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Tunneling mechanism due to chaos in a complex phase space
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We have revealed that the barrier-tunneling process in nonintegrable systems is strongly linked to chaos in
complex phase space by investigating a simple scattering map model. The semiclassical wave function repro-
duces complicated features of tunneling perfectly and it enables us to solve all the reasons why those features
appear in spite of absence of chaos on the real plane. Multigeneration structure of manifolds, which is the
manifestation of complex-domain homoclinic entanglement created by complexified classical dynamics, allows
a symbolic coding and it is used as a guiding principle to extract dominant complex trajectories from all the
semiclassical candidates.
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Tunneling phenomenon is peculiar to quantum mecha
and no counterparts exist in classical mechanics. Feature
tunneling are nevertheless strongly influenced by the un
lying classical dynamics@1–6#. In particular, chaotic feature
appearing in tunneling have been paid attention to in conn
tion with real-domain chaos@2–4#.

A promising approach to see the connection of these
opposite concepts is to carry out the complex semiclass
analysis, which allows us to describe and interpret the t
neling phenomenon in terms of complex classical trajecto
@7#. It has been shown that the complex semiclassical the
can successfully be applied even in classically chaotic s
tems and the origin of characteristic structures of the w
function inherent in chaotic systems is explained by the co
plex classical dynamics@5#. A significant role of almost real-
domain homoclinic trajectories in the energy barrier tunn
ing has been pointed out based on the trace formula appr
@8#. Recently, it is found that fringed pattern appears in
wave function of the two-dimensional barrier tunneling pro
lem as a result of interference between oscillatory Lagra
ian manifold @9#. They have shown a detailed scenario d
scribing how such interference emerges in accordance
the divergent movement of singularities on the comp
t-plane.

In the present Rapid Communication, we shall report
strong connection between the barrier-tunneling proces
nonintegrable systems and thechaos in complex phase spac
by analyzing a simple scattering map model. In particular
will be shown that even though the real-domain class
dynamics exhibits no chaos, i.e., null topological entro
complex-domain chaos can make tunneling process com
cated. Moreover, our present analysis suggests that ch
tunneling can be understood in a unified manner from
viewpoint of complex-domain chaos not only in case of d
namical but also energy-barrier tunneling processes.

We first introduce a scattering map model which is d
scribed by the following Hamiltonian

H~q,p,t !5T~p!1V~q!(
n

d~ t2n!, ~1a!
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T~p!5p2/2, V~q!5k exp~2gq2! ~k,g.0!. ~1b!

A set of classical equations of motion is given
(qj 11 ,pj 11)5@qj 1T8(pj ),pj2V8(qj 11)#, where prime
denotes a differentiation with respect to the correspond
argument. Note that the real-valued dynamics of our scat
ing map does not create chaos in contrast to the maps de
on the bounded phase space. This is because the system
only single periodic orbit, (q,p)5(0,0), and thus the topo
logical entropy of the system is null. As shown in the inset
Fig. 1, the stable and unstable manifolds of the fixed po
(0,0), W s(0,0) andW u(0,0), oscillate without creating ho
moclinic or heteroclinic intersections. Any manifold initiall
put on the real plane is fully stretched but not folded p
fectly so that it leaves away to infinity alongW u(0,0).

An incident wave packet is put in the asymptotic regio
The initial kinetic energy is given far less than the potent
barrier located around the origin. The form of initial wav
packet is given by

FIG. 1. u^quUnuC&u2 for n510 calculated quantum
mechanically (\51, s510, k5500,g50.005, qa52123, pa

523). An incident wave packet is set in the side ofq,0. The
center of mass has been already reflected by the potential barr
this time step.~Inset! W s(0,0) andW u(0,0) merely oscillating
without homoclinic entanglement.
©2001 The American Physical Society01-1
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^quC&5C expF2
~q2qa!2

2\s2 GexpF2 i
pa~qa22q!

2\ G , ~2!

where C is the normalization constant,s is the squeezing
parameter, andqa ,pa are configuration and momentum o
the center of mass, respectively.

u^quUnuC&u2 for n510 is shown in Fig. 1, whereU de-
notes the unitary operator of one-step quantum propaga
Although the mean energy of the wave packet is less than
barrier height, we can observe various structures such
crossover of amplitude, existence of plateau regions, err
oscillation on them, cliffs and so on. Similar structures a
also found in case of dynamical tunneling in the presence
chaos@5#, and we hereafter call such characteristic structu
‘‘plateau-cliff structure’’ as a representative of typical fe
tures which are completely absent in one-dimensional t
neling. However, an essential difference of the present s
ation from the previous one is that the plateau-cliff struct
in the scattering model emerges under the situation where
real-valued classical dynamics creates no chaos.

In order to carry out complex semiclassical analysis,
first prepare a pair of new canonical variables asQ[(q
2 ips2)/(A2s), P[(p2 iqs22)/(A2s21), and some nota-
tions as Q0[Q(q0 ,p0), P0[P(q0 ,p0), Qa[Q(qa ,pa),
Pa[P(qa ,pa). The n-step quantum propagator is repr
sented as then-fold multiple integral, and the saddle poin
evaluation is applied to yield the classical equations. Se
classical Van Vleck’s formula forn-step wave function take
a form as

^qnuUnuC&'A (
cl.orb.

U ]2W

]qn]P0
U1/2

exp
i

\ FS2
f

2 G , ~3!

where the sum is over complex classical orbits satisfying
boundary condition, Imqn50, which is necessary since w
here observe our wave function as a function ofqn . A de-
notes the normalization factor, andS,f are the action and
the Maslov index of each contributing orbit respectively.W
is the generating function which gives canonical transform
tions such that]W/]qn5pn , ]W/]P052Q0.

In order to represent the complex orbits which can c
tribute to the semiclassical propagator~3!, we introduce a
variable,DQ0[Q0 2 Qa . Using DQ0 the contributing or-
bits in Eq. ~3! are represented as a set of initial conditio
Mn[$DQ0uDQ0PC, Im qn(Qa1DQ0 ,Pa)50%.

A typical pattern of theMn-set is shown in Fig. 2~a!.
Each string, which we call the branch hereafter, represent
individual classical orbit appearing in the semiclassical s
~3! and a single string covers the whole range (2`,1`) of
the finalqn .

Though the morphology of the set is quite elusive, wh
sufficiently blowing up any local area with lots of branch
accumulated, one can find the self-similar structure sc
matically demonstrated in Fig. 2~b!. At the center, a chain
shaped structure is developed in the horizontal direction
sequence of chains with finer scale are arranged in both s
of the previous chain, and does the same around any of t
smaller chains, and so on. Then it may be natural to assi
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notion of thegenerationto each chain as shown in the figur
Higher generations sprout from lower generations alm
vertically, and we call these self-similar configurations t
multigeneration structure~MGS!.

We can discuss significant branches embedded in the
erarchical structure, which determine the semiclassical w
function ~3!. The amplitude of an individual contribution in
the semiclassical sum is almost governed by ImS, an imagi-
nary action, which implies that the orbit whose imagina
part is the smallest survives as the final semiclassical co
bution. Furthermore, the amount of ImS is roughly esti-
mated by how deep each trajectory passes through the c
plex domain. This means that the history of each trajector
complex domain is a primary factor concerning its weight
the semiclassical sum. It implies that the semiclassical w
function could not be reproduced until one finds how tho
orbits with the smallest imaginary actions behave, since
almost impossible to extract significant trajectories out o
huge number of branches without any guiding principle.

To this end, we begin with the precise definition of MG
which is given by considering thestable and unstable mani
folds in complex phase space, in particular analytical con-
tinuation of the stable manifoldW s(0,0). In order to connec
MGS with W s(0,0) in complex space, we first introduce th
normalized coordinate onW s(0,0). LetF be the conjugation

FIG. 2. ~a! Mn-set forn510. Those branches which we finall
take into account for the reproduction of the wave function
represented by the line styles such as dash, bold dash, bold s
bold dot, bold dashed dot and bold dashed dot dot. Each line s
corresponds to the one in Fig. 5.~b! Schematic representation fo
MGS. Blown-up figures of the second and third generations disp
the self similarity of MGS. Solid squares represent the intersec
points withW s(0,0).
1-2
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map from C to W s(0,0), satisfying the relationF̃(j)
[(F21)(F)F(j)5l21j, where l denotes the largest e
genvalue with respect to the saddle point (0,0)@10#.

The normalized coordinatej is used in Figs. 3~a! and 3~b!
to represent the intersection betweenW s(0,0) andI, the
initial value plane consisting of the whole (q,p)’s corre-
sponding to$DQ0uDQ0PC%. Comparing both figures, on
can recognize the intersection pattern has self-similarity.
intersection betweenW u(0,0) andW s(0,0) shows almost
the same self-similar pattern, which implies thehomoclinic
entanglementof the stable manifold in complex phase spa
@11#. This means that null topological entropy in the re
domain does not exclude existence of chaos in the com
domain.

The generation can be assigned to each point
I ù W s(0,0). Supposer be the minimum distance o
j-plane from (0,0) to intersection point
F21@I ù W s(0,0)#, and let D[$jPCuuju<r %. Here the
normalized coordinate plane is decomposed into disjoin
annuli as

F̃ m@D\F̃~D !#ùF̃ n@D\F̃~D !#5f ~mÞn!, ~4!

t
nPZ

F̃ n@D\F̃~D !#5 C \$0%. ~5!

Then each annulusF̃ n@D\F̃(D)# plays a role specifying the
individual generation. More precisely, if a point o
I ù W s(0,0) is contained inF$F̃ 2n@D\F̃(D)#%, we say the
point belongs to thenth generation.

Next we show that each point ofI ù W s(0,0) can be
associated with a single chain structure on theMn-set, which
is shown as the hatched zone in Fig. 3~c!. The final strings of

FIG. 3. ~a! The intersection points belonging to the 1st, 2nd,
3rd generation plotted onW s(0,0). ~b! Magnification of ~a!, dis-
playing the 1st and 2nd generations.~c! Chain-shaped manifolds in
the Mn-set drawn schematically.~d! The final strings of those dis
played in~c! after ten iterations of our map projected in real pha
space. The hatched part in~c! develops to the bold curves, whic
almost coincide with the real-domain unstable manifo
W u(0,0)ùR2.
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those displayed in the figure after ten iterations of our m
are projected in real phase space in Fig. 3~d!. The hatched
part in Fig. 3~c! develops to the bold curves in Fig. 3~d!,
which almost coincide with the real-domain unstable ma
fold, W u(0,0)ùR2.

This behavior is not limited to a particular chain-shap
structure, but every chain structure in theMn-set becomes
close toW u(0,0)ùR2. Chain-shaped structure is always cr
ated around each point ofI ù W s(0,0), the reason of which
can be explained by describing the process of time evolu
of a tiny domain containing a point ofI ù W s(0,0). Such a
domain is guided to the real phase space byW s(0,0) and
then smeared overW u(0,0). Details will be reported in Ref
@11#. In this way, we can find one-to-one relation between
single chain structure in theMn-set and an intersection poin
of I ù W s(0,0). Since, as explained above, the latter for
the self-similar or generation structure reflecting the h
moclinic entanglement of the stable manifold, MGS of t
Mn-set is controlled by that of the stable manifold in com
plex phase space.

Since we have defined the generation in such a way,
orbits belonging to higher generations usually gain lar
Im S, since, taking roundabout ways in the complex chao
region, they approach the origin later than those of low
generations. In order to extract significant trajectories ou
them, it is essential to use symbolic dynamics in comp
phase space.

In the present case, a nice symbolic space can be o
nized as the union of a single-element set$O% and a direct
product of the sign of Req, Im q, and a multiplicity index
nPN. The symbol ‘‘O’’ describes monotonic convergenc
to the origin (0,0), and the indexn appears as a reflection o
the transcendental property of the potential function su
that our initial-value problem has infinite number of sol
tions. Since frequent flipping of the sign or large modulus
q-component, which is represented as largen, results in large
imaginary actions, our final principle turns out to extract t
sequences of symbols out of MGS which represent th
orbits with no sign flipping and minimalq-components with
n51. It considerably reduces our task in searching sign
cant complex orbits only to linear dependence of the ti
step, which otherwise exponentially diverges. More detai
explanations to construct symbolic dynamics in the compl
domain chaos will be reported elsewhere@11#. In particular,
a complex He´non map is analyzed to elucidate the relati
between the MGS and Julia set@12#.

Figure 4 displays the behaviors of intersection points
MGS as a function of time, together with the coding s
quences. Figure 4~a! shows a typical behavior such that bo
Req and Imq oscillate in an erratic manner for some initi
time steps and eventually approach the origin. Figure 4~b!
shows such an orbit trapped by complex period-2 orbits
evidence of regular behavior embedded in MGS. Such i
erating or oscillating complex orbits contribute in principl
however, their amplitudes are much smaller than those
orbits with Req and Imq decreasing monotonically to zero
as shown in Fig. 4~c!.

The semiclassical wave function evaluated finally tak
the form in Fig. 5. The agreement with the quantal o
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shown in Fig. 1 is excellent. The origin of plateau-cliff stru
ture is understood by resolving the superposed semiclas
function into contributions from individual generations. Th
plateau-cliff structure is created because each semiclas
component itself has a flat plateau accompanied by sh
drop and interference between branches forming the gen
tion give rise to erratic oscillation on the plateau. Discon
nuity of amplitude, as found inq'2168,2207,2224, etc.
are caused by the Stokes phenomenon which is inevitab
the saddle point method, and is treated in an appropriate
@13#.

It should be stressed that the most crucial step in
semiclassical analysis is to decode embedded informatio

FIG. 4. Behaviors of intersection points in MGS. Solid lines
Re q, and broken lines as Imq. The sequences of symbols codin
them also attached. These are the trajectories~a! showing stochastic
motions,~b! temporarily attracted by a complex period-2 orbit, a
~c! approaching real phase space monotonically.
02520
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MGS which reflects complex homoclinic entanglement. T
means that emergence of the entanglement in complex p
space is an essential ingredient in our description. We th
it is a quite general event in chaotic systems, and thus
called plateau-cliff structure, which is typically observed p
tern of tunneling in the presence of chaos@5#, must appear as
a manifestation of such complex structures. We can there
expect that, whether energetic or dynamical, there is a c
mon semiclassical mechanism of the tunneling phenomen
chaotic map systems, which should be attributed to the st
ture of entanglement, typically observed as MGS.

FIG. 5. The semiclassical wave function for ten time steps
solved into contributions from different generations. Each com
nent corresponds to the branches with the same line styles in
2~a!. The thin dashed lines represent those branches which
dominated, in each coordinateq, by some other branches.~Inset!
The semiclassical wave function finally obtained by the superp
tion of these contributions.
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