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Tunneling mechanism due to chaos in a complex phase space
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We have revealed that the barrier-tunneling process in nonintegrable systems is strongly linked to chaos in
complex phase space by investigating a simple scattering map model. The semiclassical wave function repro-
duces complicated features of tunneling perfectly and it enables us to solve all the reasons why those features
appear in spite of absence of chaos on the real plane. Multigeneration structure of manifolds, which is the
manifestation of complex-domain homoclinic entanglement created by complexified classical dynamics, allows
a symbolic coding and it is used as a guiding principle to extract dominant complex trajectories from all the
semiclassical candidates.
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Tunneling phenomenon is peculiar to quantum mechanics T(p)=p?%2, V(q) =kexp—yg? (k,y>0). (1b)
and no counterparts exist in classical mechanics. Features of
tunneling are nevertheless strongly influenced by the under-

lying classical dynamicgL—6]. In particular, chaotic features A get of classical equations of motion is given as
appearing in tunneling have been paid attention to in conneqy. 1 ,p;,1)=[a; +T'(p).p;—V'(dj;1)], where prime

tiorAwith real-domain chﬁo$2—4]. h . fth denotes a differentiation with respect to the corresponding
promising approach to see the connection of these tw rgument. Note that the real-valued dynamics of our scatter-
opposite concepts is to carry out the complex semiclassic g map does not create chaos in contrast to the maps defined

analysis, which allows us to describe and interpret the tung ihe bounded phase space. This is because the system has

neling phenomenon in terms of complex classical trajectorieanI . S - _
) ) y single periodic orbit, ¢, p)=(0,0), and thus the topo-
[7]. It has been shown that the complex semiclassical theor gical entropy of the system is null. As shown in the inset of

can successfully be applied even in classically chaotic SySFig. 1, the stable and unstable manifolds of the fixed point

tems and the origin of characteristic structures of the Wav?0 0), WS(0,0) andW!(0,0), oscillate without creating ho-
function inherent in chaotic systems is explained by the com-_" %’ y L

| lassical d ici5]. A significant role of al t real moclinic or heteroclinic intersections. Any manifold initially
piex classical dynamigs]. A signiticant role ot aimost real- put on the real plane is fully stretched but not folded per-

domain homoclinic trajectories in the energy barrier tunnel-]c ; Lo u

. . ctly so that it leaves away to infinity along(0,0).

ing has been p_0|.nted out based.on the trace formula approac% Aﬁ incident wave packe%/is put in Xhe asyrrgptot)ic region.
[8]. Recently, it is found that fringed pattem appears in theThe initial kinetic energy is given far less than the potential

wave function of the two-dimensional barrier.tunneling prOb'barrier located around the origin. The form of initial wave
lem as a result of interference between oscillatory Lagrang-

ian manifold[9]. They have shown a detailed scenario de_packet is given by
scribing how such interference emerges in accordance with

the divergent movement of singularities on the complex 5 ,
t-plane. 60

plane

In the present Rapid Communication, we shall report the 0y /{‘(M

strong connection between the barrier-tunneling process in 5l l, p
nonintegrable systems and tbleaos in complex phase space o /
by analyzing a simple scattering map model. In particular, it = 10} -60 .
will be shown that even though the real-domain classical 2 / 00 7 300
dynamics exhibits no chaos, i.e., null topological entropy, -16¢ 74%.«\
complex-domain chaos can make tunneling process compli- / H
cated. Moreover, our present analysis suggests that chaotic 207 / |
tunneling can be understood in a unified manner from the _ . ‘ . . \\
viewpoint of complex-domain chaos not only in case of dy- -300 -200 -100 0 100 200 300
namical but also energy-barrier tunneling processes. g

We first introduce a scattering map model which is de-

) . S FIG. 1. unwyz f =10 calculated tum-
scribed by the following Hamiltonian (quTfw)|* for n carcuiated  quanum

mechanically =1, =10, k=500,y=0.005, q,=—123, p,
=23). An incident wave packet is set in the sidef0. The
center of mass has been already reflected by the potential barrier at

H(q,p,t)=T(p)+V(q)>, d(t—n), (1g  this time step.(Insed W*(0,0) andV*"(0,0) merely oscillating
n without homoclinic entanglement.
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(a-9.)? Pal(de—20)
<q|‘P)—Cex;{—W exp —i————|, (2

where C is the normalization constang is the squeezing
parameter, and,,p, are configuration and momentum of
the center of mass, respectively.

|(g|U"¥)|? for n=10 is shown in Fig. 1, wher& de-
notes the unitary operator of one-step quantum propagation.
Although the mean energy of the wave packet is less than the
barrier height, we can observe various structures such as
crossover of amplitude, existence of plateau regions, erratic

A A

Re AQ,

oscillation on them, cliffs and so on. Similar structures are - (b)
also found in case of dynamical tunneling in the presence of o s intersection Y
chaog[5], and we hereafter call such characteristic structures |4 yg( S potn LY
“plateau-cliff structure” as a representative of typical fea- Yy >g\<‘/ o o X%<
tures which are completely absent in one-dimensional tun- - £ =
neling. However, an essential difference of the present situ- il |__| U et
ation from the previous one is that the plateau-cliff structure ——l n“*n Iweration
in the scattering model emerges under the situation where the - “ N .
real-valued classical dynamics creates no chaos. ﬁ*",z ;-f* o X oﬁ W<

In order to carry out complex semiclassical analysis, we Pt o N X
first prepare a pair of new canonical variables @s(q ME I %, | 2nd gemeration T ¢
—ipa?)/(y20), P=(p—iqo 2)/(y20 1), and some nota- o “e a A

tions as Qu=Q(do,Po), Po=P(do.Po); Qu=Q(d4Pa),
P.,=P(q..P.). The n-s’gep qua”tum propagator s rep_re- FIG. 2. (a) M,-set forn=10. Those branches which we finally
sented as the-fold multiple integral, and the saddle point (axe into account for the reproduction of the wave function are
eVa|U_at|0n is applied to yield the classical equations. SeMirepresented by the line styles such as dash, bold dash, bold solid,
classical Van Vleck’s formula fon-step wave function takes pold dot, bold dashed dot and bold dashed dot dot. Each line style
a form as corresponds to the one in Fig. ) Schematic representation for

MGS. Blown-up figures of the second and third generations display

the self similarity of MGS. Solid squares represent the intersection
3 points withw(0,0).

2 1/2 i d)
exp% S——

(@nlUTw)~A > 5

cl.orb.

dqndPg

where the sum is over complex classical orbits satisfying theotion of thegenerationto each chain as shown in the figure.
boundary condition, Iny,=0, which is necessary since we Higher generations sprout from lower generations almost
here observe our wave function as a functiomggf .4 de-  vertically, and we call these self-similar configurations the
notes the normalization factor, aij¢ are the action and multigeneration structuréMGS).

the Maslov index of each contributing orbit respectivaly. We can discuss significant branches embedded in the hi-
is the generating function which gives canonical transformaerarchical structure, which determine the semiclassical wave
tions such thatW/dq,=p,, dW/IPy=— Q. function (3). The amplitude of an individual contribution in

In order to represent the complex orbits which can conthe semiclassical sum is almost governed bySlman imagi-
tribute to the semiclassical propagat@), we introduce a nary action, which implies that the orbit whose imaginary
variable,AQy,=Q, — Q.. Using AQ, the contributing or- part is the smallest survives as the final semiclassical contri-
bits in Eq. (3) are represented as a set of initial conditionsbution. Furthermore, the amount of Isnis roughly esti-
M, ={AQo|AQpeC, Imq,(Q,+AQy,P,)=0}. mated by how deep each trajectory passes through the com-

A typical pattern of theM,-set is shown in Fig. @). plex domain. This means that the history of each trajectory in
Each string, which we call the branch hereafter, represents asomplex domain is a primary factor concerning its weight in
individual classical orbit appearing in the semiclassical sunthe semiclassical sum. It implies that the semiclassical wave
(3) and a single string covers the whole rangex{(,+ =) of  function could not be reproduced until one finds how those
the finalq,, . orbits with the smallest imaginary actions behave, since it is

Though the morphology of the set is quite elusive, whenalmost impossible to extract significant trajectories out of a
sufficiently blowing up any local area with lots of brancheshuge number of branches without any guiding principle.
accumulated, one can find the self-similar structure sche- To this end, we begin with the precise definition of MGS,
matically demonstrated in Fig.(l®. At the center, a chain- which is given by considering thetable and unstable mani-
shaped structure is developed in the horizontal direction. AZolds in complex phase spaci particular analytical con-
sequence of chains with finer scale are arranged in both siddisiuation of the stable manifold3(0,0). In order to connect
of the previous chain, and does the same around any of tho$4GS with WW5(0,0) in complex space, we first introduce the
smaller chains, and so on. Then it may be natural to assignm@ormalized coordinate or/5(0,0). Let® be the conjugation
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10 (a) (c) those displayed in the figure after ten iterations of our map
: : are projected in real phase space in Figd)3The hatched
part in Fig. 3c) develops to the bold curves in Fig(d3,
UFHHU which almost coincide with the real-domain unstable mani-
‘ & | ‘ fold, WY(0,0)nR?.
This behavior is not limited to a particular chain-shaped
structure, but every chain structure in thd,-set becomes
(d) close tow!(0,0)N R?. Chain-shaped structure is always cre-

A! 60 ated around each point @nN W?3(0,0), the reason of which
can be explained by describing the process of time evolution
p of a tiny domain containing a point &N 9(0,0). Such a

domain is guided to the real phase spacelby(0,0) and
then smeared oven’!(0,0). Details will be reported in Ref.
e : : ~60 [11]. In this way, we can find one-to-one relation between a
' Reé& A -300 q 300 single chain structure in th&1,,-set and an intersection point
of ZN W9(0,0). Since, as explained above, the latter forms
FIG. 3. (a) The intersection points belonging to the 1st, 2nd, orthe self-similar or generation structure reflecting the ho-
3rd generation plotted ohV5(0,0). (b) Magnification of(a), dis-  moclinic entanglement of the stable manifold, MGS of the
playing the 1st and 2nd generatiofis. Chain-shaped manifolds in M ,-set is controlled by that of the stable manifold in com-
the M,-set drawn schematicallyd) The final strings of those dis- plex phase space.
played in(c) after ten iterations of our map projected in real phase  Since we have defined the generation in such a way, the
space. The hatched part (o) develops to the bold curves, which orbits belonging to higher generations usually gain larger
almost coincide with the real-domain unstable manifold, |y S since, taking roundabout ways in the complex chaotic
WH(0,0NR?. region, they approach the origin later than those of lower
_ generations. In order to extract significant trajectories out of
map from C to W9(0,0), satisfying the relationF(¢) them, it is essential to use symbolic dynamics in complex
=@ H(AHDP(E)=N"1¢ where\ denotes the largest ei- phase space.
genvalue with respect to the saddle point ({,00]. In the present case, a nice symbolic space can be orga-
The normalized coordinatéis used in Figs. @ and 3b)  nized as the union of a single-element §8} and a direct
to represent the intersection betwee%®(0,0) andZ, the product of the sign of Rg, Imq, and a multiplicity index
initial value plane consisting of the wholeay,p)’'s corre- veN. The symbol ‘O” describes monotonic convergence
sponding to{AQy|AQy e C}. Comparing both figures, one to the origin (0,0), and the index appears as a reflection of
can recognize the intersection pattern has self-similarity. Théhe transcendental property of the potential function such
intersection betweeV"(0,0) andW3(0,0) shows almost that our initial-value problem has infinite number of solu-
the same self-similar pattern, which implies themoclinic  tions. Since frequent flipping of the sign or large modulus of
entanglementf the stable manifold in complex phase spaceg-component, which is represented as largeesults in large
[11]. This means that null topological entropy in the realimaginary actions, our final principle turns out to extract the
domain does not exclude existence of chaos in the complesequences of symbols out of MGS which represent those
domain. orbits with no sign flipping and minimal-components with
The generation can be assigned to each point om=1. It considerably reduces our task in searching signifi-
ZN W30,0). Supposer be the minimum distance on cant complex orbits only to linear dependence of the time
&-plane from (0,0 to intersection points step, which otherwise exponentially diverges. More detailed
&N W*(0,0)], and letD={¢eC||&|<r}. Here the explanations to construct symbolic dynamics in the complex-
normalized coordinate plane is decomposed into disjointedomain chaos will be reported elsewhétd]. In particular,

Im &

annuli as a complex Haon map is analyzed to elucidate the relation
between the MGS and Julia dét2].
FMD\AD)INF D\AD)]=¢ (m#n), (4) Figure 4 displays the behaviors of intersection points in

MGS as a function of time, together with the coding se-
guences. Figure(d) shows a typical behavior such that both
Req and Imq oscillate in an erratic manner for some initial
time steps and eventually approach the origin. Figui® 4

~ ~ o shows such an orbit trapped by complex period-2 orbits as
Then each annulus "[D\F(D)] plays a role specifying the eyidence of regular behavior embedded in MGS. Such itin-
individual generation. More precisely, if a point of erating or oscillating complex orbits contribute in principle,
ZN W?3(0,0) is contained itb{F ~"[D\F(D)]}, we say the however, their amplitudes are much smaller than those of

LI F[D\FD)]= C\{0}. (5)
neZ

point belongs to theth generation. orbits with Req and Imq decreasing monotonically to zero,
Next we show that each point &N 5(0,0) can be as shown in Fig. &).
associated with a single chain structure on.tHg-set, which The semiclassical wave function evaluated finally takes

is shown as the hatched zone in Fi¢c)3The final strings of the form in Fig. 5. The agreement with the quantal one
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FIG. 4. Behaviors of intersection points in MGS. Solid lines as  FIG. 5. The semiclassical wave function for ten time steps re-
Re g, and broken lines as len. The sequences of symbols coding solved into contributions from different generations. Each compo-
them also attached. These are the trajectdeleshowing stochastic  nent corresponds to the branches with the same line styles in Fig.
motions,(b) temporarily attracted by a complex period-2 orbit, and 2(a). The thin dashed lines represent those branches which are
(c) approaching real phase space monotonically. dominated, in each coordinatg by some other branchefinsed

The semiclassical wave function finally obtained by the superposi-

shown in Fig. 1 is excellent. The origin of plateau-cliff struc- tion of these contributions.
ture is understood by resolving the superposed semiclassical
function into contributions from individual generations. The MGS which reflects complex homoclinic entanglement. This
plateau-cliff structure is created because each semiclassicaleans that emergence of the entanglement in complex phase
component itself has a flat plateau accompanied by shargpace is an essential ingredient in our description. We think
drop and interference between branches forming the generé-is a quite general event in chaotic systems, and thus so-
tion give rise to erratic oscillation on the plateau. Disconti-called plateau-cliff structure, which is typically observed pat-
nuity of amplitude, as found i~ —168—207,—224, etc.  tern of tunneling in the presence of chd6% must appear as
are caused by the Stokes phenomenon which is inevitable ia manifestation of such complex structures. We can therefore
the saddle point method, and is treated in an appropriate wagxpect that, whether energetic or dynamical, there is a com-
[13]. mon semiclassical mechanism of the tunneling phenomena in
It should be stressed that the most crucial step in ouchaotic map systems, which should be attributed to the struc-
semiclassical analysis is to decode embedded information iture of entanglement, typically observed as MGS.
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