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Abstract 

Dye-sensitized solar cells (DSSCs) have emerged as one of the low-cost solar cells, due to the ease 

of their fabrication by printing processes under ambient conditions. Recently, all-solid DSSCs 

having solid hole-transport layers (HTL) instead of the liquid electrolyte have been studied to 

avoid the complicated encapsulation of DSSCs to protect the evaporation of the liquid electrolyte.  

Solid state DSSCs consisting of the inorganic Electron transport layer (ETL)/dye/HTL are 

generally fabricated multiple step process namely, fabrication of a nano porous TiO2 layer, 

sintering, dye adsorption, and fabrication of a HTL. Although, this step-by-step process is a 

convenient way to control photo-conversion interfaces, but it’s costly and time consuming.  

 

Dye-sensitized polymeric bulk hetero-junction solar cells (DSPSC) are another class of low cost, 

easily processable solar cells that can be prepared by a single step coating process. In the DSPSC 

solar cells a mixture of dye, donor and acceptor materials are mixed in common solvent and then 

coated on to the substrate in single step process. The working principal and structure of DSPSC 

and solid-state DSPSC are much similar. However, the only difference between them is the class 

of acceptors used. DSPSC generally uses organic acceptors (like fullerene derivatives), whereas 

all solid DSSC have inorganic metal oxides such as TiO2, ZnO as electron acceptors.  

 

For single step fabrication of all solid-DSSC using DSPSC fabrication method, first there is need 

for solution processable inorganic oxide, which along with dye and polymeric HTL is soluble in a 

common solvent. First step for fabrication would be successfully fabricating binary polymeric 

hybrid bulk hetero-junction (PHSC) solution processable inorganic oxide and polymeric. 

Thereafter this fabrication approach would be extended for fabricating dye sensitized PHSC, which 

has same material components as that of all solid DSSC. 

 

This thesis explores and demonstrates the way for single-pot fabrication process of all-solid DSSCs 

using a DSPHSC fabrication method.  
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Chapter 1. Introduction 

 

1.1 Utilization of solar energy 

 
          With the rapid expansion of world’s economy and population, there is also ever increasing 

demand for energy. However, the intrinsic properties of the fossil fuels (also called traditional 

nonrenewable energy resources), such as coal, oil and nature gas, prevent them from fulfilling the 

energy requirements of the future. Burning the fossil fuels generates carbon dioxide and other 

detrimental pollutants which are major constituent contributing to global warming through the 

greenhouse effect. The need to contain global warming is extremely crucial for maintaining our 

fragile ecosystem. Reports shows that the global temperature has risen by about 0.6°C during the 

entire 20th century; while this number is predicted to be 1.4 - 5.8°C during the following century 

[1]. Apart from global warming there are also other pollutants such as nitrogen oxides, sulfur 

dioxide and respiratory suspended particles which are generated due to fossil fuel combustion and 

adversely affects the human health. Additionally reliance on fossils fuels for future energy 

demands is also non sustainable as the formation process of the fossil fuels is very complicated 

and usually takes millions of years.  

 

           With the advent of the Industrial Revolution in 18th century, consumption of the energy 

resources has sky rocketed, leading to a rapid depletion of the nonrenewable fossil fuels. The 

shortage of the energy resources in the future will definitely de accelerate the economic 

development and may degrade the living standard of human being. Hence, to ensure a sustainable 

society and an environment-friendly place for future generations, great efforts must be taken to 

explore the renewable and clean energy resources. There is no accepted definition of the renewable 

energy resources (also called green energy) which typically include wind, solar energy, ocean 

waves, geothermal, and hydroelectric power. As the name suggests, renewable energies are 

abundant, inexhaustible, sustainable, and usually environment-friendly. Exploration and 

utilization of the renewable energy resources can reduce the reliance on the fossil fuels currently 

and they are also expected to substitute the traditional energy resources in the future. According 

to the Renewables 2011 Global Status Report, the renewable energy accounts for about 16% of 
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total global energy consumption. This share continues increasing year by year. For instance, the 

renewable energy accounts for about 20% of global electricity supply in 2010, and this share 

increases to 25% in early 2011.  

 

           It is no doubt that the renewable energy resources will dominate the energy market in the 

future. Among several typical renewable and environmental-friendly energy sources, such as wind 

and biogas, solar energy stands out due to its distinct properties. First and foremost, solar energy 

is very abundant. Estimation shows that global power consumption would be up to 30 TW by the 

year 2050, while the energy on the surface of earth provided by the sun is 89000 TW [2]. Secondly, 

solar energy is also very clean and does not pollute environment. Besides, solar energy has other 

merits such as noiseless, negligible negative effect on the beautifulness of scenery, requiring much 

less maintenance compared with wind turbines and much less arable land compared with biofuels. 

Thus, it is straightforward to consider the utilization of solar energy as one possible energy 

alternative among the four typical ways of harnessing solar energy (photovoltaic, heating, 

concentrating solar power and lighting), photovoltaic technology has received extensive attention 

in the past decades. Photovoltaic cells (also called solar cells) are devices that can convert solar 

energy to electrical energies to power the electrical equipment. Alexandre-Edmond Becquerel first 

observed the photovoltaic effect in an electrolyte solution in 1839 [3], and the modern era of solid-

state solar cells was ushered in with developments at Bell Labs in 1954 [4]. Since then there is 

ever increasing photovoltaic market, especially during recent years.  

 

 

1.2 Current solar cell technologies 

 

Many solar technologies exist with varying degrees of development, and organic solar cells 

are one of the newer classes of these technologies. This section will briefly discuss the main solar 

cell technologies at present to help put the role of organics in context. The most commercially 

available solar cell technologies can be divided into two main groups: crystalline and multi 

crystalline silicon and inorganic thin films. After these two main groups, there are several 

emerging technologies that have not yet seen broad commercial availability but are still being 
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heavily investigated in the laboratory for future application, including GaAs, concentrator, dye-

sensitized, and organic thin-film solar cells. 

 

1.2.1 Crystalline and multi-crystalline silicon solar cell  

            Solar cells based on crystalline and multi-crystalline silicon are by far the most developed 

and produced of all the solar cell technologies and currently account for ~80% of the solar cell 

market. The development of silicon solar cells greatly benefited from the large-scale effort to 

understand and process silicon as a semiconductor for electronics and integrated circuits. In silicon 

solar cells, a photon is absorbed to generate a free hole and electron that are separated and collected 

to generate current [3]. Recombination of the carriers before collection, which leads to losses, can 

be reduced by using high-purity silicon and by applying processing techniques and device 

structures made possible by the deep understanding of the physics in silicon. Furthermore, the 

optical absorption spectrum of silicon is well matched to the solar spectrum for solar cells based 

on a single material [4]. While there are concerns about the supply of silicon wafers going into the 

future [5], the widespread availability of silicon from the integrate circuit industry has also 

contributed to the success of silicon solar cells. Power conversion efficiencies, which define the 

percent of incoming light power converted into electrical power, up to 25% and 20.4% have been 

demonstrated in crystalline and multi-crystalline silicon solar cells, respectively [6]. While silicon 

is by far the leading solar cell technology, there are still many areas for improvement either with 

advances in silicon or with other material systems. First, high-purity silicon is generally expensive 

and slow to grow. Because silicon is an indirect band-gap semiconductor and has a weaker 

absorption compared to other semiconductors, thicker layers of silicon are generally required 

compared to other materials [4]. For these and other reasons, the silicon alone accounts for nearly 

50% of the cost of a completed solar module [5]. To circumvent some of these limitations and 

potentially achieve lower costs per produced power, technologies are also being developed that 

can use less material either by having thinner active layers based on thin films or smaller active 

layers with light from a large area concentrated onto the small cell. 
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1.2.2 Inorganic thin film solar cell  

Inorganic thin-film solar cells are the basis for nearly all of the presently available comme

rcial solar cells that are not based on crystalline and multi-crystalline silicon. Thin film solar cells 

attempt to reduce the expensive cost of wafers in silicon cells by using thin films of semiconduct

ors that are usually deposited onto a supporting substrate. The active layers are only a few micron

s thick but can still absorb significant amounts of light because of strong absorption in the materi

als. More impurities in the semiconductors can be tolerated since charges have a shorter distance 

to travel through the thin films [4]. Deposition and processing of thin-film materials also uses low

er temperatures compared to silicon. Lower active material volume, purity, and processing tempe

ratures can all lead to lower cost per area for thin-film solar cells, though it generally comes with 

a tradeoff of efficiency relative to crystalline and mono-crystalline silicon. The net effect is a cost 

per Watt that is competitive with silicon. The leading material platforms for inorganic thin-film c

ells are amorphous silicon (a-Si), Cu(InGa)Se2 (CIGS), and CdTe with highest efficiencies of 10.

1%, 19.4%, and 16.7%, respectively [6]. While the production of inorganic thin-film cells is rapi

dly growing, barriers still exist. Whereas silicon purification, wafer production, cell processing, a

nd encapsulation have already developed as separate operations, all of these functions are often g

rouped into one facility for thin-film cells, leading to high capital costs [5]. The toxicity of cadmi

um itself is a major concern for CdTe solar cells, and the limited amount of indium reserves pose

s a long-term issue for CIGS, which requires the metal in the semiconductor [5]. Novel solutions 

to each of these challenges might be found with continued development. 

  

 

1.2.3 Emerging technologies 
 

           Numerous other solar cell technologies exist that are still not widely available commercially. 

The highest efficiencies have been demonstrated in cells based on GaAs for both single and multi-

junction devices. Multi-junction solar cells use multiple layers that are tailored to more efficiently 

convert different portions of the solar spectrum based on the band gap of the layers. However, 

GaAs solar cells have generally been limited to space applications because of their higher cost [4]. 

The high cost of high efficiency cells can potentially be offset by concentrating a large area of 

sunlight onto a solar cell with a small area. Concentration can produce a large amount of power 
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with only a small amount of semiconductor. Furthermore, higher efficiencies can be obtained 

under concentrated light compared to the standard one sun illumination [7]. Efficiencies of 41.6% 

have been obtained in multi-junction solar cells under concentrated sunlight [6]. However, 

concentrator systems are more complex because of the additional hardware for focusing light, 

tracking of the sun, and cooling the cell. Two other technologies that have been garnering 

significant attention are based on organic materials. Dye-sensitized solar cells use an organic dye 

coating a porous electrode with high surface area to absorb light. Efficiencies of up to 11% have 

been achieved for dye-sensitized solar cells [6]; however, the use of a liquid electrolyte in the cells 

is presently a source of reliability issues. Another organic technology is thin-film solar cells based 

on solid-state organic semiconductors. Organic semiconductors can have their chemical and 

electrical properties tailored in numerous ways by modifying the chemical structures and can allow 

for new processing methods. Organics have great potential for light-weight, flexible devices 

fabricated with high-throughput processes from low-cost materials in a variety of colors. However, 

organic semiconductors are still a relatively young field, and the highest efficiencies are only 

around 11% for the very best organic thin-film cells [6, 8].  

 

1.2.4 State of the art 

 
           Solar cells performances have been continuously increasing over the last few decades. At 

present, commercially available solar cells have, sometimes drastically, lower efficiencies 

compared to the records because of additional complexities when manufacturing cells on a large 

scale. While multi-junction concentrators and GaAs cells have the highest record efficiencies, 

crystalline and multi-crystalline silicon are still the market leaders. Even with their lower 

efficiencies, thin-film solar cells are making significant market penetration because of tradeoffs 

between efficiency and cost. However, it is clear that there are many different approaches to reach 

the same goal of converting sunlight to electricity, and each technology may be able to fill an 

appropriate role based on its individual advantages and tradeoffs. 
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1.3 Polymeric bulk hetero-junction solar cells 

 

 Polymeric bulk hetero-junction solar cells (PSC) based on organic semiconductors are 

interesting for several reasons. For one, the electrical and chemical properties of organic 

semiconductors can be tailored by modifying the chemical structure of the compounds in endless 

combinations. Though specific design rules are still under investigation, the potential for tailoring 

molecules to different applications is great. Furthermore, the polymeric organic materials have the 

potential to be cheaply synthesized without significant concern on the limit of raw materials. Next, 

polymeric organic semiconductors can be deposited in a number of low temperature and high-

throughput ways, such as evaporation and solution processing that can lower manufacturing costs. 

Because polymeric organic materials can have high absorption coefficients, a layer of only a few 

hundred nanometers is often enough to absorb a large fraction of light in the material’s absorption 

spectrum. The use of such thin layers reduces the amount of active material needed and also makes 

light-weight and flexible devices possible. For these and other reasons, polymeric organic solar 

cells have gained significant attention. The first modern solid-state solar cell based on organic 

materials with an efficiency close to or higher than 1% was developed by C. W. Tang during his 

time at Eastman Kodak [9]. Tang stacked an organic material that donates electrons, or a donor, 

and an organic material that accepts electrons, or an acceptor, between the electrodes. When a 

photon is absorbed in an organic material, a bound electron-hole pair, called an exciton, is created 

and must be dissociated to contribute to the current. Stacking an acceptor material on top of a 

donor material (Figure 1.1), in this case 3,4,9,10-perylenetetracarboxylic-bis-benzimidazole 

(PTCBI) on copper phthalocyanine (CuPc),creates an interface that drives the dissociation of light-

generated excitons and preferentially separates the electrons into the acceptor layer and the holes 

into the donor layer. This architecture yielded larger fill factors than those seen in previous single-

layer devices [10] and current-voltage (J-V) characteristics similar in shape to their high-efficiency 

inorganic counterparts. The architecture is commonly referred to as a planar hetero-junction 

because the deposited layers can be idealized as stacked planes of different materials. Vacuum 

thermal evaporation is the most common method of depositing the organic layers for these devices. 

However the planar architecture limits the performance of organic solar cells owing to low exciton 

diffusion length of organic materials. 
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            The exciton diffusion length is the average distance that an exciton travels before 

recombining and is critical in planar-hetero-junction devices because a photo generated exciton 

must travel a distance to the donor / acceptor interface to be separated into a hole and electron. 

Short exciton diffusion lengths in most polymeric organic materials (on the order of tens of 

nanometers) limit the thickness of the polymeric organic layers. While thick layers are desired for 

high absorption, layers must also be sufficiently thin to prevent excessive recombination because 

of the short exciton diffusion lengths. To overcome some of the limitations of the small exciton 

diffusion length, the donor and acceptor layers can be blended together to minimize the distance 

an exciton must travel to reach a donor / acceptor interface. This structure is called a bulk hetero-

junction since the hetero-junction is dispersed throughout the bulk of the layer. A comparison of 

the two hetero-junction designs is displayed in Figure 1.1. A device with a large dispersion of 

interfaces throughout the photoactive layer requires smaller exciton diffusion distances, and thus, 

a larger exciton dissociation yield is achieved. There exists a trade-off between increasing 

interfacial area via the intimate dispersion of phases and the creation of efficient conductive 

pathways through which free electrons and holes may be transported. The arrangement of donor 

and acceptor phase is thus crucial to device performance.  

            Hiramoto et al. first demonstrated the bulk hetero-junction structure with a co-deposited 

layer of metal-free phthalocyanine (as donor) and a perylene tetracarboxylic derivative (as 

acceptor) between neat layers of the donor and acceptor [13]. Bulk hetero-junctions also helped 

facilitate the transition to solution processing of the organic layers. Solution processing is attractive 

because it might be more easily applied to large-scale, high-speed manufacturing processes such 

as printing compared to vacuum processing. While a single layer of a semiconductor can easily be 

spin-coated from solution with the subsequent layers vacuum deposited [11, 12, 18], solution 

processing of both layers for a planar hetero-junction is challenging because the deposition of the 

second layer must not dissolve and remove the first layer. Application of bulk hetero-junctions 

would simplify solution processing by depositing a single layer that is a blend of donor and 

acceptor. 
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Figure 1.1 Schematics of the basic structures for solar cells based on a planar hetero-junction and 

on a bulk hetero-junction. 

           This structure led to higher photocurrent compared to devices without the mixed layer. 

Since then, bulk hetero-junctions formed with other vacuum-deposited small molecules have also 

been demonstrated, primarily with CuPc and C60 or PTCBI [14-17]. The main challenge would 

be creating percolation pathways for the holes and electrons to be efficiently transported to and 

collected at the electrodes. The first solution-processed organic solar cells incorporating a blend 

for the active layer were demonstrated by blending the polymers MEH-PPV and cyano-PPV (CN-

PPV) as donor and acceptor and reached external quantum efficiencies up to 6% [21, 22]. The 

natural phase segregation of polymer blends was expected to create pathways to enhance carrier 

transport [19], and the work functions of the electrodes are thought to determine the extracted 

carrier type [20]. Yu et al. showed that the acceptor polymer could be replaced with a soluble 

derivative of C60, [6, 6]-phenyl C61 butyric acid methyl ester (PCBM), to yield devices with 

power conversion efficiencies up to ~1.5% under low-intensity broadband illumination [21]. The 

combination of polymer and small molecule has become the most common approach to solution-

processed bulk hetero-junction. Much effort has been spent exploring new polymers and acceptors 

for bulk hetero-junction solar cells to increase absorption and carrier transport. One of the most 

researched combinations to date is region regular poly(3-hexylthiophene) (P3HT) blended with 

PCBM, which reaches power conversion efficiencies close to 5% [22,23]. Recently, new polymers 

(PCPDTBT, PTB1, and PCDTBT) with absorption spectra that extend farther into the red part of 

the spectrum have been reported in blends with PC71BM yielding efficiencies greater than 5% 

[24-26]. The phase segregation in the films has become apparent as a major factor influencing 
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overall device efficiency. Annealing of devices [22, 23], changing the solvent and the drying speed 

of the film [23], and adding chemicals with selective solubility of the fullerene component to affect 

crystallization [24] have been found to affect the phase segregation and improve performance. 

However, finding the optimum conditions can be very tedious and time consuming. Solution-

processed cells based on blends of small molecules are now starting to be reported with efficiencies 

above 3%. Researchers are taking advantage of the ability to solution process by demonstrating 

cells fabricated by screen printing [27], inkjet printing [28], gravure printing [29], brush painting 

[30], and even roll-to-roll printing [31]. 

 

1.4 Polymeric hybrid bulk hetero-junction solar cells 

 

            Polymeric hybrid bulk hetero-junction solar cells (PHSC) combine organic (normally 

conjugated polymers) and inorganic nanoparticles, with the intent of incorporating the advantages 

associated with both material groups [32, 33]. The inorganic electron acceptor material can provide 

further advantages to the system, whilst still maintaining low cost processability. First, inorganic 

acceptor materials are more environmentally stable than organic materials [34]. Adding these 

materials to PSC devices could assist in overcoming one of the major downfalls of the technology, 

which is the photo induced degradation of the conjugated organic semiconductors. Second, photo 

generation of charge carriers can be achieved by excitons absorbed in the inorganic material [35, 

36]. The contribution of light absorption by an inorganic acceptor has the potential to be greater 

than the absorption contribution of PCBM in PSC devices [37, 38]. Additionally, quantum 

confinement, as a result of modification of the size and shape of the inorganic nanoparticle, alters 

the band gap and thus absorption profile of the nanoparticle [39]. This provides the possibility of 

choosing the spectral window of the complementary absorption profile [40]. Third, inorganic 

quantum dots are known for ultrafast photo induced charge carrier transfer to organic 

semiconductors. This transfer rate has been observed in the order of picoseconds [41]. As this 

transfer rate is faster than the competing recombination mechanisms, efficient charge transfer 

between the donor and acceptor can be established. Lastly, the physical dimensions of some 

inorganic semiconductors, namely oxides, can be tailored via synthesis methods to produce 
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vertically well-aligned nanostructures [42]. This can lead to device architectures which allow 

simultaneously efficient excitonic dissociation and electron transporting pathways. These 

advantages could be obtained, whilst maintaining the solution processability and thus high 

throughput, low cost device production. Although there are multiple theoretical advantages 

associated with using an inorganic electron acceptor, the currently achieved device efficiencies of 

hybrid solar cells are significantly lower than polymer: fullerene PSC devices. Here exist multiple 

factors responsible for this discrepancy. Seemingly, the most important issues are related to the 

nanoparticle surface chemistry and the nano morphology of the photoactive layer. 

 

1.5 Dye sensitized polymeric bulk hetero-junction solar cells 

 

 One of the crucial parameters limiting the theoretically efficiency of PSC and PHSC is 

narrow photon harvesting spectrum window of conjugated organic polymer. The high band gap of 

polymers limit the numbers of photons that could be harvested for conversion of it into electrical 

energy. Figure 1.2 shows the large unused spectrum in case of typical P3HT/PCBM PSC compared 

to conventional Si based solar cells. Practically, most of the solar cells cannot efficiently use the 

photon having wavelength below 350–400 nm due to absorption at the substrate and front 

electrodes (i.e. glass, ITO). However, this part of the spectrum contains very little spectral intensity. 

The range of wavelengths from 280 to 400 nm amounts to only 1.4% of the total possible current 

or 1 mA/cm2 in current density [43]. Table 1.1 shows that there will be large increase in current 

density by increasing the λ max from 650 to 1000 nm, i.e. decreasing the band gap. Poly (3-

hexylthiophene) has a band gap of 650 nm (1.9 eV) and thus only has the possibility to harvest up 

to 22.4% of the available photons giving a maximum theoretical current density of 14.3 mA/cm2.  

 Panchromatic photon harvesting in wide wavelength region is highly desired to further 

increase the efficiency. One possible solution for this problem came with the development of low 

band gap polymers. Low band gap polymers are loosely defined as a polymer with a band gap 

below 2 eV, i.e. absorbing light with wavelengths longer than 620 nm. During the last decade 

several research groups have reported the synthesis and use of materials which absorb light with 

wavelengths above 600 nm in PSC, leading to the development of low band gap (LBG) conducting 
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polymers. LBG conducting polymers surpassing the efficiency of robust P3HT/PCBM system are 

only few [44,45] and require tedious multistep synthesis. Controlling the molecular weight and 

poly dispersity index of such LBG conducting polymers is also quite cumbersome. 

  

 

 

 

 

 

 

 

 

 

Figure 1.2 Large unused solar spectra of typical P3HT/PCBM PSC compared to Si based solar cell. 

 Another possible route to bypass the lower performance often observed with such systems 

is the fabrication of dye-sensitized bulk-heterojunction using P3HT and PCBM [46-48]. 

Fabrication of the dye-sensitized bulk heterojunction solar is based on the utilization of small 

molecule sensitizers having sharp and intense light absorption in high wavelength region. In this 

system high band gap conjugated polymer absorbs photons mainly in visible region, and additional 

photons are absorbed by small molecule dyes in NIR region. However, these system can only work, 

if there is suitable maintenance of  the energetic cascade in terms of the energy of their highest 

occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) with 

respect to the donor conjugated polymer and acceptor molecule, along with the solution 

processability. There are several families of solution processable small molecules that have been 

used as donor materials in BHJ solar cells. Small molecular dyes often have high mobility, are 
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easily purified, and are more prone to long range order than low band gap polymers. Small 

molecules in solution, however, may lack the viscosity necessary for film casting via most solution 

processing techniques and are often prone to unfavorable phase separation in a BHJ structure due 

to their tendency to crystallize [46]. There are three major kinds of NIR sensitizers to date, 

squaraine, porphyrin, and phthalocyanine. These dyes have gained recognition as one of the most 

versatile building blocks for designing sensitizers mainly in dye sensetized solar cells (DSCs) 

owing to their unique optical as well as electrochemical properties and their excellent 

photochemical stability. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.1 The integrated photon flux and maximum current density available for a PV that harvest 

light from 280 nm up to the wavelength quoted assuming that every photon is converted into one 

electron in the external circuit 

 

Wavelength Max. % harvested (280 nm ) Current density (mA/cm2) 

  500 8.0 5.1 

600 17.3 11.1 

650 22.4 14.3 

700 27.6 17.6 

750 35.6 20.8 

800 37.3 23.8 

900 46.7 29.8 

1000 53.0 33.9 

1250 68.7 43.9 

1500 75.0 47.9 
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1.6 Working of bulk hetero-junction solar cells 

 

1.6.1 Device architecture and general operating principles 

             The device architecture (Figure 1.3) and operation of PSC and PHSC is very similar, the 

only difference being that the organic electron accepting material like PCBM (or other fullerene 

derivatives) in PSC is replaced by an inorganic nanoparticle in PHSC. This could be in the form 

of quantum dots dispersed in a polymer matrix, or a more complex shaped nanoparticle like nano 

rods, nanowires or tetra pods, mixed with a polymer.   

 

 

 

 

 

 

 

Figure 1.3: Device architecture of PSC and PHSC solar cells. 

 The device is built on a transparent substrate, usually glass or PET. This substrate may be 

flexible. The anode consists of a semitransparent oxide layer, usually indium tin oxide (ITO). Its 

role is to allow light to pass through, and to collect holes from the device. A layer of the conductive 

polymer mixture (PEDOT–PSS) may be applied between the anode and the photoactive layer. This 

thin layer is spin coated on top of the ITO surface. The PEDOT–PSS layer serves several functions. 

As well as a hole transporting layer and exciton blocker, it smoothens the ITO surface, seals the 

active layer from oxygen, and prevents the cathode material from diffusing into the active layer, 

which can lead to unwanted trap sites [49]. The light absorbing photoactive layer containing the 

donor and acceptor material is sandwiched between two electrodes. For lab devices, this layer is 
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spin coated from a common solution which contains the polymer donor and inorganic 

nanoparticles suspended in an appropriate solvent or mixture of solvents. The cathode is usually 

aluminum, although calcium or magnesium is sometimes used. The function of the cathode is to 

collect electrons from the device. This layer is deposited via thermal evaporation. With this device 

structure, the light is illuminated through the glass substrate. 

 

1.6.2 Structure of photoactive layer 

In bulk hetero-junction solar cells, excitons formed in the donor material are dissociated at 

the donor–acceptor (D–A) interface. The force required to overcome the exciton binding energy is 

provided by the energy level offset of the lowest unoccupied molecular orbital (LUMO) of the 

donor and the conduction band edge of the acceptor materials. Figure 1.3 displays a simplified 

energy band diagram. This energy offset used to dissociate excitons is denoted as ΔEES in Figure 

1.4, which is the excited state energy offset. For dissociation of excitons formed in the acceptor 

material, the energy offset of the highest occupied molecular orbital (HOMO) of the donor and the 

valence band edge of the acceptor materials is required. This energy offset used to dissociate 

excitons is denoted as ΔEGS in Figure 1.3. This is the ground state energy offset. Excitonic 

dissociation due to this energy offset occurs at the interface between the donor and acceptor phase, 

and thus, the arrangement of the two materials in the active layer is crucial for the successful 

operation of the device.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 General energy band diagram of the hetero-junction formed in a bulk hetero-junction 

solar cell. 
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Due to the small excitonic diffusion length in conjugated polymers (~10 nm) [50–52], bi 

layer structures are severely limited in excitonic dissociation, as there exists only one interface. 

The only place where dissociation can occur is at the single interface between the materials, 

implying that only photoexcitation which occurs within an excitonic diffusion length of the 

interface can produce free charge carriers. In order to increase the interfacial area and thus 

excitonic dissociation, the donor and acceptor material can be intimately mixed, forming what is 

called a bulk hetero-junction  

     

1.6.3 Performance characteristics 

             The power conversion efficiency (PCE) of a solar cell is defined as: 

𝐏𝐂𝐄 =
𝑱𝒔𝒄 × 𝑽𝒐𝒄 × 𝑭𝑭

𝑷𝒊𝒏
 

Where Jsc is short circuit current density, Voc is open circuit voltage, FF is fill factor and Pin is 

incident input power. To allow for valid comparison of device performance, an international 

standard for input power is used. This standard is an incident spectrum of AM 1.5 G with an 

intensity of 1000 W/m2 (100 mW/cm2), whilst the cell is at a temperature of 250C. The air mass 

(AM) is the ratio of the path length of incoming sunlight through the atmosphere when the Sun is 

at an angle Ɵ to the zenith, to the path length when the Sun is at the zenith. AM1.5 corresponds to 

the spectral power distribution of light coming in with an angle Ɵ of 48° to the zenith. Therefore, 

there are three major device characteristics which completely determine the efficiency of the 

device. 
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Figure 1.5 (a) Equivalent circuit (b) Current density–voltage (J–V) characteristics for a generic 

illuminated solar cell. 

Figure 1.5 (a) describes the typical electrical equivalent circuit of a solar cell. Figure 1.5 (b) 

displays a typical illuminated J–V characteristic curve which illustrates these three characteristics. 

The following describes the factors which influence these device characteristics for organic–

inorganic hybrid solar cells. 

1.6.3.1 Short circuit current density 

           The short circuit current density (Jsc) is the maximum photocurrent density which can be 

extracted from the device at short circuit conditions. The Jsc is directly related to the external 

quantum efficiency (EQE). This relationship can be expressed as: 

                                                         𝐉𝐬𝐜 =
𝒒

𝒉𝒄
∫ 𝑬𝑸𝑬 × 𝑷𝒊𝒏 (𝝀)𝝀 × 𝒅𝝀

𝝀𝒎𝒂𝒙

𝝀𝒎𝒊𝒏
     

The EQE is the ratio of photo generated electrons collected to the number of incident photons at a 

specific wavelength. For the operation of a hybrid solar cell, this quantity is dependent on five 

major steps, each of which has some associated efficiency. Thus, EQE can be expressed as: 

EQE =  ηA ×  ηED × ηCT × ηCC 
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Figure 1.6 Energy band diagram illustrating the four key steps in the charge transfer process. The 

efficiency of these steps determines the EQE of the bulk hetero-junction device. 

            The parameter ηA describes the absorption yield of the device, which is displayed as (1) in 

Figure 1.6 This represents the most effective way of increasing the Jsc of a hybrid device [32, 53]. 

The absorption spectrum of the material is determined by both the band gap and absorption 

coefficient of the material, whilst the thickness of the active layer will also affect the absorption 

yield [54]. Additionally, thin film interference will affect the absorbance of the bulk hetero-

junction photoactive layer. In hybrid solar cells, significant useful absorption may be provided by 

the inorganic acceptor material. This implies that the electronic composition of the inorganic 

material will impact the Jsc of the device. 

           The parameter ηED (Figure 1.6), describes the ability of an exciton to diffuse to a D–A 

interface. This is dependent on both the excitonic diffusion length, which is a material property, 

and the distance between excitation and the nearest interface, which is related to the nano scale 

design of the photoactive layer. As the excitonic diffusion length in conjugated polymers is very 

low [50-52], control over the D–A arrangement is crucial for successful exciton diffusion. This 

factor is inversely related to the rate of recombination within the photoactive material. 

            The parameter ηCT (Figure 1.6), is the exciton dissociation yield. As the electron is still 
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bound within the exciton, the energy offset formed at the D–A interfaces is required to provide a 

driving force which releases the electron and allows conduction to occur. This energy offset must 

be larger than the excitonic binding energy in the material to facilitate charge transfer. This energy 

is typically in the range of 0.1–0.5 eV [50, 55]. This occurs only at the boundaries between the two 

materials and therefore, the distribution of the interface throughout the active layer is vitally 

important for the efficiency of the solar cell. 

           The parameter ηCC describes the efficiency of charge collection at the electrodes. This 

represents the ability of the charge carriers to be injected into the electrodes from the photoactive 

layer. The success of this step is greatly dependent on the electronic composition of the device. 

For successful injection of electrons into the cathode, the magnitude of the conduction band edge 

energy level of the acceptor material, with respect to the vacuum level, must be lower than the 

work function of the metal. For successful injection of holes into the anode, the magnitude of the 

HOMO level of donor material must be higher than the work function of the transparent anode. 

This is displayed schematically in Figure 1.4. The material used for the electrodes must be 

carefully selected. A discrepancy between the work function of the anode and cathode material is 

required to provide a direction for the photocurrent. Often intermediate layers between the 

photoactive layer and electrodes are introduced to make the injection of charge carriers more 

energetically favorable [56, 57]. The quality of the ohmic contact with the cathode, which is 

determined by the nature of the interface with the aluminum, also influences the charge collection 

efficiency. 

1.6.3.2. Fill factor 

            The fill factor describes the ‘square-ness’ of the J–V curve. It is defined as: 

Fill Factor (FF) =  
𝐽𝑚 × 𝑉𝑚

𝐽𝑠𝑐 × 𝑉𝑜𝑐
 

Where Jm and Vm are the maximum power point current density and voltage, respectively. This 

ratio is illustrated in Figure 1.4. Due to physical constraints on diode quality, the practical limit to 

fill factor is less than the ideal value of 1. The behavior of a real diode will deviate from the ideal, 

primarily as a result of recombination occurring at the junction. For OPV and organic–inorganic 

hybrid solar cells, the ‘junction’ is the D–A interface, which is distributed throughout the entire 



19 
 

photoactive layer. Deviations from the ideal case, and thus the shape of the J–V curve, can be 

quantitatively characterized by the parasitic loss mechanisms of series and shunt resistance. Zero 

series resistance (Rs=0) is ideal, however, poor conductivity through the active layer and reduced 

charge carrier injection to the electrodes represents increased series resistance. Conversely, the 

ideal diode case demands infinite shunt resistance. Reduction in Rsh is caused by imperfections 

within the photoactive film or current leaks at the interface between layers in the device [58].  

 

1.6.3.3 Open circuit voltage 

            In contrast to silicon p–n junction solar cells, the origin of open circuit voltage in bulk 

hetero-junction devices is still not well understood. Multiple reports have investigated this property 

for PSC devices, using PCBM as the electron acceptor. In 2001, Brabec et al. proposed an effective 

band gap model for bulk hetero-junction cells, whereby the maximal value of Voc is related directly 

to the energy difference between the HOMO level of the donor and the LUMO level of the acceptor 

[32, 59]. This proposition was verified by an empirical investigation of the effect of fullerene 

acceptor strength (electron affinity) on open circuit voltage. A linear relationship between acceptor 

strength and open circuit voltage was discovered. This study also showed that Voc is weakly 

dependent on the type of metal used as the cathode. In 2006, a breakthrough communication on 

the matter was published by Scharber et al. This report studied the relationship between the energy 

levels of the D–A blend and the open circuit voltage for 26 different bulk hetero-junction devices. 

For each device, the acceptor material used was kept constant (PCBM), whilst the donor material 

was varied. It was found that there exists a linear relationship between the HOMO position, which 

is related to the diagonal band gap of the hetero-junction, and the open circuit voltage [60]. From 

this analysis, a simple relationship between the HOMO of the donor material and the Voc of the 

device was derived. This was reported as [32, 60]: 

 

𝐕𝐨𝐜 = (
𝟏

𝒆
) ( ǀ 𝑬𝑫𝒐𝒏𝒐𝒓 𝑯𝑶𝑴𝑶 ǀ −  ǀ 𝑬𝑷𝑪𝑩𝑴𝑳𝑼𝑴𝑶ǀ ) − 𝟎. 𝟑 𝑽 
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           This suggests that Voc is directly proportional to the diagonal band gap of the hetero-

junction; however, there exists an empirical loss factor related to the bulk hetero-junction design. 

The systematic nature of this study made the proposition of the effective band gap model 

convincing, however, these results are derived purely from empirical evidence, rather than 

theoretical understanding. Vandewal et al. discovered a similar relationship by analyzing charge 

transfer absorption using Fourier-transform photocurrent spectroscopy. The EQE spectra of 

polymer: PCBM solar cells was analyzed for photon energies which do not overlap with the 

absorption bands of either the polymer or PCBM. Photocurrent response at these energies is 

attributed to charge transfer complexes created at the polymer: PCBM interface. It was suggested 

that the spectral position of this charge transfer band correlates to the diagonal band gap of the 

hetero-junction [61]. 

           This effective band gap can be extracted from the onset of photocurrent generated by the 

charge transfer band. The authors thus conclude that the Voc is, in fact, related to this effective 

band gap. They obtained the following linear fit to describe Voc [32, 61]: 

Voc ≅  
𝐸𝑔

𝑒
− 0.43 𝑉 

Where Eg is the charge transfer complex band gap, which is considered as the effective band gap 

of the hetero-junction. Detailed balance theory suggests that maximal Voc will be obtained when 

recombination is exclusively radiative. Large luminescence quenching in bulk hetero-junction 

blend films implies that radiative recombination is only a small fraction of total recombination, 

and thus, practically achieved values of Voc are far removed from the optimum value [62]. The 

Voc in PSC devices is thus hindered primarily by non-radiative recombination at the D–A interface. 

However, a recent, contradictory report found no linear relationship between the diagonal band 

gap of the hetero-junction and Voc [63]. It was shown; however, that diagonal band gap serves as 

an upper bound for Voc. Such reports highlight the remaining ambiguity regarding the origin of 

Voc in bulk hetero-junction OPV devices. 

              The origin of Voc in PHSC remains thus far largely unexplored. Few reports have shown 

a link between the diagonal band gap and Voc. One report investigating hybrid polymer/TiO2 solar 

cells suggests that the Voc is dependent on the ionization potential, or HOMO energy level, of the 

polymer [64]. This presents the view that the effective band gap model is transferrable to hybrid 
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solar cells. The Voc may be optimized by tuning the position of the conduction band edge in the 

inorganic material by molecular modification. Brandenburg et al. recently showed that the Voc of 

P3HT: CdSe hybrid solar cells depended heavily upon the size of the CdSe nanocrystals [65]. This 

dependence was attributed to the size-related shift of the conduction band edge of the CdSe nano 

crystals. These findings are in line with the effective band gap model suggested for OPV devices, 

however, much uncertainty remains regarding the exact mechanisms governing this fundamental 

property in hybrid solar cells. Current understanding, at the very least, suggests the maximal 

theoretical Voc of a PHSC is determined by the diagonal band gap of the hetero-junction. The 

requirement to maximize diagonal band gap for Voc is in conflict with the desire to minimize the 

band gap of the individual isolated materials, such that light absorption can be maximized. 

Understanding this trade-off is necessary for the design and optimization of materials used in 

hybrid solar cells [32]. 

 

1.7 Challenges 

            While the primary factor preventing the commercial application of PSC and PHSC is their 

limited efficiency and stability, other major challenges that must be addressed scaling and 

processiablity. Still large part of research of organic solar cells are limited to laboratories. Apart 

from achieving high efficiencies research are underway for looking for low cost, high speed, low 

material wastage fully scalable rolls to rolls compatible fabrication processes. With all the coating 

techniques, there are additional associated factors of processing speed, wet film thickness, ease of 

preparation of solution, solution viscosity, and maximum solution usage. Along with these pre and 

post annealing of prepared thin films is also crucial factor know to affect the nano morphology of 

the bulk hetero-junction blends. 

            For the PHSC, processing is still the key issue before potential of this technology can be 

realized. First, it is imperative to find the most optimal combination of organic and inorganic 

materials for hybrid solar cells. This requires careful consideration of the size of the individual 

material band gaps, which affects the range of absorption and thus maximum obtainable Jsc, and 

the diagonal band gap of the hetero-junction, which determines the maximum obtainable Voc. 

Advances in the synthetic processes used to form the inorganic material are required. Reproducible, 
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well ordered structures are vital for the optimization of the photoactive layer; however, these 

structures must be fabricated using techniques which are easily scalable. A precise control over the 

physical geometry of the nanoparticle is needed to tailor and optimize the electronic structure. 

Additionally nano morphology of the photoactive layer is very important factor that plays a 

balance between interfacial area and continuous conducting pathways is maintained within the 

photoactive layer.  

 

1.8 Organization of the present thesis 

 This thesis explores and demonstrates the way for single-pot fabrication process of all-

solid DSSCs using a DSPHSC fabrication method.  

First chapter describes the basic background about solar cells particularly focusing on 

working and performance characteristics of PSC and PHSC. 

 

Second chapter describes the details of materials and their properties used for present 

investigation. Addition to this it also explores the fabrication and characterization method for the 

polymeric and polymeric hybrid BHJ solar cells, 

Third chapter describes the basic fabrication process for the PSCs. Additionally it also 

explores the performance characteristics of P3HT/PCBM polymeric BHJ device fabricated using 

new and efficient spray system, and its comparison with device fabricated using spin coating 

process.  

Fourth chapter describes the use of solution processable ZnO precursor for the single step 

fabrication of P3HT/ZnO PHSC solar cells. The aim of using solution processsable precursor is to 

do in situ generation of ZnO nanoparticle inside the polymer matrix, and thus fabricating polymeric 

hybrid BHJ in single step. For further improving performance of solution processed P3HT/ZnO 

polymeric hybrid BHJ efforts are also done for improvement of P3HT interface by modifying it 

with ester functionality.  

Fifth chapter describes the extension of concept of single step fabrication of P3HT/ZnO 
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PHSC for fabrication of DSPHSC. Here dye is used as additional sensitizer along with ester 

modified P3HT for photon harvesting in near infra-red region of solar spectrum. Considering the 

analogous structure of DSPHSC and solid state DSSC, a perspective for single step fabrication for 

all solid state dye sensitized solar cells is also given with using solution processable precursor. 

Finally the sixth and last part of this work will summarize the main result and provide 

guidelines for future investigation.     
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Chapter 2: Materials, instrumentation and methods 

 

2.1 Materials  

The following section provides the brief preview about the major materials used in active 

layer and blocking layer for the various solution processable polymeric bulk hetero-junction (PSC), 

polymeric hybrid bulk hetero-junction (PHSC) and dyes sensitized polymeric hybrid bulk hetero-

junction (DSPHSC) solar cells fabricated for present thesis.  

 

2.1.1 Poly (3-hexyl thiophene) 

            Polythiophenes are to date one of the most extensively investigated class of conjugated 

materials. They are long chain molecules made up of multiple (several thousands in some cases) 

thiophene molecules (Figure 2.1). Their chemical stability in various redox states and excellent 

electronic and charge transport properties make them good candidates for application in molecular 

electronic devices. Hexyl [CH3 (CH2)4 CH2] substitution of the thiophene monomer at the 3-

position greatly enhances the solubility of the resulting polymer (P3HT). 

 

  

 

 

Figure 2.1 Schematic 2-D representation of the ring structure of thiophene, the image on the left 

represents the actual structure of the molecule, while the skeletal image on the right indicates the 

types of bonds and the numbering convention for the atoms in the ring. 

However, substitution also introduces an additional level of complexity arising from the 

polymerization of an asymmetric monomer. The asymmetry of 3-substituted thiophenes results in 

three possible couplings when two monomers are linked between the 2- and the 5-positions.  
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3- Substituted thiophene monomer, can be joined at the 2-5 (head to tail), 2-2 (head –head) or 5-5 

(tail-tail) positions. These three diads can be combined into four distinct triads. The triads are 

distinguishable by NMR spectroscopy, and the degree of regioregularity can be estimated by 

integration [1, 2]. 

If the ratio of head to tail bonds is greater than other bonds (>2:1) the molecule has what 

is known as a regioregular structure and has better electrical properties than P3HT without this 

structure (known as regiorandom) [3, 4]. The higher the ratio of head to tail bonds to other bond 

types the more photoconductive the material will be. Regioregular, or head-to-tail coupled, P3HTs 

exhibit enhanced coplanarity, conductivity, and mechanical properties compared to their 

regiorandom counterparts. The effect of regioregularity on the optical, electronic, and physical 

properties of P3HTs is ascribed to the supramolecular assembly of the polymer chains in highly-

ordered solid-state structures [5].  

 

 

 

Figure 2.2 Schematic 2-D structure of Poly (3-hexyl thiophene) 

 

P3HT could be synthesized by both chemical and electrochemical synthesis method, and could be 

p-type doped during both in-situ and after polymerization process. P3HT is typically soluble in 

aromatic and halogenated aromatic solvents. Most common used solvent for processing are 

trichlorobenzene, chlorobenzene, toluene, xylenes, chloroform and to a lesser degree 

tetrahydrofuran (THF). Regioregular P3HT (Rieke Metals, Mn = 45-50 kg/mol) used for present 

work was purchased from the Sigma-Aldrich USA and used as received without further 

purification.  

            P3HTis a commonly used polymer in organic solar cells and acts as the light absorbing and 

hole transporting material. The hole mobility in P3HT depends on different factors and lies 

between 10-5 and 10-2 cm2/V-sec [6, 7]. The electron mobility is negligible small [8] .It has a band 

gap of around 1.9eV and is generally classed as a low band gap polymer i.e. has a band gap less 

http://en.wikipedia.org/wiki/Nuclear_magnetic_resonance_spectroscopy
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than 2eV and absorbs light with wavelengths longer than 620nm [9,10].  

In present thesis P3HT has been used as photo-active electron donor material in all PSC, PHSC 

and DSPHSC devices. 

 

2.1.2 [6, 6]-Phenyl-C61-butyric acid methyl ester (PCBM)   

           PCBM is a fullerene derivative of the C60 buckyball that was first synthesized in the 1990s 

[11]  Fullerenes are isotopes of carbon that form regular ball shaped structures from a combination 

of hexagonal and pentagonal structures known as a truncated icosahedron [12], with alternating 

double and single bonds they typically have diameters greater than 1nm. They come in a variety 

of different allotropes including; C20, C26, C60, C70, C84 and C100, of which C60 and C70 are the most 

common. C60 has been found to form spontaneously in condensing carbon vapor [13]. 

Buckminsterfullerene (C60) is a strong electron acceptor as it has a three layer LUMO capable of 

taking up to 6 extra electrons they are often combined with materials such as pentacene which are 

strong π-conjugated electron donors [14]. 

 

 

 

Figure 2.3 Schematic 2-D structure of [6, 6]-phenyl-C61-butyric acid methyl ester 

           Fullerenes are often prepared with ligands to enable them to more evenly distribute through 

the bulk polymer and to prevent clumping. The most common ligand attached fullerenes is [6, 6]-

phenyl-C61-butyric acid methyl ester (PCBM) (Figure 2.3) and is widely used organic nanoparticle 

electron acceptor for all organic-polymer solar cells [15]. Its wide usage is mainly due to ease of 

processablity owing to its solubility in many aromatic solvents (like chlorobenzebne). They form 

either discrete layers or can be distributed into a photoconductive polymer matrix to form a bulk 

hetero-junction. The mobility in PCBM is between 2*10-3 and 2* 10-2 cm2/V s [16]. The hole 

mobility is negligible small. The HOMO level is 6.1 eV and the LUMO level is 4.4 eV [17] PCBM 

used in present work is supplied by Sigma Aldrich. In present thesis PCBM has been used as n 

http://en.wikipedia.org/wiki/Fullerene_derivative
http://en.wikipedia.org/wiki/Buckyball
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type electron acceptor material in PSC devices. 

 

2.1.3 Diethyl zinc 

           Zinc oxide is a wide band semiconductor, having tunable structural properties. Because of 

ZnO’s non-toxicity, relatively low temperature and low cost fabrication process for crystalline ZnO, 

there is growing interest in its use as an electron acceptor material in polymer inorganic hybrid 

solar cells [18-23].  

Two different approaches have been developed to reap the benefits of ZnO nanostructures in hybrid 

solar cells. In first approach, p type conjugated polymer is deposited on ZnO nanostructures, 

allowing enhanced hybrid interface while controlling active layer morphology [24-25]. However, 

it’s difficult to attain complete infiltration of polymer within ZnO nanostructures for realizing 

efficient charge transport [26]. In second approach, blends are made by mixing polymer and ZnO 

nanoparticles by adopting the solution processable fabrication techniques realizing an architecture 

closed to PHSC. However, it’s difficult to realize interpenetrating structures of ZnO in the 

polymers. These drawbacks could be overcome via in-situ generation of ZnO nanoparticles in the 

polymer matrix using organometallic precursor like diethyl zinc. 

            DEZ is a highly pyrophoric organozinc compound consisting of a zinc center bound to 

two ethyl groups. Despite its highly pyrophoric nature, diethylzinc is an important chemical 

reagent. For DEZ use in PHSC, it is coated together with semiconducting polymer from solution 

in controlled humid conditions [27]. During and after deposition, DEZ is converted to Zn(OH)2 by 

reacting with ambient moisture and after annealing, interpenetrating ZnO nanoparticles are formed 

in polymer matrix leaving no residual byproduct. DEZ (0.4 M solution in toluene-tetrahydrofuran) 

used in this thesis was supplied by Tosho Fine Chemicals, Japan. 

Figure 2.4 Structure of Diethyl Zinc (left), and its conversion reaction to ZnO after controlled 

hydrolysis and annealing. 

http://en.wikipedia.org/wiki/Pyrophoric
http://en.wikipedia.org/wiki/Organozinc_compound
http://en.wikipedia.org/wiki/Ethyl_group
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In present thesis, DEZ is used as solution precursor for obtaining ZnO nanoparticles. DEZ 

is used for fabrication of all PHSC and DSPHSC devices in present thesis. 

 

2.1.4 Squaraine dye 

Squaraine-based (SQ) sensitizers are the soluble small molecule sensitizers having sharp 

intense electronic absorption spectrum from visible to near infra-red region, good stability, 

solution processability and synthetic versatility. They find their potential applications in the area 

of non-linear optics [28], imaging [29], photodynamic therapy [30], ion sensing [31], 

chromo/fluorogenic probes [32] and solar cells. In the area of solar cells, there are a good deal of 

reports about the use of squaraine dyes as sensitizers for dye sensitized solar cells (DSSCs) [33, 

34]. Silvestri et al. reported the fabrication of solution processable bulk heterojunction solar cells 

using a blend of squaraine dye as p-type donor with PCBM acceptor having power conversion 

efficiency of 0.1–1.2% [35]. Bagnis et al. [36], have experimentally verified the p-type behavior 

of their squaraine dyes by field effect transistor mobility measurement. They emphasized the 

marked influence of molecular design of squaraine dyes upon their photon harvesting behavior 

also. A planer heterojunction solar cell based on soluble squaraine dyes using thermal evaporation 

of C60 as electron acceptor with the p-type thermally evaporated [37] as well as solution processed 

squaraine dyes [38] has also been reported recently. Pandey et al. [39] has shown that energy level 

of the SQ-dyes can be systematically tuned only by alkyl chain substitution. Further they also 

shown that SQ-dyes behave like p-type donors forming a p–n heterojunction with soluble fullerene 

derivative phenyl-C61-butyric acid methyl ester (PCBM) as n-type organic electron acceptor. 

 

Generally, symmetrical squaraine dyes are synthesized by condensation of squaric acid 

with two equivalents of a quaternized methylene base such as an aniline derivative or 1,2,3,3-

tetramethyl-3H-indolium iodide (Figure 2.5) in the mixture of high boiling solvents like 

butanol:toluene or butanol:benzene at reflux condition.. Structural variation are simply achieved 

by using different precursors.  For the present thesis far-red sensitizing symmetrical SQ-dyes 

bearing varying alkyl chain lengths have been synthesized as per the method reported by Pandey 

et al [40]. The symmetrical SQ-dye is used as additional sensitizing molecule for the fabrication 

of DSPHSC. 
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Figure 2.5 General scheme for synthesis of indole based symmetrical SQ-dyes. 

 

2.1.5 Poly (3, 4-ethylenedioxythiophene) poly (styrenesulfonate) 

(PEDOT: PSS) 

            Poly(3,4-ethylenedioxythiophene) (PEDOT) is a highly transparent electrically conductive 

ionomer based on the 3,4-ethylenedioxythiophene (EDOT) monomer being developed by German 

company (Bayer AG) in late 80’s. An ionomer is a polymer with repeating electrically neutral units 

of which a fraction, generally no more than ~15%, are ionized [41]. PEDOT is generally used to 

modify the electrical characteristics of ITO layers in transparent electrodes and other opto 

electrical devices. 

           Electrical characteristics of PEDOT is because of conjugated polymer backbone like of 

P3HT. However its usability is limited due to its poor solubility in many commonly used thin films 

processing solvents. This fault is overcome by the addition of a sulfonated polystyrene (poly 

(styrenesulfonate) (PSS)) chain which carries negative charges and enhances solubility. This 

emulsion is known for its ability to form transparent, stable and conductive film. Its conductivity 

depends on size of the particles, on PEDOT: PSS ratio, on suspension concentration, on the solvent 

used and on the curing temperature. PEDOT: PSS is usually sold as a dispersion in water, but this 

does not form high quality films when spin coated because water is quite slow to evaporate in 

comparison with alcohol based or similar solvents. By adding ethanol or methanol in a 1:1 ratio 

with the PEDOT: PSS suspension the evaporation rate and ability to bond to surfaces is enhanced 

and good quality films can be fabricated [42]. This layer is water soluble and can be surface 

modified by RF plasma treatment. PEDOT: PSS is a very transparent material that has a virtually 
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flat absorption spectrum in the visible region and typically reduces the amount of photons passing 

through to the active layer by less than 5% [43]. However, advantage of the enhanced performance 

due to increase in the work function of ITO from ~4.7eV to ~5.2eV offsets these minimal losses 

[44].  

 

 

 

 

 

 

 

Figure 2.6 Chemical structure of PEDOT: PSS and its constituent ionomers.  

 

           The PEDOT: PSS used in this thesis was Clevios PVP Al 4083, which was purchased from 

H.C.Starck. Purchased aqueous solution was blue in color and was kept in refrigerator at 

Temperature 50C. The PEDOT: PSS ratio was 1:6 by weight, its solid content was between 1.3 to 

1.7%, and its viscosity was 5 to 12 mPas-1 

 

2.2 Methods for thin film fabrication 

           

The following section provides the brief preview about the major instrumentation used for 

active layer and metal thin film fabrication in the various PSC,PHSC and DSPHSC solar cells 

fabricated for present thesis.  

         PEDOT                                       PSS 
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2.2.1 Spin coating 

           Spin coating is one of main technique for the deposition of thin films in laboratories. For 

the deposition of different materials to be fabricated as thin film, first a solution of desired materials 

are prepared in a common solvent. In a typical spin coating process an excess amount of solution 

is placed onto the substrate which is then spun at high speeds (up to 10,000 rpm) for certain 

duration. The solution will then spread by centrifugal force and excess will be ejected from edges, 

leaving a thin film on surface of substrate. Usually spinning time is optimized according to the 

used solvent’s viscosity and boiling point. The final thickness depend both on spin coater’s 

parameters (acceleration, rotation speed, time, exhaust etc.) and on the solution (viscosity, 

concentration, solvent used, etc.). Typically more concentrated or viscous solutions will produce 

thicker layers at a given spin speed. This has implications for the fabrication of  the BHJ solar cells, 

as pure polymer is mixed with other materials such as fullerenes and/or other nano-materials for 

active layer fabrication, which thus affects the viscosity and hence the thickness of thin film in 

solar cell.   

            For spin coating, the substrate is generally held onto a rotating chuck by means of a vacuum 

pump, to prevent substrate from being thrown in the air .The spin speed ramps up to the required 

spin speed, stays at that speed for a specified length of time and then ramps back to a stationary 

position at which point the substrate can be removed from the spin coater.  

            Modelling the spin coating process is difficult due to the many different factors involved 

such as; viscosity of the solution, rate of evaporation, spin speed and exhaust. It is therefore 

necessary to optimize the process by spin coating a range of samples with the desired viscosity at 

different spin speeds to determine the optimum speed and viscosity for the required film thickness. 

This process is known for its good reproducibility but it is important to note that subtle variation 

in the parameters can result in drastic variations on the coated film. Also, this is very sensitive to 

the ambient atmosphere, like presence of dust particle which prevent the desired spreading of the 

solution. Thus, spin coating usually requires clean rooms or glove box. Another drawback is that 

it can’t be used for large scale production since it’s difficult to coat large areas, also wastage of 

solution is too much. In this thesis most of the work was done on an ACTIVE spin coater which 

was placed in glove box that can be manually filled with nitrogen. Spin coater was always used 
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with the open lid. 

In present thesis spin coater have been used for deposition of active layer (donor/acceptor 

BHJ) and hole transporting layer (PEDOT-PSS) in all PSC, PHSC and DSPHSC devices. 

 

 

 

 

 

 

 

 

 

Figure 2.7 Spin coater machine used for present thesis 

 

2.2.2 Circular nano spray deposition 

            Spray deposition is the roll to roll compatible technique that involves forcing the printing 

ink through a nozzle whereby a fine aerosol is formed. Electrostatic charging or a neutral carrier 

gas may be involved to aid in directing the aerosol at the surface that is to be coated. Aerosol 

formation and solvent evaporation is complex process thus need to be controlled for preparation 

of smooth thin film surface. The formation of film quality is very much dependent on solvent’s 

viscosity used for making ink,  The ease with which inks are prepared ranges from simple to 

complex and the range of viscosities that will work is wide. With the spray coating technique it is 

possible to obtain wide range of film thickness.  
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Figure 2.8 Circular Spray coating system used for this thesis  

           There are different kind of spray techniques available for thin film fabrication. For this 

thesis we have used the circular nano vapor deposition spray system (NVD). NVD offers many 

benefits in terms material usage, thin film uniformity and reproducibility over conventional spray 

systems. Details of various spray techniques, and NVD advantages are discussed in section 3.1 of 

this thesis. 

 

2.2.3 Vacuum thermal evaporation 

           Vacuum thermal evaporation is one of the common technique used for thin film deposition. 

It is a technique that is suitable for a wide range of materials including; metals, metallic oxides 

and some organic materials. In present thesis this technique is being used for top electrode 

(Aluminum) deposition in polymeric BHJ solar cells. The material that has to be deposited is 

heated until its evaporation starts and then atoms are ejected. Evaporation involves two basic 

processes: a hot source material evaporates and condenses on to the substrate. This technique is 

done in vacuum, as it allows vapor particles to travel directly to the target object (substrate), where 

http://en.wikipedia.org/wiki/Evaporate
http://en.wikipedia.org/wiki/Condense
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they condense back to a solid state. Because of vacuum, vapors other than the source material are 

almost entirely removed before the process begins. However, hot objects in the evaporation 

chamber, such as heating filaments may produce unwanted vapors that can limit the quality of the 

vacuum. Evaporated atoms that collide with those foreign particles may react with them; for 

instance, if aluminum is deposited in the presence of oxygen, it will form aluminum oxide. They 

also reduce the amount of vapor that reaches the substrate, which makes the thickness difficult to 

control. In high vacuum (with a long mean free path), evaporated particles can travel directly to 

the deposition target without colliding with the background gas. For a typical pressure of 10-4 Pa, 

a 0.4-nm particle has a mean free path of 60 m.  

  

 

 

 

 

 

 

 

 

                  Figure 2.9 Vacuum thermal evaporation machine used for present thesis 

 

           The general appearance of the used vacuum thermal evaporator is shown in Figure 2.9. For 

Aluminum deposition tungsten was used as heating filament, because of their high melting point 

(3695 K) in comparison with aluminum (934 K). Vacuum were achieved in the chamber with help 

of rotary and diffusion pump. A crystal thickness monitor was used to determine the thickness of 

the films. Sample holders was used to hold the masked substrate.  

In present thesis vacuum thermal evaporation have been used for deposition of top electrode (Al) 

http://en.wikipedia.org/wiki/Aluminium
http://en.wikipedia.org/wiki/Oxygen
http://en.wikipedia.org/wiki/Aluminium_oxide
http://en.wikipedia.org/wiki/Mean_free_path
http://en.wikipedia.org/wiki/Pascal_(unit)
http://en.wikipedia.org/wiki/Nanometre
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in both PSC, PHSC and DSPHSC devices. 

 

2.3 Instrumentation for material and device characterization 

            

  The following section provides the brief preview about the major instrumentation used in 

material and device characterization of various PSC, PHSC and DSPHSC for present thesis.  

 

2.3.1 Film thickness measurement 

            Measurement for all the polymeric- nanomaterial BHJ thin films in present thesis was 

performed using Dektak 6M stylus profiler (Veeco instruments inc.). The Dektak 6M takes the 

measurement electromechanically by moving sample beneath a diamond-tipped stylus. The stylus 

is mechanically coupled with the core of linear variable differential transformer (LVDT). 

According to the user –programmed scan length, scan time, speed and stylus force, the fine stylus 

is moved across the sample. Due to surface variation of thin film stylus movement is translated 

vertically thus changing the core position of LVDT and producing the corresponding electrical 

signal. The LVDT scales an AC reference signal proportional to the positional change, which in 

turn is conditioned and converted to a digital format through high precision integrated analog to 

digital converter. 

           The digitized signals from printing a single scan are stored in computer memory for display, 

manipulation, measurement and printing (Figure 2.10). A useful secondary function of step 

profilometry is the ability to carry out surface roughness measurements. By having the stylus travel 

across the surface of the film, irregularities in the film surface can also be measured and maximum, 

minimum and average heights of the peaks and troughs can be recorded 

           However, this technique also has two main limitations; firstly it requires a reasonably sharp 

face to the film i.e. the slope of the face of the film from top to bottom is less than the length the 

stylus travels, secondly the film should be sufficiently dense that the stylus does not become 
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embedded in the film, which can occur with some polymeric materials.  

 

 

 

 

 

 

 

 

Figure 2.10 Block diagram of DEKTAK 6M profiler 

 

 

2.3.2 Photovoltaic device characterization 

           In this thesis, photovoltaic performance of PSC and PHSC were monitored with a solar 

simulator (Bunko-Keiki Co., Ltd., KHP-1) equipped with a xenon lamp (XLS-150A). The 

exposure of light was adjusted to be AM1.5 (100 mW/cm2). The two widely used techniques for 

photovoltaic characterizations are, current to voltage measurements under simulated sunlight and 

monochromatic light generated current measurements of also knows as incident photon current 

conversion efficiency (IPCE). 

 

2.3.2.1 Solar simulator and spectro-radiometer 

            For the measurement of solar cell efficiency, the spectral response of the solar simulator 

under investigation is first calibrated by LS-100 grating spectro-radiometer. It was specially 

designed from use in measuring the spectral irradiance of solar simulators that are used for the 

measurement of photovoltaic cells. Moreover, it is calibrated against a National Institute of 

Standards and Technology (NIST) traceable standard lamp. Its size is compact and it is very easy 

to operate. This spectro-radiometer must be connected to a PC (or laptop computer) via a RS232C 

cable, and data are obtained using the furnished (included) software. The measurement/analysis 

software is used to process the obtained data as follows; 
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a. Compare with the data obtained in the standard test conditions 

b. Calculate the integrated irradiance in the specified spectral range 

c. Calculate the spectral coincidence (JIS C 8912) 

d. Calculate the difference and ratio compared to the standard data 

 

 

 

 

 

 

 

 

 

Figure 2.11 The calibrated solar simulator spectrum based on solar spectrum of AM1.5 by LS-100 

grating spectro-radiometer. 

 

2.3.2.2 Current-voltage measurements 

           Current voltage (I-V) measurements are the basis of many of the electrical measurements 

used in present thesis, while they are basically a simple process, the results can be interpreted in a 

variety of ways to obtain a number of useful parameters. In this work I-V measurements under AM 

1.5 illumination were used to calculate basic parameters of polymer BHJ solar cells (Jsc, Voc, FF, 

Efficiency), whereas the dark I-V measurements were used to obtain leakage current and mobility 

of devices. The details about the solar cells parameters are discussed in section 1.6.3 of chapter 1 
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in this thesis.  

2.3.2.3 Incident photon to current conversion efficiency (IPCE) 

           The photosensitization behavior of a solar cell varies with the wavelength of the incoming 

light. IPCE is being measured under irradiation of monochromatic light and is basically defined 

by the ratio of the number of electrons generated by the solar cell to the number of incident photons 

on the active surface: 

𝐈𝐏𝐂𝐄(𝝀) =
𝒏𝒆𝒍𝒆𝒄𝒕𝒓𝒐𝒏𝒔(𝝀)

𝒏𝒑𝒉𝒐𝒕𝒐𝒏𝒔(𝝀)
=

𝑰(𝝀) 𝒆⁄

𝑷𝒊𝒏(𝝀) 𝒉 ∙ 𝝂⁄
=

𝑰(𝝀)

𝝀 ∙ 𝑷𝒊𝒏(𝝀)
∙

𝒉𝒄

𝝂
 

Where, I(λ) and Pin(λ) is the current given by the cell at wavelength λ the incoming power at 

wavelength λ, respectively. The spectral sensitivity S(λ) is the product of the IPCE(λ) and the 

wavelength (λ). If one knows the spectral irradiance E(λ), It is possible to estimate the short-circuit 

Isc using the relation: 

𝑰𝒔𝒄 = ∫ 𝑺(𝝀) ∙ 𝑬(𝝀) ∙ 𝒅𝝀 

           This method is useful for an indirect determination of the short-circuit current of the solar 

cell. 

 

2.3.3 UV-visible-NIR spectroscopy 

           Ultraviolet–visible spectroscopy or ultraviolet-visible spectrophotometry (UV-

Vis or UV/Vis) refers to absorption spectroscopy or reflectance spectroscopy in the ultraviolet-

visible spectral region. This spectroscopy uses the light in the visible and adjacent (near-UV 

and near-infrared (NIR)) ranges. The absorption or reflectance in the visible range directly affects 

the perceived color of the chemicals involved. In this region of the electromagnetic 

spectrum, molecules undergo electronic transitions. Molecules containing π-electrons or non-

bonding electrons (n-electrons) can absorb the energy in the form of ultraviolet or visible light to 

excite these electrons to higher anti-bonding molecular orbitals. The more easily excited the 

electrons (i.e. lower energy gap between the HOMO and the LUMO), the longer the wavelength 

http://en.wikipedia.org/wiki/Absorption_spectroscopy
http://en.wikipedia.org/wiki/Ultraviolet
http://en.wikipedia.org/wiki/Visible_spectrum
http://en.wikipedia.org/wiki/Near-infrared
http://en.wikipedia.org/wiki/Color_of_chemicals
http://en.wikipedia.org/wiki/Electromagnetic_spectrum
http://en.wikipedia.org/wiki/Electromagnetic_spectrum
http://en.wikipedia.org/wiki/Molecule
http://en.wikipedia.org/wiki/Molecular_electronic_transition
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of light it can absorb.            

 The instrument used in ultraviolet-visible spectroscopy is called a 

UV/Vis spectrophotometer. It measures the intensity of light passing through a sample I, and 

compares it to the intensity of light before it passes through the sample I0. The ratio I/I0 is called 

the transmittance, and is usually expressed as a percentage (%T). The absorbance A, is based on 

the transmittance: 

                                            A= -log (% T/100 %)                   

          The UV-visible spectrophotometer can also be configured to measure reflectance. In this 

case, the spectrophotometer measures the intensity of light reflected from a sample I, and compares 

it to the intensity of light reflected from a reference material I0 (such as a white tile). The 

ratio I/I0 is called the reflectance, and is usually expressed as a percentage (%R). 

          For present thesis, UV-visible absorption spectra of thin films were measured via UV-vis.-

NIR double beam spectrophotometer (JASCO, model V-530, Nihon Bunko, Japan). For measuring 

absorbance, first thin films of different materials were coated on to glass substrate using spin coater. 

The incident beam was then transmitted from the glass sides of the reference and sample. All the 

measurements done are in absorbance mode. 

 

2.3.4 Atomic Force Microscopy 

           Atomic Force Microscopy (AFM) is a type of high resolution Scanning probe microscopy 

(SPM).  In SPM a sharp probe is passed back and forth across a sample surface to obtain a two or 

three dimensional raster image built up in a similar way to the picture on a television screen. AFM 

is widely used to determine surface topography of thin films. An AFM consist of a cantilever with 

a sharp tip (a few nanometers) at its end which is used to scan sample point to point.  Depending 

upon the type of measurements, an AFM has three main modes: contact mode, non-contact mode 

and tapping mode. In contact mode the tip is dragged across the surface to be scanned, although 

this gives precise topographical impression of the surface, but may result in damage of both the 

sample and the tip due to forces between the surface and the tip. In non-contact mode, AFM 

measures the van der Waal forces between the tip and surface thus obtaining an image of the 

surface. As these forces are much weaker than those encountered in either of the contact or tapping 

http://en.wikipedia.org/wiki/Measuring_instrument
http://en.wikipedia.org/wiki/Absorbance
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modes and it is supplemented by oscillating the tip and applying an AC voltage. In tapping mode 

the tip makes brief contact with the surface before being lifted up, this is repeated over the surface 

of the sample. In the present thesis tapping mode is used for scanning surface of polymeric thin 

films.  

 

 In tapping mode cantilever oscillates near the resonant frequency of piezzo attached to it. 

As the tip comes close to the thin film surface, oscillation gets reduced due to interactions of forces. 

This modification is measured via a laser spot which is reflected from top surface of cantilever, 

just above the tip, into the array of photodiodes. Thereafter, a servo system adjusts the height to 

maintain a set cantilever oscillation amplitude. The image obtained by tapping mode is intermittent 

contact of tip with the thin film surface. 

  

2.4 Fabrication of PSC, PHSC and DSPHSC solar cells 

 

2.4.1 Substrate preparation  

           In this thesis, Indium tin oxide (ITO) coated glass having nominal sheet resistance of 8Ω/□ 

were used as base substrate for polymeric BHJ solar cells. Along with good transparent and 

conduction properties, ITO also energetically favorable Fermi level for polymeric and polymeric 

hybrid BHJ. Commercially available ITO coated glass sheets usually comes in dimension of 10cm 

× 10cm. For ease of fabrication, ITO sheet was cut into the samples of dimension 2.5cm × 2.5cm. 

For avoiding scratches during this step, ITO coated face was held on tissue paper. The freshly cut 

glass square samples were then cleaned respectively in distilled water, acetone, and isopropanol 

ultrasonic baths for about 10 min each, so as to remove the reminiscent impurities and glass 

fragments from the ITO surface. After the bathes substrate samples were dried with blower. 

Followed by drying, substrate were patterned using tape for ITO etching. Figure 2.12 shows the 

typical patterned substrate used in thesis.    
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                                     Figure 2.12 Patterned ITO glass plate (with dimensions) 

  After patterning substrate were etched in aqua regia solution (mixture of concentrated 

HNO3 and HCl, in a volumetric ratio of 1:3 respectively) heated up to 700C for 3 minutes. The 

substrates were than rinsed in distilled water and the patterning tape was removed with plastic 

tweezers to avoid any scratches. The quality of etching was checked with the help of optical 

microscope. For device fabrication there should be no traces of left ITO on the glass surface, 

otherwise it leads to short circuiting thus produces high leakage current. Also edge of ITO surface 

should be iso-tropically etched, as an-isotropic etching along the edges reduces the performance 

of device. (Figure 2.13) 

 

 

 

Figure 2.13 ITO etching along the edges: anisotropic etching (left), isotropic etching (right) 

 

 

 

 

Figure 2.14 Patterned ITO glass substrate after etching 

           After etching ITO patterned glass substrate were cleaned respectively in distilled water, 

ITO ITO Glass Glass 
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acetone and isopropanol ultrasonic baths for 15 minutes each at ambient temperature to get rid of 

any impurities left on the surface. Finally the ITO patterned glass surface was dried with blowers.  

 

2.4.2 Deposition of PEDOT: PSS 

            In this thesis PEDOT: PSS was used as electron blocking layer in both polymeric and 

polymeric hybrid BHJ solar cells. Before coating of PEDOT: PSS, ITO surface was UV ozone 

treated for 30 minutes to improve surface wettability. As ITO being ceramic, thus it possess a high 

cohesion strength due to strong iono-covalent bonds between atoms. Therefore this type of solid 

has strong surface energy and low wettability, so it has to be treated for increasing wettability 

before any further coating on it. 

           For all the solar cells in this thesis, an aqueous solution of PEDOT: PSS (Clevios PVP Al 

4083) was used as purchased from H.C. Strack. Before using PEDOT: PSS, it was first filtered 

through 0.45 µm PVDE filters for avoiding any lump clusters, which usually forms due to long 

storage of PEDOT: PSS in refrigeration. 

           For coating, ITO patterned glass substrate was first blown N2 gas to get rid of any dust 

particles, and then placed on to the chuck of spin coater. PEDOT: PSS was dropped onto the 

substrate using glass pipette and then spin coated at 4000 rpm for 30 seconds. All the deposition 

of PEDOT: PSS was done at ambient room temperature condition. Thereafter layer was annealed 

for 10 minute at 1500C for removal any residual water. The average thickness of PEDOT: PSS 

coated on to the substrate was 40 nm (measured using DEKTAK 6M Profilometer). 

 

2.4.3 Deposition of active layer 

           The respective composition and concentration of active layer solutions for polymeric BHJ 

and polymeric hybrid BHJ solar cells are discussed in relevant chapters of this thesis. After the 

PEDOT: PSS coating active layer were deposited on the substrate either using spin coater or NVD 

systems. The experimental conditions and post annealing conditions are also discussed in detail in 

relevant chapter of this thesis. 
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2.4.4 Metal electrode deposition 

           After the curing/annealing of the active layer coated substrates, Aluminum (Al) was 

deposited as cathode using the thermal evaporation system. The deposition was done in vacuum 

conditions of 10-4 torr. Rate of deposition was usually between 2-3 kÅ/ sec, which was monitored 

with the help of quartz crystal monitor. The average thickness for deposited Al in devices were 100 

nm. 
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Chapter 3: 

Study of fabrication techniques for polymeric bulk 

hetero-junction solar cells 

           This chapter describes the basic fabrication process for the polymeric bulk hetero-junction 

(PSC) solar cells. Additionally it also explores the performance characteristics of P3HT/PCBM 

PSC device fabricated using new and efficient spray system, and its comparison with device 

fabricated using spin coating process.  

 

3.1 Introduction 

 

             PSC devices have been attracting extensive research attention over the last decade as they 

can significantly decrease the fabrication cost of solar energy conversion. Low production cost is 

attributed to solution processing at low temperatures and possibility of PSC manufacturing by 

high-speed coating or printing techniques i.e. roll-to-roll (R2R) manufacturing on flexible 

substrate [1–5]. A model solution processed polymeric-organic nanoparticle system, which has 

been widely studied is poly (3-hexylthiophene) (P3HT) as electron donor and [6, 6]-phehyl-C61 

butyric acid methyl ester (PCBM) as an electron acceptor. Optimization of the P3HT/PCBM 

device structure and post treatment have continuously increased the power conversion efficiency 

[6, 7]. For solution processing, mostly PSC active layers are fabricated by spin-coating method, 

but this process has large material losses, usage of high solution concentration, low throughput 

and also its scalability for roll-to-roll (R2R) fabrication is difficult [1].  

 

           For overcoming the problem of low throughput and scalability, several groups have 

explored various coating techniques such as screen printing [8], doctor blading [9], inkjet printing 

[10, 11] and spray-coating [12–16]. But with all these coating techniques, there are additional 

associated factors of processing speed, wet film thickness, ease of preparation of solution, solution 

viscosity, and maximum solution usage. Table 3.1[1] gives a brief comparison of above mentioned 

fabrication techniques in terms of these crucial parameters.  
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Table 3.1 Comparative analysis of various fabrication techniques. 

Solution wastage: 1 (none), 2 (little), 3 (some), 4 (considerable), 5 (significant).  

Processing Speed: 1 (very slow), 2 (slow 1mmin-1), 3 (medium 1–10mmin-1), 4 (fast 10–100mmin-1), 5 (very fast 100–

1000mmin-1). 

Solution preparation: 1 (simple), 2 (moderate), 3 (demanding), 4 (difficult), 5 (critical).  

Solution viscosity: 1 (very low 10 cP) 2 (low 10–100 cP), 3 (medium 100–1000 cP), 4 (high 1000–10,000 cP), 5 (very 

high 10,000–100,000 cP) 

 

           Table 3.1 shows that among the different fabrication techniques suitable for R2R 

compatibility, spray coating offers wider processing speeds, ease of solution preparation and larger 

wet film thickness window. However table 3.1 also shows that conventional spray coating system 

still has large material wastage in comparison to other competitive R2R coating techniques (Inkjet, 

Screen printing etc.). In most commonly used spray systems, solution are poured on to the substrate 

directly with varying shooting angles, which causes material losses. 

  

 Circular nano vapor spray deposition system (NVD) is a spray system which controls the 

material losses by pouring material in circular shooting way on to the substrate. NVD is basically 

a state of art high accuracy and low material consumption spray coater equipped with unique liquid 

control system and tornado nozzle. Apart from low material wastage NVD system also offers high 

reproducibility in terms of thin film thickness with each subsequent coating [20].  Spray coating 

began to gain attention when Vak et al. in 2007 [13] showed they could easily fabricate the active 

layer with a commercially available hand-held airbrush. After this various groups have studied the 

P3HT/PCBM PSCs with different type of spray coating systems. Throughput of spray coating 

system is highly dependent on used solvent’s viscosity, an ideal solvent will be such that it has 

enough viscosity so the solution can easily come out of nozzle and disperse uniformly on to the 

    Parameters 

 

Techniques 

Solution 

Wastage 

Processing 

Speed 

Solution 

preparation 

Solution 

Viscosity( cP) 

Wet film 

thickness (µM) 

R2R 

Compati

bility 

Spin coating 5 N/A 1 1 0-100 No 

Doctor blade 2 N/A 1 1 0-100 No 

Spray coating 3 1-4 2 2-3 1-500 Yes 

Inkjet 1 1-3 2 1 1-500 Yes 

Screen 

printing 

1 1-4 3 3-5 10-500 Yes 
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substrate. However, annealing conditions of active layer blend is another crucial factor that affects 

the performance of fabricated PSC. Annealing conditions determine the extent of phase separation 

which is needed for better charge transport properties. For better phase separation slow annealing 

is needed, that means solvent should have relatively higher boiling point. So, the choice of solvent 

system for any spray coater is dependent on its viscosity and boiling point. Table 3.2 gives a brief 

comparison between different kinds of spray coating system used for fabrication of P3HT/PCBM 

PSCs with their fabrication conditions. 

 

Table 3.2 Comparison of different spray coating system used for fabricating of P3HT/PCBM PSCs 

with the fabrication conditions. 

 

 

           This chapter presents the experiment and results, related to the parametric optimization of 

NVD system for fabrication of PSC using well studied P3HT/PCBM PSC. Experiments are done 

for comparative performance analysis of NVD fabricated devices with that of spin coated one 

Deposition 

Method 
Solvent System 

Concentration, 

Annealing conditions 

Power conversion 

efficiency (%) 

Airbrush 

Spray Coating 
Chlorobenzene 1.5 mg/ml, 110oC for 7 min          2.83 % [13] 

Ultrasonic 

Spray  Coating 
Chlorobenzene; Xylene 2 mg/ml, 110oC for 10 min 3.0 %; 1.2 % [15] 

Airbrush 

Spray  Coating 

Chlorobenzene; 

Dichlorobezene - 

Mesitylene mixture 

15 mg/ml, 140oC for 10 

min 
1.7 %; 2.7 % [16] 

Evaporative 

Spray  Coating   
Tetrahydrofuran  10 mg/L, 150oC for 10 min         2.15 %  [17] 

Airbrush 

Spray  Coating 

Chloroform; Toluene; 

Xylene; Chlorobenzene 
2 mg/ml, 120oC for 10 min          2.35 % [18] 

Multi-source 

Air Brush 

Spray Coating 

Chlorobenzene;  

Alternating/Blend 

5 mg/ml, 

170oC/ 150oC 
       2.8 % ,2.9 % [19] 
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under similar experimental conditions. PSC devices are basically heterojunction of two different 

semiconductors, so the performance of device is dependent on mobility of charge carriers of major 

charge generating species (in BHJ case p type conjugated polymer). Therefore, we measured the 

hole mobility in different devices fabricated using spin-coating and NVD spray by space charge 

limited current (SCLC) method.       

 

3.2 Experimental section 

 

           Different solutions of P3HT/PCBM were prepared for NVD and spin coating systems. For 

optimization of NVD system P3HT/PCBM mixtures of 1:1 weight ratio were mixed in different 

5ml solvents of 1, 2 dichlorobenzene (ODCB), chlorobenzene (CB) and mixture of 70 %/ 30 % of 

CB/ODCB solvents. For spin coating devices, P3HT/PCBM mixture of 1:1 weight ratio were 

mixed in different 1ml solvents of ODCB and CB. All the solutions were stirred overnight on a 

hot plate (temperature ~ 400C) in glove box with an inert nitrogen atmosphere (<1 ppm H2O and 

<1ppm O2). Before the use, P3HT/PCBM solutions were filtered using 0.20 µm PVDE filters for 

avoiding any lump clusters.  

 

           For P3HT/PCBM device preparation (Figure 3.1), ITO patterned glass plates were cleaned 

through sonication in distilled water, acetone, and isopropanol respectively. After ultraviolet ozone 

treatment, poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) (BAYTRON  

P, HC Starck, GMBH, Germany) having thickness of about 40 nm was spin coated followed by 

heating at 1500C for 10 min on a hot plate .Thereafter photoactive layer (~210 ± 10 nm for all 

devices) were deposited via NVD system and spin coating process with their respective solutions, 

and then all the devices were  annealed (1200C for 15 min.) in the glove box with. After depositing 

hole blocking layer of LiF (1nm), devices were then finally completed by thermal evaporation of 

Aluminum (100 nm). 
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Figure 3.1 Device architecture of P3HT/PCBM BHJ PSC 

            

 Thickness of the PEDOT: PSS and active layer were measured using DEKTAK Stylus 

Profiler (6M, ULVAC Inc.). Atomic Force Microscopy (AFM) studies were carried out in tapping 

mode. Electronic absorption spectroscopic investigations for thin films of P3HT/PCBM on glass 

substrate were conducted using JASCO V 530 spectrophotometer. Photovoltaic measurements of 

the devices were performed under irradiation of 100 mW/cm2 simulated solar light at global AM 

1.5 condition using a solar simulator (Bunko Keiki, KHP-1). Irradiated active area of (0.06 cm2) 

was precisely controlled using a black metal mask. Photocurrent action spectrum also known as 

incident photon-to-current conversion efficiencies (IPCE) as a function of wavelength was 

measured with a constant photon flux of 1x1016 photon/cm2 at each wavelength in DC mode using 

an action spectrum measurement system connected to a solar simulator (model CEP- 2000, Bunko-

Keiki, Japan). 

 

3.3 Result and discussion 

     

3.3.1 Optimization of NVD fabricated P3HT/PCBM device  

            

            For high efficient BHJ solar cells, it’s very important to control the morphology which 

affects the extent of phase separation of donor-acceptor interfaces in order to ensure maximum 

Glass 

ITO 

PEDOT:PSS(40nm) 

P3HT:PCBM (~210nm) 

LiF (1nm) 

Al (100nm) 
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exciton dissociation at the interface. Better phase separation depends on the annealing conditions 

and choice of solvent system. Until now two best-suited solvents for P3HT/PCBM blend are CB 

and ODCB [21-24]. For the comparison, P3HT/PCBM blends were prepared in two separate 

solutions of pure CB and pure ODCB. Thin film could not be prepared from pure ODCB solvent, 

as for any spray system to be effective it should have low viscosity so that solution may come 

easily out of nozzle of the spray. Pure ODCB due its high surface tension and viscosity in 

comparison with CB (Figure 3.2) is not suitable for spray. But ODCB solvent, owing to its higher 

boiling point in comparison to CB (Table 3.3) is better solvent for phase separation during post 

annealing treatment of thin film. For harnessing the benefit out of both CB (Low viscosity and 

surface tension) and ODCB (for high boiling point) for NVD system, different blends of CB and 

ODCB were tried for fabrication of thin films. Best suited blend was found to be CB/ODCB in 

ratio of 7:3 (As higher proportion of CB significantly decreases the overall viscosity of blend, and 

presence of smaller proportion of ODCB slightly increases the boiling point, which will be helpful 

in slow annealing process). 

 

 

                     Solvent properties 

Solvent 

Boiling 

Point (0C) 

Surface 

Tension( dynes cm -1) 

Viscosity at 

250C (mPa) 

Chlorobenzene (CB) 132 33.0 0.76 

Ortho- Dicholrobenzene (ODCB) 180 37.0 1.32 

 

Table 3.3 Physical properties of CB and ODCB solvent 

      

 

 

 

 

 

 

Figure 3.2 Thin film formation via NVD system using pure ODCB and pure CB solvents. 

 

Pure ODCB film                   Pure CB film 
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           Figure 3.3 shows the AFM image for surface morphology of post annealed thin films (a) 

Spin (ODCB) (b) Spin (CB) (c) NVD spray (CB/ODCB) (d) NVD spray (CB). Better phase 

separation and high percolation of donor and acceptor is more prominent in case of NVD spray 

(CB/ODCB) blend and is as equivalent to the spin (ODCB) thin film. Relatively poor phase 

separation may be the cause of low charge generation in CB solvent in P3HT/PCBM devices, thus 

affecting their short circuit current density and efficiency as we will see later. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 AFM images in tapping mode of P3HT: PCBM active layers deposited from (a) Spin 

(ODCB) (b) Spin (CB) (c) NVD spray (CB/ODCB) (d) NVD spray (CB) 

 

 

3.3.2 Electronic absorption spectra of thin film BHJ 

 

            Normalized absorption spectra of thin films of P3HT/PCBM BHJ prepared using either 

NVD spray or spin coating system using different solvents are shown in the Figure 3.4. As the 

main absorption comes from the P3HT component, the absorption spectra of P3HT:PCBM blend 

films were normalized to the maximum of P3HT absorption region The absorption spectrum shows 

absorption maximum at 520 nm, which is due to P3HT and is  associated with π-π* electronic 

transition along with the appearance of vibronic shoulders at 550 nm and 610 nm. These clear 

(a) (b) 

(c) (d) 
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vibronic shoulders are associated with polymer crystallization [25, 26]. As the higher order of the 

P3HT phase attributes the high performance of BHJ PSC [27], these peaks are more prominent in 

case of spin (ODCB) and NVD spray (CB/ODCB), showing effect of higher control on nano 

morphology in comparison to pure CB spin or NVD spray thin films. The more intense vibronic 

feature in the case of samples prepared from ODCB might be due to the better aggregation and 

thus leading to better phase separation of the donor P3HT. This is also causing relatively higher 

P3HT to PCBM absorbance ratio. These observations are in accordance with AFM analysis 

discussed previously. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Electronic absorption spectra of thin films PSCs. 

 

3.3.3 Electrical characteristics of thin film BHJ devices. 

 

            The current density–voltage (J–V) characteristics under illumination at AM1.5G (100 

mW/cm2) are presented in Figure 3.5. The NVD spray (CB/ODCB) device has comparable 

performance with spin (ODCB) device. In fact NVD spray (CB/ODCB) device shows better short 

circuit current density (Jsc =9.03) and open circuit voltage (Voc = 0.59) than spin (ODCB) device. 

However relatively lower efficiency in NVD spray (CB/ODCB) device is due to poor Fill factor 
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(FF = 0.51) in comparison to spin coated device. The effect of low FF could also be seen in NVD 

spray (CB) device. The low FF could be due to high series resistance in case of NVD spray devices.  

 

                         

                            

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Photovoltaic characteristic (I-V) of P3HT/PCBM PSC devices 

 

 

Table 3.4 Photovoltaic characteristic (I-V) of P3HT/PCBM PSC devices 

 

                          

 The relatively lower FF in case of NVD spray devices could be attributed to possibility of 

high number of trap sites. Fabrication of thin films via NVD spray is done in multiple coating steps 

process unlike spin coating fabrication where thin film is coated in single step coating. For example, 

for coating the thin film of 200nm (as in case of our devices), the NVD spray process is repeated 

4 times, in each step thin film of approximately 50nm is fabricated. As no annealing was done 

after each successive coating of thin films, so, there might be possibility, presence of high number 

of trapping sites, which increases the recombination thus increasing the series resistance.  

  Efficiency [%] FF Voc [Volts] Jsc [mA/cm
2

] 

Spin Coat (ODCB) 3.32  0.67  0.56  8.92  

Spin Coat (CB) 2.02  0.61  0.55  6.03  

Spray (CB) 2.03  0.51  0.57  6.94  

Spray (CB&ODCB) 2.71  0.51  0.59  9.03  
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                          Figure 3.6 Photocurrent action spectra of P3HT/PCBM PSC devices 

 

            However NVD spray (CB/ODCB) device has high Jsc, suggesting better phase separation 

and improved percolation pathways in comparison to all the devices. The results is also supported 

by AFM and UV studies as discussed earlier. 

 

           The photo current action spectra (IPCE) of all the devices are shown in Figure 3.6. IPCE 

shows relatively higher and broader peaks at 520nm for both ODCB/CB NVD spray device, 

suggesting relatively higher charge generation than all the other devices.  

 

3.3.4 Calculation of mobility by space charge limited current method                                            

 

           With the SCLC method, mobility of organic semiconductors could be calculated with a 

simple IV curve. SCLC region dominates the IV characteristics when the charge carrier 

concentration is larger than the doping level or the free carriers in a semiconductor. This current 

is dominated by the applied electric field, thus major contribution in SCLC is of drift current. 

However, the high charge carrier concentration re-affects the electric field distribution, thus 

making a feedback loop between the field and the current. This feedback mechanism is described 

by the relation called the Mott-Gurney law. 
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                                                           J =
9

8
𝜀𝑠𝜇

𝑉2

𝐿3                                 (Equation 3.1) 

 

Where, V is the applied voltage, J the SCLC, L is the thickness of the thin film, µ is the mobility 

and 𝜀𝑠 is the permittivity of the semiconductor. It has been shown that SCLC can be used for 

mobility measurement of organic diodes [28-30]. With increase of applied electric field, the J–V 

characteristics switch to the SCLC region. As it was shown by Stefan et al that there is no 

considerable difference in calculated mobility of organic BHJ under illumination and dark [31], 

so, we have used J-V characteristics under dark conditions for device mobility estimations (Figure 

3.7).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 J–V characteristics under dark condition of P3HT/PCBM PSC devices 

 

           As the charge carrier mobility μ in organic thin films, is affected by the energetic disorder 

due to the interaction of each hopping charge with randomly located and randomly oriented dipole 

[30]. Therefore, the mobility is dependent on the electric field and can be expressed by a Poole–

Frenkel equation 

                                             μ(E) = μ0 exp(β/√E)                                                         Equation 3.2 

 

Where μ0 is the zero-field mobility and β is the Poole–Frenkel factor. From the combination of 

Equations 3.1 and 3.2, the field dependent SCLC can be easily expressed by equation 3.3. 
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                                  J =
9

8
𝜀𝑠 𝜇0 exp(β/√E)

𝑉2

𝐿3
                                                     Equation 3.3                            

 

           Figure 3.8 shows the logarithm of J/E2 versus the square root of the mean electric field. The 

fitted lines are in good agreement with the experimental data and the current in this region follows 

a field-dependent SCLC behavior. The slope and the intercept gives β and zero-field mobility (μ0), 

respectively. The relative dielectric constant is assumed to be 2.7 and the permittivity of the free 

space ɛ0 is 8.85 × 10−14 C/V cm. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 Space charge limited current for P3HT/PCBM PSC devices 

 

 

 

 

 

 

 

 

Table 3.5 Mobility’s of P3HT/PCBM PSC devices calculated using SCLC method. 
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           The calculated hole mobility’s for different devices are given in table 3.5. The table shows 

high mobility in case of ODCB NVD spray coated and ODCB spin coated devices, and that is 

almost one order of magnitude greater than NVD spray and spin coat fabricated devices using CB. 

The high mobility could be attributed to good percolation pathways and phase separation attained 

in case of ODCB blend devices. These hole mobility enhancement is supported by high π-π 

stacking and chain ordering as supported by UV data.  The calculated mobility’s are in accordance 

with the high extent of phase separation attained, as was visible in AFM images.  

 

3.4 Conclusion 

 

        In conclusion, present experiments successfully demonstrates that NVD spray deposition 

technique is a promising deposition process for the fabrication of active layers in solution 

processed organic solar cells. Strong solvent effect was observed with 40 % increase in efficiency 

when using chlorobenzene/dichlorobenzene/ solvent of 7/3 ratio is used in comparison to pure 

chlorobenzene solution, which is due to better phase separation of donor /acceptor interfaces. The 

study also shows that performance of NVD spray coated system is at par with the spin coating 

technique, which is widely used laboratory technique. NVD fabricated devices could attain higher 

performance by reducing the series resistance thus increasing the Fill factor. Another asset of the 

present method is the use of low concentration solutions, allowing a wide range of polymers with 

low solubility to be candidates for future device applications. 
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Chapter 4: 

Controlling the processable ZnO and Polythiophene 

interface for polymeric inorganic hybrid bulk hetero-

junction solar cells 
 

           This chapter describes the use of solution processable ZnO precursor for the single step 

fabrication of P3HT/ZnO polymeric hybrid bulk hetero-junction (PHSC) solar cells. The aim of 

using solution processsable precursor is to do in situ generation of ZnO nanoparticle inside the 

polymer matrix, and thus fabricating PHSC in single step. For further improving performance of 

solution processed P3HT/ZnO PHSC efforts are also done for improvement of P3HT interface by 

modifying it with ester functionality.  

 

4.1 Introduction 

 

           PHSC are recently emerging as an alternative to fully, organic solar cells [1]. These devices 

combine the solution processability of organic compounds with potential advantages of the 

inorganic semiconductors such as high dielectric constant which facilitates carrier generation 

processes, a high carrier mobility and thermal morphological stability of the blended materials. 

Additionally they may offer control over BHJ morphology, by carefully using tunable 

nanostructures of inorganic semiconductors.  Many PHSC have been reported using CdSe [2], 

CdTe [3], PbS [4], TiO2 [5-8] and ZnO [9-14]. Metal oxide semiconductors like TiO2 and ZnO 

are of particular interest due to non-toxicity and abundance in nature. Currently, the most heavily 

investigated of these materials is TiO2, as it has been extensively used in dye sensitized solar cells 

due to the high surface area of the semiconductor [15–17]. Recently much research interest has 

been focused on ZnO, because it has a very similar electronic structure to that of TiO2, however, 

it has some advantages in comparison. First, it tends to have higher electron mobility than TiO2. 

Additionally, it can be synthesized using a variety of relatively low temperature, low cost 

fabrication techniques. This makes it attractive for low cost scalable solar cell fabrication.  
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           For high efficient PHSC it is desired to control the complete morphology of bulk hetero-

junctions using carefully nanostructured metal oxide. But until now highest efficiencies have been 

reached with random mixtures of conjugated polymers and metal oxide nanoparticles. However, 

it’s difficult to find the common solvent for conjugated polymer and nanoparticles, thus the 

processing window for such combinations of material is often quiet narrow. These drawbacks 

could be overcome via in situ generation of ZnO nanoparticles in the organic matrix. It could be 

achieved via organometallic precursor like diethyl zinc (DEZ). Here, DEZ is coated together with 

semiconducting polymer from solution in controlled humid conditions [18]. During and after 

deposition, DEZ is converted to Zn(OH)2 by reacting with ambient moisture, and after annealing, 

interpenetrating ZnO nanoparticles are formed in polymer matrix, leaving no residual byproduct.  

 

           Oosterhout et al. has achieved photovoltaic efficiency of 2% by using DEZ as the ZnO 

precursor and regioregular poly(3-hexylthiophene) (P3HT) as the semiconducting polymer [19]. 

They further demonstrated that adding ester functionality in P3HT backbone (7:3 ratio), improves 

photovoltaic performance for very thin film of the active layers (~50nm) [20]. Addition of ester 

functionality in P3HT causes reduced polarity difference between ester functionalized copolymer 

and hydrophilic ZnO. This leads to the much finer phase separation, leading to increased surface 

area, thus facilitating better charge separation in very thin film of active layer (~ 50 nm). However 

the effect of ester incorporation vanished for relatively thicker films (~130nm) as the more intimate 

mixing in ZnO: P3HT-E reduced the ZnO connectivity and thus loss percolation pathways, 

therefore, only in thin devices, the current and power conversion efficiency were enhanced. 

 

           This chapter presents the experiments and results due to the effect of incorporation of ester 

functionality in the regioregular P3HT backbone in the 9:1 feed ratio (P3HT-E1), on photovoltaic 

performance of ZnO PHSC using the DEZ precursor. It also describes the comparative 

performance analysis has been done with ZnO PHSC of pure P3HT and ester modified P3HT 

backbone of 7:3 feed ratio (P3HT-E3). In experiments first efforts are being made to find optimum 

weight/weight (w/w) ratio of P3HT w.r.t. ZnO for the fabrication of thin film P3HT/ZnO PHSC. 

Thereafter all experiments were followed carrying that optimum weight/weight (w/w) ratio of 

P3HT w.r.t. ZnO. 
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4.2 Experimental section 

 

          The structures of polymers employed in the present investigation are shown in the Fig.4.1. 

Regioregular P3HT (Rieke Metals, Mn = 45-50 kg/mol) was purchased from the Sigma-Aldrich 

USA and used as received without further purification. Diethyl Zinc (0.4 M solution in toluene-

tetrahydrofuran) was supplied by Tosho Fine Chemicals, Japan. 

 

 

Figure 4.1 Schematic structure of P3HT, P3HT-E1 and P3HT-E3 

 

4.2.1 Addition of ester functionality in P3HT backbone  

 

            This section describes the modification of P3HT regioregular backbone with ester 

functionality in the feed ratio of 9:1 (P3HT-E1). Ester functionalized regioregular polythiophene 

derivative (P3HT-E1) was synthesized by Grignard Metathesis (GRIM) method utilizing 
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respective 2,5-dibromo derivatives in 9:1 feed ratio as shown in Scheme-1(Figure 4.2). The alike 

process and experimental conditions were also used for getting P3HT-E3.  

 

           Starting materials 3-thiopheneethanol, 3-hexylthiophene, 4-dimethylaminopyridine 

(DMAP) and Bis(diphenylphosphino)propane Nickel chloride [Ni(dppp)Cl2] were purchased from 

Sigma-Aldrich, USA and used as received. Ester functionalized polythiophene copolymer, P3HT-

E1, was synthesized as per scheme-1 shown in Fig. 4.2. Synthesized materials were confirmed by 

fast ion bombardment (FAB) mass in the positive ion monitoring mode. Nuclear magnetic 

resonance (NMR) spectra were recorded on a JEOL (JNM A 500 MHz) spectrometer in CDCl3 or 

d6-DMSO with reference to tetramethylsilane.  Electronic absorption spectra were measured using 

UV-visible spectrophotometer (JASCO, V550). Highest occupied molecular orbital (HOMO) 

energy level was measured using photoelectron spectroscopy in air (AC3, Riken). The lowest 

unoccupied molecular orbital (LUMO) energy level was determined from the edge of the optical 

absorption using the following relation LUMO = HOMO + Eg, where, Eg stands for energy band 

gap estimated from the optical absorption edge. 

 

 

4.2.1.1 Synthesis of 2-(3-thienyl) ethyl acetate [2] 

 

           In a round bottom flask fitted with septum, 2.61 gm of 3-thiophene ethanol (20 mmol), 2.84 

ml of triethylamine (20 mmol) and catalytic amount of 4-dimethylamino pyridine was added and 

the solution was stirred at 0oC under N2 atmosphere. 3.2 gm of acetic anhydride (30 mmol) was 

then slowly added by a syringe. The reaction was carried out at room temperature and reaction was 

continued for 6 hours under stirring. After the completion of the reaction, 20 ml ether and 7 ml of 

2M HCl was added and solution was stirred. Organic layer was washed with 10 % sodium 

carbonate aqueous solution. Organic solvent was evaporated and product was purified by silica gel 

column using hexane-ethyl acetate solvent system to obtain compound 2 as white solid in the yield 

of 93 %. Purity of the compound was confirmed by HPLC and LC-MS (observed 174.70 and 

calculated 173.23). 1H-NMR, (δ ppm in CDCl3): 7.26 (m, 1H, thiophene ring, H (5 position)), 7.03 

(m, 1H, thiophene ring, H ( 2 position)), 6.97 (dd, J=1,1 Hz, 1H, thiophene ring, H (4 position)), 

4.27 (t, 2H, -CH2-CH*2-O-), 2.97 (t, 2H, -CH*2-CH2-O-), 2.05 (s, 3H, Me). 
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4.2.1.2 Synthesis of 2, 5-dibromo-3-ethylacetyl thiophene [3] 

 

            In a round bottom flask fitted with septum, 3.42 gm of compound 2 (20 mmol) was 

dissolved in the 70 ml dichloromethane. Solution was cooled at 0oC and stirred under N2 

atmosphere. 10.8 gm of N-bromosuccinimide (NBS, 60 mmol) was slowly added after stirring at 

this temperature for 30 min, it was brought at room temperature  reaction was continued for 24 

hours. After the completion of the reaction, water was added and organic layer was washed with 

10 % sodium carbonate aqueous solution.  Finally crude product after solvent evaporation was 

purified by silica gel column using hexane-ethyl acetate to obtain the pure compound 3 in the 48 % 

yield and 98 % purity (confirmed by HPLC). The structure of the compound was confirmed by 

LC-MS (Observed: 329.3 (M+H), calculated 328.02 (M+)). 1H-NMR (δ value in CDCl3); 6.83 (s, 

1H, thiophene ring), 4.22 (t, 2H, CH2-CH*2-O-), 2.86 (t, 2H, CH*2-CH2-O-), 2.05 (s, 3H, Me). 

 

4.2.1.3 Synthesis of 2, 5-dibromo-3-hexythiophene [5] 

 

            Compound 5 was synthesized using similar methods discussed in the section 2.2.2 and 3-

hexylthiophene and the product was obtained in 33 % yield with 98 % purity as confirmed by 

HPLC. LC-MS data (observed 327.4 (M+H), calculated (326.09 for M+)).   

 

4.2.1.4 Synthesis of P3HT-E1 [6] 

 

           A dry 500-mL three neck flask was flushed with Argon and charged with compound 3 (18 

mmol) and compound 5 (2 mmol). Anhydrous tetrahydrofuran (40 mL) and tert-butyl magnesium 

chloride (10 mL, 20 mmol) were added via syringe. Reaction mixture was allowed to stir for 30 

minutes at ambient temperature followed by addition of Ni(dppp)Cl2 (108 mg, 0.2 mmol) 

previously dissolved in anhydrous dichloromethane (10 mL) via syringe. Polymerization was 

allowed to proceed for 12 hours under reflux. It was then allowed to cool at room temperature and 

precipitated in a mixture of methanol and HCl. Polymer was filtered and purified by Soxhlet 

extraction in a sequence with methanol, hexane and finally chloroform. Chloroform was finally 

evaporated under reduced pressure and residue was dried to give the final target polymer P3HT-



69 
 

E1 in 46 % yield. Structure and regioregularity of the P3HT-E1 was confirmed by 1H-NMR (δ 

value in CDCl3). 7.02 (s, 1H, hexyl thiophene ring), 4.37 (t, 2H, CH2-CH*2-O-), 3.16 (t, 2H, CH*2-

CH2-O-), 2.81 (t, 2H, α-CH2, hexylthiophene), 2.56 (t, 2H, α-CH2, hexylthiophene), 2.08 (s, 3H, 

thiophene-ester), 1.56 (m, 2H, CH2), 1.40 (bm, 6H, CH2), 0.93 (t, 3H, CH3, hexylthiophene). The 

set of NMR signals appearing around δ = 2.80 and 2.57 are in regioregular P3HT are associated to 

the protons of the α-methylene group of the alkyl substituent and correspond to two different diads 

arising from the head-to-tail (HT) and head-to-head (HH) coupling determines the regioregularity 

of  polymer [21]. The integration of peak area for P3HT-E indicates that regioregularity of the 

synthesized P3HT-E1 is >95 %.  
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Figure 4.2 Scheme 1- Synthesis steps of P3HT-E1 
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4.2.2 Solar cell fabrication and characterization 

           For realizing the suitable donor acceptor ratio, first device performance were optimized for 

P3HT/ZnO PHSC solar cells. Devices were fabricated by varying weight ratios (1:1, 1:2, 1:3, 1:5) 

of the P3HT and ZnO. Typically, use of 150 µl of DEZ (0.4 M solution) mixed with 350 µl of 

P3HT (10 mg/ml) in chlorobenzene is expected to make the 1:1 (w/w) ratio of P3HT and ZnO 

assuming the 100 % conversion of DEZ to ZnO. 

           For the fabrication of DEZ/P3HT-E1 and P3HT-E3, solutions were prepared by mixing 300 

µl of DEZ (0.4 M solution in toluene-tetrahydrofuran) with 350 µl of polymer in chlorobenzene 

(14.3 mg/ml). This gives 1:2 (w/w) ratio of ZnO to polymer in the thin film provided that DEZ is 

fully converted into ZnO.  

           All the solutions were prepared inside the glove box with inert nitrogen atmosphere (<1 

ppm H2O and <1ppm O2) for avoiding any pre-hydrolysis of DEZ solution. As DEZ solution is 

very reactive, so it reacts violently in ambient atmospheric conditions. During mixing, if there 

present any traces of moisture in atmosphere, it causes pre hydrolysis and formation of Zn (OH) 2 

nanoparticles in the solution. Pre formation of Zn (OH) 2 defies the purpose of in situ generation 

of ZnO nanoparticles inside the polymeric matrix, and thus should be taken care of.   

 

           For device preparation, ITO patterned glass plates were cleaned through sonication in 

distilled water detergent wash, acetone, and isopropanol respectively. After ultraviolet ozone 

treatment, substrate was transferred to a nitrogen-filled glove box with a controlled humidity 

(relative humidity~ 40%). In all the devices, PEDOT:PSS(BAYTRON  P, HC Starck, GMBH, 

Germany) having thickness of about 70 nm was spin coated followed by heating at 1500C for 10 

min on a hot plate . Then, photoactive layer (~110 ± 10 nm for all devices) was spin coated from 

the solution described above. After aging (15 min) and annealing (1000C for 15 min.) to form the 

ZnO, the substrates were transferred to a glove box with an inert nitrogen atmosphere (<1 ppm 

H2O and <1ppm O2) using an air-tight container. Devices were then finally completed by thermal 

evaporation of Al (100 nm). 
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           Thickness of the PEDOT: PSS and active layer as discussed above were measured using 

DEKTAK Stylus Profiler (6M, ULVAC Inc.). Electronic absorption spectroscopic investigations 

for thin films of P3HT, P3HT-E1, P3HT- E3, P3HT/ZnO, P3HT-E1/ZnO and P3HT-E3/ZnO blend 

films on glass substrate were conducted using JASCO V 530 spectrometer. Photovoltaic 

measurements of the devices were performed under irradiation of 100 mW/cm2 simulated solar 

light at global AM 1.5 condition using a solar simulator (Bunko Keiki, KHP-1). Irradiated active 

area of (0.06 cm2) was precisely controlled using a black metal mask. Photocurrent action spectrum 

also known as Incident photon-to-current efficiencies (IPCE) as a function of wavelength was 

measured with a constant photon flux of 1x1016 photon/cm2 at each wavelength in DC mode using 

an action spectrum measurement system connected to a solar simulator (model CEP- 2000, Bunko-

Keiki, Japan). 

 

4.3 Results and Discussion 

 

           Normalized electronic absorption spectra of thin films of polymers and polymeric ZnO 

blends used in the present investigation are shown in the Figure 4.3. The absorption spectra of pure 

P3HT and P3HT-E3 indicates absorption maximum at 520 nm associated with π-π* electronic 

transition along with appearance of vibronic shoulders at 550 nm and 610 nm. These clear vibronic 

shoulders are associated with polymer crystallization [21, 22]. UV/visible absorption spectra of 

pure films of P3HT and P3HT-E3 are virtually identical, indicating a similar degree of 

crystallization and a comparable optical band gap. However, in the case of P3HT-E1, the 525 nm 

and 550 nm peak was the main peak, indicating more rod like conformation with extended π-

conjugation in the condensed state. The electronic absorption behavior is interestingly different 

for both of the polymer in the presence of the ZnO acceptor. The presence of ZnO makes nearly 

no change in the case of P3HT while 520 nm peak became the main peak for P3HT-E1 and 495 

nm peak becomes main peak for P3HT-E3 (Figure 4.4). This indicates that the interaction between 

the P3HT-E and ZnO hindered polymer crystallization. This difference can be explained by an 

increased interaction between this polymer and ZnO and by smaller polymer domains, impeding 

effective aggregation. Figure 4.5 shows the photoelectron emission spectra of P3HT-E3 (for 

example) used for calculation of HUMO energy level for different polymers. The LUMO energy 
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level was determined from the edge of the optical absorption using the following relation LUMO 

= HOMO + Eg, where, Eg stands for energy band gap estimated from the optical absorption edge.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Normalized absorption spectra of thin films of polymers and polymeric/ZnO blends 
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Figure 4.4 Blue shift in absorption spectra in presence of ZnO for P3HT-E1 and P3HT-E3 
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Figure 4.5 Photoelectron emission spectra for P3HT-E3 used for calculating HUMO energetic level 

 

           Figure 4.6 (a) shows the FTIR spectra of regioregular P3HT-E1, P3HT-E3 and P3HT 

exhibiting principal vibration bands at 725, 820, 1020, 1100, 1260, 1377, 1450, 1510, 2855, 2925 

and 3057cm-1. These bands are consistent with typical IR vibration bands of poly (3-alkyl) 

thiophene [23]. In addition to these bands P3HT-E1 and P3HT-E3 also shows vibration band at 

1750 cm-1 associated with C=O stretching vibration of ester group verifying the presence of ester 

group. In an interesting report Furukawa et al. [24] emphasized that vibration bands appearing at 

1450 cm-1 and 1510 cm-1 are associated with symmetric and asymmetric C=C ring stretching 

vibrations, respectively and their ratio is indicative of the conjugation length of the polymeric 

backbone. Peak area integration of these vibration bands exhibit a ratio of 2.35, 2.28 and 2.24 for 

P3HT, P3HT-E1 and P3HT-E3 respectively indicates nearly similar conjugation length of 

polymeric backbone (Figure 4.5 (b)).  

           Based on NMR peak area integration (Figure 4.7) as discussed previously, the 

regioregularity of P3HT-E1 (> 95 %) and P3HT-E3 are also nearly the same as compared to that 

of commercial P3HT also supporting this fact. The introduction of the ester group was estimated 

to be 6.5 % for P3HT-E1 and 22.4 % for P3HT-E3 by the NMR peak area integration associated 
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with NMR signals at δ=7.02 ppm for (hexyl thiophene ring C-H) and 3.16 ppm (ester methylene 

2H). 

 

 

Figure 4.6 (a) FTIR spectra of different polymers (b) Enlarged FTIR spectra from Wavelength (cm-

1) of 1380 to 1760 showing presence of ester group for P3HT- E1 and P3HT-E3 
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Figure 4.7 NMR spectra of P3HT-E 1 (a) and P3HT-E3 (b) showing NMR signals at δ=7.02 ppm for 

(hexyl thiophene ring C-H) and 3.16 ppm (ester methylene 2H). 

 

           For the optimization of donor acceptor ratio for better performance of PHSC, devices of 

P3HT/ ZnO were fabricated with varying w/w ratios. Figure. 4.8 shows the IV characteristics of 

PHSCs with varying donor/acceptor ratios. Best performance was obtained for P3HT/ZnO w/w 

ratio of 1:2.   The photo-action spectra reveals that the best performance was observed in case of 

utilization of 1:2 w/w ratio of P3HT/ZnO in our experimental conditions. Relatively good 

performance in case of 1:2 w/w ratio could be attributed to the formation of sufficient ZnO from 

DEZ with respect to P3HT in the binary blend. In case of higher w/w ratios (1:3, 1:5) although 

there might be sufficient ZnO formation, but relative percentage of P3HT becomes less compared 

to that of   formed ZnO. This is expected to hamper the photon harvesting by P3HT ultimately 

leading to reduced performance. The different in amount of formation of ZnO with respect to 

P3HT is shown using schematic Figure 4.9. This assertion is also being reflected in IPCE (Figure 
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4.10), where for higher w/w ratios, one can see reduced P3HT peak value (around 520 nm), leading 

to conclusion that there is insufficient P3HT in the binary system. 

 

 

 

 

Figure 4.8 IV characteristics of P3HT/ZnO PHSC with varying donor/acceptor w/w ratios 

 

Figure 4.9 Schematics showing amount of formation of ZnO in respect to P3HT for different initial 

feed ratios  
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Figure 4.10 IPCE characteristics of P3HT/ZnO PHSC with varying donor/acceptor w/w ratios 

            Considering w/w ratio of 1:2 best for P3HT/ZnO system, all further experiments with 

different polymers systems were performed with polymer/ZnO w/w ratio of 1:2. Photovoltaic 

characteristics of processable polymer-ZnO PHSC are shown in the Figure 4.11. A perusal of this 

figure and photovoltaic parameters as shown in Table 4.1 exhibit that only slight (about 6 %) 

incorporation of ester functionality in the polymeric backbones leads to enhancement in the 

photoconversion efficiency from 0.8 % (P3HT) to about 1 % for P3HT-E1. The observed 

enhancement in the Jsc is also supported by enhanced IPCE as shown in Figure 4.12. The main 

factor for increase in the efficiency for P3HT-E1 is the enhanced Jsc and FF. The increase in the 

Jsc is due to increased charge carrier generation. As incorporation of hydrophilic ester moiety in 

P3HT lead to better interaction and phase separation with hydrophilic ZnO electron acceptor. The 

enhanced interaction between the ZnO and P3HT-E1 is also reflected in the electronic absorption 

spectra shown in Figure 4.3 which leads to slight blue shift in the absorption maximum upon the 

incorporation of  
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Table 4.1 Photovoltaic characteristics of Polymer/ZnO PHSC with different ester functionalized 

polymer 

ZnO. Although almost same amount of blue shift is also observed for P3HT-E3, but with 

increasing amount of added ester functionality (22% in case of P3HT-E3) causing reduction in Jsc. 

Interestingly, Oosterhout et al. [20] have observed reduced Jsc for similar kind of P3HT-E3 

polymer.   They observed the enhanced Jsc as well as efficiency as compared to P3HT only for 

lower thicknesses (about 50 nm) while for thicker films the trend is just reversed. In present 

investigation thickness of all devices were kept at nearly ~110 ± 10 nm. 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 Photovoltaic IV characteristics of Polymer/ZnO PHSC with different ester 

functionalized polymer. 
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Figure 4.12 IPCE characteristics of Polymer/ZnO PHSC with different ester functionalized polymer. 

            Since for efficient light absorption, there should be sufficient film thickness so P3HT-E3 

does not seems to be suitable for higher thickness devices.  Increasing the amount of ester 

functionality causing enhanced phase separation, but for higher thickness this effect is subverted 

by the loss of percolation pathways which is required for efficient charge transport. The effect of 

higher esterification and its effect on polymer/ZnO BHJ is shown using schematic figure 4.13. So, 

although with increase ester functionality more charge carrier will be generated, but they will 

recombine before being collected at their respective electrodes.   

 

Figure 4.13 Schematic figure showing probable scenario of high esterification on polymer/ZnO BHJ 
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4.4 Conclusion 

 

           PHSC of P3HT/ZnO is successfully fabricated using solution processable DEZ precursor 

in single step. For further enhancement of performance ester functionalized regioregular 

polythiophene copolymer (P3HT-E1 and P3HT-E3) were synthesized and characterized. It is 

observed although addition of ester functionality improves the phase separation, but increasing the 

amount of ester extent leads to loss of percolation pathways in BHJ thin films. Thus a trade-off is 

needed for extents of addition of ester moiety for enhanced phase separation. In present 

investigation P3HT-E1/ZnO PHSC shows enhanced efficiency compared to P3HT/ZnO PHSC. 

Thus, in further investigation, P3HT-E1 are used for present thesis. 
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Chapter 5: 

Single step fabrication of dye-sensitized polymeric 

hybrid bulk hetero-junction solar cells using solution 

processable precursor  

This chapter describes the extension of concept of single step fabrication of P3HT/ZnO 

PHSC for fabrication of dye-sensitized polymeric hybrid bulk hetero-junction DSPHSC. Here dye 

is used as additional sensitizer along with ester modified P3HT for photon harvesting in near infra-

red region of solar spectrum. Considering the analogous structure of DSPHSC and all solid state 

DSSC, a perspective for single step fabrication for solid state dye sensitized solar cells is also given 

with using solution processable precursor. 

 

5.1 Introduction 

As photon harvesting window of poly (3-hexylthiophene) (P3HT) and its ester derivatives 

were limited to 650 nm only. Employing narrow band gap polymers instead of P3HT is one of 

approaches to cover wide range of wavelengths including visible and near infrared regions (NIR) 

for effective polymeric hybrid BHJ solar cells (PHSC). Utilization of low band gap polymers for 

this purpose has been well documented in the recent past [1]. To avoid the cumbersome and multi-

step synthesis, Peet et el. [2] and Honda et al. [3] suggested the incorporation of small molecule 

sensitizer in the P3HT-PCBM blend system to enhance the photon harvesting window. The same 

approach could be extended to PHSC. For the proper functioning of such ternary blend system, it 

is necessary not only to have energetic cascade between the donor-dye-acceptor, but also the 

location of the dye molecules on the donor-acceptor interface.  

 

Apart from increasing photon harvesting window, the metal oxide acceptor based dye 

sensitized PHSC (DSPHSC) also provide interesting analogous structure and working principal 

with all-solid dye sensitized solar cells. Dye-sensitized solar cells (DSSCs) are one of the low cost 

solar cells, due to ease of their fabrication by printing processes under ambient conditions [4, 5]. 
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Certified conversion efficiency for DSSCs consisting of a nanoporous TiO2 layer as electron 

transport layer  (ETL) stained with dyes and an liquid electrolyte have been reported to be 11.0% 

which is almost similar to that of amorphous Si solar cells [6].  Recently, solid DSSCs having solid 

hole transport layers (HTL) instead of the liquid electrolyte have been focused to avoid 

complicated encapsulation of DSSCs to protect the evaporation of the liquid electrolyte [7-9]. 

Solid DSSCs consisting of the inorganic ETL/dye/HTL are generally fabricated step by step: 

namely, fabrication of a nanoporous TiO2 layer, sintering, dye adsorption and fabrication of a hole-

transport layer (Figure 5.1).  The step by step process is convenient way to control photoconversion 

interfaces, however, one of the undesirable items for this process is that many coating processes 

are needed to complete cells. In addition, thickness of hole transport layer is thicker than common 

hole diffusion length (> 100 nm), which disturbs the efficient hole collection by hole transport 

materials. 

Figure 5.1 Multiple step process for fabrication of solid state DSSC 
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Considering analogous working principal and structure of DSPHSC and solid-state DSSCs, 

one could say both to be similar. In this chapter an alternate perspective for single pot fabrication 

process of solid-DSSCs using DSPHSC fabrication method are demonstrated. Hereafter the term 

all solid DSSC have been used to describe these analogous structures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Schematics of all-solid DSSC 

 

In the present work all-solid DSSCs consisting of inorganic/dye/organic bulk hetero-

junction interfaces fabricated by single step coating process having capability of panchromatic 

photon harvesting are demonstrated. All-solid DSSCs are fabricated by incorporating an additional 

sensitizer (Squaraine dye) in the 1:2 w/w ratio of P3HT ester derivative and ZnO.  P3HT ester 

derivative and dye harvest light from the visible and far-red wavelength region, respectively, 

resulting in to the panchromatic light absorption and photon harvesting. Squaraine dyes are a class 

of organic sensitizers having donor-acceptor-donor zwitter ionic structure. They possess sharp and 

intense light absorption with narrow full width at half maximum. Their wavelength can be tailored 

from visible to NIR region by judicious selection of suitable donor moieties with extended π-

conjugation. In this chapter squaraine dye (SQ-36) having sharp, intense and far-red light 

absorption were added with varying proportion with respect to P3HT-E1 for finding optimized 

ratio. Considering better performance of P3HT-E1 with ZnO, it is used for all solid DSSC. P3HT-
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E1 covers 400-650 nm and a dye covers the wavelength in the far-red region (> 650 nm).   

 

5.2 Experimental detail 

5.2.1 Materials and methods  

The structures of functional materials such as ester functionalized  poly (3-heylthiophene) 

(P3HT-E1), processable n-type ZnO precursor DEZ and far-red sensitive squaraine dye SQ-36 

used in the present work are shown in the Figure 5.3.  

 

Figure 5.3 Structure of polymer and dye molecule used for the fabrication of all Solid DSSC. 

P3HT-E1 was synthesized as per scheme-1 discussed in chapter 4. Symmetrical squaraine 

dye (SQ-36) was synthesized from 1-Octyl-2, 3, 3-trimethyl-benzoindole and squaric acid by the 

methods reported by Pandey et al. [10], the dye was synthesized in 83 % yield with >98 % purity 

as confirmed by HPLC. HR-FAB-MS, observed 720.4700 and calculated 720.4650 (M+) confirms 

the synthesis of the compound. 1H NMR (d6-DMSO). δH 8.23 (d, J=8.5 Hz, 1H), 8.02 (d, J=8.5Hz, 

2H), 7.70 (d, J=8.5 Hz, 1H), 7.62 (m, 1 H), 7.45 (m, 1H), 5.87 (s, 1H), 4.23 (t. 2H), 1.96 (s, 6H), 

1.77 (m, 2H), 1.32-1.42 (bm, 2H), 1.23 (bm, 6H) and 0.83 (t, 3H).  
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Product was finally purified by silica-gel column chromatography and characterized by 

high performance liquid chromatography (for purity), fast ion bombardment mass spectroscopy 

and nuclear magnetic resonance spectroscopy. The energies of the highest occupied molecular 

orbital (HOMO) for the P3HT-E1 and SQ-36 was estimated from photoelectron spectroscopy in 

air (model AC3, Riken, Japan) while the energy of lowest unoccupied molecular orbital (LUMO) 

was calculated using the relation LUMO = HOMO + Eg, where, Eg is energy band gap estimated 

from the onset of the optical absorption.     

 

5.2.2 Device fabrication  

For the fabrication of all solid DSSC, different weight % of SQ-36 dye (5wt%, 10wt%, 

20wt%, and 40wt %) were mixed against P3HT-E1 in chlorobenzene. Considering P3HT-E1/ ZnO 

w/w ratio of 1:2 best for these PHSC (as discussed in chapter 4) 300 µl of DEZ was mixed with 

350 µl of P3HT-E1/SQ-36 solution. Assuming full conversion of DEZ to ZnO, thin film layer 

would have a 2:1 (w/w) ratio of P3HT-E1/ZnO against varied ratio of SQ-36 in ZnO/SQ-36/P3HT-

E1 thin films.  

For all the devices, Indium tin-oxide (ITO) patterned glass plates were cleaned by sonication in 

distilled water including detergent, acetone and isopropanol, respectively. After ultraviolet ozone 

treatment, substrate was transferred to a nitrogen-filled glove box with a controlled humidity 

(relative humidity~ 40%). In all the devices, Poly(3,4-ethylenedioxy-thiophene) poly 

(styrenesulfonate) (PEDOT:PSS(BAYTRON  P, HC Starck, GMBH, Germany) having thickness 

of about 70 nm was spin coated followed by heating at 150°C for 10 min on a hot plate. Photoactive 

layer (~110 ± 10 nm for all devices) was then spin coated from the mixed solution described above 

(P3HT-E1-dye). After aging (15 min) and annealing (100 °C for 15 min.) to grow bicontinuous 

ZnO nanostructure in P3HT-E1 layer and make ZnO/dye/P3HT-E1 bulk hetero-junction interface, 

the substrates were transferred to a glove box with an inert nitrogen atmosphere (H2O and O2 

<1ppm) using an air-tight container. Devices were then finally completed by thermal evaporation 

of Al (100 nm) top contact. The area of all fabricated devices were 0.15 cm2. 
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5.2.3 Device characterization  

Thickness of the PEDOT: PSS and active layers discussed above were measured using 

DEKTAK Stylus Profiler (6M, ULVAC Inc.). Electronic absorption spectroscopic investigations 

for thin films of pure P3HT,SQ-36 and P3HT/SQ 36/ZnO ternary blend films on glass substrate 

were conducted using JASCO V 530 spectrophotometer. After device fabrication, photovoltaic 

performance was measured with a Bunko-Keiki solar simulator KHP-1 equipped with a Xenon 

lamp (XLS-150A). The exposure light was adjusted to be AM 1.5 (100 mW/cm2). The power and 

spectra of the solar simulator were adjusted using an Eiko Seiki solar simulator spectro-radiometer 

(LS-100). 

 

5.3. Result and Discussion  

Formation of an energy cascade among the donor, sensitizer and acceptor is required along 

with the location of sensitizer molecules on the donor/acceptor interface for the functioning all 

solid DSSC. Figure 5.4 exhibits the energy band diagram for all solid DSSC fabricated in this work. 

This figure clearly corroborates the formation of suitable energy cascade amongst the active 

components used for the device fabrication. Utilization of such a ternary blend is expected to 

exhibit panchromatic photon harvesting making the use of complementary electronic absorption 

of both of the polymer as well the dye-sensitizer. 
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Figure 5.4 Energy band diagram of all solid DSSC fabricated using the ternary blend of P3HT-E1, 

SQ-36 and ZnO. 

 

Electronic absorption spectra of thin films of P3HT-E1 and dye (SQ-36) used in the present 

investigation are shown in the Figure 5.5. The absorption spectra of pure P3HT-E1 indicates 

absorption maximum at 550 nm associated with π-π* electronic transition along with appearance 

of vibronic shoulders at 610 nm. These clear vibronic shoulders are associated with polymer 

crystallization.  On the other hand, thin film absorption spectrum of SQ-36 exhibits the electronic 

absorption maximum at 703 nm with far-red light absorption in the range of 550-750 nm. The 

electronic absorption of the polymers and dye clearly indicates that one can expect the wide 

wavelength photon harvesting using this dye as additional sensitizer with polymer and ZnO ternary 

blend system. 

The photo-action spectra of thin film ternary blend of P3HT-E1/SQ-36/ZnO with varying 

SQ-36 ratio against P3HT-E1 system have been shown in Figure 5.6. The action spectra reveal that 
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the introduction of the dye leads to the observation of photon harvesting in the range of 650 nm – 

750 nm which is the signature of the dye incorporation between ZnO and P3HT-E1 layers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Normalized UV-visible electronic absorption spectra of thin films of P3HT-E1 and SQ-36  
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Figure 5.6 Normalized absorption spectra of the ternary blend of P3HT-E1/SQ-36/ZnO with varied 

SQ-36 ratio against the P3HT-E1. 
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The IPCE curves of the P3HT-E1/ZnO PHSC and all solid DSSCs are shown in Figure 5.7. 

Observation of the IPCE reveals that PHSC solar cell harvested photons only up to about 650 nm. 

At the same time, the IPCE corroborates that the introduction of the SQ-36 leads to extension of 

photon harvesting window up to 750 nm which is the signature of the dye incorporation between 

ZnO and P3HT-E1 layers due to maintenance of the energy cascade as shown in the Figure 5.4. 

An increase in the volume fraction of the dye in the ternary blend although results in to the 

enhanced photon harvesting in the far-red wavelength region but leads to decrease in the photon 

harvesting of the polymer. Therefore, use of an optimum extent of the small molecule sensitizer is 

highly required to harvest the photon in the entire visible to far-red region. Peet et al. [2] have 

demonstrated that there is need of optimum amount of sensitizer since increasing the amount dye 

from 20 % to 60 % led to drastic decrease in the efficiency in the case of their P3HT-fullerene-dye 

ternary solar cells.   

 

Figure 5.7 IPCE of PHSC and all-solid DSSC of P3HT-E1/SQ-36/ZnO with varied SQ-36 ratio 

against the P3HT-E1. 
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There might be two possible reasons for decrease in the photon harvesting as a function of 

increasing amount of sensitizing dye molecules in the all solid DSSC. Firstly, increase in the 

volume fraction of dye molecule leads to decrease in the fraction of P3HT-E1/ZnO leading to 

decreased photon harvesting in the visible wavelength region. Second possibility is the migration 

of dye molecules from P3HT-E1 /ZnO interfaces to the P3H-E1T domains. Considering the the 

associative interactions between the hexyl side chain of P3HT-E1 and long alkyl (octyl) chain of 

the dye SQ-36, there is higher probablity of the migration of dye molecules from P3HT-E1/ZnO 

interfaces to the P3HT-E1 domains. In general, squaraine dyes have much lower hole mobility as 

compared to regioregular polythiophenes [11]. Therefore, the migration of dye molecules in P3HT-

E1 domains are expected to hamper the hole transport within the polymeric domains affecting 

charge collection of the polymer. This implies that design of the dye molecules in terms of the high 

hole mobility with moderate alkyl chain length are highly required to develop efficient all solid 

DSSC.  

 

The interfacial location of the sensitizing dye moleclues and their implication on the photon 

harvesting has been schematically shown in the Figure 5.8. Fig. 5.8(a) exhibits the situation where, 

SQ-36 dye molecules are located at the interface of P3HT-E1/ZnO. In this case, photoexcited 

electrons form SQ-36 can be easily injected into ZnO and a hole into P3HT-E1, because of 

presence of suitable energetic casacade. On the contrary, when SQ-36 molecules are located in 

ZnO domain (Fig. 5.8 b), it can have facile electron injection from the dye to ZnO but at the same 

time hole injection is hampered. Similarly presence of the SQ-36 dye molecule in the P3HT-E1 

domain (Fig.5.8 c), favors only the hole injection while electron injection is hampered. So, 

considering the energetic cascade of P3HT-E1/SQ-36/ZnO, all solid DSSC can only work if dye 

SQ-36 is located at interfacial postion of P3HT-E1/ZnO bulk hetrojunction.  
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Figure 5.8 Energy diagram of SQ-36 molecules and surrounding materials (a) SQ-36 located at 

interface between P3HT-E1 and ZnO (b) SQ-36 in ZnO domain (c) SQ-36 in P3HT-E1 domain 
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5.4. Conclusion  

Present experiments demonstrated fabrication of all solid DSSCs consisting of 

ZnO/dye/P3HT from a solution processable precursor solution consisting of DEZ, dye and P3HT 

in single step coating process. The absolute efficiency although is lower at present stage but is 

expected to be improved by judicious selection of the dye molecular structures and optimization 

of the film fabrication conditions. 

Present investigation exploits the analogous working principal and structure of DSPHSC 

and solid-state DSSCs for the single step solution processable fabrication of all solid DSSC. Thus 

this trend to be a very promising strategy towards the demonstration of efficient and competitive 

hybrid solar cells.  
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Chapter 6: Conclusion  

 

The work described in present thesis provides the first element of investigation concerning the 

fabrication of all solid DSSC using solution processable n-ZnO precursor in single step with 

DSPHSC fabrication method.  

The first part of the present thesis provides insight into the theory relevant for solar cells, especially 

of polymeric bulk hetero-junction (PSC) and polymeric hybrid bulk hetero-junction solar cells 

(PHSC). The purpose of this part is to furnish the basic knowledge required to understand the 

experiments and results proposed in this study. 

A brief introduction of the materials and experimental methods used in this study is given in the 

second part of this thesis. It presents a general background of the properties and applications of 

the materials used in this work. The fabrication and characterization method for the materials and 

thin films devices are also briefly described. 

The third part provides the brief study about the various compatible roll to roll fabrication process, 

for the deposition of organic bulk hetero-junction solar cells. The study also provide the first 

elements of investigation for the fabrication of P3HT/PCBM PSC using circular nano vapor spray 

deposition (NVD)  process. The study successfully demonstrated that NVD spray deposition 

technique is a promising deposition process for the fabrication of active layers in solution 

processed organic solar cells. Strong solvent effect was observed with 40 % increase in efficiency 

when using chlorobenzene/dichlorobenzene/ solvent of 7/3 ratio is used in comparison to pure 

chlorobenzene solution, which is due to better phase separation of donor /acceptor interfaces. The 

study also shows that performance of NVD spray coated system is at par with the spin coating 

technique, which is widely used laboratory technique. 

In the fourth part, first P3HT/ZnO PHSC was fabricated using solution processable diethyl zinc 

precursor (DEZ) in single step. In this method, during and after deposition, DEZ is converted to 

Zn(OH)2 by reacting with ambient moisture, and after annealing, interpenetrating ZnO 

nanoparticles are formed in polymer matrix, leaving no residual byproduct. For enhancing the BHJ 

nanomorphology ester functionalized regioregular polythiophene copolymer (P3HT-E1 and 

P3HT-E3) were synthesized and characterized towards their application for the fabrication of thin 
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film PHSC. It was observed that addition of 6% of ester functionality (P3HT-E1) leads to enhanced 

efficiency by 25% for P3HT-E1/ZnO PHSC compared to P3HT/ZnO PHSC. Addition of ester 

functionality leads to better phase separation thus enhanced Jsc for P3HT-E1/ZnO PHSC. 

Although addition of ester functionality improves the phase separation, but increasing the amount 

of ester extent to 22% (P3HT-E3) leads to loss of percolation pathways in BHJ thin films. Thus a 

trade-off is needed for extents of addition of ester moiety for enhanced phase separation.  

In fifth part of this thesis concept of single step fabrication of P3HT/ZnO PHSC is extended for 

fabrication of all solid DSSC in single pot process. Squaraine dye (SQ-36) having sharp, intense 

and far-red light absorption were added with varying proportion( 5%, 10%, 20% and 40%) with 

respect to P3HT-E1 for finding optimized ratio. Dye was used as additional sensitizer beside ester 

modified P3HT for photon harvesting. Although the absolute efficiency is lower at present stage 

but is expected to be improved by judicious selection of the dye molecular structures and 

optimization of the film fabrication conditions. This novel borderline strategy exploit the 

specificities and advantages of both DSSC and PHSC approaches thus this trend to be a very 

promising strategy towards the demonstration of efficient and competitive hybrid solar cells.  

I believe that our results can open a new direction for single step fabrication of all solid DSSCs 

using inorganic oxide precursor.  
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Future possibilities  

For the future, efforts are needed to control the nano-morphology and interface of polymer and 

inorganic semiconductors. Although this is difficult, but it is very crucial for enhancing the 

performance of PHSC. Also the optimization of devices by changing the active layer thickness is 

needed. Another crucial area that need to be researched is the role of blocking layers on the 

performance of PHSC. For enhancing performances, there is need of logically designing the 

additional sensitizers (dyes) molecules, which along with having energetics match should have 

excellent charge transporting properties. An interesting challenge would be the realization of dye 

molecules on donor acceptor interface in all solid DSSC. Finally, studying and exploring the use 

of other different kind of solution processable inorganic material precursor for the fabrication of 

PHSC and all solid DSSCs will obviously be one of next step of present work. 
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