contour curve ofA(q), they are located along the axe
Req56Im q asymptotically asn→1`. Also, as will be
seen, theq components of homoclinic points are locat
along these axes asymptotically asn→1`, where n is a
member of the symbol (x,y,n).

Observation 1.Let $w1 ,w2 ,w3 , . . . % be a set of ho-
moclinic points whose symbolic sequences take the form

. . . a22 a21 .b1 a1 a2 . . . for w1 ,

. . . a22 a21 . b2 a1 a2 . . . for w2 ,

. . . a22 a21 . b3 a1 a2 . . . for w3 ,

A ~37!

whereak for kÞ0 is a member ofS defined in Eq.~21!, and
bn for nPN is given by (x,y,n), with x and y being fixed
members of$11,21%. Then the following relations hold:

lim
n→1`

Ag/~np! q0~wn!5~x,y!, ~38a!

lim
n→1`

Ag/~np!p0~wn!52~x,y!, ~38b!

lim
n→1`

Ag/~np!p21~wn!5~x,y!, ~38c!

where (q0 ,p0) is the current location ofwn in phase space
and p21 is the momentum at the last time step. The rhs
each equation denotes a pair of signs of real and imagin
parts.

Figure 8 shows the trajectories ofwn’s for small n ’s. In
the figure, one can see two facts: First, the signs
Req0(wn) and Imq0(wn) are described, respectively, byx
and y in the symbol bn and second, the amplitudes o
Req0(wn) and Imq0(wn) increase withn much faster than
the amplitudes at the other time steps. Due to the second
the following approximations hold for largen ’s:

p05q12q0'2q0 , ~39a!

p215q02q21'q0 , ~39b!

so that the sign of Rep0(wn) @ Im p0(wn)# is opposite to that
of Rep21(wn) @ Im p21(wn)# for large n ’s. Figures 9~a!–
9~c!, showq0(wn), p0(wn), and p21(wn) for much larger
n ’s. The magnitudes of the real and imaginary parts of th
quantities are shown to have the dependence of the f
Anp/g for sufficiently largen ’s. In Fig. 9~d!, it is shown that
q0(wj ) diverges much faster thanq21(wj ) and q22(wj ).
05621
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Similarly, q0(wj ) diverges much faster thanqk(wj ) for any
otherkÞ0, though not displayed here.

Relation~38a! leads to

lim
n→1`

uReq0~wn!/Im q0~wn!u51. ~40!

In the following, we explain that the relations in Eq.~38!
follow, assuming that relation~40! holds for the homoclinic
points given by Eqs.~37!, and thatq0(wn) diverges much
faster thanqk(wn) for any kÞ0 asn→1`.

Relation ~38a! is explained as follows. Sincebn

5(x,y,n), wn is included in a phase space compone
U(x,y,n) defined in Eq.~35!. Then thev component of
q0(wn) in the (u,v) coordinate~32! diverges asn→1`,
sinceB„q0(wn)… diverges asn→1` due to Eq.~19!, and
v'B(q0(wn))/(2g)'2nxyp/(2g) for largen ’s due to Eqs.
~33! and ~19!. Therefore from Eq.~40! and the relation
(Req0)(Im q0)5v'nxyp/g, we obtain q0(wn)
'Anp/g (x,y) for largen ’s.

Relation~38c! is explained as follows. The classical equ
tions of motions in Eq.~2! lead to the relation

FIG. 8. The trajectories of homoclinic pointswn’s for n
51,2, . . . ,5. Theleft and right columns display the real and imag
nary parts of the trajectories, respectively. Axes in~a!–~d! have the
same scale. The symbolic sequences ofwn’s take the form
. . . O O (21,1,1).bn(1,1,2)O O O . . . , wherebn’s are given by
~a! (1,1,n), ~b! (21,1,n), ~c! (21,21,n), and ~d! (1,21,n). The
dotted lines represent the case thatbn5O.
1-13
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FIG. 9. The dependences of~a! q0(wn), ~b! p0(wn), ~c! p21(wn), and~d! uqk21(wn)/qk(wn)u for k50,21, on the subscript numbern.
Axes in ~a!–~c! have the same scale. The symbolic sequences ofwn’s are given in~a!, whereAn ,Bn , andCn denote (1,1,n),(21,1,n), and
(21,21,n) respectively. The dotted lines in~a!–~c! representAnp/g. In ~a!, all curves almost coincide.
io
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q0~wn!1q22~wn!52q21~wn!2V8„q21~wn!…. ~41!

Since q0(wn) diverges much faster thanq22(wn) as n→
1` due to our assumption, the rhs of the above relat
diverges in this limit. It means thatq21(wn) also diverges as
n→1`, since the rhs of the relation is an entire function
q21. In particular, theu component ofq21(wn) diverges as
n→1`, since „q21(wn),p21(wn)… is always included in
the phase-space componentU(a21) irrespective of n.
Furthermore, the u component diverges to 2`,
05621
n

f

since if it diverges to 1` with „q21(wn),p21(wn)…
being in U(a21), then Imq21(wn) and V8„q21(wn)…
vanish, so that Im@q0(wn)1q22(wn)#5Im@2q21(wn)
2V8(q21(wn))#→0. However, this contradicts that a
n→1`, uIm@q0(wn)1q22(wn)#u'uIm q0(wn)u'Anp/g
→1`. Thus theu component ofq21(wn) diverges to2`
asn→1`. When theu component ofq21(wn) is negatively
large,V8„q21(wn)… is exponentially larger thanq21(wn), so
that q0(wn)'2V8„q21(wn)…. This relation means tha
uq21u'Ag21lnuq0u, and thusp21(wn) has the same depen
dence asq0(wn) on n due to the relationp215q02q21.
1-14
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SEMICLASSICAL STUDY ON TUNNELING PROCESSES . . . PHYSICAL REVIEW E 68, 056211 ~2003!
Relation~38b! is explained in a similar way by considerin
relationsp05q12q0 and Eq.~41! for q0 ,q1, andq2.

We proceed to the next observation. In usual symbo
dynamics, a consecutive partb b . . . b in a symbolic se-
quence always corresponds to a fixed point in phase spa
the motion approaching the fixed point. However, our cl
sical dynamics always has only a single fixed point at
origin for any choice of positive parametersk andg, which
is easily checked by solvingf (q,p)5(q,p), so that the
phase-space motion corresponding to a consecutive
b b . . . b with bÞO is not obvious. Our second observatio
says that the phase-space motion corresponding to the a
consecutive part has a turning point. It is conjectured tha
the length ofb b . . . b increases, the location of the turnin
point diverges, so that the trajectory corresponding
b b . . . b does not approach to any point in phase space
the limit of the length.

Observation 2. Let $ w1 ,w2 ,w3 . . . % be a set of ho-
moclinic points whose symbolic sequences take the form

. . . a22 a21 . b b a0 a1 a2 . . . , forw1 ,

. . . a22 a21 . b b b b a0 a1 a2 . . . forw2 ,

. . . a22 a21 . b b b b b b a0 a1 a2 . . . forw3 ,

A ~42!

where bÞO and the length ofb b . . . b for wj is 2j ( j
PN). Then the trajectory ofwj corresponding to the con
secutive partb b . . . b is included in a phase-space comp
nentU(b) and the momentum almost vanishes at time s
j 21. Moreover, the following inequalities hold:

0,Reqk21~wj !/Reqk~wj !,1 ~0,k, j !, ~43a!

0,Im qk~wj !/Im qk21~wj !,1 ~0,k, j !, ~43b!

0,Reqk~wj !/Reqk21~wj !,1 ~ j ,k,2 j !, ~43c!

0,Im qk21~wj !/Im qk~wj !,1 ~ j ,k,2 j !. ~43d!

This observation is exemplified in Fig. 10. In the ca
where the length ofb b . . . b in sequences~42! is given by
2 j 11 for wj , Eqs.~43a! and ~43b! hold in the range of 0
,k< j , and Eqs.~43c! and ~43d! hold in the range ofj ,k
<2 j . In this case, the momentumpk(wj ) at k5 j is quite
small, but does not vanish.

We conjecture that theq component of the turning poin
qj (wj ) diverges with the length ofb b . . . b, i.e., the follow-
ing relation holds:

lim
j→1`

qj~wj !5~x`,0!, ~44!

wherex has the sign of the infinity, which is given by th
member of the symbolb5(x,y,n). This conjecture is base
on the following observation.

Figure 10~c! shows that asj increases,V„qj (wj )… is ap-
proximated byaeiu j 2b where u, a, and b(.0) are real
05621
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numbers depending onb. If this approximation holds, solv-
ing V„qj (wj )…5aeiu j 2b, one obtains a solution

„uj~wj !,v j~wj !…5~2g!21
„b ln j 2 ln~a/k!,2u…, ~45!

where„uj (wj ),v j (wj )… is the location ofqj (wj ) on the (u,v)
coordinate. This solution suggests that Reqj (wj ) diverges
and Imqj (wj ) vanishes asj→1`. Moreover, according to
Observation 2,qj (wj ) and theq component ofU(b) are
included in the same quadrant of theq plane. Therefore re-
lation ~44! is obtained. The justification of this relation nee
further investigation of classical dynamics, and we hope
report the result of this issue elsewhere.

We have shown that there are two types of behaviors
hibited by homoclinic orbits. In our numerical computation
the behavior of any homoclinic orbit can be understood
the combinations of only two types of motions, one of whi
is the flipping motions almost along the axes Req
56Im q, and the other of which is the motions almost alo
the contour curves of thev component in the (u,v) coordi-
nate. Which type of motion occurs in the process fro
(qk ,pk) to (qk11 ,pk11) along a single homoclinic trajector
depends on whether the neighboring symbols in a symb
sequence,ak andak11, are different~the former type! or the
same~the latter type!. The former type of motion is charac
terized by Observation 1, and the latter one by Observa
2.

C. Evaluation of imaginary parts of actions

The imaginary parts of actions for homoclinic orbits a
evaluated from symbolic sequences. We first consider
homoclinic points appearing in Observations 1 and 2, and
estimations of imaginary parts of actions for these cases
presented as Observations 3 and 4, respectively. Then u
the latter two observations, we estimate the imaginary par
action for any homoclinic orbit. Observation 3 says that t
imaginary part of action diverges linearly asn→1`, where
n is a member of the symbol (x,y,n). Observation 4 says
that the amount of the imaginary part of action is bound
even if the length of a consecutive partb b . . . b (bPS) in a
symbolic sequence tends to infinity. In particular, we o
served that phase-space itineraries described byb b . . . b
gain little imaginary parts of actions compared to the oth
itineraries. This means that the homoclinic orbits appear
in Observation 4 can play a semiclassically significant ro
Observations 3 and 4 are also entirely based on our num
cal computations and, so far, we have no mathematical p
for these observations.

For any homoclinic pointw, we considers(w) defined in
Eq. ~24! as the imaginary part of action for the orbit ofw.
The sum in the rhs of~24! is the long time limit of Im (Sn
2L0) @for the definitions ofSn and L0, see Eq.~8!# and
converges due to the exponential convergence of the orb
the origin. In the definition ofs(w), we only take account of
the contributions from the forward trajectories, since sem
classical wave functions in our time-domain approach
determined by them. We do not consider the termL0, since it
depends only on the choice of an incident wave packet,
1-15
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FIG. 10. ~a! Trajectories ofwj ’s for j 55,10,15 and~b! for j 5100. ~c! V(qj (wj )) for j ranging from 1 to 100. The symbolic sequenc
of wj ’s in ~a!–~c! take the form . . .O O . b b . . . b O O . . . , where the length ofb b . . . b is 2j . The types ofb used in~a! and in the
others are given, respectively, in~a2! and in~b!. In ~a!, amplitudes of Rep and Imp almost vanish at time stepj 21. In ~b!, bold curves are
the boundaries of our partition. For the discussion in Sec. III C, trajectories for an integrable limit are superposed~dotted curves!, which have
null energy and connect two infinities of theq plane (Req,Im q)5(1`,0) and (0,1`). The dotted line sprouting from the origin represen
an axis Req5Im q. In ~c!, the phase22g(Reqj )(Im qj ) is plotted without taking mod 2p.
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on classical dynamics. First, we estimates(w) for the ho-
moclinic points appearing in Observation 1.

Observation 3. Let $w1 ,w2 ,w3 , . . . % be a set of ho-
moclinic points which appears in Observation 1. Then
any integern>1, the following relation holds:

lim
n→1`

@g/~2np!#s„f 2n~wn!…5xy. ~46!

Figure 11~a! shows the dependence ofus„f 2n(wn)…u on n. It
can be seen thatus„f 2n(wn)…u'2np/g for large n ’s. The
condition n>1 is necessary, since it is essential to relat
~46! to take account of the contributions from the flippin
motions fromq21(wn) to q0(wn) displayed in Fig. 8.

In the following, we explain relation~46!, assuming that
Observation 1 holds, and that for the homoclinic points
pearing in Observation 1,qk(wn) @q2k(wn)# for k>0 di-
verges much faster thanqk11(wn) @q2(k11)(wn)# as n→
1`. Figure 9~d! suggests that the second assumption
valid for k50 and 1. For the otherk’s, it has not been found
numerically whether the assumption is valid or not, sin
qk(wn) andq2k(wn) for k>2 remain to be immediate val
ues even forn'1000, so that the numerical computatio
needs too high accuracy to make clear the asymptotic be
iors of uq6k(wn)u with sufficiently large magnitudes
However, the exponential dependence ofV8(q) on u andv
shown in Eqs. ~33! means that the large difference
qk(wj )@q2k(wj )# results from the slight difference in
05621
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qk11(wj )@q2(k11)(wj )# by the mapf 21 ( f ), so that the as-
sumption fork>2 is expected to be valid.

We first discuss the kinetic part and then the potential p
of s„f 2n(wn)…, respectively. In the kinetic part
Sk52n11

1` Im T„pk21(wn)…, each term is written as

Im T~pk21~wn!!5@Repk21~wn!#@ Im pk21~wn!#. ~47!

Due to the assumptions we put, the following inequalit
hold for kÞ0,21 and for largen ’s:

uRepk~wn!u!uRep21~wn!u,uRep0~wn!u, ~48a!

uIm pk~wn!u!uIm p21~wn!u,uIm p0~wn!u. ~48b!

Then the kinetic part ofs„f 2n(wn)… is dominated by the
terms ImT„p21(wn)… and ImT„p0(wn)… due to Eq.~47!.
Since Observation 1 says that the quantities in the rhs of
above inequalities are proportional ton1/2 for large n ’s,
Im T„p21(wn)… and ImT„p0(wn)… have linear dependence
on largen ’s. Hence the kinetic part ofs„f 2n(wn)… is ex-
pected to have a linear dependence on largen ’s. Figure 11
shows that the kinetic part ofs„f 2n(wn)… is actually domi-
nated by ImT„p21(wn)… and ImT„p0(wn)…, and has a linear
dependence on largen ’s.

In the potential part of s„f 2n(wn)…, i.e.,
Sk52n11

1` Im V„qk(wn)…, each term is written as
1-16
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Im V~qk~wn!!5ImFqk11~wn!22qk~wn!1qk21~wn!

2gqk~wn! G
~49!

by incorporating a relationpk5pk212V8(qk) given by Eq.

FIG. 11. ~a! us„f 2n(wn)…u for n54 andn51 –1000. The sym-
bolic sequences ofwn’s are the same as in Fig. 9. The dotted li
represents 2np/g. Axes in ~a!–~c! have the same scale.~b! The
absolute values of the kinetic parts and the potential ones
s„f 2n(wn)…. The upper dotted line and the lower dotted cur
represent 2np/g and 2g(A2np/g), respectively, where
g(x)5x/(2Ag ln x). ~c! uIm T„p21(wn)…1Im T„p0(wn)…u,
uIm V„q21(wn)…1Im V„q1(wn)…u, and uIm V„q0(wn)…u. The top
dotted line and middle dotted curve are the same as in~b! and the
bottom dotted curve represents@2g2g(A2np/g)#21.
05621
~2! and a relationV8(q)522gqV(q) satisfied by ourV(q).
Simple arithmetic of the rhs of Eq.~49! yields the inequality

uIm V~qk~wn!!u<
uqk11~wn!u1uqk21~wn!u

2guqk~wn!u
. ~50!

Based on the assumptions imposed here, we can dev
the same argument as that just below Eq.~41! ~note that the
assumptions here are stronger than those imposed there!. As
a result, one obtains that uq1(wn)u,uq21(wn)u
'Ag21lnuq0(wn)u for largen ’s. In a similar way, one obtains
that uq6(k11)(wn)u'Ag21lnuq6k(wn)u for k>1 and largen ’s.
By using these relations, the rhs of Eq.~50! is approximated
by

@2g2g~ uqk~wn!u!#21 for k50, ~51a!

g„uqk21~wn!u… for k.0, ~51b!

g~ uqk11~wn!u! for k,0, ~51c!

whereg(x)5x/(2Ag ln x). Here we used an approximatio
uqu1Ag21lnuqu'uqu for large uqu.

Sinceuq0(wn)u'A2np/g for largen ’s according to Ob-
servation 1, the rhs of Eq.~50! is approximated by

@2g2g~A2np/g!#21 for k50, ~52a!

g~A2np/g! for k561, ~52b!

g„Aln8$ ln8@ . . . ln8~2pn/g! . . . #%… for uku>2,
~52c!

where ln8x5(2g)21ln x, and the argument of the square ro
in Eq. ~52c! is a uku21 fold logarithm of 2pn/g.

Since g(x) in Eq. ~52! is monotonically increasing for
largex, one can expect that the potential part ofs„f 2n(wn)…
for largen ’s is dominated by the terms ImV„q21(wn)… and
Im V„q1(wn)…. More precisely, from Eq.~52b!, the potential
part of s„f 2n(wn)… is expected to be approximated b
2g(A2np/g) for large n ’s. Also, from Eq. ~52a!,
Im V„q0(wn)… is expected to vanish asn→1`. Figure 11
shows that the potential part ofs„f 2n(wn)… is actually domi-
nated by the terms ImV„q21(wn)… and ImV„q1(wn)… for
large n ’s, and the asymptotic behavior of the potential p
for largen ’s is described by 2g(A2np/g). It is also shown
that ImV„q0(wn)… tends to vanish asn increases.

Since the ratios of the terms in Eq.~52! to n vanish as
n→1`, s„f 2n(wn)… for large n ’s is dominated by the ki-
netic part. Therefore the following estimation is finally o
tained for largen ’s:

s„f 2n~wn!…'ImT„p21~wn!…1Im T„p0~wn!…

5@Rep21~wn!#@ Im p21~wn!#1@Rep0~wn!#

3@ Im p0~wn!#

'~2np/g!xy. ~53!

In the last approximation, the relations in Eq.~38! are used.

of
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Next we estimates(w) for the homoclinic points appear
ing in the Observation 2.

Observation 4. Let $w1 ,w2 ,w3 , . . . % be a set of ho-
moclinic points which appears in Observation 2. Then
any integern, the following sequence is bounded:

s„f 2n~w1!…s„f 2n~w2!…s„f 2n~w3!… . . . . ~54!

Figure 12 shows the dependence ofs„f 2n(wj )… on j. In
the case of this figure, sequence~54! does not deviate largely
from s„f 2n(w)… for a homoclinic pointw which has the sym-
bolic sequence

. . . O O . b O O . . . . ~55!

This means that each element in sequence~54! is dominated
by the contributions from the flipping motions between co
ponentsU(b) andU(O). Though not displayed here, whe
wj ’s have symbolic sequences of the form

. . . a22 a21 . b b . . . b a0 a1 . . . , ~56!

we observed that sequence~54! does not deviate greatly from
the action for the case

. . . a22 a21 . b a0 a1 . . . . ~57!

Hence the imaginary parts of actions are mainly gained
phase-space itineraries described by sequences other
b b . . . b. This means that itineraries described byb b . . . b
can be semiclassically significant in the tunneling proces
since smaller imaginary parts of actions yield larger se
classical amplitudes. As in Observation 2, the same st
ment as Observation 4 holds when the length of the sequ
b b . . . b is given by 2j 11 for wj .

We discuss why sequence~54! is bounded. Rememberin
the discussion leading to conjecture~44!, one can see tha
H„qj (wj ),pj 21(wj )…'0 for H(q,p)5T(p)1V(q) and for
large j ’s, sinceT„pj 21(wj )…'0 due to Observation 2, an
V„qj (wj )…'0 @hence V„qj 21(wj )…'0] as shown in Fig.
10~c!. Figure 10~b! shows homoclinic trajectories of our ma
and trajectories for the integrable flow HamiltonianH(q,p)

FIG. 12. s„f 2n(wj )… for n54 and j 51 –100. The symbolic
sequences ofwj ’s are the same as in Fig. 10~b!. Solid lines indicate
s„f 2n(w)… for w’s which have sequences of form~55!.
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with null energy. It can be seen that the homoclinic trajec
ries are along the integrable trajectories for the duration
itineraries described byb b . . . b. In fact, we observed tha
H„qk(wj ),pk21(wj )… almost vanish fork’s corresponding to
the duration. Hence the members of sequence~54! can be
evaluated by using the integrable trajectories. Since
imaginary parts of actions of the integrable trajectories
bounded~see Appendix C!, sequence~54! is expected to be
bounded.

By making use of Observations 3 and 4, we estimates(w)
for any homoclinic pointw, which has a symbolic sequenc
of form ~22!. We denoteak5(xk ,yk ,nk) for any k and as-
sume thatnk is large if akÞO. Then two cases have to b
discussed.

First is the case where the symbolic sequence ofw does
not include a consecutive part,b b . . . b. For any integerk
and forakÞO, we approximateqk(w) according to Obser-
vation 1 by

qk~w!'~nkp/g!1/2~xk ,yk!. ~58!

For ak5O, we approximateqk(w) by (0,0). This approxi-
mation is equivalent to substituting (xk ,yk)5(0,0) into Eq.
~58!. From the relationpk215qk2qk21 , pk21(w) is ap-
proximated by

pk21~w!

'~p/g!1/2~xknk
1/22xk21nk21

1/2,yknk
1/22yk21nk21

1/2!.

~59!

Then due to Eq.~47!, Im T(pk21(w)) is approximated by

Im T„pk21~w!…'~p/g!~xknk
1/22xk21nk21

1/2!

3~yknk
1/22yk21nk21

1/2!. ~60!

Since the imaginary part of action gained at each time ste
dominated by the kinetic part, as discussed below Obse
tion 3,s(w) is estimated by the sum over the terms in the
of Eq. ~60! for k>1.

The second is the case where the symbolic sequencew
includes a consecutive part,b b . . . b. The imaginary part of
action gained along the itinerary described byb b . . . b is
negligible compared to that along the other part of the t
jectory, as discussed below Observation 4. From this fact,
approximate the imaginary part of action for the trajectory
b b . . . b by a null value. This approximation is equivalent
evaluating the imaginary part of action only by its kinet
part and then substituting (xk21 ,yk21 ,nk21)5(xk ,yk ,nk)
into Eq. ~60!.

As a result, whether a consecutive partb b . . . b is in-
cluded in the symbolic sequence or not, the imaginary par
action is estimated only by its kinetic part

s~w!'(
k51

1`

Im T„pk21~w!…. ~61!

Hence substituting Eq.~60! into the rhs of the above, we
finally obtain estimation~25!.
1-18
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Figure 13 shows the imaginary parts of actions evalua
from actual trajectories of homoclinic points and from sy
bolic sequences assigned to the homoclinic points. Esti
tion ~61! is based on the assumption thatnk is large if ak
ÞO, however, as shown in the figure, the estimation is s
valid for smallnk’s. This is because the approximation in E
~58! is not so crude for smallnk’s, as is shown in Fig. 9~a!.

In each column of Fig. 13~a!, the smallests(w) is associ-
ated with a symbolic sequence . . .O O . O O . . . or
. . . O O . O O O b b. . . b O O . . . with b5(1,1,1). Ap-
pendix B shows such types of symbolic sequences, includ
the case whereb5(21,21,1), attain the smallests(w) in
the whole candidates. In Sec. II F, we evaluated the tunne
wave functions by the semiclassical candidate orbits
scribed by these types of sequences, typical behavio
which was illustrated in Fig. 5~c!.

IV. CONCLUSION AND DISCUSSION

A. Conclusion

We have carried out complex semiclassical analysis
the tunneling problem of a kicked scattering model wh

FIG. 13. Imaginary parts of actions evaluated from~a! actual
trajectories of homoclinic points and~b! symbolic sequences as
signed to the homoclinic points. In each figure, the origin repres
a null imaginary part of action gained by the fixed point, (q,p)
5(0,0), associated with a symbolic sequen
. . . O O . O O O . . . . Thefirst to the third columns labeled bya1 ,
a1a2, anda1a2a3 show the imaginary parts of actions gained by t
trajectories of the homoclinic points associated, respectively, w
. . . O O . O O O a1 O O . . . , . . .O O . O O O a1 a2 O O . . . ,
and . . .O O . O O O a1 a2 a3 O O . . . , where a1 ,a2 ,a3

P$(1,1,n)un51,2,3%.
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creates chaotic dynamics in complex domain. Although cl
sical motions in real phase space are simple, tunneling w
functions exhibit a complicated pattern, which is typica
observed in chaotic systems. The wave functions were re
duced semiclassically in excellent agreement with fu
quantum calculations. It enables us to interpret the crea
of the complicated pattern appearing in the tunneling regim
Complex orbits contributing to the semiclassical wave fun
tions are embedded in the hierarchical structure of init
value sets. The hierarchical structure is a reflection of
emergence of a homoclinic tangle in complex phase-sp
i.e., the manifestation of complex-domain chaos, and p
vides the mechanism: the interferences of orbits over gen
tions. On the basis of symbolic dynamics constructed in
complex domain, phase-space itineraries of tunneling or
were related with the amounts of imaginary parts of actio
gained by the orbits. Incorporation of symbolic dynami
with the complex semiclassical method has enabled us
discuss quantitatively the competition among tunneling
bits and has elucidated the significant role of comple
domain chaos in the tunneling processes of nonintegra
systems.

B. Chaotic tunneling

We further discuss the role of complex-domain cha
played in the semiclassical description of tunneling proces
in nonintegrable systems. In the present study, we adopt
time-domain approach of the complex semiclassical meth
This approach is concerned with the real-time class
propagation and has nothing to do with the instanton p
cesses. This means that real-domain paths are not conn
to complex-domain paths, in other words, both the real
main and the other domain are invariant under the class
dynamics. Therefore all candidate orbits to describe tunn
ing processes are always exposed to complex-domain ch
not to real-domain one. In this sense, it is natural to cons
the role of the complex-domain chaos in our approach.

In our semiclassical framework, initial and final quantu
states are identified with classical manifolds in comp
phase space. The evolution of the manifolds is involved
the stretching and folding dynamics in the complex doma
The hierarchical arrangements of initial values which we o
served is nothing but the structure of the section of one ba
ward evolved manifoldf 2n(F) cut by the other manifoldI.
Our result here strongly suggests that the creation of
hierarchical structure of initial-value sets is only due to t
emergence of complex-domain chaos, irrespective of the
istence of real-domain chaos and also irrespective of
types of tunneling, i.e., whether energy-barrier tunneling
dynamical one@28#.

The chaotic dynamics in phase space is created on
Julia set, which includes the complex homoclinic tangle
vestigated here. The trajectories in this set are proved to
sufficient to describe tunneling in the case of the comp
Hénon map@18#. It was numerically confirmed here that th
statement is correct also in our case. Therefore, on the b
of our present study and Ref.@18#, we would like to present
the notion of ‘‘chaotic tunneling,’’ which first appeared i

ts

h
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Ref. @5#, as the tunneling in the presence of the Julia set
In energy-domain approaches@6,7,13,14#, to the best of

our knowledge, the complex-domain chaos has not been
explicitly in semiclassical calculations. The significant ro
of the complex domain chaos played in the time-domain
proach should have the correspondence in the energy-do
ones. However, the instanton concept, which is intrinsic
these approaches, makes it difficult to see such corres
dence. The reason is that even when one takes full accou
complex classical dynamics, the degree of freedom of
path deformation on the complex time plane often allows o
to consider complicated classical processes in complex
main as the composition of real-domain chaotic proces
and instantonlike ones@7,13#. The authors of Ref.@13# have
reported complicated patterns of stationary wave functi
and explained them in terms of stable and unstable m
folds. This implies that both manifolds are the key objects
relate time-domain and energy-domain approaches.
would like to describe the tunneling phenomena in nonin
grable systems in terms of the simple notion, chaotic tunn
ing. Therefore the role of complex-domain chaos in t
energy-domain approaches is desired to be clarified in fur
studies.

C. Discussion

Finally, we itemize several future problems to make o
theory more self-contained, given as follows.

~1! We have constructed a partition of phase space
terms of the phase part of the gradient of a potential funct
A similar approach can be found in the context of the stu
on a dynamical system of an exponential map of one co
plex variable@29#, where the boundaries of a partition corr
spond to the contour curves of the phase part of the ex
nential function. Genericness of our approach should
examined in further studies.

~2! Reproducing tunneling wave functions, we did n
enter into details of the treatment of the Stokes phenome
Empirically, symbolic sequences which include members
the form (1,21,n) or (21,1,n) with nPN should be ex-
cluded from the whole candidates. In particular, according
such empirical rule, we have excluded from the candida
those trajectories which have almost null imaginary parts
actions due to the cancellation between the imaginary p
gained at individual time steps. When the conditionqn1k

5qn2k21* is satisfied for anyk>0 with n being fixed, where
the asterisk denotes the complex conjugate, the imagin
parts of actions integrated over the whole time axis beco
null. We observed numerically that such condition is satisfi
by the symbolic sequences of homoclinic points su
that the relation between symbols, (xn1k ,yn1k ,nn1k)
5(xn2k21 ,2yn2k21 ,nn2k21), holds for anyk>0 with n
being fixed. In fact, there is an infinite number of symbo
sequences satisfying such relation. The criterion for whe
tunneling orbits well approximated by the homoclinic orb
described by such symbolic sequences are semiclassi
contributable or not would be beyond our intuitive expec
tion based on the amount of imaginary parts of actions@25#.
The criterion should be given only by a rigorous treatmen
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the Stokes phenomenon. The justification of our empiri
rule mentioned above needs the consideration of the inter
tion problem of the Stokes curves, and we are now inve
gating this issue.

~3! In many nonintegrable open systems with the con
tion that V8(q)→0 as uqu→1`, real-domain trajectories
which diverge to infinity are indifferent, i.e., have nu
Lyapunov exponents, in contrast to the case of open syst
with polynomial potential functions. Because of that, in t
former systems, generic properties of complex trajecto
exploring in the vicinity of real-domain asymptotic regio
are not obvious, in spite of their semiclassical significant r
as has been seen in our present study. The result of th
vestigation of this issue will be reported elsewhere.
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APPENDIX A: NO CHAOTIC MOTION FOUND IN REAL
DOMAIN

We prove that Eq.~2! has no chaotic solution inR2 when
V(q) is unimodal, i.e.,2V8(q).0,,0, and50 for q.0,
,0,and50, respectively. More precise statement is that
unimodal V(q) and any (q,p)PR2, if the forward ~back-
ward! orbit of (q,p) is bounded, then the forward~back-
ward! orbit is either fixed at (0,0) or approaching (0,0).

First, it is shown that any point except (0,0) diverges
forward or backward iterations of the mapf. It is trivial that
(q,p)5(0,0) is a solution of Eq.~2!. Assume that a solution
$(qj ,pj )u j PZ%, satisfiesq0p0.0. A relation q15q01p0

immediately leads us toq0q1.0 and uq1u.uq0u. Another
relation p15p02V8(q1) and the unimodality condition
2q1V8(q1).0 for q1Þ0 lead us top0p1.0 and up1u
.up0u. Then applying the discussion recursively, we obta
that uqj u(5uq01p01•••1pj 21u) diverges asj→1`. In a
similar way, in the case thatq0p0,0, we obtain that
uq2 j u(5uq02p212•••2p2 j u) diverges asj→1`, though
one has to solve Eq.~2! backwardly. Whenq0p050 and
(q0 ,p0)Þ(0,0), eitherq1p1Þ0 or q21p21Þ0 holds, so that
the same discussion can be applied.

Second, it is shown that for any point except (0,0), if
forward or backward orbit is bounded, then the orbit a
proaches (0,0). We only prove the case of forward
bounded orbits, since the case of backwardly bounded o
is straightforward. Assume that a forward trajecto
$(qj ,pj )u j PN%, is included inB, a compact set inR2. Then
there exists an accumulation value (q* ,p* ) in B for the
trajectory. By definition,f j (q* ,p* ) for any j PZ is also an
accumulation value. Since$(qj ,pj )u j PN%,B, we obtain
that $ f j (q* ,p* )u j PZ%,B. Any orbit both forwardly and
backwardly bounded must be (0,0) due to our former disc
sion. Hence the fixed point (0,0) is the only accumulati
value, so that the orbit of (q0 ,p0) approaches (0,0). So th
statement has been proved.
1-20
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APPENDIX B: ORDER OF SYMBOLIC SEQUENCES

Here the order of symbolic sequences is given accord
to the amounts of imaginary parts of actions estimated by
~25!. Let us consider a set of symbolic sequencesS:

S5$a0 a1 . . . an O O . . . un>0,akPS 8,k>0%,
~B1a!

S 85$~1,1,n!,~21,21,n!unPN%ø$O%. ~B1b!

For anys,s8PS, we define an equivalent relation by

s;s8⇔ s̃~s!5 s̃~s8!, ~B2!

wheres̃(s) denotes the value of the rhs of Eq~25! evaluated
for s. For any two members ofS/;, @s# and @s8#, the
order between them is defined by

@s#,@s8#⇔ s̃~s!, s̃~s8!. ~B3!

It is easily checked thats̃(s)>0 for any sPS and the
equality holds if and only ifs5O O O . . . . Then one ob-
tains

@O O O . . . #,@s#⇔sÞO O O . . . . ~B4!

For any @s# except @O O O . . . #, the representatives
can be chosen such that

s5a0 a1 . . . an O O . . . ~n>0!, ~B5a!

anÞO, ak21Þak ~1<k<n!. ~B5b!

For s in Eq. ~B5!, the following relations hold:

@an O O . . . #,@an21 an O O . . . #

, . . . . . .

,@a0 a1 . . . an O O . . . #5@s#. ~B6!

Since, for anynPN,

s̃„~1,1,n! O O . . . …5 s̃„~21,21,n! O O . . . …

, s̃„~21,21,n11! O O . . . …

5 s̃„~1,1,n11! O O . . . …, ~B7!

one of the following relations holds:

@~1,1,1! O O . . . #,@s#, ~B8a!

@~1,1,1! O O . . . #5@s#. ~B8b!

Finally, from Eqs.~B4! and~B8!, one obtains the relation

@O O O . . . #,@~1,1,1! O O . . . #,@s# ~B9!
05621
g
q.

for any@s# except@O O O . . . # and@(1,1,1)O O . . . #. It is
not difficult to check that@(1,1,1)O O . . . # is equal to

$b b . . . b O O . . . u b5~1,1,1! or ~21,21,1!%.
~B10!

APPENDIX C: IMAGINARY PARTS OF ACTIONS FOR
INTEGRABLE TRAJECTORIES

We consider a HamiltonianH(q,p)5T(p)1V(q) with
T(p)5p2/2 and V(q)5k exp(2gq2), and evaluate the
imaginary parts of actions for the trajectories which sati
H(q,p)50 and connect two infinities of theq plane
(Req,Im q)5(1`,0) and (0,1`). These trajectories are
included in the first quadrant of theq plane as shown in Fig
10~b!. There are symmetric counterparts of the trajectories
the other quadrants, and the application of the result her
these is straightforward.

From the conditionH(q,p)50, one obtainsp(q)5

6 iA2ke2gq2/2. Then the actionS(q,q8) defined by

S~q,q8!5E
q

q8
@T~p!2V~q!#

dq

p
~C1!

can be written as

S~q,q8!56 iA2kE
q

q8
e2gq2/2dq. ~C2!

Let l be one of the integrable trajectories projected on
q plane andqx5(x,x) be the intersection point betweenl
and the axis Req5Im q. Denoting q05(0,0) and q`

5(1`,0), and deforming an integral path,S(q0 ,q`) is rep-
resented as

S~q0 ,q`!5S~q0 ,qx!1S~qx ,q`!, ~C3!

whereS(q0 ,qx) andS(qx ,q`) are integrated along the axi
Req5Im q and the pathl, respectively. One immediatel
obtains that

S~q0 ,q`!56 ia, ~C4a!

S~q0 ,qx!56a$@2C~y!1S~y!#1 i @C~y!1S~y!#%,
~C4b!

where a5Apk/g, y5A2g/px, and C(y), and S(y) are
defined by*0

ycos(pt2/2)dt and *0
ysin(pt2/2)dt, respectively

~Fresnel’s functions!. From Eqs.~C3! and ~C4!, one obtains

Im S~qx ,q`!56a@12C~y!2S~y!#. ~C5!

For our parameter valuesk5500 andg50.005, the tra-
jectory l satisfiesy.1.0. Since 0.6,@C(y)1S(y)#,1.4 in
this range ofy, one obtains that

2uIm S~qx ,q`!u,450. ~C6!

In particular, ImS(qx ,q`) vanishes asx→1`, sinceC(y)
andS(y) converge to 1/2 in this limit.
1-21
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