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1
I N T R O D U C T I O N

The modern society produces enormous amounts of data on a daily
basis. Since we have access to large amounts of data containing rel-
atively small amounts of useful information, we suffer from data
overload both in our daily lives, and in diverse scientific disciplines
such as neuroscience, neuroinformatics, bioinformatics, telecommuni-
cations and economics. Thus, it is very important to extract underlying
informational components, or simply sources, from such data.

Independent component analysis (ICA) is a well-known method
for extracting the sources from given data [18, 19, 25, 68]; it assumes
that the sources are statistically independent of each other. This is
not an unrealistic assumption in many cases, and ICA has been used
with success in many applications such as data mining, brain imag-
ing (e.g., functional magnetic resonance imaging: fMRI), and speech
enhancement [9, 14, 50, 54, 64].

Imagine, for example, that multiple people speak at the same time in
a room and there are a number of microphones arranged in different
locations. Each of microphones records a mixture of their speech
signals, and we want to estimate the speech signals only using a set
of measured signals. This example is known as the cocktail party
problem. In this case, it is these source signals that are of primary
interest, but they are buried within a large set of measured signals.
ICA can be used to solve this problem, because it comes from the
fact that these speech signals are generated by unrelated physical
processes (i.e., by different persons).

ICA belongs to a class of blind source separation (BSS) methods for
separating given data into latent sources without any prior knowledge
about the mixing process, where the data can take the form of sounds,
images, and telecommunication records. The term “blind” implies
that no explicit knowledge of sources and mixing process is available.
Depending on the nature of the sources of interest (e.g., independency,
non-negativity, and sparseness), the BSS problem is solved by several
approaches such as ICA, non-negative matrix factorization (NMF),
and sparse component analysis (SCA) [16, 17, 40, 55].

In the general case of the BSS problem, the number of sources and
that of measured signals are unknown. Let N and M be the number
of the sources and of the measured signals, respectively. In view of
the relation between N and M, the BSS problem can be classified into
three cases:

1. The case that the number of sources is equivalent to that of
measured signals is termed determined BSS (M = N). Most
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2 introduction

commonly used BSS algorithms belong to this case. This is the
case we will focus on.

2. The case that the measured signals outnumber the sources is
called overdetermined BSS (M > N). In this case, overdetermined
BSS algorithms usually comprise two stages; the first stage is
to reduce the sensor dimensionality using an appropriate pre-
processing, e.g. principal component analysis (PCA), to obtain
the case M = N, and the second one consists of ICA for extract-
ing independent components [31, 71].

3. The more difficult case is known as underdetermined (i.e., with
more sources than sensors) BSS. The signals are irreversibly
mixed and it is thus impossible to exactly invert the transforma-
tion. Mostly the sparseness of the sources in the time-frequency
domain is used to determine clusters which correspond to the
separated sources [73].

In the simplest form of the determined BSS, a mixing process is
assumed to be instantaneous; time delay is not taken into account.
Many algorithms have been proposed based on this model. In practical
applications such as speech separation, however, the mixing process
must be considered as a convolutive one, for which the demixing
process must take a form of multiple-input multiple-output (MIMO)
filter. In this thesis, we deal with BSS of convolutive one.

For BSS of convoluted mixtures, two approaches are known: the
time-domain approach and the frequency-domain one [1, 13, 15, 20,
21, 33, 58, 61, 67, 69]. The latter is usually preferred, because of its
computational efficiency and robustness for separation of signals
mixed in a high reverberant environment. In the approach, each of
the N observed signals is transformed into a set of frequency-domain
components; let the number of them be K. Then, a convolutive mixing
process can be treated as K instantaneous mixing processes, each of
which involves N frequency-domain signals. Thus, a convolutive BSS
problem can be simplified down to K instantaneous BSS problems.

This simplification comes at the cost of a cumbersome issue called
the permutation problem [28]. The order of the source signals recov-
ered by an BSS algorithm is essentially indeterminate. The permu-
tations in the K demixing matrices become thus different from each
other in general. In order to finally obtain the original sources, some
additional processing is therefore required to align those permuta-
tions:

1. Smoothness constraint. A popular method for this end is to impose
a smoothness constraint on the separators of adjacent frequencies
[7, 61, 67].

2. Direction-of-arrival (DoA) estimation. The permutation is performed
on the separator at each frequency to achieve phase consistency
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across frequency as inferred from the sound propagation model
for individual point sources [37, 53, 66].

3. Correlations of spectral envelops. When the source signals are non-
stationary ones such as speech, envelopes of the frequency com-
ponents originated from the same source have strong correlations.
Utilizing this fact, the permutation is aligned [6, 52].

However, all methods including these ideas require some complicated
and time-consuming procedures.

On the other hand, some algorithms evaluate statistical indepen-
dence among the sources in the time domain [1, 13, 15, 21, 33, 47]. The
time-domain approach is often thought to be free from the permu-
tation problem, but it is not necessarily the case, as reported in [47].
Moreover, the approach requires computational time and sometimes
shows numerical instability.

In order to overcome the problems that occur in both of two ap-
proaches, several algorithms were proposed:

1. Frequency-domain implementation of a time-domain algorithm. The
computational cost of the time-domain approach mainly comes
from convolution operation with long demixing filter. In order to
reduce the computational cost, a frequency-domain implemen-
tation of a time-domain algorithm was proposed; it evaluates
independence among the signals in the time domain, but updates
the demixing filter in the frequency domain [8, 32, 38, 39, 44, 57].
Because of transformation of demixing filter into the frequency
domain, the approach can relax the computational cost of coun-
terpart of the time-domain algorithm. However, the algorithm
sometimes shows numerical instability as in the case of a time-
domain one.

2. Minimization of an integrated frequency-domain function in the time-
domain. Some approaches define demixing process in the time do-
main, but optimize the parameters based on a frequency-domain
objective function [34, 51]. Since these approaches minimize the
cost function in the time domain, they can avoid the permutation
problem.

3. Independent vector analysis. Recently, a new extension of ICA to the
permutation problem was proposed, which is called independent
vector analysis (IVA). IVA treats the K components originated
from the same source as a vector whose components are mutually
dependent. Due to the inner dependency, the approach can solve
the permutation problem. Although the effectiveness of IVA
algorithms is reported in many papers [4, 5, 23, 24, 30, 35, 36, 41,
42, 43, 56, 59, 70], there are very few mathematical analyses of
IVA algorithms [29].
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The objective of this thesis is to propose an effective algorithm for
the convolutive BSS problem and to prove the effectiveness of IVA
mathematically.

This thesis is organized as follows.
Chapter 2 introduces mathematical definitions that will appear in

subsequent chapters. And also, we overview the basic principle behind
ICA methods.

Chapter 3 formulates a convolutive BSS problem, and describes am-
biguities that is inherent in BSS. Then, we propose a frequency-domain
implementation of a time-domain algorithm. This chapter also intro-
duces two additional techniques for solving the permutation problem
and for guaranteeing the boundedness of the separated signals.

The basic mixing and demixing models dealt with in IVA are de-
scribed in Chapter 4. Then, we derive a necessary and sufficient condi-
tion for the desired separator to be obtained by minimizing a certain
measure representing the difference between a prior source probability
density function (pdf) and an actual output pdf of the separator. Also,
we prove that, if a desired separator is a stable equilibrium of the
measure, any permuted separator never becomes a stable equilibrium.

Chapter 5 revisits an IVA algorithm, and derives some IVA algo-
rithms incorporating different constraints.

In Chapter 6, we conducted some simulations with synthetic data
and speech signals to confirm the effectiveness of the algorithms
proposed in this thesis.

Finally, Chapter 7 concludes this thesis.



2
P R E L I M I N A R I E S

2.1 introduction

This chapter introduces mathematical definitions and overviews the
basic concept of independent component analysis (ICA).

This chapter is organized as follows. Firstly, mathematical notations
are given in Section 2.2. Complex derivatives will be appeared in
subsequent chapters. Secondly, we review the fundamental principle
of ICA in Section 2.3.

2.2 mathematical preliminaries

Throughout this thesis, R stands for a set of real numbers, and also C

denotes a set of complex numbers. In general we shall denote scalars
by normal letters, e.g. a, vectors by bold-faced, lower-case letters, e.g.
a ∈ RN , matrices by bold-faced, upper-case letters, e.g. A ∈ RN×M.
As is usual, all vectors are dealt with as column vectors for purpose
of matrix multiplication. If a is an N-dimensional vector, then ‖a‖2
stands for the l2-norm of a. For the sake of simplicity of notation, we
use ‖·‖ as notation for the l2-norm. If A is an N × N square matrix,
then det A stands for determinant of A, and trA stands for its trace
(i.e., the sum of the diagonal entries of A).

Let A and B be N × M matrices. The Hadamard product of two
equal-size matrices is the element-wise multiplication denoted by !
(or .∗ for MATLAB notation) and defined as

A ! B =





a11b11 a12b12 · · · a1Mb1M

a21b21 a22b22 · · · a2Mb2M
...

...
...

aN1bN1 aN2bN2 · · · aNMbNM




.

A block matrix A partitioned into NM blocks is denoted by

A =





A11 A12 · · · A1M

A21 A22 · · · A2M
...

...
...

AN1 AN2 · · · ANM




=

[
Aij

]
. (2.1)

The i-th block of vector a is denoted by ai, and the k-th element of ai

is written as a(k)i .

5



6 preliminaries

2.2.1 Real derivatives

Let f : RN → R be a scalar-valued function of x = [x1, . . . , xN ]
' ∈

RN , and the i-th partial derivative of f at the point x is denoted by
(∂ f /∂xi) (x) or ∂ f (x) /∂xi. Assuming all of these partial derivatives
exist, the gradient of f at x is defined as the column vector

∂ f
∂x

(x) "





∂ f
∂x1

(x)
...

∂ f
∂xN

(x)



 . (2.2)

Similarly, if f : RN×M → R is a scalar-valued function of n × m
matrix X =

[
xij

]
, then the gradient matrix of f is given by

∂ f
∂X

(X) "





∂ f
∂x11

(X) · · · ∂ f
∂x1M

(X)
...

...
∂ f

∂xN1
(X) · · · ∂ f

∂xNM
(X)



 . (2.3)

If f : RN → RM is a vector-valued function, it is called differentiable
if each component fi of f is a continuously differentiable. The gradient
matrix of f is the N × M matrix whose i-th column is the gradient
∂ fi (x) /∂x of fi. Hence,

∂ f
∂x

(x) "
[

∂ f1
∂x (x) · · · ∂ fM

∂x (x)
]

=





∂ f1
∂x1

(x) · · · ∂ fM
∂x1

(x)
...

...
∂ f1
∂xN

(x) · · · ∂ fM
∂xN

(x)




(2.4)

The transpose of ∂ f (x) /∂x is known as the Jacobian of f and is a
matrix whose (i, j)-th entry is equivalent to the partial derivative
∂ fi/∂xj.

Now suppose that each one of the partial derivatives of a function
f : RN → R is a continuously differentiable function of x ∈ RN .
The i-th partial derivative of ∂ f (x) /∂xj at a point x is denoted
by∂2 f (x) /∂xi∂xj; it can be written in matrix form

∂2 f
∂x∂x'

(x) "





∂2 f
∂x2

1
(x) ∂2 f

∂x1∂x2
(x) · · · ∂2 f

∂x1∂xN
(x)

∂2 f
∂x2∂x1

(x) ∂2 f
∂x2

2
(x)

...
... . . . ...

∂2 f
∂xN∂x1

(x) · · · · · · ∂2 f
∂x2

N
(x)




, (2.5)

which is known as the Hessian of f .
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2.2.2 Complex derivatives

The optimization of parameters is a common problem in many disci-
plines such as signal processing and neural networks. The problem
is often formulated as a minimization (or maximization) of a real-
valued function of complex parameters. For solving such optimization
problems, derivation with respect to a complex parameter is required.
However, such function is not complex-differentiable and hence we
cannot use the standard tool of complex analysis.

A common approach to optimization with respect to complex vari-
ables is to replace these with their real and imaginary parts and then
to minimize (or maximize) with respect to the real variables. Hence,
the gradient of the function is taken with respect to the real and imag-
inary parts. In general, the approach increases the dimensionality of
the problem and usually leads to a complicated form.

In order to obtain a compact representation, Brandwood defined a
partial complex gradient operator which solves this kind of optimiza-
tion problem [11], and van Bos described the simple relation between
real and complex gradient operators and defined the complex Hessian
operator [10]. The complex differential calculus is called Wirtinger
Calculus, and has been used in several papers [42, 45, 60].

To start with, we consider a simple case. Let f : C → R be a function
of complex variable x; it comprises the complex conjugation of x to
be real. Hence, f can be rewritten as f (x, x∗), i.e., f : C × C → R.
Assume that f is holomorphic with respect to each variable (x and x∗)
and g : R × R → R is a function of two real variables (x and x) such
that f (x, x∗) = g (x, x). Then, the partial derivatives of f are defined
by 





∂ f
∂x (x, x∗) = 1

2

(
∂g
∂x (x, x)− j ∂g

∂x (x, x)
)

∂ f
∂x∗ (x, x∗) = 1

2

(
∂g
∂x (x, x) + j ∂g

∂x (x, x)
) (2.6)

or in a vector-matrix form
[

∂ f
∂x (x, x∗)
∂ f
∂x∗ (x, x∗)

]
=

1
2

[
1 −j
1 j

] [
∂g
∂x (x, x)
∂g
∂x (x, x)

]
(2.7)

where (∂ f /∂x) (x, x∗) (or (∂ f /∂x∗) (x, x∗)) is evaluated while treating
x∗ (or x) as a constant in f .

Equation (2.6) can be derived as follows. Complex variables x and
x∗ can be represented by their real and imaginary parts:





x = x + jx

x∗ = x − jx
(2.8)
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where x, x ∈ R and j2 = −1. In a vector-matrix form, Eq. (2.8) can be
taken a form of [

x
x∗

]
=

[
1 j
1 −j

] [
x
x

]
(2.9)

If f is analytic with respect to each variable, then we could define the
partial derivatives of f by

∂ f
∂x

(x, x∗) and
∂ f
∂x∗

(x, x∗)

using the standard complex differentiation. Differentiating g with
respect to each variable and using the chain rule, we obtain






∂g
∂x (x, x) = ∂ f

∂x (x, x∗) ∂x
∂x + ∂ f

∂x∗ (x, x∗) ∂x∗
∂x

∂g
∂x (x, x) = ∂ f

∂x (x, x∗) ∂x
∂x + ∂ f

∂x∗ (x, x∗) ∂x∗
∂x

(2.10)

From Eq. (2.8), we have

∂x
∂x

=
∂x∗

∂x
= 1

and
∂x
∂x

= −∂x∗

∂x
= j.

Substituting them into Eq. (2.10) yields





∂g
∂x (x, x) = ∂ f

∂x (x, x∗) + ∂ f
∂x∗ (x, x∗)

∂g
∂x (x, x) = j ∂ f

∂x (x, x∗)− j ∂ f
∂x∗ (x, x∗)

(2.11)

Solving Eq. (2.11) with respect to (∂ f /∂x) (x, x∗) and (∂ f /∂x∗) (x, x∗)
leads to Eq. (2.6). A necessary and sufficient condition for f to have a
stationary point is that (∂ f /∂x) (x, x∗) = 0, where the partial deriva-
tive with respect to x deals with x∗ as a constant in f . The partial
derivatives satisfy the following relation

∂ f
∂x∗

(x, x∗) =
(

∂ f
∂x

(x, x∗)
)∗

.

Next, let f : C2 → R be a function of two variables x1 and x2.
It comprises the complex conjugations of x1 and x2 as in the case
described above. Hence, it can be written as f (x1, x2, x∗1, x∗2), i.e., f :
C2 × C2 → R. For the sake of simplicity of notation, a set of complex

variables x1 and x2 is denoted by vector x =
[

x1 x2

]'
, and a set

of complex conjugations is denoted by x∗ =
[

x∗1 x∗2
]'

Assume
that f is analytic with respect to each variable (x1, x2, x∗1 and x∗2) and
g : R2 × R2 → R is a function of four real variables (x1, x2, x1 and x2)
such that f (x, x∗) = g (x, x). Note that x and x correspond to a set of
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real parts of x1 and x2 and that of their imaginary parts, respectively.
Then, the partial derivatives of f are defined by






∂ f
∂x1

(x, x∗) = 1
2

(
∂g
∂x1

(x, x)− j ∂g
∂x1

(x, x)
)

∂ f
∂x2

(x, x∗) = 1
2

(
∂g
∂x2

(x, x)− j ∂g
∂x2

(x, x)
)

∂ f
∂x∗1

(x, x∗) = 1
2

(
∂g
∂x1

(x, x) + j ∂g
∂x1

(x, x)
)

∂ f
∂x∗2

(x, x∗) = 1
2

(
∂g
∂x2

(x, x) + j ∂g
∂x2

(x, x)
)

It can be expressed as a simple vector-matrix form such that




∂ f
∂x1

(x, x∗)
∂ f
∂x2

(x, x∗)
∂ f
∂x∗1

(x, x∗)
∂ f
∂x∗2

(x, x∗)




=

1
2





1 0 −j 0
0 1 0 −j
1 0 j 0
0 1 0 j









∂g
∂x1

(x, x)
∂g
∂x2

(x, x)
∂g
∂x1

(x, x)
∂g
∂x2

(x, x)





or [
∂ f
∂x (x, x∗)
∂ f
∂x∗ (x, x∗)

]
=

1
2

[
I2 −jI2

I2 jI2

] [
∂g
∂x (x, x)
∂g
∂x (x, x)

]
,

where I2 denotes the 2 × 2 identity matrix.
Similarly, it can be extended to a real-valued function of an N-

dimensional complex vector. Let f : CN → R be a function of
x = [x1, . . . , xN ]

' ∈ CN and it is equivalent to f (x, x∗), where x∗ =
[x∗1, . . . , x∗N ]

'. As in the case of (2.8), the vectors (x and x∗) can be
represented by their real and imaginary parts:





x = x + jx

x∗ = x − jx
(2.12)

or in a vector-matrix form

xC "
[

x
x∗

]
=

[
IN jIN

IN −jIN

] [
x
x

]
= JxR, (2.13)

where x = [x1, . . . , xN ]
' ∈ RN and x = [x1, . . . , xN ]

' ∈ RN and
IN denotes the N × N identity matrix. For the sake of simplicity of
notation, we omit the subscript N of the identity matrix hereafter. If
g : RN × RN → R is a function of two N-dimentional real vector (x
and x) such that f (x, x∗) = g (x, x), then the complex gradient of f at
(x, x∗) is given by

∂ f
∂xC

(x, x∗) =
1
2

J∗
∂g

∂xR
(x, x) = J−' ∂g

∂xR
(x, x) (2.14)

or
∂ f

∂x∗C
(x, x∗) =

1
2

J
∂g

∂xR
(x, x) . (2.15)
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It should be noted that the inverse of J takes a form of

J−1 =
1
2

[
I I

−jI jI

]
=

1
2

JH, (2.16)

where the superscript H stands for the Hermitian transpose operator.
In optimization problem, one matter for concern is that which of

the complex gradients (i.e., ∂ f /∂x or ∂ f /∂x∗) provides the steepest
descent direction for a function. If f : CN × CN → R is complex-
differentiable with respect to each variable, then the first-order Taylor
expansion of f gives

δ f =
N

∑
n=1

(
∂ f
∂xn

δxn +
∂ f
∂x∗n

δx∗n

)
=

∂ f
∂x'

δx +
∂ f

∂xH δx∗

= 2Re
{

∂ f
∂x'

δx
}

,
(2.17)

where Re {x} denotes the real part of x. The right-hand side of the
above equation can be regarded as the inner product of two vectors,
i.e.,

∂ f
∂x'

δx =

〈
∂ f
∂x∗

, δx
〉

,

where 〈a, b〉 stands for the inner product of a and b. Hence, we apply
the Cauchy-Schwarz inequality to the inner product

∣∣∣∣

〈
∂ f
∂x∗

, δx
〉∣∣∣∣ ≤

∥∥∥∥
∂ f
∂x∗

∥∥∥∥ ‖δx‖ .

Equality holds only when δx = η (∂ f /∂x∗), where η is a scalar, which
may be complex. The maximum value of Re {〈∂ f /∂x∗, δx〉} occurs
only when η is real and positive. In other words, it takes a maximum
value only when δx and ∂ f /∂x∗ are in the same direction in the vector
space CN .

As is analogous to the Hessian of f defined in the real domain,
the complex Hessian of f can be defined. Let f : CN × CN → R

be a function of x and x∗. Assume that f is complex-differentiable
with respect to each variable and each one of the partial derivatives
of f is also complex-differentiable with respect to each variable. Let
g : RN ×RN → R is a function of x and x such that f (x, x∗) = g (x, x),
and then g is also continuously differentiable. Using the relation (2.14),
the Hessian of f is given by

∂2 f
∂x∗C∂x'C

(x, x∗) =
1
4

J
∂2g

∂xR∂x'R
(x, x) JH

=
1
2

J
∂2g

∂xR∂x'R
(x, x) J−1.

(2.18)
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This matrix is Hermitian, because it satisfies
{

∂2 f
∂x∗C∂x'C

(x, x∗)

}H

=
1
4

(
J

∂2g
∂xR∂x'R

(x, x) JH

)H

=
1
4

J
∂2g

∂xR∂x'R
(x, x) JH =

∂2 f
∂x∗C∂x'C

(x, x∗) .

(2.19)

2.2.3 Uncorrelatedness and statistical independence

Two random variables X and Y are uncorrelated if their covariance is
zero:

E ((X − µX) (Y − µY)) = 0, (2.20)

where µX denotes the mean of X and E (·) stands for expectation
calculation.

Let x and y be random vectors. These vectors are uncorrelated if
their cross-covariance matrix is a zero matrix

E
(
(x − µx)

(
y − µy

)'
)
= O, (2.21)

where µx is the mean vector of x. This is equivalent to

E
(

xy'
)
= µxµ'

y . (2.22)

Hence, in the case of zero-mean random vectors, zero covariance is
equivalent to zero correlation.

Statistical independence is defined in terms of probability density
functions (pdfs). The random variables X and Y are statistically inde-
pendent if and only if the joint density pX,Y (x, y) of X and Y must
factorize into the product of their marginal densities pX (x) and pY (y),
i.e.,

pX,Y (x, y) = pX (x) pY (y) . (2.23)

Statistical independence is a key concept of ICA.
Independent random variables satisfy the following property:

E (g (X) h (Y)) = E (g (X)) E (h (Y)) , (2.24)

where g and h are any integrable functions. In words, any nonlinear
correlation becomes the product of E (g (X)) and E (h (Y)) if and only
if the random variables are statistically independent of each other.
This is because

E (g (X) h (Y)) =
ˆ ∞

−∞

ˆ ∞

−∞
g (u1) h (u2) pX,Y (u1, u2) du1du2

=
ˆ ∞

−∞
g (u1) pX (u1) du1

ˆ ∞

−∞
h (u2) pY (u2) du2

= E (g (X)) E (h (Y)) .
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Equation (2.24) suggests that statistical independence is a stronger
property than uncorrelatedness. Equation (2.22) is obtained from the
independence property (2.24) as a special case where both g and h
are linear functions, and takes into account second-order statistics
(correlations or covariances) only.

2.3 overview of independent component analysis

Recently, there has been an increasing interest in statistical models
for learning data representations. A well-known approach for this
is independent component analysis (ICA), the concept of which was
initially proposed by [18]. So far, many ICA algorithms have been
proposed and been used in many applications [14, 25]. So far, many
ICA algorithms have been proposed and have been used in various
applications [14, 25]. In order to understand

For the sake of clarification, let’s look at the case where two sources
generate signals and two weighted mixtures of sources are observed
by two sensors. This can be represented by





x1 (t) = a11s1 (t) + a12s2 (t)

x2 (t) = a21s1 (t) + a22s2 (t)

or in a vector-matrix form

x (t) = As (t) , (2.25)

where the matrix A, which is referred to as the mixing matrix, is a
2 × 2 coefficient matrix. Figure 1 shows the effect of the mixing matrix
in the case that it takes the following form:

A =

[
1.0 0.5
0.5 1.0

]
.

The estimation of sources with knowledge of observed signals is
known as the signal separation problem. We usually assume that the
mixing matrix is invertible (i.e., full rank matrix). There thus exists a
2 × 2 matrix W with coefficients wij such that we can separate them
as: 




y1 (t) = w11x1 (t) + w12x2 (t)

y2 (t) = w21x1 (t) + w22x2 (t)
(2.26)

or in a vector-matrix form

y (t) = Wx (t) , (2.27)

where y (t) is estimated source vector, and matrix W is called the
demixing matrix or the separator. If the mixing matrix A is given,
then the separator obviously takes the form of the inverse of matrix
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Figure 1: The original source signals and the observed signals. Left: Each of
two sources generates a statistically independent source signal. In
this case, source signals are saw-tooth wave and sinusoidal wave.
Right: If there are two sensors, then the output of each sensor is a
mixture of source signals or signal mixture. The unknown source-
sensor distances are represented by the mixing matrix labeled A. In
this case, the mixing matrix A takes the form of symmetric matrix
whose diagonal elements are one and non-diagonal elements are
0.5.

A: i.e., W = A−1. When the matrix A and source signals s (t) are
unknown, this signal separation problem is called the blind signal
separation (BSS) problem. Our task is to determine the separator from
the observed signals so that the separator’s outputs are equivalent to
the source signals.

ICA determines the separator so that the estimated source signals
y1 (t) and y2 (t) are statistically independent. As example, the com-
parison of waveforms between original signals and signals estimated
by ICA is shown in Fig. 2. As can be seen, these are very close to the
original source signals. Hence, ICA is a promissing approach to the
BSS problem. Here we consider the case where the number of sources
and that of sensors are two, but it can be generalized to the case where
the number of sources is N and that of sensors is M ( += N), of course.

As can be seen from Fig. 2, ICA has certain indeterminacy in respect
to the word “source”. One is called scaling indeterminacy and the
other is called permutation indeterminacy. The former one means
that the amplitude of recovered signals cannot be determined. Since
the mixing matrix and source signals are unknown, the effect of
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Figure 2: The original source signals and the recovered signals using ICA.

Left: two source signals shown in 1. Right: the recovered signals
using an ICA algorithm. ICA extracts two independent signals
from the set of signal mixtures. Note that ICA rearranges signals
so that an extracted signal yi (t) and its source signal si (t) are not
necessarily on the same row.

multiplication of one of the source estimates with a scalar constant k
is canceled by dividing its corresponding column in the mixing matrix
by k. Namely, Eq. (2.25) can be rewritten as

x (t) =
(

1
k1

a1

)
(k1s1 (t)) +

(
1
k2

a2

)
(k2s2 (t))

= AD−1Ds (t) ,
(2.28)

where ai stands for the i-th column vector in the mixing matrix A
and D is a diagonal matrix whose elements are k1 and k2. Define
Ã = AD−1 and s̃ (t) = Ds (t), then Eq. (2.28) becomes

x (t) = Ãs̃ (t) . (2.29)

Since we do not know the mixing matrix and source signals, we can
not distinguish the above equation and Eq. (2.25). A common strategy
to this is to assume that each of the source signals is unit variance, i.e.,
E
(
s2

i (t)
)
= 1.

With permutation indeterminacy it is meant that the order of the
independent components cannot be determined. This is because it is
free to decide what independent components that will be the first one.
The details about these ambiguities can be found in [25].



3
C O N V O L U T I V E B S S A L G O R I T H M B A S E D O N
N O N L I N E A R C O R R E L AT I O N

3.1 introduction

In simplest blind source separation (BSS) problem, the mixing process
is assumed to be instantaneous; time delay is not taken into account. In
practical applications such as speech separation, however, the mixing
process must be considered as convolutive. A prominent example is
the so-called cocktail party problem, where we want to recover the
speech signals of multiple speakers who are simultaneously talking in
a room. The room will generally be reverberant due to reflections on
the walls, i.e., the source signals are filtered by a linear multiple-input
multiple-output (MIMO) system before they are picked up by the
sensors. This chapter deals with the convolutive BSS problem.

Most of existing convolutive BSS methods can be classified into
two groups in terms of the processing domain, i. e., the time-domain
approach and the frequency-domain one. The former one incorpo-
rates spatiotemporal structure into the demixing processs. Hence, the
time-domain approach becomes more complicated and requires high
computational cost as reverberation increases. On the other hand,
the latter one transforms the observations into the frequency domain
and deals with a convolutive BSS problem as multiple instantaneous
BSS problems. From the experimental study using the conventional
frequency-domain approach, the source-separation performance is
saturated because of the permutation problem.

In order to reduce the computational cost, a frequency-domain
implementation of a time-domain algorithm was proposed [8, 13, 32,
39, 44, 57]. The approach evaluates independence among signals in
the time domain, but updates the demixing process in the frequency
domain. Hence, it can reduce the computational cost came from the
convolution operation with long demixing filter while avoiding the
permutation problem.

This chapter proposes a frequency-domain implementation algo-
rithm that vanishes nonlinear cross-correlation defined in the time-
domain. And also, we propose additional techniques for enhancing
the robustness of the proposed algorithm.

This chapter is organized as follows. In Section 3.2, we formulate
the convolutive BSS problem and describe two kinds of indetermi-
nacy in convolutive BSS. We propose a convolutive BSS algorithm
and additional techniques for enhancing the robustness of the pro-

15
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posed method in Sections 3.3 and 3.4. Section 3.5 describes actual
implementation of the proposed algorithm.

3.2 convolutive bss problem

3.2.1 Mixing and demixing processes

Let us consider a situation where N sources generates statistically
independent signals si (t) (i = 1, . . . N; t = 1, . . . , T) and N sensors
observe convoluted mixtures of source signals. As is usual, each source
is assumed to be a random process with zero mean, i.e., E (si (t)) =
0 (i = 1, . . . , N). In order for the BSS problem to be solvable, at most
one source is allowed to be Gaussian.

In an element-wise representation, the mixing process is defined as

xi (t) =
N

∑
j=1

∞

∑
τ=0

aij (τ) sj (t − τ) (i = 1, . . . N) (3.1)

This can be expressed in a vector-matrix form:

x (t) =
∞

∑
τ=0

A (τ) s (t − τ) , (3.2)

where s (t) " [s1 (t) , . . . , sN (t)]'and x (t) " [x1 (t) , . . . , xN (t)]'. If
there is no time delay, then Eq. (3.2) becomes

x (t) = As (t) . (3.3)

This is actually the same mixing process shown in Sect. 2.3. Hence, an
instantaneous mixing process can be considered as the particular case
of convolutive one.

Using z-transform, Eq. (3.2) can be rewritten as

x (z) = A (z) s (z) , (3.4)

where s (z) " [s1 (z) , . . . , sN (z)]', x (z) " [x1 (z) , . . . , xN (z)]' and
A (z) =

[
aij (z)

]
(aij (z) " ∑ aij (τ) z−τ). In this thesis, we assume that

the mixing process A (z) is nonsingular, i.e., the inverse of A( f ) exists
for every f , where f stands for frequency.

The demixing process, which is referred to as the separating filter
or the separator, takes the following form

y (t) =
∞

∑
l=−∞

W (l) x (t − l) , (3.5)

where y (t) " [y1 (t) , . . . , yN (t)]'. It should be noted that the impulse
response {W (l)} generally takes a non-causal form, i.e., W (l) =
O (l < 0), where {W (l)} " {. . . , W (−1) , W (0) , W (1) , . . . } and O
is the zero matrix.
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Figure 3: The scheme of blind source separation in the case of N = 2. Each
sensor observes convoluted mixture of source signals. The recov-
ered signals are obtained through the demixing process. The demix-
ing process is determined so that the recovered signals become as
statistically independent as possible.

If we know the mixing process A (z) beforehand to retrieve source
signals from observed signals, then the separator should become
A−1 (z). The main difficulty in BSS is that the separator must be
determined only from the observations x (t) because there is no prior
information about the mixing process. The scheme of BSS is depicted
in Fig. 3.

3.2.2 Two kinds of indeterminacy in convolutive BSS

In BSS the term “source” has two kinds of indeterminacy. One is per-
mutation indeterminacy: if s1 (t) , . . . , sN (t) are source signals, then
sσ(1) (t) , . . . sσ(N) (t) , in which {σ (1) , . . . , σ (N)} is an arbitrary per-
mutation of {1, . . . , N}, can be considered as another set of source sig-
nals. The other is filtering indeterminacy (or scaling indeterminacy in
the particular case of instantaneous mixtures). Given the source signals,
their arbitrarily linear filtered signals d1 (z) s1 (z) , . . . , dN (z) sN (z) can
also be considered as another set of source signals.

The two kinds of indeterminacy are summarizes as follows. If s (z) is
a source vector, then s̃ (z) = D (z) Ps (z) can be considered as a source
vector, where P is a permutation matrix and D (z) is a diagonal trans-
fer function matrix with arbitrary analytic functions d1 (z) , . . . , dN (z)
on the diagonal. There is no way to distinguish s (t) from s̃ (t), be-
cause the information given beforehand is only that the sources are
statistically independent.

Corresponding to the indeterminacy in the definition of sources, the
design of the separator has a certain freedom. This thesis calls any
separator of the following form a valid separator

W (z) = D (z) PA−1 (z) . (3.6)
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If the separator is valid, then the overall transfer function matrix be-
comes a diagonal transfer function matrix with a column permutation,
i.e., W (z)A (z) = D (z) P.

3.2.3 Elimination of filtering indeterminacy

Although two kinds of indeterminacy mentioned above are inherent
in BSS, in actual applications one anyhow need to eliminate them to
obtain the separator specifically. As for filtering indeterminacy D (z),
there are several approaches.

A conventional way is to determine the separator W (z) so that
the separator’s outputs yi (t) will be independent and identically
distributed (iid) [2]. For example, the separator’s outputs satisfy

E ( fi (yi (t)) yi (t − τ)) =





1 τ = 0

0 otherwise

where fi is arbitrary nonlinear function depending on a probability
density function (pdf) of the i-th source. This kind of normalization
approach involves several serious problems:

1. The quality of signals is deteriorated by the whitening operation.
The signal quality is important in practical applications such as
speech recognition, because it affects to recognition rate.

2. For non-stationary signals such as speech signals, the separator
fluctuates with time, depending on the properties of the source
signals.

3. When a source signal at a sensor becomes very small, some of
entries in the separator may tend to be very large value, which
can possibly induce some instability.

Another well-known approach is obtained by the minimal distortion
principle (MDP) [46]. The MDP constraint for the separator is given as

diag
{

W−1 (z)
}
= I (3.7)

where diag {W (z)} denotes a diagonal matrix whose diagonal ele-
ments are w11 (z) , . . . , wNN (z). Hence, a valid separator satisfying the
MDP constraint retrieves the source signals observed in each sensor. It
can be confirmed as follows.

If a separator is valid, then it takes a form of W (z) = D (z) PA−1 (z).
Substituting it into the left-hand side of Eq. (3.7) leads to

diag
{

W−1 (z)
}
= diag

{
A (z) PD−1 (z)

}

= diag {A (z) P}D−1 (z)
(3.8)



3.2 convolutive bss problem 19

Figure 4: The desired outputs in the case of linear constraint (N = 2). First
sensor observes a convoluted mixture of two source signals. If a
proper separator is obtained, then the outputs of the separator
becomes source signals observed at the first sensor.

Hence, filtering indeterminacy D (z) becomes

D (z) = diag {A (z) P} = diag
{

a1σ(1) (z) , . . . , aNσ(N) (z)
}

(3.9)

That implies the i-th output signal yi (t) is the σ (i)-th source signal
observed at the i-th sensor:

yi (t) =
∞

∑
τ=0

aiσ(i) (τ) sσ(i) (t − τ) .

As is described above, the MDP constraint has the useful property
for applications. Due to its nonlinearity, however, it is difficult to
incorporate the constraint into a convolutive BSS algorithm [46, 47].

Recently, another constraint based on the MDP was proposed by
Matsuoka [48]. The constraint, which is called the linear constraint, is
given by

e'W (z) = f', (3.10)

where e "
[

1 · · · 1
]'

∈ RN and f "
[

1 0 · · · 0
]'

∈ RN . It
a valid separator satisfies the constraint, it becomes

W (z) = diag
{

f'A (z) P'
}

PA−1 (z)

= diag
{

a1σ(1) (z) , . . . , a1σ(N) (z)
}

PA−1 (z) .
(3.11)

As is depicted in Fig. 4, this implies that the σ (i)-th source signal
observed at the first sensor will appear in yi (t):

yi (t) = ∑
τ

a1σ(i) (τ) sσ(i) (t − τ) .

In contrast to the MDP constraint, the linear constraint can be easily
incorporated into BSS algorithms [49, 72]. In this chapter we use this
constraint for eliminating the filtering indeterminacy.
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3.3 convolutive bss algorithm based on nonlinear cor-
relation

3.3.1 Measure for evaluating independence among signals

If output signals are statistically independent, then any nonlinear
correlation becomes zero. Hence, the objective is to find the separator
W (z) that vanishes a nonlinear cross-correlation:

off
{

E
(

ϕ (y (t)) y' (t − τ)
)}

= O (τ = . . . ,−1, 0, 1, . . . ) , (3.12)

where ϕ (y (t)) " [ϕ (y1 (t)) , . . . , ϕ (yN (t))]' and ϕ (·) : R → R

is a continuously differentiable nonlinear function. The operator
off {A} sets every diagonal elements of matrix A to be zero, i.e.,
A = diag {A}+ off {A}. Equation (3.12) gives N (N − 1) conditions
for every τ and the remaining degrees of freedom in W (z), N, are
eliminated by the linear constraint described in Section3.2.3. In this
chapter, we call a valid separator satisfying the linear constraint as
a desired separator. If a separator is desired, then it takes the form of
(3.11).

If fτ is an N × N vector-valued function of N × N impulse response
{W (l)}, then, Eq. (3.12) can be regarded as

off { fτ ({W (l)})} = O (τ = . . . ,−1, 0, 1, . . . ) , (3.13)

where fij,τ ({W (l)}) corresponds to E
(

ϕ (yi (t)) yj (t − τ)
)
. A basic

strategy for derivation of the algorithm is to adopt the Newton method
into (3.13) (i.e., (3.12)) then solve the simultaneous linear equation
with respect to {,W (l)}.

The later subsection is devoted to the mathematical derivation of the
algorithm. The derivation consists of two parts: a linear approximation
of Eq. (3.12) and a transformation of the linear equation into the
frequency domain. The actual implementation is described in the next
Section 3.5.

3.3.2 Derivation of algorithm

In order to obtain the desired separator, we adopt the Newton method
into Eq. (3.12). Suppose that, at a step, we have an approximate so-
lution W (z) for the desired separator and move it to the desired
one: W (z) ← W (z) +,W (z). Namely, what we should do is to find
W (z) +,W (z) so that it may satisfy

off
{

E
(

ϕ (y (t) +,y (t)) (y (t − τ) +,y (t − τ))'
)}

= O, (3.14)

where

,y (t) =
∞

∑
l=−∞

,W (l) x (t − l) . (3.15)
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The first-order Taylor expansion of the left-hand side of Eq. (3.14)
leads to

∞

∑
l=−∞

off
{

E
(

Φ (y (t)),W (l) x (t − l) y' (t − τ)
)

+E
(

ϕ(y (t)) x' (t − l − τ)
)
,W' (l)

}

= −off
{

E
(

ϕ (y (t)) y' (t − τ)
)}

(τ = . . . ,−1, 0, 1, . . . ) ,

(3.16)

where Φ (y (t)) " diag {ϕ′ (y1 (t)) , . . . , ϕ′ (yN (t))} and ϕ′ (yi (t)) de-
notes the derivative of ϕ (yi (t)). Although solving Eq. (3.16) with
respect to ,W (z) and updating W (z) ← W (z) +,W (z) would
give more accurate separator, it is difficult to directly solve the equa-
tion.

In order to derive an easier equation we introduce a variable ,G (z)
based on the concept of the natural gradient. Let the inverse of the
impulse response {W (l)} be {W̄ (l)}; then, the observed signals can
be expressed as

x (t) =
∞

∑
k=−∞

W̄ (k) y (t − k) . (3.17)

Substituting (3.17) into (3.16) leads

∑
l,k

off
{

E
(

Φ (y (t)),W (l) W̄ (k − l) y (t − k) y' (t − τ)
)

+E
(

ϕ(y (t)) y' (t − k − τ)
)

W̄' (k − l)W' (l)
}

= −off
{

E
(

ϕ (y (t)) y' (t − τ)
)}

(τ = . . . ,−1, 0, 1, . . . ) .

(3.18)

Define

,G (k) =
[
,gij (k)

]
"

∞

∑
l=−∞

,W (l) W̄ (k − l) , (3.19)

then Eq. (3.18) becomes

∞

∑
k=−∞

off
{

E
(

Φ (y (t)),G (k) y (t − k) y' (t − τ)
)

+E
(

ϕ (y (t)) y' (t − k − τ)
)
,W' (k)

}

= −off
{

E
(

ϕ (y (t)) y' (t − τ)
)}

(τ = . . . ,−1, 0, 1, . . . ) .

(3.20)

The above-mentioned equation can be decomposed into a set of
pairs of equations with respect to ,gij (z) and ,gji (z) (i += j) as
follows. Since we have assumed that W (z) approximately attains
separation, variables yi (t) and yj (t − τ) (j += i) are almost mutually
independent. That leads to

E
(

ϕ′ (yi (t)) yj (t − k) yq (t − τ)
)

≈ 0 (j += q) ,
E
(

ϕ (yi (t)) yj (t − τ − k)
)

≈ 0 (i += j) .
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Incorporating them and picking out the (i, j)-th entry in (3.20) yield
∞

∑
k=−∞

{
E
(

ϕ′ (yi (t)) yj (t − k) yj (t − τ)
)
,gij (k)

+E (ϕ (yi (t)) yi (t − k − τ)),gji (k)
}

= −E
(

ϕ (yi (t)) yj (t − τ)
)
(i += j) .

(3.21)

Taking into account independence between ϕ′(yi (t)) and yj (t − k) yj (t − τ),
Eq. (3.4) can be approximated as

∞

∑
k=−∞

ci (t) rjj (t, τ − k),gij (k) + γii (t, τ + k),gji (k) = −γij (t, τ) ,

(3.22)
where

ci (t) " E
(

ϕ′ (yi (t))
)

,

rij (t, τ) " E
(
yi (t) yj (t − τ)

)
,

γij (t, τ) " E
(

ϕ (yi (t)) yj (t − τ)
)

.

Exchanging i and j in (3.22) leads to another equation with respect to
,gij (z) and ,gji (z):

∞

∑
k=−∞

cj (t) rii (t, τ − k),gji (k) + γjj (t, τ + k),gij (k) = −γji (t, τ) .

(3.23)
Thus, our task comes down to solving Eqs. (3.22) and (3.23) with
respect to every pair of ,gij (z) and ,gji (z) (i += j). It should be
noted that, we should not omit the time index t in ci (t), rij (t, τ) and
γij (t, τ) because a random process of source is assumed to be a non-
stationary one. This is a very important point in separation of speech
signals.

If the separating filter is very large, then solving Eqs. (3.22) and (3.23)
with respect to ,gij (z) and ,gji (z) (i += j) becomes time-consuming.
It is because solving them requires the inverse matrix calculation, the
size of which depends on the length of the separating filter.

In order to reduce the computational load, Eqs. (3.22) and (3.23) are
transformed into the frequency-domain:





ci (t) r( f )

jj (t),g( f )
ij + γ

( f )
ii (t),g( f )∗

ji = −γ
( f )
ij (t)

cj (t) r( f )
ii (t),g( f )

ji + γ
( f )
jj (t),g( f )∗

ij = −γ
( f )
ji (t)

(3.24)

where

r( f )
ij (t) "

∞

∑
τ=−∞

rij (t, τ) e−j2π f τ,

γ
( f )
ij (t) "

∞

∑
τ=−∞

γij (t, τ) e−j2π f τ,

,g( f )
ij "

∞

∑
τ=−∞

,gij (τ) e−j2π f τ,
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and ,g( f )∗
ji stands for the complex conjugation of ,g( f )

ji . In a vector-
matrix form, the above-mentioned equation can be expressed as



 ci (t) r( f )
jj (t) γ

( f )
ii (t)

γ
( f )∗
jj (t) cj (t) r( f )

ii (t)







 ,g( f )
ij

,g( f )∗
ji



 = −



 γ
( f )
ij (t)

γ
( f )∗
ji (t)





or
Γ
( f )
ij (t),g( f )

ij = −γ
( f )
ij (t) . (3.25)

To find ∆g( f )
ij that approximates Eq. (3.25) for every t, we minimize

the following function

Qij

(
,g( f )

ij

)
"

〈∥∥∥Γ
( f )
ij ,g( f )

ij + γ
( f )
ij

∥∥∥
2
〉

t
, (3.26)

where 〈·〉t denotes the time average. Since Qij is a real-valued function
of two complex variables ,g( f )

ij and ,g( f )
ji (i.e., Qij : C2 ×C2 → R), we

use the complex derivatives described in Chap. 2 in order to minimize
the function. Applying the complex derivatives to Qij and solving
∂Qij/∂,g( f )∗

ij = 0 with respect to ,g( f )
ij leads

,g( f )
ij = −

〈
Γ
( f )H
ij (t) Γ

( f )
ij (t)

〉−1

t

〈
Γ
( f )H
ij (t) γ

( f )
ij (t)

〉

t
(i += j) . (3.27)

This algorithm cannot determine the diagonal entries of ,G( f ),
because ,g( f )

ii does not appear in the (i, j)-th entry in Eq. (3.20).
Hence, the remaining entries are determined as follows. Equation
(3.10) implies e',W( f ) = 0', leading to e',G( f ) = 0'. Thus, the
diagonal entries are determined by

diag
{
,G( f )

}
= −diag

{

∑
i +=1

,g( f )
i1 , . . . , ∑

i +=N
,g( f )

iN

}
. (3.28)

The matrix ,W( f ) can be calculated as

,W( f ) = ,G( f )W( f ) for every f , (3.29)

then W( f ) is updated as

W( f ) ← W( f ) +,W( f ). (3.30)

The impulse response {W (l)} can be found by applying the inverse
Fourier transform to W( f ):

W (l) =
ˆ 1

2

− 1
2

W( f )ej2π f ld f . (3.31)
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3.3.3 What is the difference between the frequency-domain approach and
the frequency-domain implementation one?

In the formulation of the proposed algorithm, we begin with aim-
ing to determine the separator so that the nonlinear cross correla-
tion E

(
ϕ (yi (t)) yj (t − τ)

)
will be eliminated. In the final stage of

the formulation, however, we transformed the time-domain correla-
tion into the frequency-domain one, γ

( f )
ij (t), which is actually esti-

mated as a time average of F [ϕ (yi (m, t))] F∗ [yj (m, t)
]
, where F [·]

denotes the fast Fourier transform (FFT) operator. Concrete opera-
tions will be described in later section. In contrast, in the conventional
frequency-domain approach, signals yi (t) are first transformed into
the frequency-domain ones, F [yi (m, t)], and then their nonlinear corre-
lation, i.e., a time average of ϕ (F [yi (m, t)]) F∗ [yj (m, t)

]
, is evaluated.

Since both the methods are eventually formulated in the frequency
domain, they do not appear to be so much different from each other,
but that is not the case.

In order to see what happens in the two approaches, let us con-
sider the case where each source signal (N = 2) comprises only two
frequency components of f and 3 f :

s1 (t) = c( f )
1 (t) + c(3 f )

1 (t) ,

s2 (t) = c( f )
2 (t) + c(3 f )

2 (t) ,

where c( f )
i (t) represents a sinusoidal wave of frequency f . In addition,

we assume that c(3 f )
i (t) is a higher harmonic of c( f )

i (t), i.e., c(3 f )
i (t) is

synchronized with c( f )
i (t). If the separator reproduces the sources as

y1 (t) = c( f )
1 (t) + c(3 f )

1 (t) ,

y2 (t) = c( f )
2 (t) + c(3 f )

2 (t)
(3.32)

then the separation is successful, of course. In the conventional frequency-
domain approach, however, the separator can possibly produce unde-
sirable outputs as

y1 (t) = c( f )
1 (t) + c(3 f )

2 (t) ,

y2 (t) = c( f )
2 (t) + c(3 f )

1 (t)
(3.33)

Since the frequency-domain approach evaluates only independence
between c( f )

1 (t) and c( f )
2 (t) or that between c(3 f )

1 (t) and c(3 f )
2 (t), there

is no way to decide which of Eqs. (3.32) and (3.33) is the correct answer.
If a nonlinear operation is applied to the signals before converting

them into the frequency domain, the situation becomes very different.
If we adopt, for example, the cubic function for ϕ, we have in the case
of Eq. (3.33)

y1 (t)
3 = c( f )

1 (t)3 + 3c( f )
1 (t)2 c(3 f )

2 (t) + · · · .
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c( f )
1 (t)3 includes a component of frequency 3 f and it is synchronized

with or completely dependent on c(3 f )
1 (t) in y2 (t). That implies that,

by checking independence between the frequency components of 3 f
in y1 (t)

3 and y2 (t), one can conclude that Eq. (3.33) is not a desired
result. Generally speaking, the nonlinear operation ϕ for yi (t) in the
time domain produces some higher-order harmonics of each frequency
component and that enables us to check independence among different
frequency components in y1 (t) , . . . , yN (t).

Thus we emphasize that the proposed approach is essentially a
time-domain one. The frequency-domain treatment given there is just
to relax the computational load.

3.4 additional techniques

3.4.1 Additional constraint on the separator

For sound data obtained in practical environments, the length of the
separator (an FIR filter) must be very long, typically one thousand
taps. For such a high-order filter, the algorithm proposed in previous
section does not work well by itself. We often find incomprehensible
instability in executing the algorithm. In the early stage of the iteration,
the separator appears to be updated in the desired direction, but as
the iteration proceeds, the norm of the separator and the amplitude of
the output suddenly grow large and finally reach the incomputable
level.

To cope with this instability, the algorithm needs to introduce an-
other constraint than just the condition that yi (t) be (nonlinearly)
uncorrelated to each other. Below we show a simple but very effective
way for solving the problem.

The additional constraint is

tr
{

E
(

y (t) y' (t − τ)
)}

= f'E
(

x (t) x' (t − τ)
)

f (3.34)

or

N

∑
i=1

E (yi (t) yi (t − τ)) = E (x1 (t) x1 (t − τ)) . (3.35)

For τ = 0, the above relation reduces to ∑N
i=1 E

(
yi (t)

2
)
= E

(
x1 (t)

2
)

.
This implies that the variance of output yi (t) never exceeds that of
first sensor signal x1 (t). Namely, if the desired separator is searched
within the set of separators satisfying (3.34) or (3.35), it never diverges
to infinity.

The validity of the above condition can easily be understood. Equa-
tion (3.10) leads to e'y (t) = f'x (t) and hence

e'E
(

y (t) y' (t − τ)
)

e = f'E
(

x (t) x' (t − τ)
)

f (3.36)
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or

E

((
N

∑
i=1

yi (t)

)(
N

∑
i=1

yi (t − τ)

))
= E (x1 (t) x1 (t − τ)) . (3.37)

For τ = 0, it implies E
((

∑N
i=1 yi (t)

)2
)

= E
(

x1 (t)
2
)

. This rela-

tion by itself, however, does not guarantee the boundedness of the
variance of yi (t); it only demands that the variance of e'y (t) be
bounded. To cope with this issue, we utilize the following simple
fact: when the separator achieves perfect separation, the (linear) cor-
relation matrix E

(
y (t) y' (t − τ)

)
must be diagonal; in other words,

e'E
(
y (t) y' (t − τ)

)
e must be equal to tr

{
E
(
y (t) y' (t − τ)

)}
. Com-

bining this fact and Eq. (3.36) leads to the necessary condition (3.34)
for the desired separator.

Equation (3.36) can be rewritten as

tr

{
∞

∑
k=−∞

∞

∑
l=−∞

W (k)R (τ + l − k)W' (l)

}
= f'R (τ) f (3.38)

or in the frequency domain

tr
{

W( f )R( f )W( f )H
}
= f'R( f )f, (3.39)

where

R (τ) " E
(

x (t) x' (t − τ)
)

,

R( f ) "
∞

∑
τ=−∞

R (τ) e−j2π f τ.

The proposed algorithm incorporates the additional constraint as
follows. Let W( f ) be a separator obtained at a step of the iteration. The
algorithm modifies W( f ) so that it will satisfy the above constraint
with the least modification. This can be done in the following way.
The matrix that satisfies the linear constraint with the minimum norm
proves to be ef'/N. In the space of the separator, we consider a
straight line that connects ef'/N and W( f ); every separator on the
line, which is represented by β f W( f ) +

(
1 − β f

)
ef'/N

(
β f > 0

)
, sat-

isfies the linear constraint. The parameter β f for which relation (3.39)
with β f W( f ) +

(
1 − β f

)
ef'/N and solving with respect to β f . Thus,

solution is

β f =

(
(N − 1) f'R( f )f

N · tr
{

W( f )R( f )W( f )H
}
− f'R( f )f

) 1
2

. (3.40)

Using this, the separator is modified as

W( f ) ← β f W( f ) +
(
1 − β f

) ef'

N
. (3.41)



3.5 actual implementation 27

3.4.2 Varying-window-size technique

The time-domain approach is thought to be free from the permutation
problem. The reason was described in subsection 3.3.3. In the actual
experiments, however, we sometimes face undesired permutation even
when a time-domain approach is taken.

In [47], an example is shown in which an undesirable permutation
occurs even though the algorithm adopted there is totally a time-
domain approach. The authors observed the following phenomenon in
an experiment of two sources. According to what kind of permutation
occurred, the frequency axis could be divided into a small number of
regions or frequency bands. In one region, an s1-component appears in
y1 (t) and an s2-component in y2 (t); in another region, the relation is
reversed. That example suggests that just employing the time-domain
approach does not solve the permutation problem as we wish.

The algorithm used in [47] is the natural gradient method proposed
by Amari et al. [15]. Since the final configuration of the frequency
regions was dependent on the initial setting of the separator parame-
ters, the above phenomenon seems due to the fact that the algorithm
only makes a local search for the desired separator. A way to solve the
problem is to suppress the frequency resolution of the separator; it
is equivalent to shorten the substantial length of the separating filter.
This idea is proposed in [61].

While the suppression of the frequency resolution alleviates the
permutation problem, it may lead to poor separation accuracy, as
reported in [26]. In [27, 47], an effective way to solve this trade-off
is proposed. In the early steps of the repetitive modification, the
frequency resolution of the separator is made very low. As the learning
proceeds, the resolution is raised gradually, and finally reaches the
level of the inverse of the full length of the separating filter. Also in
the present algorithm, we incorporate this procedure, i.e., we alter
the substantial width l2 of the separating filter as l2 (q + 1) = 2l2 (q)
until it reaches the full length of the separating filter, where q stands
for the step number of iteration. The short filter length in the early
stage yields a low frequency resolution, and the long filter length in
the final stage provides a high frequency resolution. Some examples
in later section and chapter will show that this varying-window-size
technique is very effective and indispensable to accurate separation.

3.5 actual implementation

In the actual implementation, the time series data are decomposed
into frames with interval 2L. Time t and frequency f in γ

( f )
ij (t) are

replaced by the frame number m and discrete frequencies k/2L. Cross
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spectrum γ
( f )
ij (t), for example, is calculated by applying the FFT to

the data in the m-th frame:

γ(k)
ij (m) = F [ϕ (yi (m, t))] F∗ [yj (m, t)

]
(3.42)

for m = 1, . . . , M and k = −L + 1, . . . , L, where F [yi (m, t)] is the FFT
of yi (t) in the m-th frame. Other spectra are also calculated in the
same operation. ci (t) is defined as the time average of ϕ′ (yi (t)) in
the m-th frame.

According to the operations, ∆g(k)
ij is calculated by

,g(k)
ij = −

〈
Γ
(k)H
ij (m) Γ

(k)
ij (m)

〉−1

m

〈
Γ
(k)H
ij (m) γ(k)

ij (m)
〉

m
(i += j) ,

(3.43)
where ∆g(k)ij denotes ∆g( f )

ij for f = k/2L and 〈·〉m represents average
with respect to m. The separator is expressed as an FIR filter:

W (z) =
L

∑
l=−L+1

W (l) z−l .

In order to understand how to implement the frequency-domain
implemented nonlinear de-correlation (FDI-ND) algorithm, we sum-
marize the whole procedure. Let q be the step number of the iteration
and u (q, l) be a window function that corresponds to the varying-
window-size technique.

(P1) Initialize W (0, z) and u (0, l).

(P2) Calculate R(k) by 1
M ∑M

m=1 F [x (m, t)] F [x (m, t)]H.

(P3) Calculate the output signals y (t) using Eq. (3.5), then apply a
nonlinear function ϕ to the outputs in the time domain.

(P4) Obtain F [y (m, t)]and F [ϕ (y (m, t))] in each frame by apply-
ing the short-time Fourier transform (STFT). Then, calculate
ci (m) , r(k)ii (m) and γ(k)

ij (m) for every pair of i and j in the same
operation described above.

(P5) Obtain ,G(k) (q) using Eqs. (3.28) and (3.43).

(P6) Update the separator in each frequency bin: W(k) (q + 1) ←
W(k) (q) +,G(k) (q)W(k) (q).

(P7) Calculate βk by Eq. (3.40), and then modify the separator as
W(k) (q + 1) ← βkW(k) (q + 1) + (1 − βk) ef'/N.

(P8) After modification, calculate the inverse FFT of the separator.

(P9) Apply the varying-window-size technique to the separator: W (q + 1, l) ←
u (q, l)W (q + 1, l) (l = −L + 1, . . . , L).

(P10) Update the length of u (q, l) to be long; l2 (q + 1) = 2l2 (q) until
it reaches the full length L.

(P11) Go back to P3 until a stopping criteria is met.
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3.6 summary

In this chapter, we propose a convolutive BSS algorithm based on
nonlinear correlation. It evaluates statistical independence among the
signals by a nonlinear cross-correlations defined in the time domain
and handles the separating filter in the frequency domain in order to
relax the computational cost. In addition, the algorithm incorporates
two additional techniques: one is a constraint that guarantees the
boundedness of the output signals, and the other is a varying-window-
size technique for solving the permutation problem [27, 46, 72].





4
S TA B I L I T Y O N I N D E P E N D E N T V E C T O R A N A LY S I S

4.1 introduction

As is described in Chapter 2, ICA is a method for finding statistically
independent sources from observed data. The model used in ICA
assumes simple linear mixtures of source components. If the source
signals are recorded in an acoustic environment, the mixtures of
sources should be considered as convoluted mixtures, i.e., there are
propagation time delay and reverberation in the observed signals.

The convolutive BSS problem can be simplified down into multiple,
instantaneous BSS problem by transforming the observed data into
the frequency domain. One therefore can apply ICA to data in each
frequency bin. This simplification, however, comes from at the cost of a
cumbersome issue called the permutation problem. Although several
approaches, such as smoothness constraint on the demixing matri-
ces of adjacent frequencies, and direction-of-arrival estimation, have
been proposed, they require some complicated and time-consuming
procedures [7, 37, 53, 61, 66, 67].

Recently, a new approach to the permutation problem was proposed,
which is termed independent vector analysis (IVA). IVA is a method
for recovering source vectors while preserving the inner-dependency
of elements in each vector. Hence, it is a prospective tool for solving
the convolutive BSS problem without the permutation problem. The
framework of IVA is as follows:

(I1) The prior probability density function (pdf) qi of source vector i
is introduced; then the prior joint pdf of all the sources is ΠN

i=1qi.

(I2) Let the actual joint pdf of the output of the separator be p, which
is a function of K instantaneous separators.

(I3) Define a measure of difference between ΠN
i=1qi and p.

(I4) Minimizing the measure gives a desired separator.

A key point in IVA is that the prior pdf qi is chosen such that a set
of the frequency components in each source vector are statistically
dependent.

The effectiveness of IVA approaches has been demonstrated by many
applications [41, 42, 43]. However, there are very few mathematical
analyses of the algorithm. In order for an IVA algorithm to work as
intended, at least the following propositions must hold:

Proposition 1. The desired set of separators must be a local minimum of a
measure for evaluating independence among the source vectors;

31
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This proposition is very basic proposition in order to obtain the
desired separator by minimizing the measure.

Proposition 2. The set of separators that includes undesired permutations
must not be a local minimum of the measure.

The objective of this chapter is to show a necessary and sufficient
condition for these propositions under some assumptions and to prove
that the separator satisfying the first proposition 1 satisfies the second
proposition 2 as a necessity. The latter result strongly supports the
validity of the IVA approach.

This chapter is organized as follows. In Section 4.2, we describe the
mixing and demixing models dealt with in IVA. Section 4.3 derives
a stability condition for the desired set of the separators, then we
investigate a condition for permuted separator not to be positive semi-
definite in Section 4.4. Stability analysis for complex-valued IVA is
performed in Sections 4.5 and 4.6.

4.2 separation of real-valued source vectors

In this and next sections, variables and constants are all real-valued; a
complex-valued signals will be shown in Section 4.5.

4.2.1 Mixing and demixing models

In this section, we define the mixing and demixing models dealt with
in IVA. To start with, an element-wise representation is used, where
M × K observation x(k)i is assumed to be given as a scaled sum of
N × K latent sources s(k)j :

x(k)i =
N

∑
j=1

a(k)ij s(k)j (i = 1, . . . , M; k = 1, . . . , K) . (4.1)

An important point in IVA is that the mixing is made only among
the components s(k)1 , . . . , s(k)N with a common superscript k, while no
mixing occurs between s(k)i and s(l)j with k += l. Each of observed

mixtures x(k)i and of sources s(k)j are random variables.
In a vector-matrix representation, Eq. (4.1) can be written as

x(k) = A(k)s(k) (k = 1, . . . , K) , (4.2)

where s(k) "
[
s(k)1 , . . . , s(k)N

]'
and x(k) "

[
x(k)1 , . . . , x(k)M

]'
. One can tell

at a glance that the mixing model used in IVA is modeled as a set of
models in ICA. The mixing model of IVA in the case of two sources is
depicted in Fig. 5.
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




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


Figure 5: The mixing and demixing models of IVA in the case of N = 2. ICA
is extended to a formulation with vectors, where the components
in each vector are dependent. The difference between IVA and
multidimensional ICA or independent subspace analysis (ISA) is
that the mixing in IVA is made only the components on the same
subspace, while the mixing in ISA occurs whole components using
the same linear mixing model of ICA.

A different point of view leads another vector-matrix representation
such that

xi =
N

∑
j=1

aij ! sj (4.3)

or

xi =
N

∑
j=1

Aijsj, (4.4)

where sj "
[
s(1)j , . . . , s(K)j

]'
, xi "

[
x(1)i , . . . , x(K)i

]'
, and symbol !

denotes the Hadamard product. Matrices Aij are K × K diagonal
matrices whose elements are a(1)ij , . . . , a(K)ij , i.e., Aij = diag

{
aij

}
.

IVA has assumptions so that underlying sources can be estimated in
a correct way: the first assumption is that source vectors s1, . . . , sN are
statistically independent of each other, and the other is that compo-
nents in a vectors are mutually dependent. In order for the problem to
be simple, this and subsequent chapters takes into account additional
assumptions. One is that the mixing matrices A(k) are invertible and
the other is that the number of source vectors is equivalent to that of
observed vectors, i.e., M = N.

The demixing model for recovering those vectors is given by

y(k) = W(k)x(k), (4.5)
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where y(k) "
[
y(k)1 , . . . .y(k)N

]'
. This is conceptually the same as in the

case of the frequency-domain ICA. Corresponding to Eqs. (4.3) and
(4.4), the demixing model can be rewritten as

yi =
[
y(1)i , . . . , y(K)i

]'
=

M

∑
j=1

wij ! xj

and

yi =
M

∑
j=1

Wijxj. (4.6)

Define block vectors x =
[
x'1 , . . . , x'M

]', y =
[
y'

1 , . . . , y'
N
]' and block

matrix W =
[
Wij

]
, then the demixing model can simply be written as

y = Wx. Henceforth, the demixing model or matrix W will be referred
to as a separator.

4.2.2 Permutation problem in IVA

ICA inherently has two kinds of indeterminacy: scaling indeterminacy
and permutation one. In the case of IVA, we face a more complicated
situation: partial permutation. Let us look at it in the case of two
sources. If a desired separator is successfully obtained, its output will
be

y1 =
[
b(1)1 s(1)1 b(2)1 s(2)1 · · · b(K)1 s(K)1

]'
,

y2 =
[
b(1)2 s(1)2 b(2)2 s(2)2 · · · b(K)2 s(K)2

]' (4.7)

or their exchange

y1 =
[
b(1)2 s(1)2 b(2)2 s(2)2 · · · b(K)2 s(K)2

]'
,

y2 =
[
b(1)1 s(1)1 b(2)1 s(2)1 · · · b(K)1 s(K)1

]'
.

Since the labeling of the source vectors is essentially arbitrary, we may
use the natural expression (4.7) without loss of generality. Because of
indeterminacy in the scaling of source signals, constants b(k)i depend
upon the IVA algorithm adopted. In order to make simple the repre-
sentation of the output of the desired separator, we redefine b(k)i s(k)i by
s(k)i and write Eq. (4.7) simply as

y1 =
[
s(1)1 s(2)1 · · · s(K)1

]'
" s1,

y2 =
[
s(1)2 s(2)2 · · · s(K)2

]'
" s2.

(4.8)

In this chapter, however, we investigate what will happen when
some partial permutations occur among y1, . . . , yN . Let us consider



4.2 separation of real-valued source vectors 35

the case that permutation occurs solely between y(1)1 and y(1)2 ; then we
have

y1 =
[
c(1)1 s(1)2 c(2)1 s(2)1 · · · c(K)1 s(K)1

]'
,

y2 =
[
c(1)2 s(1)1 c(2)2 s(2)2 · · · c(K)2 s(K)2

]'
.

(4.9)

Henceforth, we refer to a separator bringing about any kind of per-
mutation as a permuted separator. A cumbersome problem associated
with a permuted separator is that the magnitudes of the source signals
in y(k)i (k = 1, . . . , K) become all different from those of the desired
separator; namely, c(k)i += 1 (k = 1, . . . , K). This issue makes the repre-
sentation of the output of the separator quite complicated. In ordinary
IVA algorithms, however, if the number of permuted components in
yi is relatively small compared to the dimension K of the vectors, the
coefficients c(k)i of the unpermuted entries do not change so much, i.e.
c(k)i ≈ 1 (k += 1). Thus, we can write Eq. (4.9) as

y1 =
[
s̃(1)1 s(2)1 · · · s(K)1

]'
,

y2 =
[
s̃(1)2 s(2)2 · · · s(K)2

]'
,

(4.10)

where s̃(1)1 = c(1)1 s(1)2 and s̃(1)2 = c(1)2 s(1)1 . In general, if y(k)i is not orig-
inated from source si, then we write it as s̃(k)i . It will be convenient
to consider an imaginary output s(k)i even in the case of y(k)i = s̃(k)i ;
it is the output y(k)i that would be provided by the desired separator.
Obviously, s̃(k)i is statistically independent of s(l)i (l = 1, . . . , K).

Later analyses will evaluate such a statistical expectation as E
(
‖yi‖αy(k)2i

)
.

For the desired separator, E
(
‖yi‖αy(k)2i

)
becomes E

(
‖si‖αs(k)2i

)
be-

cause of their statistical independence. If some permutation occurs
and sources s(m1)

i , . . . , s(mL)
i in yi are replaced by s̃(m1)

i , . . . , s̃(mL)
i , then

we will have

E
(
‖yi‖αy(k)2i

)
=






E
(
‖yi‖α s̃(k)2i

)
for k = m1, . . . , mL,

E
(
‖yi‖αs(k)2i

)
for k += m1, . . . , mL,

(4.11)

where

‖yi‖ =

(

∑
l +=m1,...,mL

s(l)2i + ∑
l=m1,...,mL

s̃(l)2i

) 1
2

.

In this chapter, we only consider the case where the number L of the
permuted entries is very small compared to the dimension K of the
source vectors. Then, the contribution of s̃(m1)

i , . . . , s̃(mL)
i to ‖yi‖ is very
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small and hence ‖yi‖ is almost equal to ‖si‖. Thus, Eq. (4.11) can be
approximated as

E
(
‖yi‖αy(k)2i

)
=






E (‖si‖α) E
(

s̃(k)2i

)
for k = m1, . . . , mL,

E
(
‖si‖αs(k)2i

)
for k += m1, . . . , mL.

(4.12)

This kind of approximation will be made repeatedly throughout this
chapter.

4.2.3 Function for evaluating independence among the sources

Let a prior pdf of source si be q (u) = q
(

u(1), . . . , u(K)
)

, where u
is dummy vector; although, in general, q (u) should be written as
qsi (u), we omit the subscript for the sake of simplicity of notation
and also because a common model is usually used for all sources
in actual applications. On the other hand, let the actual pdf of y be
py (u1, . . . , uN). A most popular approach to find the desired separator
is to minimize the Kullback-Leibler divergence between py (u1, . . . , uN)
and ΠN

i=1q (ui), which is

Q (W) =
ˆ

RNK
py (u1, . . . , uN) log

py (u1, . . . , uN)

ΠN
i=1q(ui)

du1 . . . duN

= − log |det W|+
N

∑
i=1

E (− log q(yi)) + const.
(4.13)

The choice of a prior pdf depends on the prior knowledge about the
nature of sources of interest (e.g., non-Gaussianity). While ICA usually
consider only the non-Gaussianity of sources, IVA must consider not
only the non-Gaussianity of sources but also the inner dependency
of vectors. Some researches observed that speech has the property of
spherically invariance, and then they introduced spherically invari-
ant random process for band-limited speech [12, 13]. The frequency
components models of speech that have been used in IVA have similar
property, i.e., spherically symmetric [35, 41]. In this thesis, we adopt
spherically-symmertic, generalized-Gaussian model:

q (u) = α · exp
(
− 1

β
‖u‖β

)
(0 < β < 2) , (4.14)

where α is a normalization term. The restriction of 0 < β < 2 comes
from the fact that we are solely interested in separation of the so-
called super-Gaussian signals such as speech signals. For sub-Gaussian
signals the spherical function might not be appropriate, but the issue
is beyond the scope of this thesis.

For better understanding of the property of spherically symmet-
ric, the density and contour plots of two-dimensional spherically-
symmetric, generalized Gaussian model and independent Laplace
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Figure 6: Two-dimensional density plot and the contour plot of spherically-
symmetric, generalized-Gaussian model and independent Laplace
distribution. Top: two-dimensional density and contour plots of
spherically-symmetric, generalized-Gaussian model (β = 1). If
β = 1, the model is known as spherically symmetric Laplace (SSL)
distribution [22]. Bottom: two-dimensional density and contour
plots of independent Laplace distribution.

distribtuion are illustrated in Fig. 6. The variance of each marginal
density is set to be one.

If the model q (u) is appropriately chosen, then minimization of
function Q (W) will provides a desired separator Wopt. For any form
of q (u), Wopt is a stationary point of Q (W). Therefore, what we have
to do is to derive some conditions for β so that the second-order
differential d2Q

(
Wopt

)
be positive definite; the condition depends

on the pdf of the source vectors, of course. On the other hand, we
will also investigate instability of a permuted separator W̃. We can
show that W̃ is also a stationary point of Q (W). Hence, in order to
prevent the undesirable permutation, we need to determine β such
that d2Q

(
W̃

)
be not positive definite. The main objective is to prove

the following proposition:

Proposition 3. if q (u) or β is chosen such that the desired separator can
be obtained by minimizing Q (W), then any permuted separator cannot be a
local minimum of Q (W).
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This proposition shows the effectiveness of the IVA approach in a
definite manner.

4.2.4 First and second-order differentials of − log q (yi)

In later analyses we will need the first and second-order differentials
of − log q (yi). They are

− d log q (yi) = dy'
i

1
q (yi)

∂q
∂yi

(yi) = dy'
i ϕ (yi) , (4.15)

and
−d2 log q (yi) = d2y'

i ϕ (yi) + dy'
i

∂ϕ

∂y'
i
(yi) dyi

= d2y'
i ϕ (yi) + dy'

i Ψ (yi) dyi.
(4.16)

The differentials are induced by the perturbation dW of W. We put
dV =

[
dVij

]
= dWW−1, where dVij = diag{dv(1)ij , . . . , dv(K)ij }. Then,

dyi and d2yi are expressed as

dyi =
N

∑
j=1

dVijyj

and

d2yi =
N

∑
j=1

N

∑
k=1

dVijdVjkyk,

respectively. Substituting them into (4.15) and (4.16) leads to

− d log q (yi) =
N

∑
j=1

y'
j dVijϕ (yi) , (4.17)

and

−d2 log q (yi) =
N

∑
k=1

N

∑
j=1

y'
k dVjkdVijϕ (yi)

+
N

∑
j=1

N

∑
k=1

y'
j dVijΨ (yi) dVikyk.

(4.18)

Here we introduce another expression of the above equations, which
will be useful when evaluating their expectation. Corresponding to
vectors yi, ϕ (yi) and diagonal matrix dVij, define diagonal matrices
Yi = diag

{
y(1)i , . . . , y(K)i

}
, Φ (yi) = diag

{
ϕ(1) (yi) , . . . , ϕ(K) (yi)

}
and

vector dvij =
[
dv(1)ij , . . . , dv(K)ij

]'
, then we have dVijyj = Yjdvij. Equa-

tions (4.17) and (4.18) can then be rewritten as

− d log q (yi) =
N

∑
j=1

dv'
ij Yjϕ (yi) (4.19)
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and

−d2 log q (yi) =
N

∑
k=1

N

∑
j=1

dv'
jkYkΦ (yi) dvij

+
N

∑
j=1

N

∑
k=1

dv'
ij YjΨ (yi)Ykdvik.

(4.20)

The key point of the above rewriting from (4.17) and (4.18) to (4.19) and
(4.20) is that, while the random variables are separated by dVij in the
former expression, they are aggregated in the latter expression. This
rewriting will enable an easier expectation calculation of a product of
some random variables.

4.3 stability analyses of the desired separator

4.3.1 The first-order differential of Q (W) at W = Wopt

The differential of the first term in the right-hand side of (4.13) proves
to be

−d log |det W| = −trdWW−1 = trdV

= −
N

∑
i=1

trdVii = −
N

∑
i=1

dv'
ii e,

(4.21)

where e = [1, . . . , 1]'. Obviously the second-order differential of
− log |det W| with respect to dV vanishes.

According to Eq. (4.19), the first-order differential of the second
term of (4.13) is

dE (− log q (yi)) =
N

∑
j=1

dv'
ij E

(
Yjϕ (yi)

)
. (4.22)

When W = Wopt, i.e., yi = si and hence Yi = Si " diag
{

s(1)i , . . . , s(K)i

}
,

the above-mentioned equation becomes

dE (− log q (yi)) = dv'
ii E (Siϕ (si)) . (4.23)

In the above derivation we have used relation E
(
Sjϕ (si)

)
= E

(
Sj
)

E (ϕ (si)) =
0 (j += i), where 0 stands for the zero column vector; this kind of expla-
nation associated with independence among s1, . . . , sN will be omitted
hereafter. Thus, combining (4.21) and (4.23) leads to the first-order
total differential of Q (W) at Wopt:

dQ
(
Wopt

)
=

N

∑
i=1

dv'
ii {E (Siϕ (si))− e}

=
N

∑
i=1

K

∑
k=1

dv(k)ii

{
E
(

ϕ (si) s(k)i

)
− 1

}
.

(4.24)
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The fact that dQ
(
Wopt

)
= 0 is for any values of dv(k)ii implies that

the desired separator obtained by minimizing Q (W) determines the
scaling of the source signals as

E
(

ϕ(k) (si) s(k)i

)
= 1 (i = 1, . . . , N; k = 1, . . . , K) (4.25)

or equivalently

E (Φ (si) Si) = I (i = 1, . . . , N) . (4.26)

There are important equations which will be used repeatedly.

4.3.2 The second-order differential of Q (W) at W = Wopt

The expectation of d2 (− log q (yi)) is

d2E (− log q (yi)) =
N

∑
j=1

N

∑
k=1

dv'
ij E

(
YjΨ (yi)Yk

)
dvik

+
N

∑
j=1

N

∑
k=1

dv'
jkE (YkΦ (yi)) dvij,

(4.27)

and when W = Wopt or yi = si (i.e., Yi = Si), it is

d2E (− log q (yi)) =
N

∑
j=1

{
dv'

ij E
(
SjΨ (si) Sj

)
dvij + dv'

ji dvij

}

=
N

∑
j=1

{
dv'

ij E
(

Ψ (si)!
(

sjs'j
))

dvij + dv'
ji dvij

}
,

(4.28)
where symbol ! stands for the Hadamard product. We derive the
above summation into terms with j += i and those with j = i:

N

∑
j=1
j +=i

{
dv'

ij E (Ψ (si))! E
(

sjs'j
)

dvij + dv'
ji dvij

}
(4.29)

and
dv'

ii

{
I + E

(
Ψ (si)!

(
sis'i

))}
dvii. (4.30)

Combining (4.29) and (4.30) and summing them with respect to i, we
obtain

d2Q
(
Wopt

)
=

N

∑
i=1

N

∑
j=1
j +=i

{
dv'

ij Γijdvij + dv'
ji dvij

}

+
N

∑
i=1

dv'
ii {I + Mi} dvii,

(4.31)

where

Γij "
[
γ(k,l)

ij

]
= E (Ψ (si))! E

(
sjs'j

)
, (4.32)

Mi " E
(

Ψ (si)!
(

sis'i
))

. (4.33)
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Equation (4.31) implies that d2Q
(
Wopt

)
can be decomposed into

N (N + 1) /2 independent sets of quadratic forms composed of two
or one vector: N (N − 1) /2 sets which each comprises a pair of dvij
and dvji (i += j), and N sets which each involves dvii.

4.3.3 Stability of the desired separator

In order to obtain the desired separator Wopt by minimizing Q (W),
the second-order differential d2Q (W) must be positive definite at
Wopt. A necessary and sufficient condition for that is

(A) Matrix

[
Γij I
I Γji

]
is positive definite for every pair of i and

j ( += i), and

(B) matrix I + Mi is positive definite for every i.

We refer to this pair of conditions as the stability condition for the
desired separator.

We here also describe a necessary condition for the stability, which
will play an important role in the instability analysis for a permuted sep-
arator. From (4.31), we extract three terms associated with dv(k)ij dv(k)ji ,

dv(k)2ij and dv(k)2ji (i += j):

γ(k,k)
ij dv(k)2ij + 2dv(k)ij dv(k)ji + γ(k,k)

ji dv(k)2ji

= E
(

ψ(k,k) (si)
)

E
(

s(k)2j

)
dv(k)2ij + 2dv(k)ij dv(k)ji

+ E
(

ψ(k,k) (sj
))

E
(

s(k)2i

)
dv(k)2ji .

(4.34)

In order for d2Q
(
Wopt

)
to be positive definite, the above quadratic

form must be positive definite. Thus, we obtain a necessary condition
for the stability:

(A1) ζ(
k,k)

i > 0 and ζ(
k,k)

i σ(k)2
i · ζ(

k,k)
j σ(k)2

j > 1 for every i, j ( += i) and k,
where

ζ(
k,k)

i " E
(

ψ(k,k) (si)
)

, (4.35)

σ(k)2
i " E

(
s(k)2i

)
. (4.36)

Since q (u) is spherically symmetric generalized Gaussian model,
ϕ (yi) and Ψ (yi) become

ϕ(yi) = yi‖yi‖β2 , (4.37)
Ψ (yi) = ‖yi‖β2 I + ‖yi‖β4 yiy'

i , (4.38)
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where β2 " β − 2 and β4 " β − 4. Hence, we have

ζ(
k,k)

i = E
(
‖si‖β2

)
+ E

(
‖si‖β4 s(k)2i

)

=




1 +
E
(
‖si‖β4 s(k)2i

)

E
(
‖si‖β2

)




 E
(
‖si‖

β2
2

)
,

(4.39)

Hence, a necessary condition for the stability can be rewritten as

(A2) η(k)
i > 0 and η(k)

i ξ(
k)

i · η(k)
j ξ(

k)
j > 1 for every i, j( += i) and k, where

η(k)
i " 1 + β2

E
(
‖si‖β4 s(k)2i

)

E
(
‖si‖β2

) , (4.40)

ξ(
k)

i " E
(
‖si‖β2

)
E
(

s(k)2i

)
. (4.41)

Index ξ(
k)

i can be rewritten as

ξ(
k)

i =
E
(
‖si‖β2

)
E
(

s(k)2i

)

E
(
‖si‖β2 s(k)2i

) , (4.42)

because
E
(
‖si‖β2 s(k)2i

)
= 1 (4.43)

holds due to E
(

ϕ(k) (si) s(k)i

)
= 1. ξ(

k)
i represented in the above form

is scale-invariant in the sense that its value does not change if vector si

is arbitrarily scaled. Since η(k)
i defined by (4.40) is also scale-invariant,

condition (A2) with (4.40) and (4.42) (not (4.41)) is scale-invariant.
Note that parameters η(k)

i and ξ(
k)

i (k = 1, . . . , K) are determined
independently of other sources than si.

According to definition (4.40), inequality η(k)
i < 1 holds, because

β2 < 0. Combining this and condition (A2), we have

0 < η(k)
i < 1 (i = 1, . . . , N; k = 1, . . . , K). (4.44)

Also note that, since (A2) must be satisfied for every pair of i and
j( += i), inequality

η(k)
i ξ(

k)
i > 1 (4.45)

must hold at least for N − 1 components in s(k)1 , . . . , s(k)N ; in other
words, the opposite inequality η(k)

i ξ(
k)

i ≤ 1 is allowed only for one of
them. Inequalities (4.44) and (4.45) will play an important role in the
instability analysis for permuted separators.
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4.3.4 Uncorrelatedness of each source vector

If, moreover, s(1)1 , . . . , s(K)N are uncorrelated with each other, i.e.,

E
(

sis'i
)
= E

(
S2

i
)

, (4.46)

then condition (A1) with (B) becomes also a sufficient condition for the
stability, as shown below. In this case, Γij becomes a diagonal matrix
as

Γij = E (Ψ (si))! E
(

S2
j

)

=diag
{

ζ(
1,1)

i , . . . , ζ(
K,K)

i

}
E
(

S2
j

)

= diag
{

ζ(
1,1)

i σ(1)2
j , . . . , ζ(

K,K)
i σ(K)2

j

}
.

(4.47)

Note that E
(

S2
j

)
is a diagonal matrix and ! denotes the Hadamard

product; only the diagonal part of E (Ψ (si)) is therefore significant.
Thus, we have

d2Q
(
Wopt

)
=

N

∑
i=1

∑
j +=i

dv'
ij diag

{
ζ(

1,1)
i σ(1)2

j , . . . , ζ(
K,K)

i σ(K)2
j

}
dvij

+
N

∑
i=1

∑
j +=i

dv'
ji dvij +

N

∑
i=1

dv'
ii {IK + Mi} dvii.

(4.48)

Since diag
{

ζ(
1,1)

i σ(1)2
j , . . . , ζ(

K,K)
i σ(K)2

j

}
is diagonal, we can easily ob-

tain a necessary and sufficient condition for stability, which is (A1)
together with (B).

Although the uncorrelatedness among the source components ap-
pears to be a rather strong assumption, it is quite valid in the case of
frequency-domain signal separation of stationary sources, in which
each sound is treated as a set of uncorrelated frequency components
[52]. However, instability of permuted separators will provide without
the assumption of uncorrelatedness.

4.3.5 Evenness among the components in each source

In usual ICA (i.e. the case of K = 1), whether an algorithm adopted
works well or not depends crucially on the degree of non-Gaussianity
of the sources. In IVA (i.e. the case of K ≥ 2), there arises another
important aspect that should be considered: a certain uniformity
among the components in each source. We write the joint pdf of
s(1)2i , . . . s(K)2i as ps2

i

(
u(1), . . . , u(K)

)
. If function ps2

i
is invariant to any

permutation of the arguments, then we say that source si is evenly
distributed.

Note that, in our framework, the evenness among s(1)2i , . . . s(K)2i
should be defined for a vector whose components are normalized
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as E
(
‖si‖β2 s(k)2i

)
= 1 (or E

(
ϕ(k) (si) s(k)i

)
= 1). Under the evenness

condition, we have

E
(

s(k)2i

)
=

E
(
‖si‖2)

K
, (4.49)

E
(
‖si‖β4 s(k)2i

)
=

E
(
‖si‖β2

)

K
(4.50)

for every k, because ∑K
k=1 E

(
s(k)2i

)
= E

(
‖si‖2) and ∑K

k=1 E
(
‖si‖β4 s(k)2i

)
=

E
(
‖si‖β2

)
. Note that evenness does not require that the source vector

be spherically distributed.
For evenly distributed sources, the stability condition derived in

the last subsection can be expressed in a considerably simple form.
Indices η(k)

i and ξ(
k)

i are then

η = 1 +
β

K
, (4.51)

ξi =
E
(
‖si‖β2

)
E
(
‖si‖2)

E
(
‖si‖β

) . (4.52)

Since −2 < β2 < 0 and K ≥ 2, index η takes a value between 0 and 1.
Stability condition (A2) thus reduces to

(A3) η2ξiξ j > 1 for every pair of i and j ( += i).

Here, we define the inverse of ηξi:

κi "
1

ηξi
=

E
(
‖si‖β

)
(

1 + β2
K

)
E
(
‖si‖β2

)
E (‖si‖2)

. (4.53)

Then, (A3) is rewritten as

(A4) κiκj < 1 for every pair of i and j ( += i).

If source si is Gaussian, then index κi takes the value of unity (see
below). It can be considered a measure of non-Gaussianity of a source:
a generalized kurtosis of a random vector.

Next, let us investigate condition (B): positive definiteness of I + Mi.
Since q (u) is given as (4.14), Mi becomes

Mi = I + β2E
(
‖si‖β4

(
sis'i

)
!

(
sis'i

))
. (4.54)

Define

Ci = E
(
‖si‖β4

(
sis'i

)
!

(
sis'i

))
=

[
E
(
‖si‖β4 s(k)2i s(l)2i

) ]
. (4.55)
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It is easy to show that Cie = e holds, implying that an eigenvalue of
Ci is 1. Under the evenness condition, we can moreover show that the
maximum eigenvalues Ci is 1, because Ci takes a simple form as

Ci =





1 − (K − 1) c c · · · c

c 1 − (K − 1) c . . . ...
... . . . . . . c
c · · · c 1 − (K − 1) c




. (4.56)

The minimum eigenvalue of I + Mi = 2I + β2Ci is therefore 2 + β2 =
β (> 0) and hence I + Mi proves to be positive definite. This implies
that, if every source vector is evenly distributed, condition (B) holds
automatically and hence it is unnecessary.

The target model q (u) dealt with in this thesis is spherical and
hence even. Because it is difficult to know the distribution of a source
vector beforehand, we usually have no choice but to adopt an evenly
distributed model for q (u). The degree of evenness of each source is
therefore very important. If the distribution deviates far from evenness,
it might become impossible to choose β so as to satisfy the stability
condition.

Let us again investigate positive definiteness of I + Mi, but without
the assumption of evenness. The maximum eigenvalue of Ci can be
evaluated by

max
‖x‖=1

x'Cix = max
‖x‖=1

E
(
‖si‖β4 s(k)2i s(l)2i

)
xkxl . (4.57)

The summation in the right-hand side of (4.57) can be written as

K

∑
k=1

K

∑
l=1

‖si‖β4 s(k)2i s(l)2i xkxl =

(
K

∑
k=1

‖si‖−2s(k)2i xk

)(
K

∑
l=1

‖si‖β2 s(l)2i xl

)
.

Since
∣∣ ∑K

k=1 ‖si‖−2s(k)2i xk
∣∣ ≤ maxK

k=1 |xk|, we have

K

∑
k=1

K

∑
l=1

E
(
‖si‖β4 s(k)2i s(l)2i

)
xkxl ≤ E

(∣∣∣∣∣

K

∑
k=1

‖si‖−2s(k)2i xk

∣∣∣∣∣

∣∣∣∣∣

K

∑
l=1

‖si‖β2 s(l)2i xl

∣∣∣∣∣

)

≤ E

((
K

max
k=1

|xk|
)(∣∣∣∣∣

K

∑
l=1

‖si‖β2 s(l)2i xl

∣∣∣∣∣

))
=

(
K

max
k=1

|xk|
(

K

∑
l=1

|xl |
))

.

Hence, we obtain

max
‖x‖=1

xTCix ≤ max
‖x‖=1

{(
K

max
k=1

|xk|
)(

K

∑
l=1

|xl |
)}

=
1 +

√
K

2
. (4.58)

A proof of the equality in (4.58) is given in the Appendix. Thus, what
we can say (at present) is only that the eigenvalues of I + Mi is not
smaller than 2 − (2 − β) 1+

√
K

2 , which may take a negative value for
large K. This result seems to suggest that parameter β should be
sufficiently close to 2 for safety.
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4.4 instability analyses of permuted separators

4.4.1 Stationary condition for the permuted separator

Let us investigate what will happen for the permuted separator W̃.
Let the permuted components in yi be y(k)i (k = m1, . . . , mL): i.e.,
y(k)i = s̃(k)i (k = m1, . . . , mL). Then, (4.22) together with spherically
symmetric generalized Gaussian model leads

dE (− log q (yi)) = ∑
k=m1,...,mL

dv(k)ii E
(
‖si‖β2

)
E
(

s̃(k)2i

)

+ ∑
k +=m1,...,mL

dv(k)ii E
(
‖si‖β2 s(k)2i

)
.

(4.59)

Here we have used the approximation ‖yi‖ ≈ ‖si‖. In the above
equation, which components are permuted (i.e., m1, . . . , mL) depends
on i. Combining the above equation and (4.21), we obtain

dQ
(
W̃

)
=

N

∑
i=1

{

∑
k +=m1,...,mL

dv(k)ii

(
E
(
‖si‖β2 s(k)2i

)
− 1

)

+ ∑
k=m1,...,mL

dv(k)ii

(
E
(
‖si‖β2

)
E
(

s̃(k)2i

)
− 1

)}
.

(4.60)

Thus, we find that s̃(k)i is scaled as

E
(

s̃(k)2i

)
= E

(
‖si‖β2

)−1
(k = m1, . . . , mL) . (4.61)

This is a most important equation in this section.
In the next subsection, we need to evaluate expectations E

(
‖sj‖β2 s̃(k)2i

)

and E
(
‖sj‖β4 s̃(k)2i

)
in which s̃(k)i is originated from source sj and hence

s̃(k)2i is correlated with ‖sj‖β2 and ‖sj‖β4 . Consider s̃(k)i = as(k)j , then
we have

a2 =
E
(

s̃(k)2i

)

E
(

s(k)2j

) =
1

E
(
‖si‖β2

)
E
(

s(k)2j

) ,

and hence

s̃(k)i =
s(k)j√

E
(
‖si‖β2

)
E
(

s(k)2j

) . (4.62)

By substituting (4.62) into E
(
‖sj‖β2 s̃(k)2i

)
and E

(
‖sj‖β4 s̃(k)2i

)
, we ob-

tain

E
(
‖sj‖β2 s̃(k)2i

)
=

1

E
(
‖si‖β2

)
E
(

s(k)2j

) , (4.63)

E
(
‖sj‖β4 s̃(k)2i

)
=

E
(
‖sj‖β4 s(k)2j

)

E
(
‖si‖β2

)
E
(

s(k)2j

) . (4.64)
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The key point of these equations, including (4.61), is that such an
expectation as E

(
‖sj‖β2 s̃(k)2i

)
can be expressed by other expectations

not including s̃(k)i .

4.4.2 Instability of the permuted separator

We now show that the permuted separator cannot be a local minimum
of Q. The outline of the proof is as follows. When permutation occurs
among y(k)1 , . . . , y(k)N , a cyclic permutation is included such as s̃(k)i1 ∝

s(k)i2 , s̃(k)i2 ∝ s(k)i3 , . . . , s̃(k)iM
∝ s(k)i1 (M ≥ 2). Out of d2Q

(
W̃

)
= · · · +

d2E (− log q(yi1)) · · ·+ d2E (− log q(yi2)) · · · , we pick three terms of
dv(k)i1i2 dv(k)i2i1 , dv(k)2i1i2 , and dv(k)2i2i1 :

{
E
(
‖yi1‖

β2 y(k)2i1

)
+ E

(
‖yi2‖β2 y(k)2i2

)}
dv(k)i1i2 dv(k)i2i1

+ E
(
‖yi1‖

β2 y(k)2i2 + β2‖yi1‖
β4 y(k)2i1 y(k)2i2

)
dv(k)2i1i2

+ E
(
‖yi2‖β2 y(k)2i1 + β2‖yi2‖β4 y(k)2i2 y(k)2i1

)
dv(k)2i2i1 .

(4.65)

Then, we prove that this small quadratic form cannot be positive semi-
definite if stability condition (A2) for the desired separator is satisfied.
This implies that d2Q

(
W̃

)
cannot be positive semi-definite and hence

the separator cannot be a (local) minimum of Q (W).
The quadratic form with respect to dv(k)i1i2 , and dv(k)i2i1 can take two

different forms, depending on the length of the cycle: the case of
M = 2 and the case of M ≥ 3. Below, for simplicity of notation, we
write i1 and i2 as i and j, respectively.

4.4.2.1 The case of M = 2

y(k)i = s̃(k)i ∝ s(k)j and y(k)j = s̃(k)j ∝ s(k)i , i.e., permutation occurs

between y(k)i and y(k)j . The quadratic form related to dv(k)ij and dv(k)ji
then becomes

{
E
(
‖si‖β2

)
E
(

s̃(k)2i

)
+ E

(
‖sj‖β2

)
E
(

s̃(k)2j

)}
dv(k)ij dv(k)ji

+
{

E
(
‖si‖β2 s̃(k)2j

)
+ β2E

(
‖si‖β4 s̃(k)2j

)
E
(

s̃(k)2i

)}
dv(k)2ij

+
{

E
(
‖sj‖β2 s̃(k)2i

)
+ β2E

(
‖sj‖β4 s̃(k)2i

)
E
(

s̃(k)2j

)}
dv(k)2ji .

(4.66)
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Note that s̃(k)2j is correlated with ‖si‖β2 and ‖si‖β4 , but s̃(k)2i is not.
Substituting (4.61), (4.63), and (4.64) into this, we obtain

2dv(k)ji dv(k)ij

+





1

E
(
‖sj‖β2

)
E
(

s(k)2i

) + β2

E
(
‖si‖β4 s(k)2i

)

E
(
‖sj‖β2

)
E
(

s(k)2i

)
E
(
‖si‖β2

)




 dv(k)2ij

+





1

E
(
‖si‖β2

)
E
(

s(k)2j

) + β2

E
(
‖sj‖β4 s(k)2j

)

E
(
‖si‖β2

)
E
(

s(k)2j

)
E
(
‖sj‖β2

)




 dv(k)2ji

= 2dv(k)ji dv(k)ij +
η(k)

i

E
(
‖sj‖β2

)
E
(

s(k)2i

)dv(k)2ij +
η(k)

j

E
(
‖si‖β2

)
E
(

s(k)2j

)dv(k)2ji .

(4.67)

A sufficient condition for the above expression not to be positive
semi-definite is

η(k)
i

E
(
‖sj‖β2

)
E
(

s(k)2i

)
η(k)

j

E
(
‖si‖β2

)
E
(

s(k)2j

) < 1

or

η(k)
i η(k)

j

ξ(
k)

i ξ(
k)

j

< 1. (4.68)

This inequality is automatically satisfied under the stability condition
(A2), because

η(k)
i η(k)

j

ξ(
k)

i ξ(
k)

j

=
η(k)2

i η(k)2
j(

η(k)
i ξ(

k)
i · η(k)

j ξ(
k)

j

) < η(k)2
i η(k)2

j < 1.

4.4.2.2 The case of M ≥ 3

y(k)i = s̃(k)i ∝ s(k)j and y(k)j = s̃(k)j ∝ s(k)m (m += i, j). In this case, s̃(k)j is
not only independent of sj, but also of si. As was described under
Eq. (4.45), we may assume η(k)

j ξ(
k)

j > 1 without loss of generality. The

quadratic form related with dv(k)ij and dv(k)ji is then

{
E
(
‖si‖β2

)
E
(

s̃(k)2i

)
+ E

(
‖sj‖β2

)
E
(

s̃(k)2j

)}
dv(k)ij dv(k)ji

+
{

E
(
‖si‖β2

)
E
(

s̃(k)2j

)
+ β2E

(
‖si‖β4

)
E
(

s̃(k)2j

)
E
(

s̃(k)2i

)}
dv(k)2ij

+
{

E
(
‖sj‖β2 s̃(k)2i

)
+ β2E

(
‖sj‖β4 s̃(k)2i

)
E
(

s̃(k)2j

)}
dv(k)2ji .

(4.69)
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Substituting (4.61), (4.63), and (4.64) into this, we obtain

2dv(k)ji dv(k)ij +

{
E
(
‖si‖β2

)

E
(
‖sj‖β2

) + β2
E
(
‖si‖β4

)

E
(
‖sj‖β2

)
E
(
‖si‖β2

)
}

dv(k)2ij

+





1

E
(
‖si‖β2

)
E
(

s(k)2j

) + β2

E
(
‖sj‖β4 s(k)2j

)

E
(
‖si‖β2

)
E
(

s(k)2j

)
E
(
‖sj‖β2

)




 dv(k)2ji

(4.70)

A sufficient condition so that the above quadratic form be not positive
semi-definite is
{

1 + β2
E
(
‖si‖β4

)

E
(
‖si‖β2

)2

}
1

E
(
‖sj‖β2

)
E
(

s(k)2j

)




1 + β2

E
(
‖sj‖β4 s(k)2j

)

E
(
‖sj‖β2

)




 < 1

or
{

1 + β2
E
(
‖si‖β4

)

E
(
‖si‖β2

)2

}
η(k)

j

ξ(
k)

j

< 1, (4.71)

where
{

E
(
‖si‖β2

)

E
(
‖sj‖β2

) + β2
E
(
‖si‖β4

)

E
(
‖sj‖β2

)
E
(
‖si‖β2

)
}

×





1

E
(
‖si‖β2

)
E
(

s(k)2j

) + β2

E
(
‖sj‖β4 s(k)2j

)

E
(
‖si‖β2

)
E
(

s(k)2j

)
E
(
‖sj‖β2

)






=

{
1 + β2

E
(
‖si‖β4

)

E
(
‖si‖β2

)2

}


1 + β2

E
(
‖sj‖β4 s(k)2j

)

E
(
‖sj‖β2

)






×
E
(
‖si‖β2

)

E
(
‖sj‖β2

) 1

E
(
‖si‖β2

)
E
(

s(k)2j

)

=

{
1 + β2

E
(
‖si‖β4

)

E
(
‖si‖β2

)2

}
1

E
(
‖sj‖β2

)
E
(

s(k)2j

)




1 + β2

E
(
‖sj‖β4 s(k)2j

)

E
(
‖sj‖β2

)




 .

Since

1 + β2
E
(
‖si‖β4

)

E
(
‖si‖β2

)2 < 1

and

0 <
η(k)

j

ξ(
k)

j

=
η(k)2

j(
η(k)

j ξ(
k)

j

) < η(k)2
j < 1

hold under the stability condition (A1) and condition of (4.44), the
above inequality is satisfied as a necessity.
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Example. In order to confirm the validity of the result, let us con-
sider an example. Two independent, K-dimensional vector signals are
generated by the spherically symmetric Laplace distribution such that

p (si) =
1

2αKπ
K
2

Γ
(K

2
)

Γ (K)
exp

{
−‖si‖

α

}
(i = 1, 2) , (4.72)

where α stands for the scale parameter, and Γ (·) denotes the Gamma
function. The output vectors are obtained through the overall matrix

y =

[
y1

y2

]
= WA

[
s1

s2

]
= Gs, (4.73)

where si =
[
s(1)i , . . . s(K)i

]T
, and yi =

[
y(1)i , . . . , y(K)i

]T
.

Let us consider the case that the overall matrix G takes the form of

G =





cos θ 0 · · · 0 − sin θ 0 · · · 0

0 1 . . . ... 0 0 . . . ...
... . . . . . . 0

... . . . . . . 0
0 · · · 0 1 0 · · · 0 0

sin θ 0 · · · 0 cos θ 0 · · · 0

0 0 . . . ... 0 1 . . . ...
... . . . . . . 0

... . . . . . . 0
0 · · · 0 0 0 · · · 0 1





, (4.74)

where angle θ varies from −π to π. That implies that separation is
completely achieved only when θ = 0, and permutation between y(1)1

and y(1)2 when θ = ±π/2 is considered.
For the prior pdf of the sources, we adopted a spherically-symmetric,

generalized-Gaussian model:

q (u) =
1

2π
K
2

Γ
(K

2
)

Γ
(

K
β

)β− K
β +1 exp

{
−‖u‖β

β

}

(0 < β < 2) , (4.75)

where β denotes the shape parameter. The Kullback-Leibler divergence
given in (11), therefore, becomes

Q (G) =
1
β

2

∑
i=1

E
(
‖yi‖β

)
− 1

α

2

∑
i=1

E (‖si‖)

+ 2
{

log Γ
(

K
β

)
− log Γ (K) +

(
K
β
− 1

)
log β − K log α

}
.

(4.76)
The scaling of the sources is adjusted to coincide with E

(
‖si‖β

)
= K,

and hence the scale parameter α is given by

α =

(
Γ (K + 1)
Γ (K + β)

) 1
β

. (4.77)
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Figure 7: The Kullback-Leibler divergence Q as a function of angle θ with
different β. The number of components in each vector was 128, i.e.,
K = 128. For sample average, 100000 samples were used. When β
was less than 2.0, the minimum of Q clearly lay at θ = 0. When β
exceeded 2.0, the minima of Q lay at −π/2 and π/2.

These expectations were computed as the sample average, i.e.,

E
(
‖yi‖β

)
≈ 1

T

T

∑
t=1

‖yi (t)‖β and E (‖si‖) ≈
1
T

T

∑
t=1

‖si (t)‖ .

Figure 7 shows the Kullback-Leibler divergence Q as a function
of angle θ in the case of K = 128 and T = 100000 with different β.
When β was less than 2.0, any permuted solution never became a
local minimum of the function. When, however, β exceeded two, the
permuted solution became a local minimum. Since the same pdf is
used for generating s1 (t) and s2 (t), the stability condition (A3) is
reduced to β < 2.0. That implies that the optimal solution is always a
local minimum of Q if β is less than 2.0.

4.5 separation of complex-valued source vectors

4.5.1 Complex-valued sources and the demixing process

An important application of IVA is one to sound signal separation,
where the observed data are decomposed into a number of sets of
frequency components and some ICA algorithm is applied to each
set of components with the same frequency. In this approach the



52 stability on independent vector analysis

frequency components of the observed signals are complex-valued. In
this section we roughly describe IVA for complex-valued sources.

There are two approaches to handle a real-valued function of a
complex variable. One is to replace every complex number with its
real and imaginary parts, and then deal with a real-valued function
of two real variables. The other is to use the Wirtinger calculus, in
which a complex variable and its complex conjugate can be treated
independently as described in Chap. 2. Since the latter one provides
a convenient form, the Wirtinger calculus is used to elucidate the
stability condition for the complex-valued IVA.

In the complex domain, the demixing process takes the form

yi + jy
j
=

N

∑
k=1

(
Wik + jWik

)
(xk + jxk) (i = 1, . . . , N) (4.78)

Its equivalent expression is

yi,R =
N

∑
k=1

Wik,Rxk,R, (4.79)

where

xk,R =

[
xk

xk

]
, yi,R =

[
yi

y
i

]
, and Wij,R =

[
Wij −Wij

Wij Wij

]
;

matrices Wij and Wij are diagonal. The desired separator is obtained
by minimizing function

Q(WR) = − log |det WR|+
N

∑
i=1

E (− log q(yi,R)) + const, (4.80)

where the prior pdf q(uR) = q(u, u) = q(u(1), . . . , u(K), u(1), . . . , u(K))
for si,R is

q(u) = α exp
(
− 1

β
‖uR‖β

)
= α exp

{
− 1

β

(
‖u‖2 + ‖u‖2) β

2

}
. (4.81)

4.5.2 The first and second-order differentials of − log q(yi,C)

In the same way as the real-valued IVA, we can derive

− d log q(yi,R) =
N

∑
j=1

y'
j,RdV'

ij,Rϕ (yi,R) (4.82)

and

−d2 log q (yi,R) =
N

∑
k=1

N

∑
j=1

y'
k,RdV'

jk,RdV'
ij,Rϕ (yi,R)

+
N

∑
j=1

N

∑
k=1

y'
j,RdV'

ij,RΨ (yi,R) dVik,Ryk,R.

(4.83)
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where

dVij,R =

[
dVij −dVij

dVij dVij

]
,

ϕ (yi,R (t)) = −∂ log q (yi,R)
∂yi,R

,

Ψ (yi,R) =
∂2 log q (yi,R)

∂yi,R∂y'
i,R

.

As is described in Chap. 2, vectors yi,R, ϕ (yi,R) and matrices dVij,R,
Ψ (yi,R) can be transformed into the complex domain:

yi,C =

[
yi

y∗
i

]
=

[
I jI
I −jI

] [
yi

y
i

]
= Jyi,R,

ϕC (yi,C) =

[
ϕ (yi,C)

ϕ∗ (yi,C)

]
=



 − ∂ log q(yi,C)
∂yi

− ∂ log q(yi,C)
∂y∗

i



 =
1
2

J∗ϕ (yi,R)

and

dVij,C =

[
dVij O
O dV∗

ij

]
= JdVij,RJ−1,

ΨC (yi,C) =




− ∂2 log q(yi,C)

∂y∗
i ∂y'

i
− ∂2 log q(yi,C)

∂y∗
i ∂yH

i

− ∂2 log q(yi,C)
∂yi∂y'

i
− ∂2 log q(yi,C)

∂yi∂yH
i





=

[
Z (yi,C) H∗ (yi,C)

H (yi,C) Z∗ (yi,C)

]
=

1
2

JΨ (yi,R) J−1,

where

dVij =





dv(1)ij O
. . .

O dv(K)ij



 ∈ CK×K.

Note that matrix ΨC (yi,C) is Hermitian matrix. Using the above trans-
formations, −d log q (yi,R) and −d2 log q (yi,R) can be rewritten as

−d log q (yi,C) =
N

∑
j=1

y'
j,RJ'J−'dV'

ij,RJ'J−'ϕ (yi,R)

=
N

∑
j=1

y'
j,CdV'

ij,CϕC (yi,C)

=
N

∑
j=1

y'
j dVijϕ (yi,C) +

N

∑
j=1

yH
j dVH

ij ϕ∗ (yi,C)

(4.84)
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and

−d2 log q (yi,C) =
N

∑
k=1

N

∑
j=1

y'
k,CdV'

jk,CdV'
ij,CϕC (yi,C)

+
N

∑
j=1

N

∑
k=1

yH
j,CdVH

ij,CΨC (yi,R) dVik,Cyk,C.

(4.85)

Define

dvij =





dv(1)ij
...

dv(K)ij



 ∈ CK, Yj =





y(1)j O
. . .

O y(K)j



 ∈ CK×K,

and

Φ (yi,C) =





ϕ(1) (yi,C) O
. . .

O ϕ(K) (yi,C)



 ∈ CK×K.

Then, Eqs. (4.84) and (4.85) can be rewritten as

−d log q (yi,C) =
N

∑
j=1

dv'
ij Yjϕ (yi,C) +

N

∑
j=1

dvH
ij YH

j ϕ∗ (yi,C) (4.86)

and

−d2 log q (yi,C) =
N

∑
k=1

N

∑
j=1

dv'
jk,CYk,CΦC (yi,C) dvij,C

+
N

∑
j=1

N

∑
k=1

dvH
ij,CYH

j,CΨC (yi,C)Yk,Cdvik,C.

(4.87)

4.5.3 The first-order differential of Q(WC) at WC = WC,opt

The first-order differentials of the first and second terms of (4.80) at
WR = WR,opt are, respectively,

−d log |det WR| = −trdVR = −tr

[
dV −dV
dV dV

]
= −2

N

∑
i=1

trdVii

= −2
N

∑
i=1

K

∑
k=1

dv(k)ii = −
N

∑
i=1

K

∑
k=1

(
dv(k)ii + dv(k)∗ii

)

= −
N

∑
i=1

(
dv'

ii + dvH
ii

)
e,

(4.88)

dE (− log q (yi,C)) = dv'
ii E (Siϕ (si,C)) + dvH

ii E
(

SH
i ϕ∗ (si,C)

)
(4.89)

because

WC,opt =

[
Wopt O

O W∗
opt

]
= JWR,optJ−1.
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Thus, the first-order differential of Q (WR) at WR = WR,opt is

dQ
(
WR,opt

)
=

N

∑
i=1

dv'
ii {E (Siϕ (si,C))− e}

+
N

∑
i=1

dvH
ii

{
E
(

SH
i ϕ∗ (si,C)

)
− e

}

= 2
N

∑
i=1

Re
{
{E (Siϕ (si,C))− e}' dvii

}

= 2
N

∑
i=1

Re {〈E (S∗
i ϕ∗ (si,C))− e, dvii〉} ,

(4.90)

where 〈a, b〉 stands for the inner product of two vectors a and b.
From this we find that, when the desired separator is obtained as a
minimum of Q(W), the output yi = si is scaled as

E
(

ϕ(k)∗ (si, s∗i ) s(k)∗i

)
= 1 (i = 1, . . . , N; k = 1, . . . , K) (4.91)

or
E (Φ∗ (si, s∗i ) S∗

i ) = I (i = 1, . . . , N) . (4.92)

It should be noted that, E
(

ϕ(k) (si, s∗i ) s(k)i

)
= 1 (i = 1, . . . , N; k = 1, . . . , K)

is also a stationary point of Q (W).

4.5.4 The second-order differential of Q(WC) at WC = WC,opt

The second-order differential of E (− log q (yi,C)) for WC = WC,opt is

d2E (− log q (yi,C)) =
N

∑
j=1

dv'
ji,CE (Si,CΦC (si,C)) dvij,C

+
N

∑
j=1

dvH
ij,CE

(
SH

j,CΨC (si,C) Sj,C

)
dvij,C

=
N

∑
j=1

dv'
ji,Cdvij,C

+
N

∑
j=1

dvH
ij,CE

(
ΨC (si,C)!

(
s∗j,Cs'j,C

))
dvij,C.

(4.93)
Divide this summation into the terms with j += i and those with j = i:

∑
j +=i

{
dv'

ji,Cdvij,C + dvH
ij,CE (ΨC (si,C))! E

(
s∗j,Cs'j,C

)
dvij,C

}
(4.94)

and

dv'
ii,Cdvii,C + dvH

ii,CE
(

ΨC (si,C)!
(

s∗i,Cs'i,C
))

dvii,C (4.95)
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Thus, the second-order differential of Q (W) at WR = WR,opt is

d2Q
(
WR,opt

)
=

N

∑
i=1

dvH
ii,C {P + Mi,C} dvii,C

+
N

∑
i=1

∑
j +=i

dvH
ji,CPdvij,C + dvH

ij,CΓij,Cdvij,C,
(4.96)

where

P =

[
O I
I O

]
, (4.97)

Mi,C = E
(

ΨC (si,C)!
(

s∗i,Cs'i,C
))

, (4.98)

Γij,C =

[
Γij Υ∗

ij

Υij Γ∗
ij

]
= E (ΨC (si,R))! E

(
s∗j,Cs'j,C

)
. (4.99)

It should be noted that matrices Mi,C and Γij,C are Hermitian matrices.
This corresponds to (4.31) of the real-valued case.

4.6 stability conditions for the desired separator

We can write a necessary and sufficient condition for the above quadratic
form to be positive definite in the same way as (A) and (B) in subsec-
tion 4.3.3. A necessary and sufficient condition for that is

(A) Matrix

[
Γij,C P

P Γji,C

]
is positive definite for every pair of i and

j ( += i);

(B) Matrix P + Mi,C is positive definite for every i.

As in the case of the real-valued IVA, we also derive a necessary

condition for the stability. Picking out terms associated with
∣∣∣dv(k)ij

∣∣∣
2
,

∣∣∣dv(k)ji

∣∣∣
2
, dv(k)ij dv(k)ji and dv(k)∗ij dv(k)∗ji from (4.96) leads

2dv(k)ji dv(k)ij + 2dv(k)∗ji dv(k)∗ij

+
(

γ(k,k)
ij + γ(k,k)∗

ij

) ∣∣∣dv(k)ij

∣∣∣
2
+

(
γ(k,k)

ji + γ(k,k)∗
ji

) ∣∣∣dv(k)ji

∣∣∣
2

+ υ(k,k)
ij dv(k)2ij + υ(k,k)∗

ij dv(k)∗2
ij + υ(k,k)∗

ji dv(k)∗2
ji + υ(k,k)

ji dv(k)2ji

= 2dv(k)ji dv(k)ij + 2dv(k)∗ji dv(k)∗ij

+ 2ζ(
k,k)

i σ(k,k)
j

∣∣∣dv(k)ij

∣∣∣
2
+ 2ζ(

k,k)
j σ(k,k)

i

∣∣∣dv(k)ji

∣∣∣
2

+ ρ(
k,k)

i θ(
k,k)

j dv(k)2ij + ρ(
k,k)∗

i θ(
k,k)∗

j dv(k)∗2
ij

+ ρ(
k,k)

j θ(
k,k)

i dv(k)2ji + ρ(
k,k)∗

j θ(
k,k)∗

i dv(k)∗2
ji ,

(4.100)
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where

ζ(
k,k)

i = E

(
−∂2 log q (si,C)

∂s(k)∗i ∂s(k)i

)
,

σ(k,k)
j = E

(∣∣∣s(k)j

∣∣∣
2
)

,

ρ(
k,k)

i = E

(
−∂2 log q (si,C)

∂s(k)2i

)
,

θ(
k,k)

j = E
(

s(k)2j

)
.

The above quadratic form can be represented in a vector-matrix form
such that

[
dv(k)∗ij dv(k)ij dv(k)∗ji dv(k)ji

]
H(k,k)

ij





dv(k)ij

dv(k)∗ij

dv(k)ji

dv(k)∗ji




, (4.101)

where

H(k,k)
ij =



 H(k,k)
ij P

P H(k,k)
ji



 ,

H(k,k)
ij =



 ζ(
k,k)

i σ(k,k)
j ρ(

k,k)∗
i θ(

k,k)∗
j

ρ(
k,k)

i θ(
k,k)

j ζ(
k,k)

i σ(k,k)
j



 .

In order for d2Q
(
WC,opt

)
to be positive definite, the Hermitian matrix

H(k,k)
ij must be positive definite for every i, j ( += i) and k.
For any 2 × 2 matrix, two eigenvalues of the matrix are positive

if and only if both trace and determinant of the matrix are positive.
H(k,k)

ij is positive definite if and only if H(k,k)
ji and H(k,k)

ij are positive

definite and C(k,k)
ij = H(k,k)

ji − PH(k,k)−1
ij P (or C(k,k)

ji ) is positive definite.
Thus, we obtain a necessary condition for the stability:
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(A1) If d2Q
(
WC,opt

)
is positive definite, then the following inequali-

ties must hold for every i, j ( += i) and k:

ζ(
k,k)

i > 0, (4.102)

ζ(
k,k)2

i σ(k,k)2
j >

∣∣∣ρ(k,k)
i θ(

k,k)
j

∣∣∣
2

, (4.103)

ζ(
k,k)

j σ(k,k)
i −

ζ(
k,k)

i σ(k,k)
j

ζ(
k,k)2

i σ(k,k)2
j −

∣∣∣ρ(k,k)
i θ(

k,k)
j

∣∣∣
2 > 0, (4.104)

(
ζ(

k,k)2
i σ(k,k)2

j −
∣∣∣ρ(k,k)

i θ(
k,k)

j

∣∣∣
2
)

×
(

ζ(
k,k)2

j σ(k,k)2
i −

∣∣∣ρ(k,k)
j θ(

k,k)
i

∣∣∣
2
)
+ 1

− 2ζ(
k,k)

i ζ(
k,k)

j σ(k,k)
i σ(k,k)

j − 2Re
{

ρ(
k,k)

i ρ(
k,k)

j θ(
k,k)

i θ(
k,k)

j

}
> 0.

(4.105)

This condition does not seem to be so useful. Thus, we introduce some
assumptions.

Firstly, we assume circularity of s(k)i such that

θ(
k,k)

ii = E
(

s(k)2i

)
= 0 (i = 1, . . . , N; k = 1, . . . , N) . (4.106)

In the strict-sense, a complex random variable X = X + jX is circular,
if X and Xejα have the same density function, where α is arbitrary
angle [45, 63]. Incorporating this assumption, the necessary condition
(A1) can be further simplified down to

(A2) ζ(
k,k)

i > 0 and ζ(
k,k)

i ζ(
k,k)

j σ(k,k)
i σ(k,k)

j > 1 for every i, j ( += i) and k.

This is the same necessary condition in the case of the real-valued
case.

In addition to circularity, we introduce uncorrelatedness of each
source vector described in subsection 4.3.4:

E
(

s(k)i s(k)H
i

)
= E

(∣∣∣S(k)
i

∣∣∣
2
)
= diag

{
σ(1,1)

i , . . . , σ(K,K)
i

}
. (4.107)

The necessary condition (A2) together with (B) becomes a necessary
and sufficient condition for the stability under circularity and uncorre-
latedness. It is becauseΓij,C becomes a 2K × 2K diagonal matrix such
that

Γij,C =

[
Γij O
O Γij

]
= diag

{
γ(1,1)

ij , . . . , γ(K,K)
ij , γ(1,1)

ij , . . . , γ(K,K)
ij

}
,

and then large quadratic form can be decomposed into a set of small
quadratic forms. We can also discuss the instability of a permuted
separator, but we do not describe it because the derivation is essentially
the same as in the case of real-valued signals.
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4.7 summary

We have derived a necessary and sufficient condition for the desired
separator to be obtained by minimizing a measure representing the
difference between the prior source pdf and the actual output pdf
of the separator. Also we have proven that, if a desired separator
minimizes the measure, then any permuted separator never becomes
a local minimum. This remarkable property strongly supports the
validity of the IVA approach.

In addition we have investigated a necessary and sufficient condi-
tion under different assumptions such as uncorrelatedness, evenness
and complex-valued case. If the components within each source are
uncorrelated, a necessary condition (A1) together with (B) becomes
a necessary and sufficient condition for the desired separator. In the
case of evenly distributed sources, condition (B) holds as a necessity;
the stability condition takes a simple form. These assumptions, such
as uncorrelatedness and evenness of the source vector, are very im-
portant to realize a perfect separation by an IVA algorithm assuming
a spherically symmetric source prior. The stability condition for the
complex-valued IVA is essentially the same as the condition for the
real-valued IVA, under circularity of each source component and un-
correlatedness of each source vector. In this chapter, however, we have
not discussed at all the case that the sources are sub-Gaussian. This
case might require a quite different theoretical framework from that
of the present chapter.

appendix a. proof of equality in (4. 58)

Define pk " |xk| ≥ 0. Then,
(
maxK

k=1 |xk|
) (

∑K
k=1 |xk|

)
is written as

(
K

max
k=1

pk

)(
K

∑
k=1

pk

)
" f (p) = f (p1, . . . , pK) , (4.108)

where pk ≥ 0. Thus, we have

max
‖x‖=1

{(
K

max
k=1

|xk|
)(

K

∑
k=1

|xk|
)}

= max
∑K

k=1 p2
k=1

p1,...,pK≥0

f (p) . (4.109)

Let p∗ = [p∗1, . . . , p∗K] minimize f (p) with the constraints. Without
loss of generality, we can consider that maxK

k=1 p∗k = p∗1. Then, we have

max
∑K

k=1 p2
k=1

p1,...,pK≥0

f (p) = max
∑K

k=2 p2
k=1−p∗2

1
p2,...,pK≥0

f (p∗1, p2, . . . , pK) . (4.110)
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It is easy to show that maximization of the right-hand side of the above
equation is attained when p2, . . . , pK are all equal: p∗2 = · · · = p∗K " p∗.
From this and the constraint ∑K

l=2 p∗2
l = 1 − p∗2

1 , we find that

p∗ =

√
1 − p∗2

1
K − 1

. (4.111)

Since p∗1 ≥ p∗, inequality p∗1 ≥ 1/
√

K must hold. Substituting (4.111)
into (4.110), we have

f (p∗) = p∗2
1 +

√
K − 1p∗1

√
1 − p∗2

1 . (4.112)

This function must take the maximum value as a function of p∗1
(
≥ 1/

√
K
)

.
Solving d f /dp∗1 = 0, we obtain

p∗1 =

√
1
2

(
1 +

1√
K

)
. (4.113)

Substituting (4.113) into (4.112), we obtain

f (p∗) =
1
2

(
1 +

√
K
)

. (4.114)

Note that d f /dp∗1 = 0 leads to another solution

p∗1 =

√
1
2

(
1 − 1√

K

)
,

but it is not the maximum solution.



5
VA R I A N T S O F I N D E P E N D E N T V E C T O R A N A LY S I S
A L G O R I T H M S

5.1 introduction

This chapter proposes several IVA algorithms based on the gradient de-
scent method. These algrithms incoporate different constraint into the
separator, e.g. orthogonal, nonholonomic, and the linear constraints.
The effectiveness of the algorithms will be confirmed in next chapter.

5.2 variants of iva algorithms

In this section, we revisit some IVA algorithms based on maximization
of maximum likelihood or minimization of the Kullback-Leibler diver-
gence even though their derivations have been already presented in
papers [24, 35, 36]. Then, we propose an IVA algorithm incorporating
the linear constraint.

5.2.1 Contrast function

In order to write a loss function, we initially use the mapping CK →
R2K such that

yi,R =

[
yi

y
i

]
=

N

∑
j=1

[
Wij −Wij

Wij Wij

] [
xj

xj

]

=
N

∑
j=1

Wij,Rxj,R (i = 1, . . . , N) ,

where yi =
[
y(1)i , . . . , y(K)i

]'
∈ RK, y

i
=

[
y(1)i , . . . , y(K)i

]'
∈ RK and

Wij,R is a 2K × 2K matrix.
Most learning algorithms are based on minimization or maximiza-

tion of a loss function. Maximization of log-likelihood or minimization
of the Kullback-Leibler divergence lead to the same type of loss func-
tion,

l (y (t) , W) = − log |det WR| −
N

∑
i=1

log (pi (yi,R (t))) (5.1)

where pi is probability density function (pdf) of output vector yi,R(t)
and |det WR| means the absolute value of determinant of matrix WR.
We can then apply the stochastic gradient descent method to derive
the algorithm.

61
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The first-order total differential of Eq. (5.1) yields

dl = −tr
(

dWRW−1
R

)
+

N

∑
i=1

ψ'
i (yi,R (t)) dyi,R (t) , (5.2)

where

ψi (yi,R (t)) = −




∂ log pi(yi,R(t))

∂yi
∂ log pi(yi,R(t))

∂y
i



 ∈ R2K. (5.3)

To express the second term on the right-hand side of Eq. (5.2) by
simple notations, we write log pi (yi (t) , y∗

i (t)) = log pi (yi,R (t)), and
using the relation described in Chap. 2, Eq. (5.3) becomes

[
ψi (yi (t) , y∗

i (t))
ψ∗

i (yi (t) , y∗
i (t))

]
= −




∂ log pi(yi(t),y∗

i (t))
∂y

∂ log pi(yi(t),y∗
i (t))

∂y∗





= −1
2

[
I −jI
I jI

] 


∂ log pi(yi,R(t))

∂yi
∂ log pi(yi,R(t))

∂y
i





(5.4)

As a result, the second term on the right-hand sider of Eq. (5.2) can be
written as

ψ'
i (yi,R (t)) dyi,R (t)

= ψ'
i (yi (t) , y∗

i (t)) dyi (t) + ψH
i (yi (t) , y∗

i (t)) dy∗
i (t) .

(5.5)

From yR = WRxR and dyR = dWRxR = dWRW−1
R yR, we put

dVR = dWRW−1
R , where

dVij,R =

[
dVij −dVij

dVij dVij

]
∈ R2K×2K.

The first term on the right-hand side of Eq. (5.2) can be rewritten as

tr {dVR} =
N

∑
i=1

tr {dVii,R} = 2 ∑
i,k

dv(k)ii

= ∑
i,k

dv(k)ii + dv(k)∗ii

= tr {dV}+ tr {dV∗} .

(5.6)

The first-order total differential of Eq. (5.1) is given by

dl = −trdV − trdV∗ + ∑
i,j

ψ'
i (yi (t) , y∗

i (t)) dVijyj (t)

+ ∑
i,j

ψH
i (yi (t) , y∗

i (t)) dV∗
ijy

∗
j (t) .

(5.7)
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5.2.2 Unconstrained IVA

As is described in Chap. 2.2, the gradient for dV(k) are given by

,V(k) (t) = −η
∂dl

∂dV(k)∗ = η
{

I −ϕ(k)∗ (y (t) , y∗ (t)) yH (t)
}

(5.8)

where η is a learning rate and

ϕ(k) (y (t) , y∗ (t)) = −





∂ log p1(y1(t),y∗
1(t))

∂y(k)1
∂ log p2(y2(t),y∗

2(t))
∂y(k)2

...
∂ log pN(yN(t),y∗

N(t))
∂y(k)N





.

For the sake of simplicity of notation, define

y(k)
C (t) =

[
y(k) (t)
y(k)∗ (t)

]
∈ C2N ,

then ϕ(k) (y (t) , y∗ (t)) can be rewritten as ϕ(k)
(

yC(t)

)
Using ,V(k) (t) =

,W(k) (t)W(k)−1 (t) leads to

,W(k) (t) = η
{

I −ϕ(k)∗ (yC (t)) y(k)H (t)
}

W(k) (k = 1, . . . , K) .
(5.9)

The batch version of the algorithm is already proposed in [24, 35].
The stationary points of the unconstrained IVA algorithm satisfy

E
[
ϕ(k)∗ (yC (t)) y(k)H (t)

]
= I (k = 1, . . . , K) . (5.10)

Namely, this algorithm forces the outputs to have constant magnitude.
This normalization is not suitable for non-stationary sources such as
speech, and it might be a problem such that, if a source component at
a sensor becomes very small, some entries in the separator may tend
to be very large, which can induce some instability.

5.2.3 IVA with orthogonal constraint

As in the case of ICA, IVA often applies the whitening operation to the
observed signals and impose orthogonal (or unitary) constraint on the
separator in order to eliminate scaling indeterminacy. The separator
with orthogonal constraint satisfies

W(k)HW(k) = W(k)W(k)H = I (k = 1, . . . , K) . (5.11)

If the separators W(k) are orthogonal, then their updates ,W(k)W(k)H

becomes skew-Hermitian matrices in order to preserve the orthogonal
constraint. It is because Eq. (5.11) and using W(k) +,W(k) leads to

,W(k)W(k)H +
(
,W(k)W(k)H

)H
= O (k = 1, . . . , K) , (5.12)
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or
,V(k) +,V(k)H = O (k = 1, . . . , K) . (5.13)

Thus, the steepest direction preserving the orthogonal constraint is
obtained by projecting the gradient onto the space of skew-symmetric
matrices. The unconstrained IVA algorithm given in (5.8) (or 5.9)
changes to

,V(k) = η

{
y (t)ϕ(k)' (yC (t))−ϕ(k)∗ (yC (t)) yH (t)

2

}
(5.14)

or

,W(k) = η

{
y (t)ϕ(k)' (yC (t))−ϕ(k)∗ (yC (t)) yH (t)

2

}
W(k). (5.15)

After updating W(k), we should further rectify the separator so as to
satisfy the orthogonal constraint. This manipulation may apparently
seem unnecessary, because the algorithm (5.15) have already satisfied
the orthogonal constraint. However, it should be incorporated to avoid
the accumulation of small round-off errors. For each k, the separator
is rectified by

W(k) ←
(

W(k)W(k)H
)− 1

2 W(k) (k = 1, . . . , K) .

5.2.4 IVA with nonholonomic constraint

As is described in subsection 5.2.2, the unconstrained IVA algorithm
forces the magnitude of the outputs of the separator. Hence, it is
desirable to add a constraint to the algorithm so that the resulting
algorithm does not control the magnitude of output signals. In order to
avoid the drawback of the unconstrained IVA, we apply nonholonomic
constraint to the unconstrained IVA as in the case of ICA [3, 15]. Thus,
the unconstrained IVA given in (5.9) changes to

,W(k) = η
{

Λ(k) (t)−ϕ(k)∗ (yC (t)) yH (t)
}

W(k) (5.16)

where

Λ(k) = diag
{

ϕ(k)∗ (y1,C (t)) y(k)∗1 (t) , . . . , ϕ(k)∗ (yN,C (t)) y(k)∗N (t)
}

.

This algorithm was proposed in [36].

5.2.5 IVA with linear constraint

The algorithms described in subsections 5.2.2 and 5.2.3 force the mag-
nitude of output signals to be constant. In this subsection, we propose



5.3 summary 65

IVA algorithm incorporating the linear constraint described in Chapter
3 to preserve the signal quality without any post-processing.

Taking into account the linear constraint e'W(k) = f' (k = 1, . . . , K),
the nonholonomic IVA becomes

,W(k) = η
{

Θ(k) −ϕ(k)∗ (yC (t)) yH (t)
}

W(k), (5.17)

where
Θ(k) = diag

{
e'ϕ(k)∗ (yC (t)) yH (t)

}
.

Due to the linear constraint, the outputs of the separator become the
source signals observed at first sensor, and hence the quality of signals
is preserved[48, 72].

As in the case of IVA with orthogonal constraint, IVA with linear
constraint also requires an additional manipulation in order to avoid
the round-off error on actual computational calculation such that

W(k) (t + 1) ←
{

I − 1
N

ee'
}

W(k) (t + 1) +
ef'

N
.

5.3 summary

In this chapter, we have revisited IVA algorithm proposed in [24, 35,
36], and have proposed variants of the algorithm using different con-
straints such as orthogonal, and the linear constraints. The separation
performance of those algorithms are confirmed in the next chapter.





6
S I M U L AT I O N S

This chapter confirms the validity of the algorithms proposed in this
thesis using synthetic data and speech signals.

6.1 simulations with synthetic data

We conducted some simulations in which source signals are stationary
and non-stationary signals (source signals are non-Gaussian, of course).
Non-stationary source signals are generated as follows. If ui (t) is a
non-Gaussian stationary signal, then the i-th non-stationary source
signal is given by

si (t) = ηi (t) ui (t) (i = 1, . . . , N) , (6.1)

where
ηi (t) = 2 sin

(
π

bi
t
)

(i = 1, . . . , N) (6.2)

and bi is a constant.
For the sake of simplicity, we used the following unimodular transfer

functions as the mixing processes:

A (z) =

[
1 + a2z−2 az−1

az−1 1

]

and

A (z) =





1 + 2a2z−2 az−1 + a2z−2 az−1

az−1 + a2z−2 1 + a2z−2 az−1

az−1 az−1 1



 .

The separation accuracy is evaluated in terms of signal-to-interference
ratio (SIR) improvement. In order to calculate SIR improvement, we
need the individual source observations ski (t) defined as

ski (t) =
∞

∑
τ=0

aki (τ) si (t − τ) , (6.3)

where ski (t) stands for the i-th source signal observed at the k-th
sensor. Those observations are not available in the actual BSS pro-
cedure. The SIR improvement for the i-th output is calculated by
SIR improvementi = OSIRi − ISIRi [dB]. These two types of SIRs are
defined by the power ratio between the components related to the

67
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target sources and interference sources, at first sensor (because of the
linear constraint) and the i-th output:

ISIRi = 10 log10

∑p ∑k

∣∣∣s(k)1i (p)
∣∣∣
2

∑p ∑k

∣∣∣∑j +=i s(k)1j (p)
∣∣∣
2 [dB] , (6.4)

OSIRi = 10 log10

∑p ∑k

∣∣∣y(k)ii (p)
∣∣∣
2

∑p ∑k

∣∣∣∑j +=i y(k)ij (p)
∣∣∣
2 [dB] , (6.5)

where s(k)1i (p) is obtained by applying the short time Fourier transform
(STFT) to s1i (t) in the p-th frame and k stands for frequency. y(k)ij (p)

is an sj-component of y(k)i (p) and is calculated by

y(k)ij (p) =
N

∑
m=1

w(k)
im s(k)mj (p) (i = 1, . . . , N; j = 1, . . . , N) . (6.6)

Since some algorithms do not satisfy the linear constraint, the ob-
tained separator were modified to satisfy the linear constraint so that
the results can be compared with the others methods. The modified
separator can be obtained as

W(k) ← diag
(

ef'W(k)−1
)

W(k) (k = 1, . . . , K) . (6.7)

The separation results are shown in Table 1 and 2. FDI-ND did
not work well in separation of stationary signals, while it performed
well in that of non-stationary signals. It is because the algorithm is
designed for the non-stationary signals. IVA worked well for every
case. The batch version of IVA with linear constraint showed relatively
low performance due to the slow convergence.

In order to show convergence speed and stability of the iterative
calculation, the convergence plots of algorithms in the case of two
and three sources are shown in Figure 8 and 9. IVA achieved rela-
tively fast convergence, while IVA with linear constraint showed slow
convergence.

6.2 simulations with speech signals

We conducted some experiments on speech separation. In the center
of a sound proof room, four microphones and some loudspeakers
were arranged as shown in Fig. 10 (the reverberation time was approx-
imately 100 ms). The combinations of sources and microphones used
in the experiments were shown in Table 3. Four kinds of speeches
consisting of two males and two females were used as source signals.

To evaluate separation peformance of an obtained separator, the
following recording was made for each speech. Only the i-th loud-
speaker was turned on, and the voice from it was recorded by the
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Table 1: Separation performance of the algorithms in the case of N = 2. The
averaged SIR improvements shown below are the maximum value
of the averaged SIR improvement in iterative calculations.

Algorithm Averaged SIRI [dB] Iterations Averaged SIRI [dB] Iterations

a = 0.5 ( stationary) a = 0.5 (non-stationary)

FDI-ND 12.94 1e+4 (56) 21.80 1e+4 (1988)

IVA[35]
batch 14.18 1e+4 (1e+4) 24.29 1e+4 (9425)

online 18.55 1e+4 (30) 23.93 1e+4 (6)

IVAunitary
batch 12.00 1e+4 (1e+4) 16.54 1e+4 (1e+4)

online 18.47 1e+4 (122) 24.22 1e+4 (34)

IVAnonholonomic[36]
batch 12.62 1e+4 (1e+4) 24.26 1e+4 (1e+4)

online 18.43 1e+4 (49) 24.09 1e+4 (428)

IVAlinear
batch 5.96 1e+4 (1e+4) 9.40 1e+4 (1e+4)

online 15.56 1e+4 (1e+4) 20.50 1e+4 (1e+4)

Table 2: Separation performance of the algorithms in the case of N = 3. The
averaged SIR improvements shown below are the maximum value
of the averaged SIR improvement in iterative calculations.

Algorithm Averaged SIRI [dB] Iterations Averaged SIRI [dB] Iterations

a = 0.5 (stationary) a = 0.5 (non-stationary)

FDI-ND 10.54 1e+4 (1) 19.76 1e+4 (82)

IVA[35]
batch 15.8 1e+4 (1e+4) 12.28 1e+4 (1e+4)

online 20.90 1e+4 (33) 12.42 1e+4 (1744)

IVAunitary
batch 12.85 1e+4 (1e+4) 11.88 1e+4 (1e+4)

online 20.92 1e+4 (140) 12.50 1e+4 (1548)

IVAnonholonomic[36]
batch 13.12 1e+4 (1e+4) 12.19 1e+4 (1e+4)

online 20.90 1e+4 (55) 12.52 1e+4 (15)

IVAlinear
batch 10.09 1e+4 (1e+4) 10.52 1e+4 (1e+4)

online 19.64 1e+4 (5990) 12.45 1e+4 (1e+4)
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Figure 8: Convergence plot of the algorithms in the case of N = 2. Left:
Source signals are stationary signals picked out from the Laplace
distribution. Right: Source signals are non-stationary signals. Al-
though the online version of IVA algorithms performed well in
both cases, the batch version of IVA with linear constraint showed
very slow convergence compared with the others.
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Figure 9: Convergence plot of the algorithms in the case of three sources. Left:
Source signals are stationary signals picked out from the Laplace
distribution. Right: Source signals are non-stationary signals. Al-
though FDI-ND did not work well in the case of stationary signals,
it showed accurate performance in the case of non-stationary sig-
nals.
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Figure 10: The experimental setup. Loudspeakers were arranged with the
same radius 1.0 m and microphones are directly aligned at inter-
vals of 4.0 cm in a sound proof room (the reverberation time was
approximately 100 ms).

four microphones. ski (t) denotes the i-th speaker’s sound recorded by
the k-th microphone. The summation of ski (t) with respect to i was
regarded as the sound that would be observed by the k-th microphone
in an actual situation:

xk (t) =
N

∑
i=1

ski (t) (k = 1, . . . , N) .

The recording was made for ten seconds at a sampling rate of 10 kHz.
We chose the 2048-point FFT and 2048-point Hanning window with
shift size of 512 samples. As in the case of synthetic data, the perfor-
mance of the proposed algorithms were evaluated by the averaged
SIR improvement.

We comoared the performance of the proposed methods with that
of some algorithms: the frequency-domain implementation algorithm
(FDIBSS) [57], and the natural gradient algorithm in the frequency
domain (FDICA) [3] that uses a polar coordinate nonlinear function
as an activation function [65]. FDICA solved the permutation problem
using the inter-frequency correlation of signal envelopes[52]. In FDICA
and IVA wtih unitary constraint, we applied the whitening operation
to the observed data in each frequency bin, and the separating matrix
was constrained to be an unitary matrix in each frequency bin. As
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Table 3: The source and microphone locations in experiment. In experiment
1, for example, two sources located in A and I were recorded by
microphones 2 and 3.

Exp. # Source locations Mics. used

1 A, I 2, 3

2 B, H 2, 3

3 C, G 2, 3

4 D, F 2, 3

5 A, C, G, I all

6 B, D, F, H all

7 C, D, E, F all

Table 4: Separation performance of the algorithms. The averaged SIR im-
provements shown below are the maximum value of the averaged
SIR improvement in iterative calculations. The number of iterations
is 1000.

Algorithm Exp. # 1 2 3 4 5 6 7

FDI-ND 16.26 14.81 7.85 8.55 7.24 12.77 7.85

FDIBSS[57] 16.50 13.97 9.35 12.17 4.41 5.56 6.16

FDICA[3] 4.38 3.13 3.42 4.37 5.11 5.56 4.29

IVA[35]
batch 1.25 2.59 1.56 1.82 2.22 1.70 1.40

online 14.62 13.62 13.87 13.49 11.69 13.81 11.41

IVAunitary
batch 1.23 1.35 1.10 1.26 2.4 2.21 1.94

online 5.74 5.11 5.45 6.28 3.05 2.90 2.69

IVAnonholonomic[36]
batch 2.27 2.59 1.56 1.82 2.33 1.68 1.29

online 7.27 7.91 17.12 16.05 4.99 9.46 5.28

IVAlinear
batch 0.82 0.18 0.59 1.17 1.61 1.64 0.9

online 8.17 11.74 13.23 12.73 4.51 7.33 9.0

in the case of synthetic data, the obtained separating matrices were
modified by Eq. (6.7).

The separation results are shown in Table 4. While FDI-ND, FDIBSS
and IVA performed well in the case of 2 × 2 convoluted mixtures, the
other methods, especially batch version of IVA algorithms, showed
poor separation performance. In the case of 4 × 4 convoluted mix-
tures, the online version of IVA algorithm and FDI-ND worked well
compared with the other approaches.



7
C O N C L U S I O N S

The main objective of this thesis is to propose efficient algorithms
for convolutive BSS. Time-domain convolutive BSS algorithms have
high computational cost and sometimes shows numerical instability.
The algorithm proposed in chapter 3 can relax the computational
load compared with a time-domain algorithm, and it incorporates
additional techniques to enhance the robustness of the proposed
method. It works well in separation of non-stationary signals.

We have derived a necessary and sufficient condition for the desired
separator to be obtained by minimizing a measure representing the
difference between the prior source pdf and the actual output pdf
of the separator. We also have proven that, if a desired separator
minimizes the measure, any permuted separator never becomes a local
minimum. This remarkable property strongly supports the validity of
the IVA approach.

In addition we have investigated a necessary and sufficient condi-
tion under different assumptions such as uncorrelatedness, evenness
and complex-valued case. If components in each source are uncorre-
lated, a necessary condition together with (B) becomes a necessary
and sufficient condition for the desired separator. In the case of evenly
distributed sources, condition (B) holds as a necessity; then the sta-
bility condition becomes a simple form. These assumptions are very
important to realize a perfect separation by an IVA algorithm assum-
ing a spherically symmetric source prior. The stability condition for
the complex-valued IVA takes a more complicated form, but it is
essentially the same as the condition for the real-valued IVA, under
circularity and uncorrelatedness.

We have proposed IVA algorithms with several constraints such
as unitary, nonholonomic, and the linear constraints. IVA with linear
constraint can preserves the signal quality, and hence it is suitable
for separation of speech signals. Since those algorithms are based on
the natural gradient descent method, they show slow convergence.
In order to realize real-time processing, it is necessary to apply the
Newton method or another methods that can converge more faster.
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