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Abstract

It is well known that the numerical solution of stochastic ordinary differential equa-
tions leads to a step size reduction when explicit methods are used. This has led to
a plethora of implicit methods with a wide variety of stability properties. However,
for stochastic problems whose eigenvalues lie near the negative real axis, explicit
methods with extended stability regions can be very effective. In this paper we
extend these ideas to the stochastic realm and present a family of weak order two
explicit stochastic Runge-Kutta methods with extended stability intervals that can
be used to solve a variety of non-stiff and stiff problems.



1 Introduction

While it has been customary to treat the numerical solution of stiff ordinary differential
equations (ODEs) by implicit methods, there is a class of explicit methods with extended
stability regions that are well suited to solving stiff problems whose eigenvalues lie near
the negative real axis. Such problems include parabolic partial differential equations when
solved by the method of lines.

An original contribution was by van der Houwen and Sommeijer [28] who constructed
s-stage explicit Runge-Kutta (RK) methods whose stability functions are shifted Cheby-
shev polynomials, Ts(1+ z/s2). These have stability intervals along the negative real axis
[−2s2, 0]. The corresponding RK methods satisfy a three term recurrence relation which
make them efficient to implement, but their drawback is that they are of order 1. Lebedev
[14, 15] and Medovikov [18] constructed high order methods by computing the zeros of
the optimal stability polynomials for maximal stability. But, the method is sensitive to
the ordering of these zeros and there are no recurrence relationships.

Abdulle and Medovikov [3] developed a new strategy to construct Chebyshev-like
methods with nearly optimal stability domain of order two. These methods are based
on a weighted orthogonal polynomial and so the numerical methods satisfy a three-term
recurrence relationship. In this case the stability interval is [−ls, 0] where ls ≈ 0.81s2.
These ideas were extended by Abdulle [1] who constructed a family of s-stage damped
Chebyshev-like methods of order 4 that possess nearly optimal stability along the negative
real axis and a three-term recurrence relationship. For these methods, ls ≈ 0.35s2.

One of the drawbacks with Chebyshev methods is that the stability region can col-
lapse to s − 1 single points on the negative real axis due to the mini-max property of
Chebyshev polynomials. Accordingly we require the modulus of the stability polynomial
to be bounded by η < 1. The stability interval shrinks slightly but a strip around the
negative real axis is included in stability region. With η = 0.95, ls ≈ 0.81s2 for the second
order Chebyshev methods.

In the case of stochastic differential equations (SDEs) the issues are much more com-
plex. Nevertheless, Abdulle and Cirilli [2] have developed a family of explicit stochastic
orthogonal Runge-Kutta Chebyshev (SROCK) methods with extended mean square (MS)
stability regions. These methods have strong order 1 for Stratonovich problems driven by
a single Wiener process, but only strong order 0.5 for non-commutative problems driven
by multi-dimensional Wiener noise. They reduce to the first order Chebyshev methods
when there is no noise. Such an approach is important because there are very few good
numerical methods for solving stiff SDEs. If the stiffness is only in the deterministic
component, then we can use semi-implicit methods that are implicit in the determinis-
tic component of the method and explicit in the stochastic components. However, it is
difficult to construct effective methods that are implicit in both the deterministic and
stochastic components – see the balanced methods in [4, 19]. This is because the Wiener
samples can be positive or negative with equal probability and can cause the iteration
matrix for the nonlinear system solver to become singular. On the other hand, it is known
in [6, 25] that the semi-implicit midpoint rule has special properties that makes it suitable
for certain classes of stiff problems.

Despite the claimed performance of the SROCK methods, one of their drawbacks
is the low strong order of 0.5 in the multi-dimensional Wiener process case. In fact it
is a complicated process to construct high order methods for multi-dimensional noise
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SDEs. Nevertheless, Burrage and Burrage [5] have given a general framework for deriving
order conditions for stochastic Runge-Kutta (SRK) methods for Stratonovich SDEs. It
generalizes the rooted tree theory of Butcher [7] by having d + 1 coloured nodes of a tree
when the stochastic differential equation (SDE) is driven by d Wiener processes.

Rößler [24] has used this rooted tree theory to construct strong order 1 RK methods
with reduced complexity to multi-dimensional Wiener noise and constructed strong order
1.5 RK methods for scalar, diagonal and additive noise problems. In the weak order set-
ting, Platen [8, 20], Tocino and Vigo-Aguiar [27] have constructed derivative free methods
of weak order 2. Rößler [22, 23] and Komori [9, 11] have applied a rooted tree analysis to
derive weak order conditions for a family of SRK methods and constructed a method of
weak order 2 for non-commutative SDEs which is derivative free.

In this paper we shall put all these ideas together. We will construct a family of s-stage
SRK methods with weak order 2 for multi-dimensional Wiener noise and with extended
MS stability regions. The method will reduce to the second order Chebyshev methods
of Abdulle and Medovikov [3] when the noise terms are set to zero. In Section 2 we will
give some background material on Chebyshev-like methods for ODEs. In Section 3 we
will give background material on SDEs. In Section 4 we will give a framework of SRK
methods, while in Section 5 we will derive our new class of methods based on the stability
analysis. Section 6 will present numerical results and Section 7 our conclusions.

2 Chebyshev-like methods for ODEs

Consider the system of initial value ODEs given by

y′(t) = f(t, y(t)), y(t0) = y0. (2. 1)

The class of s-stage RK methods for solving (2. 1) is

yi = yn + h
s∑

j=1

aijf(tn + cjh,yj), i = 1, 2, . . . , s,

yn+1 = yn + h
s∑

j=1

bjf(tn + cjh, yj),
(2. 2)

and is characterised by the Butcher tableau

c A

b>

where b
def
= (b1 b2 · · · bs)

>, A is a s × s matrix (aij), c
def
= Ae and e

def
= (1 1 · · · 1)>. A

RK method is explicit if A is strictly lower triangular.
If (2. 2) is applied to the linear, scalar test problem

y′(t) = λy(t), <(λ) ≤ 0, (2. 3)

then
yn+1 = R(hλ)yn

where
R(z)

def
= 1 + zb>(I − Az)−1e. (2. 4)
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Here R is called the stability function and for explicit methods R(z) is a polynomial of
at most degree s, namely

R(z) = 1 +
s∑

j=1

zjb>Aj−1e. (2. 5)

The stability region of (2. 2) is

S
def
= {z | |R(z)| ≤ 1}.

A method whose stability domain contains the whole left half of the complex plane is said
to be A-stable, but such methods are by necessity implicit.

Van der Houwen and Sommeijer [28] constructed RK methods of order 1 that have
maximal stability along the negative real axis, namely [−ls, 0], ls = 2s2. These methods
have stability polynomial given by

R(z) = Ts(1 + z/s2), (2. 6)

where Tn(x) is the Chebyshev polynomial of degree n defined by

Tn(cos θ)
def
= cos(nθ)

or by the three term recurrence relation

T0(x)
def
= 1, T1(x)

def
= x, Tj(x)

def
= 2xTj−1(x) − Tj−2(x), j ≥ 2.

The corresponding RK method whose stability function is given by (2. 6) is

K0
def
= yn, K1

def
= yn +

h

s2
f(K0),

Kj
def
= 2

h

s2
f(Kj−1) + 2Kj−1 − Kj−2 (j = 2, 3, . . . , s), (2. 7)

yn+1 = Ks.

The Chebyshev method given by (2. 7) can be written as an s+1-stage RK method with

aij = ãij, bj = ãs+1,j, cj =
(

j − 1

s

)2

(1 ≤ j ≤ s),

where

ãij
def
=


i − 1

s2
(j = 1),

2(i − j)

s2
(1 < j < i).

One of the drawbacks associated with this family of methods is that the stability region
reduces to a single point at s − 1 intermediate points in [−2s2, 0]. This can be overcome
by introducing a damping parameter η that allows a strip around the negative real axis
to be included in the stability domain at a cost of a slightly shortening of the stability
interval. This can be achieved by setting

Rs(z) =
Ts(ω0 + ω1z)

Ts(ω0)
, ω0

def
= 1 + η/s2, ω1

def
=

Ts(ω0)

T ′(s)(ω0)
. (2. 8)
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Figure 1: Stability region with s = 5 and η = 0 or 0.05

See Figure 1.
The corresponding RK method can be written as a three term recurrence relation

K0
def
= yn, K1

def
= yn + h

ω1

ω0

f(K0),

Kj
def
= 2

Tj−1(ω0)

Tj(ω0)
(hω1f(Kj−1) + ω0Kj−1) −

Tj−2(ω0)

Tj(ω0)
Kj−2 (2 ≤ j ≤ s), (2. 9)

yn+1 = Ks.

Despite giving more robust stability regions, these methods are still only order 1.
Suppose now we require

Rs(z) = 1 + z +
1

2
z2 +

s∑
j=3

αsjz
j

such that
|Rs(z)| ≤ 1 for z ∈ [−ls, 0], ls as large as possible.

Riha [21] showed that for a given s such polynomials exist, are unique, satisfy an equal
ripple property on s − 1 points and have equal two complex zeros. Lebedev [16] gave
analytic expressions in terms of elliptic integrals. Abdulle and Medovikov [3] relaxed
optimal stability and constructed approximations to these optimal stability polynomials
using orthogonal polynomials such that

Rs(x) = w(x)Ps−2(x),

where if we write

w(x)
def
= w̄(as + x/ds), Pj(x)

def
= P̄j(as + x/ds),

w̄(x) is of degree two with complex zeros and satisfied w̄(as) = 1, then the orthogonal
polynomials P̄0(x), P̄1(x), . . . , P̄s−2(x) are orthogonal with respect to the weight function
w̄2(x)/

√
1 − x2 on [−1, 1], P̄0(as) = P̄1(as) = · · · P̄s−2(as) = 1, and satisfy a three-term

recurrence relation. This leads to the method

K0
def
= yn, K1

def
= yn + hµ1f(K0),

Kj
def
= hµjf(Kj−1) + (θj + 1)Kj−1 − θjKj−2 (j = 2, 3, . . . , s − 2),

Ks−1
def
= Ks−2 + hσsf(Ks−2), K∗

s
def
= Ks−1 + hσsf(Ks−1),

Ks
def
= K∗

s − hσs(1 − τs/σ
2
s)(f(Ks−1) − f(Ks−2)), yn+1 = Ks.

(2. 10)
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The computation of Ks−1, K∗
s can be viewed as a finishing procedure. When (2. 10)

is applied to (2. 3), then

Kj = Pj(z)yn (j = 0, . . . , s − 2), Ks = w(z)Ks−2, yn+1 = Rs(z)yn,

where
w(z) = 1 + 2σsz + τsz

2 (2. 11)

and

P0(z) = 1, P1(z) = 1 + µ1z,
Pj(z) = (µjz + θj + 1)Pj−1(z) − θjPj−2(z), j = 2, 3, . . . , s − 2.

(2. 12)

If the zeros of w are αs + iβs and αs − iβs, then

σs =
as − αs

ds ((as − αs)2 + β2
s )

, τs =
1

d2
s ((as − αs)2 + β2

s )
, ds =

ls
1 + as

.

The value for ls depends on what damping (2. 10) has. Away from z = 0 it is
appropriate to require

|Rs(z)| ≤ η < 1, z ≤ −ε (ε : small positive parameter)

and a number of authors set η = 0.95. In this case ls ≈ 0.81s2 (rather than 0.82s2 with
η = 1), and Abdulle and Medovikov [3] give the following values:

Table 1: Zeros of w(x) and parameters
s αs βs as ds σs τs

5 0.876008 0.138447 1.009632 9.48582 0.380486 0.300179
10 0.968456 3.399721D-2 1.001578 39.7252 0.370095 0.281274
20 0.992172 8.455313D-3 1.000433 160.722 0.367831 0.277039
50 0.998801 1.342920D-3 1.000114 1011.69 0.367929 0.276983
100 0.999704 3.355449D-4 1.000032 4049.18 0.367908 0.277012

Finally, the parameters µj, θj are determined from (2. 12) and by inserting 2 different
values for z 6= 0, say r1 and r2, into (2. 12) and solving

(µjri + θj + 1)Pj−1(ri) − θjPj−2(ri) = Pj(ri), i = 1, 2

assuming the system is nonsingular.
Abdulle [1] extended this idea in the obvious way to construct Chebyshev-like methods

of order 4, but since our SRK methods reduce to the order two method in the no noise
case we do not extend on this analysis.

3 Methods for SDEs

Consider now the SDE

dy(t) =
d∑

j=0

gj(y(t)) ◦ dwj(t) y(t0) = y0 (3. 1)
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which we will assume is in Stratonovich form. Here w0(t) = t and the wj(t), j = 1, 2, . . . , d
are independent Wiener processes which have the properties

E[wj(t)] = 0, V ar[wj(t) − wj(s)] = t − s, t > s

and nonoverlapping Wiener increments are independent of one another.
If (3. 1) is interpreted in the Itô sense, then the simplest numerical method for

simulating (3. 1) is the Euler-Maruyama (EM) method given by

yn+1 = yn + hg0(yn) +
d∑

j=1

4w
(n)
j gj(yn), (3. 2)

where 4w
(n)
j

def
= wj(tn + h) − wj(tn) ∼ N(0, h) =

√
hN(0, 1). The EM method is known

to have strong (pathwise) order 1/2 and weak (moment) order 1.
If a counterpart of (3. 2) is implicit in the deterministic component, then we can define

the semi-implicit EM method with the same order properties as the EM method namely

yn+1 = yn + hg0(yn+1) +
d∑

j=1

4w
(n)
j gj(yn). (3. 3)

However if another counterpart of (3. 2) is implicit in the deterministic and stochastic
components, there is no obvious generalisation of (3. 3) as introducing yn+1 into the
stochastic components can cause unboundedness in the solution of the ensuring nonlinear
systems. This has led to more esoteric implicit methods such as the balanced methods
[19, 26]. However, rather than considering semi-implicit methods such as (3. 3), we are
going to construct explicit methods with extended stability regions, using the ideas from
Section 2.

As with the deterministic case, the quality of a stochastic method can be partly char-
acterised by its stability region, associated with the scalar linear test equation

dy(t) = ay(t)dt + by(t)dw, y(0) = y0. (3. 4)

In the Itô case the solution is

y(t) = e(a−b2/2)t+bw(t)y0,

while in the Stratonovich case, the solution is

y(t) = eat+bw(t)y0.

In these cases, the solution is MS stable (limt→∞ E[|y(t)|2] = 0) if

Itô : 2<(a) + |b|2 < 0; Stratonovich : <(a) + (<(b))2 < 0.

If an SRK method is applied to (3. 4),

E[|yn+1|2] = R(p, q)E[|yn|2],

where R is a multinomial in p
def
= ha, q

def
=

√
hb if the method is explicit. Analogous to

the deterministic case, the MS stability region of a method is defined as

S = {p, q ∈ C : |R(p, q)| ≤ 1}.

6



In the case of the EM method

R(p, q) = |1 + p|2 + |q|2

and in the (p, q) plane with p, q ∈ R, the stability region is a circle of radius 1 centred on
(-1,0). On the other hand if the semi-implicit method (3. 3) is applied to (3. 4) then

R(p, q) =
1 + q2

(1 − p)2
, p, q ∈ R, p ≤ 0, S = {(p, q) : 2p + q2 ≤ p2, p ≤ 0}.

Unlike the ODE setting the accuracy of an SDE numerical method is characterised by
two order properties: strong (pathwise) order and weak (moment) order. More formally
a method has strong order ps or weak order pw if there exists a constant Cs or Cw such
that

E(|yN − y(T )|) ≤ Csh
ps , |E[F (yN)] − E[F (y(T ))]| ≤ Cwhpw

with T = Nh and h sufficiently small and for all functions F : Rn 7→ R that are 2(pw +1)
times continuously differentiable and for which all partial derivatives have polynomial
growth.

In the completely general case when the gj(y) do not commute, then it is very difficult
to construct strong order methods of order 1.5 or greater (see [5], for example). This is
because of the plethora of order conditions and the need to simulate exactly the iterated
stochastic integrals. However, if the noise terms are, for example, diagonal, then strong
order 1.5 methods can be constructed [24]. In the weak order setting, these issues are not
severe and so general weak order two methods can be constructed (but rarely weak order
three); see [11].

We have already remarked on the difficulties in constructing methods that can cope
with stiff SDEs. One very recent, and effective, approach was by Abdulle and Cirilli [2]
who derived a family of explicit s-stage SROCK methods with extended MS stability
regions. By controlling the number of stages large, stiff problems can be effectively solved
without resource to the linear algebra overheads associated with implicit methods. When
there is no noise, these methods reduce to the Chebyshev RK methods of order 1 (either
undamped or damped). However, the drawbacks of these SROCK methods is that they
only have strong order 1 in the d = 1 case, and for the multi-dimensional noise case,
the strong order is only 0.5. Furthermore, namely all the analyses (order, stability) in
this paper are performed in the d = 1 case. We extend these ideas to construct a family
of s-stage SROCK2 methods that have weak order two for completely general multi-
dimensional noise case and that reduce to the family of second order Chebyshev methods
(ROCK2) presented in [3].

4 A general SRK framework

Komori [9] and Rößler [22] consider a general SRK weak order framework for solving (3.
1). Let y(ja,jb), ja, jb = 0, 1, . . . , d be a vector of s internal stage components. Then the
general form is

Y
(ja,jb)
i = ζ

(ja,jb)
i gjb

yn +
d∑

jc,jd=0

(
α

(ja,jb,jc,jd)
i

)>
Y (jc,jd)

 ,

yn+1 = yn +
d∑

ja,jb=0

b>
jajb

Y (ja,jb)

(4. 1)
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for i = 1, 2, . . . , s and ja, jb = 0, 1, . . . , d. Here, the b>
jajb

and
(
α

(jajbjcjd)
i

)>
are row vectors

of length s and ζ
(ja,jb)
i is a random variable independent of yn and satisfies

E
[(

ζ
(ja,jb)
i

)2k
]

=

{
K1h

2k (jb = 0),
K2h

k (jb 6= 0)

for constants K1, K2 and k = 1, 2, . . .. Such a method can be generally viewed as having
s(d+1)2 stages. Note that we have made the interpretation simpler by assuming a scalar
problem thus avoiding tensor notation.

Komori [10, 11] has shown that when (4. 1) is of weak order 2, there are 17 order
conditions if d = 1, 29 order conditions if the noise is commutative and 38 order conditions
if it is non-commutative, by setting many of bjajb

and α
(jajbjcjd)
i at zero vectors.

In the present paper, we consider a simpler setting in order to decrease the number
of evaluations of the diffusion coefficients [12]. In fact to get weak order 2 the structure
in (4. 1) is in some sense too rich. For example, in the d = 1 case we can assume (4. 1)
takes the form

Y
(0)
i = hg0

(
yn +

(
α

(0)
i

)>
Y (0) +

(
α

(2)
i

)>
Y (1)

)
,

Y
(1)
i = ζ

(1,1)
i g1

(
yn +

(
α

(1)
i

)>
Y (0) +

(
α

(3)
i

)>
Y (1)

)
, (4. 2)

yn+1 = yn + b>
0 Y (0) + b>

1 Y (1),

while in the non-commutative, multi-dimensional Wiener noise case we can have

Y
(0,0)
i = hg0

yn +
(
α

(0)
i

)>
Y (0,0) +

(
α

(2)
i

)> d∑
j=1

Y (j,j)

,

Y
(j,j)
i = ζ

(j,j)
i gj

yn +
(
α

(1)
i

)>
Y (0,0) +

(
α

(3)
i

)>
Y (j,j) +

(
α

(4)
i

)> d∑
l=1
l 6=j

Y (l,l)


(j = 1, 2, . . . , d),

Y
(j,l)
i = ζ

(j,l)
i gl

yn +
(
α

(5)
i

)>
Y (0,0) +

(
α

(6)
i

)> d∑
m=1
m6=l

Y (l,m)


(l 6= j, j, l = 1, 2, . . . , d),

yn+1 = yn + b>
0 Y (0,0) + b>

1

d∑
j=1

Y (j,j) + b>
2

d∑
l=1

Y (k(l),l),

(4. 3)

where k(l) is a value in {1, 2, . . . , l − 1, l + 1, . . . , m}. Clearly, putting d = 1 into (4. 3)
gives (4. 2).

In order to construct weak order 2 methods the ζ(j,l) are chosen as follows:

ζ
(j,l)
i =


4wl (j = l),

4wj4w̃l/
√

h (l > j > 0 and i = s − 2),

−4w̃j4wl/
√

h (j > l > 0 and i = s − 2),√
h (j 6= l and i 6= s − 2),

(4. 4)
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where the 4w̃l are independent 2 point discrete random variables

P (4w̃j = ±
√

h) = 1/2

and the 4wj are independent 3 point discrete random variables

P (4wj = ±
√

3h) = 1/6, P (4wj = 0) = 2/3.

In the sequel, we will make the number of nonzero roles concerning stochastic parts as
small as possible. For this, in addition to the assumption for ζ

(j,l)
i we suppose

b2,i = 0 (i < s − 2), α
(6)
iaib

= 0 (ia, ib < s − 2 or ia ≤ ib). (4. 5)

Moreover, we define

A(j) def
=
(
α

(j)
1 α

(j)
2 · · · α(j)

s

)>
, c(j) def

= A(j)e, C(j) def
= diag

(
c
(j)
1 , c

(j)
2 , . . . , c(j)

s

)
for j = 0, 1, . . . , 6. With these conditions we now give, for completeness, the weak order 2
conditions for the 1 Wiener process case and for the completely general multi-dimensional
Wiener case: for d = 1 case

1. b>
0 e = 1, 2. b>

0 c(0) = 1/2, 3. b>
0 c(2) = 1/2,

4. b>
0 C(2)c(2) = 1/2, 5. b>

0 A(2)c(3) = 1/4, 6. b>
1 e = 1,

7. b>
1 c(1) = 1/2, 8. b>

1 c(3) = 1/2, 9. b>
1 A(3)c(1) = 1/4,

10. b>
1 A(1)c(2) = 0, 11. b>

1 C(1)c(3) = 1/4, 12. b>
1 A(3)A(3)c(3) = 1/24,

13. b>
1 A(3)C(3)c(3) = 1/12, 14. b>

1 C(3)A(3)c(3) = 1/8, 15. b>
1 C(3)C(3)c(3) = 1/4,

16. b>
1 A(3)c(3) = 1/6, 17. b>

1 C(3)c(3) = 1/3,

additionally for multi-dimensional Wiener case

18. b>
1 c(4) = 1/2, 19. b>

1 C(4)A(4)c(4) = 0, 20. b>
1 C(4)c(4) = 1/2,

21. b>
1 A(3)A(4)c(3) = 1/8, 22. b>

1 A(4)A(4)c(4) = 0, 23. b>
1 A(4)A(3)c(4) = 0,

24. b>
1 A(3)C(4)c(4) = 1/4, 25. b>

1 A(4)C(3)c(4) = 0, 26. b>
1 C(3)A(4)c(3) = 1/8,

27. b>
1 C(4)A(3)c(4) = 1/4, 28. b>

1 C(3)C(4)c(4) = 1/4, 29. b>
1 A(3)c(4) = 1/4,

30. b>
1 A(4)c(3) = 1/4, 31. b>

1 A(4)c(4) = 0, 32. b>
1 C(3)c(4) = 1/4,

33. b2,s−2 = 0, 34. b>
2 e = 0, 35. b>

2 c(5) = 0,

36. α
(6)
s,s−1 = 0, 37. b>

2 c(6) = 1/2, 38. b>
2 C(6)c(6) = 0.

Since ROCK2 is embedded in (4. 3) when there is no noise, A(0) and b0 are given by
the Chebyshev formulation in (2. 10). We now assume that the A(j), j = 1, 2, . . . , 6 take
the partitioned form (

0 0

A
(j)
1 A

(j)
2

)
while

b>
j =

[
b

(1)
j b

(2)
j

]>
, j = 1, 2.

9



In fact, for A(6) and b>
2 we have already taken

A
(6)
1 =


0 0 · · · 0
0 0 · · · 0
0 0 · · · 0
0 0 · · · 0

 , A
(6)
2 =


0 0 0 0
0 0 0 0
0 ∗ 0 0
0 ∗ ∗ 0

 ,

b>
2 =

(
0>

s−4 0 ∗ ∗ ∗
)
.

Here, ∗ denotes, possibly, a nonzero element.
Now if we want to make the number of nonzero roles in A(3) and A(4) as small as

possible, then there is a unique solution [10, 11] so that

A
(3)
1 =


0 0 · · · 0
0 0 · · · 0
0 0 · · · 0
0 0 · · · 0

 , A
(3)
2 =


0 0 0 0

2/3 0 0 0
1/12 1/4 0 0
−5/4 1/4 2 0

 ,

A
(4)
1 =


0 0 · · · 0
0 0 · · · 0
0 0 · · · 0
0 0 · · · 0

 , A
(4)
2 =


0 0 0 0
0 0 0 0

1/4 3/4 0 0
1/4 3/4 0 0

 ,

b>
1 =

(
0>

s−4 1/8 3/8 3/8 1/8
)
.

Similarly, for A(2) we will assume

A
(2)
1 =


0 0 · · · 0
0 0 · · · 0
0 0 · · · 0
0 0 · · · 0

 , A
(2)
2 =


0 0 0 0
∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

 .

Finally, in order to achieve good stability properties, we will assume

A
(1)
1 =


∗ ∗ · · · ∗
∗ ∗ · · · ∗
∗ ∗ · · · ∗
∗ ∗ · · · ∗

 , A
(1)
2 =


∗ 0 0 0
∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0


as well as

A
(5)
1 =


0 0 0 0

α
(0)
s−2,1 α

(0)
s−2,2 · · · α

(0)
s−2,s−4

α
(0)
s−2,1 α

(0)
s−2,2 · · · α

(0)
s−2,s−4

α
(0)
s−2,1 α

(0)
s−2,2 · · · α

(0)
s−2,s−4

 , A
(5)
2 =


0 0 0 0

α
(0)
s−2,s−3 0 0 0

α
(0)
s−2,s−3 0 0 0

α
(0)
s−2,s−3 0 0 0

 .

It is remarkable that Condition 35 is automatically satisfied from Conditions 33, 34 and
the assumptions on b2 and A(5).

5 Mean square stability

We will now apply our SROCK2 method to the linear, scalar multiplicative noise problem

dy(t) = λ0y(t)dt +
d∑

j=1

λjy(t) ◦ dwj(t), (5. 1)

10



where λj, j = 0, 1, . . . , d are real values. Because of the structure we can easily see that

Y
(0,0)
j = Pj−1(hλ0)y0, j = 1, 2, . . . , s − 3.

We now compute successively Y
(0,0)
i , Y

(j,j)
i , Y

(j,l)
i for i = s− 2, s− 1, s and yn+1, using the

order conditions to try and get a simple form for these expressions. Once we have found
the form

yn+1 = Ryn,

the MS stability function is given by

R̂ = E[R2].

R̂ in fact will be a function of p
def
= hλ0, qj

def
= hλ2

j , j = 1, 2, . . . , d.

5.1 How to determine α
(1)
i and α

(2)
i

In order to determine the values of α
(1)
i and α

(2)
i for i = s− 3, s− 2, s− 1, s, let us begin

with the scalar noise problem. By applying (4. 2) to (5. 1) when d = 1, we obtain

R = R(p,4w1, λ1)

=
(
1 + 2σsp + τsp

2
)
Ps−2(p) + 4w1λ1

(
β10 + β11p + β12p

2 + β13p
3
)

+(4w1λ1)
2
(
β20 + β21p + β22p

2
)

+ (4w1λ1)
3 (β30 + β31p) + (4w1λ1)

4β40,

and thus

R̂ = R̂(p, q1)

=
(
1 + 2σsp + τsp

2
)2

(Ps−2(p))2

+q1

{
2
(
β20 + β21p + β22p

2
) (

1 + 2σsp + τsp
2
)
Ps−2(p)

+
(
β10 + β11p + β12p

2 + β13p
3
)2
}

+3q2
1

{
2β40

(
1 + 2σsp + τsp

2
)
Ps−2(p) +

(
β20 + β21p + β22p

2
)2

+2
(
β10 + β11p + β12p

2 + β13p
3
)

(β30 + β31p)
}

+9q3
1

{
2
(
β20 + β21p + β22p

2
)
β40 + (β30 + β31p)2

}
+ 27q4

1β
2
40,

(5. 2)
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where

Qs−3(p)
def
= 1 +

s−3∑
j=1

α
(1)
s−3,jpPj−1(p),

Qi(p)
def
= 1 +

i−1∑
j=1

α
(1)
ij pPj−1(p), i = s − 2, s − 1, s,

β10
def
=

s∑
i=s−3

b1,iQi(p), β11
def
=

s∑
i=s−2

i−1∑
j=s−3

b0,iα
(2)
ij Qj(p),

β12
def
=

s∑
i=s−1

i−1∑
j=s−2

j−1∑
k=s−3

b0,iα
(0)
ij α

(2)
jk Qk(p),

β13
def
= b0,sα

(0)
s,s−1α

(0)
s−1,s−2α

(2)
s−2,s−3Qs−3(p),

β20
def
=

s∑
i=s−2

i−1∑
j=s−3

b1,iα
(3)
ij Qj(p),

β21
def
=

s∑
i=s−1

i−1∑
j=s−2

j−1∑
k=s−3

(
b0,iα

(2)
ij α

(3)
jk + b1,iα

(1)
ij α

(2)
jk

)
Qk(p),

β22
def
=
(
b1,sα

(1)
s,s−1α

(0)
s−1,s−2α

(2)
s−2,s−3 + b0,sα

(0)
s,s−1α

(2)
s−1,s−2α

(3)
s−2,s−3

+b0,sα
(2)
s,s−1α

(1)
s−1,s−2α

(2)
s−2,s−3

)
Qs−3(p),

β30
def
=

s∑
i=s−1

i−1∑
j=s−2

j−1∑
k=s−3

b1,iα
(3)
ij α

(3)
jk Qk(p),

β31
def
=
(
b0,sα

(2)
s,s−1α

(3)
s−1,s−2α

(3)
s−2,s−3 + b1,sα

(1)
s,s−1α

(2)
s−1,s−2α

(3)
s−2,s−3

+b1,sα
(3)
s,s−1α

(1)
s−1,s−2α

(2)
s−2,s−3

)
Qs−3(p),

β40
def
= b1,sα

(3)
s,s−1α

(3)
s−1,s−2α

(3)
s−2,s−3Qs−3(p).

(5. 3)

Incidentally, from the assumption on A(0) and A(2) we have the following relationship
between elements of A(0) and Pj(p):

Pi−1(p) = 1 +
i−1∑
j=1

α
(0)
ij pPj−1(p), i = 1, 2, . . . , s − 1. (5. 4)

This will be useful to determine the parameter values.
In (5. 2), there is the term β31p

3. When it is isolated, it causes problems in stability
since it includes p3Qs−3(p). We consider avoiding it. First, let us assume

α
(1)
s−3,j = α

(0)
s−2,j, j = 1, 2, . . . , s − 3. (5. 5)

Then, we obtain
Qs−3(p) = Ps−3(p) (5. 6)

and

β12 + β13p =
s∑

i=s−1

i−1∑
j=s−2

b0,iα
(0)
ij α

(2)
j,s−3Ps−3(p)

+ b0,sα
(0)
s,s−1α

(2)
s−1,s−2Qs−2(p) + b0,sα

(0)
s,s−1α

(0)
s−1,s−2α

(2)
s−2,s−3pPs−3(p).

(5. 7)

Since

α
(2)
s−1,s−2Qs−2(p) + α

(0)
s−1,s−2α

(2)
s−2,s−3pPs−3(p)

= α
(2)
s−2,s−3

α
(2)
s−1,s−2

α
(2)
s−2,s−3

+
α

(2)
s−1,s−2

α
(2)
s−2,s−3

s−3∑
j=1

α
(1)
s−2,jpPj−1(p) + α

(0)
s−1,s−2pPs−3(p)
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in the right-hand side of (5. 7), let us assume

α
(2)
s−1,s−2 = α

(2)
s−2,s−3, (5. 8)

α
(1)
s−2,j = α

(0)
s−1,j, j = 1, 2, . . . , s − 3. (5. 9)

Then, we have

Qs−2(p) = Ps−2(p) − α
(0)
s−1,s−2pPs−3(p),

β12 + β13p

=
s∑

i=s−1

i−1∑
j=s−2

b0,iα
(0)
ij α

(2)
j,s−3Ps−3(p) + b0,sα

(0)
s,s−1α

(2)
s−2,s−3Ps−2(p).

(5. 10)

We can see that pPs−3(p) disappears from β12 + β13p in (5. 10), whereas it does in (5. 7).
This is a merit in (5. 8) and (5. 9).

Next, similarly to (5. 5), let us assume

α
(1)
s−1,j = α

(1)
s,j = α

(0)
s−2,j, j = 1, 2, . . . , s − 3. (5. 11)

Then,

Qs−1(p) = Ps−3(p) + α
(1)
s−1,s−2pPs−3(p),

Qs(p) = Ps−3(p) + α
(1)
s,s−2pPs−3(p) + α

(1)
s,s−1pPs−2(p).

Thus, we obtain

β10 + β11p + β12p
2 + β13p

3

=

 s∑
i=s−3
i6=s−2

b1,i +

−b1,s−2α
(0)
s−1,s−2 +

s∑
i=s−1

b1,iα
(1)
i,s−2 +

s∑
i=s−2

b0,iα
(2)
i,s−3 + b0,sα

(2)
s,s−1

 p

+b0,s

 s−1∑
i=s−2

α
(0)
s,i α

(2)
i,s−3 + α

(2)
s,s−1α

(1)
s−1,s−2 − α

(2)
s,s−2α

(0)
s−1,s−2

 p2

Ps−3(p)

+

b1,s−2 +

b1,sα
(1)
s,s−1 +

s∑
i=s−1

b0,iα
(2)
i,s−2

 p + b0,sα
(0)
s,s−1α

(2)
s−2,s−3p

2

Ps−2(p),

(5. 12)

β20 + β21p + β22p
2

=


s∑

i=s−2

b1,iα
(3)
i,s−3 + b1,sα

(3)
s,s−1 +

− s∑
i=s−1

b1,iα
(3)
i,s−2α

(0)
s−1,s−2 + b1,sα

(3)
s,s−1α

(1)
s−1,s−2

+
s∑

i=s−1

i−1∑
j=s−2

(
b1,iα

(1)
i,j α

(2)
j,s−3 + b0,iα

(2)
i,j α

(3)
j,s−3

) p

+b0,s

[
α

(0)
s,s−1α

(2)
s−1,s−2α

(3)
s−2,s−3 + α

(2)
s,s−1α

(1)
s−1,s−2α

(2)
s−2,s−3

−α
(2)
s,s−1α

(3)
s−1,s−2α

(0)
s−1,s−2

]
p2

Ps−3(p),

(5. 13)

β30 + β31p

=

 s∑
i=s−1

i−1∑
j=s−2

b1,iα
(3)
i,j α

(3)
j,s−3 +

(
b1,sα

(1)
s,s−1α

(2)
s−1,s−2α

(3)
s−2,s−3 + b1,sα

(3)
s,s−1α

(1)
s−1,s−2α

(2)
s−2,s−3
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+b0,sα
(2)
s,s−1α

(3)
s−1,s−2α

(3)
s−2,s−3 − b1,sα

(3)
s,s−1α

(3)
s−1,s−2α

(0)
s−1,s−2

)
p

Ps−3(p) (5. 14)

+b1,sα
(3)
s,s−1α

(3)
s−1,s−2Ps−2(p).

Now, let us solve the system of the order conditions for the scalar noise case. Since
A(0), A(3), b0 and b1 are given, we can solve it as follows [10]:

1) From Conditions 7 and 9, seek c
(1)
s−1 and c(1)

s . Then, Condition 11 is automatically
satisfied.

2) From Conditions 3 and 4, seek seek c
(2)
s−1 and c(2)

s .

3) Substitute the results in 2) into Condition 10, and seek α
(1)
s,s−2.

4) Substitute the results in 2) into Condition 5, and seek α
(2)
s,s−2 or α

(2)
s,s−1.

Thus, we have

c
(1)
s−1 = 1 − 1

2

(
c
(1)
s−3 + c

(1)
s−2

)
, c(1)

s = 1 +
1

2

(
c
(1)
s−3 − 3c

(1)
s−2

)
,

c
(2)
s−1 =

1 − 2b0,s−2α
(2)
s−2,s−3

2 (b0,s−1 + b0,s)
∓

√
γ0

2b0,s−1 (b0,s−1 + b0,s)
,

c(2)
s =

1 − 2b0,s−2α
(2)
s−2,s−3

2 (b0,s−1 + b0,s)
±

√
γ0

2b0,s (b0,s−1 + b0,s)
, (5. 15)

α
(1)
s,s−2 =

−α
(1)
s,s−1 + 2

{
b0,s−2α

(1)
s,s−1 − 3 (b0,s−1 + b0,s) α

(1)
s−1,s−2

}
α

(2)
s−2,s−3

2 (b0,s−1 + b0,s) α
(2)
s−2,s−3

±
α

(1)
s,s−1

√
γ0

2 (b0,s−1 + b0,s) b0,s−1α
(2)
s−2,s−3

,

and

α
(2)
s,s−1 =

3 − 8b0,s−1α
(2)
s−1,s−2 − 8b0,sα

(2)
s,s−2

4b0,s

or

α
(2)
s,s−2 =

3 − 8b0,s−1α
(2)
s−1,s−2 − 4b0,sα

(2)
s,s−1

8b0,s

, (5. 16)

where

γ0
def
= b0,s−1b0,s

−4b0,s−2

 s∑
i=s−2

b0,i

(α(2)
s−2,s−3

)2
+ 4b0,s−2α

(2)
s−2,s−3 + 2

s∑
i=s−1

b0,i − 1

 .

Noting

b0,s−1 = 2σs −
τs

σs

< 0, b0,s =
τs

σs

> 0

from Table 1 and Appendix A, we obtain a solution for γ0 ≥ 0:

α
(2)
s−2,s−3 ≤

b0,s−2 −
√

b0,s−2 (b0,s−1 + b0,s) γ1

b0,s−2(γ1 + 1)
,

α
(2)
s−2,s−3 ≥

b0,s−2 +
√

b0,s−2 (b0,s−1 + b0,s) γ1

b0,s−2(γ1 + 1)
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when
b0,s−2 (b0,s−1 + b0,s) γ1 ≥ 0,

where
γ1

def
= 2 (b0,s− + b0,s−1 + b0,s) − 1.

Incidentally, β10 + β11p + β12p
2 + β13p

3 has terms p2Ps−3(p) and p2Ps−2(p) in (5. 12),
whereas β20 + β21p + β22p

2 has a term p2Ps−3(p) in (5. 13). Since these can let β10 +
β11p + β12p

2 + β13p
3 or β20 + β21p + β22p

2 largely oscillate in a long interval, we need to
make the absolute values of their coefficients small in order to get large stability regions.
As such a parameter setting for all s ≥ 4, we choose

α
(2)
s−2,s−3 =

b0,s−2 −
√

b0,s−2 (b0,s−1 + b0,s) γ1

b0,s−2(γ1 + 1)
, (5. 17)

α
(2)
s,s−1 = −

α
(0)
s,s−1α

(2)
s−1,s−2α

(3)
s−2,s−3

α
(1)
s−1,s−2α

(2)
s−2,s−3 − α

(3)
s−1,s−2α

(0)
s−1,s−2

. (5. 18)

Then, it is remarkable that γ0 = 0 for (5. 17) and the coefficient of p2Ps−3(p) vanishes in
β20 + β21p + β22p

2 for (5. 18).

Consequently, from (5. 15), (5. 16) and (5. 18) we obtain a final solution for α
(1)
i and

α
(2)
i (i = s − 3, s − 2, s − 1, s)

α
(1)
s−1,s−2 = 1 − 1

2

(
3c

(0)
s−2 + c

(0)
s−1 − α

(0)
s−1,s−2

)
,

α
(1)
s,s−2 = −

2(b0,s−1 + b0,s)α
(2)
s−2,s−3γ3

(γ1 + 1)α
(2)
s−2,s−3 − 1

+ 1 − 1

2

(
c
(0)
s−2 + 3c

(0)
s−1 − 3α

(0)
s−1,s−2

)

α
(1)
s,s−1 = −

2(b0,s−1 + b0,s)α
(2)
s−2,s−3γ3

(γ1 + 1)α
(2)
s−2,s−3 − 1

, α
(2)
s−1,s−3 =

1 − (γ1 + 1)α
(2)
s−2,s−3

2 (b0,s−1 + b0,s)
,

α
(2)
s,s−3 =

1 − 2b0,s−2α
(2)
s−2,s−3

2 (b0,s−1 + b0,s)
−

3 − 8b0,s−1α
(2)
s−2,s−3

8b0,s

+
4α

(0)
s,s−1α

(2)
s−2,s−3

3γ2

,

α
(2)
s,s−2 =

3 − 8b0,s−1α
(2)
s−2,s−3

8b0,s

+
4α

(0)
s,s−1α

(2)
s−2,s−3

3γ2

, α
(2)
s,s−1 = −

8α
(0)
s,s−1α

(2)
s−2,s−3

3γ2

,

as well as (5. 5), (5. 8), (5. 9), (5. 11) and (5. 17), where

γ2
def
= 2

(
2 − 3c

(0)
s−2 − c

(0)
s−1 + α

(0)
s−1,s−2

)
α

(2)
s−2,s−3 − α

(0)
s−1,s−2,

γ3
def
= 4 − 5c

(0)
s−2 − 3c

(0)
s−1 + 3α

(0)
s−1,s−2.

By applying Abdulle’s parameter values∗ to this solution, we obtain Figure 2. The
solid, dash or dotted line means the behaviour of β10+β11p+β12p

2+β13p
3, β20+β21p+β22p

2

or β30 +β31p, respectively. On the other hand, since β40 is very small, it is omitted. Here,
note that η = 0.95.

∗Readers can get them from a fortran code “rock2.f” in http://www.unige.ch/˜hairer/software.html.
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Figure 2: Behaviour of β10 + β11p + β12p
2 + β13p

3, β20 + β21p + β22p
2 or β30 + β31p

5.2 Multi-dimensional noise problem

In this subsection let us deal with the multi-dimensional noise problem. By applying (4.
3) to (5. 1) and by using Condition 33 and the assumption on A(5), we obtain

R = R
(
p, {4wj}d

j=1, {4w̃l}d
l=2, {λj}d

j=1

)
=
(
1 + 2σsp + τsp

2
)
Ps−2(p) +

d∑
j=1

Gj

and thus

R̂ = R̂(p, {qj}d
j=1)

=
(
1 + 2σsp + τsp

2
)2

(Ps−2(p))2

+2
(
1 + 2σsp + τsp

2
)
Ps−2(p)

×


m∑

j=1

qj

(
β20 + β21p + β22p

2
)

+ 3

 d∑
j=1

qj

2

β40


+

d∑
j=1

E
[
G2

j

]
+ 2

d−1∑
j=1

d∑
l=j+1

E [GjGl] ,

(5. 19)

where 3β40 = δ220 was used in the second expression of the right-hand side to simplify it
and where

Gj
def
= 4wjλj

(
β10 + β11p + β12p

2 + β13p
3
)

+ (4wjλj)
2
(
β20 + β21p + β22p

2
)

+(4wjλj)
3 (β30 + β31p) + (4wjλj)

4β40

+4wjλj

d∑
l=1
l 6=j

[
4wlλl

(
δ110 + δ111p + δ112p

2
)

+ (4wlλl)
2 (δ120 + δ121p)

]

+(4wjλj)
2

d∑
l=1
l 6=j

[
4wlλl (δ210 + δ211p) + (4wlλl)

2δ220

]
,

δ110
def
=

s∑
i=s−1

s−2∑
j=s−3

b1,iα
(4)
ij Qj(p),

δ111
def
=

s∑
i=s−1

i−1∑
j=s−2

j−1∑
k=s−3

b1,iα
(1)
ij α

(2)
jk Qk(p) + b0,sα

(2)
s,s−1

s−2∑
i=s−3

α
(4)
s−1,iQi(p),
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δ112
def
=
(
b1,sα

(1)
s,s−1α

(0)
s−1,s−2 + b0,sα

(2)
s,s−1α

(1)
s−1,s−2

)
α

(2)
s−2,s−3Qs−3(p),

δ120
def
=

 s∑
i=s−1

b1,iα
(4)
i,s−2

α
(3)
s−2,s−3Qs−3(p),

δ121
def
=
(
b1,sα

(1)
s,s−1α

(2)
s−1,s−2 + b0,sα

(2)
s,s−1α

(4)
s−1,s−2

)
α

(3)
s−2,s−3Qs−3(p),

δ210
def
= b1,sα

(3)
s,s−1

s−2∑
i=s−3

α
(4)
s−1,iQi(p), δ211

def
= b1,sα

(3)
s,s−1α

(1)
s−1,s−2α

(2)
s−2,s−3Qs−3(p),

δ220
def
= b1,sα

(3)
s,s−1α

(4)
s−1,s−2α

(3)
s−2,s−3Qs−3(p).

Our b1, A(3) and A(4) satisfy Conditions 18–32 [10, 11]. In addition, as we have said,
our A(5) satisfies Condition 35. Thus, all we need to do is to seek a solution for Conditions
34, 37 and 38 under the Conditions 33 and 36. From these, we have

α
(6)
s,s−2 =

1

4b2,s

, α
(6)
s−1,s−2 = − 1

4b2,s

, b2,s−1 = −b2,s.

Here, note that R̂ in (5. 19) does not depend on the free parameters b2,s. Expressions for
E[G2

j ] and E[GjGl] will be shown in Appendix B.

Finally, we show MS-stability regions, in which R̂ < 1. In general, however, such a
region lies in the d+1-dimensional space with respect to p and qi, i = 1, 2, . . . , d. For this,
let us assume q1 = q2 = · · · = qd and denote d× qi by q̃. Then, in Figure 3 a dark-colored
part indicates an MS-stability region, whereas the part enclosed by the two straight lines
q̃ = −p and q̃ = 0 indicates the region in which the test SDE is stable in mean square.
It is remarkable that s = 4 is the minimum stage number because our SROCK2 methods
are of weak order 2 [10, 11].

6 Numerical results

In the previous section we have derived our SROCK2 methods, which have the free param-
eters b2,s. Now let us set it at 1 and confirm its performance in two numerical examples.

The first example comes from the following heat equation with noise:

du(t, x) = (D∆u(t, x))dt + ku(t, x) ◦ dw1(t), (t, x) ∈ [0, T ] × [0, 1], (6. 1)

which was dealt with in [2]. Here, ∆ is the Laplacian operator, D is the diffusion coeffi-
cient, and k is a noise parameter.

Let us suppose that u(0, x) = 1 as an initial condition and u(t, 0) = ∂u(t,x)
∂x

|x=1 = 0
as mixed boundary conditions, and set D = k = 1 for simplicity. If we discretize the
space interval by M + 1 equidistant points xi, i = 0, 1, . . . , M and define a vector-valued
function y(t) by

y(t)
def
= (u(t, x1) u(t, x2) · · · u(t, xM)) ,

then we obtain

dy(t) = Ay(t)dt + y(t) ◦ dw1(t), y(0) = (1 1 · · · 1)> (6. 2)

by applying the central difference scheme to (6. 1) and by using the relationship
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Figure 3: MS stability region of the SROCK2 schemes for some s, d and η

u(t, xM−1) = u(t, xM+1) from the boundary conditions, where

A = M2



−2 1
1 −2 1

. . . . . . . . .

1 −2 1
2 −2

 .

It is known that the eigenvalues of A are distributed around the negative real axis in the
interval (−4M2, 0) [2]. Thus, remark that it becomes more difficult to numerically solve
(6. 2) as M becomes larger.

Setting T = 1, we seek yN by schemes, and calculate the arithmetic means 〈yN,i〉 and
variances 〈(yN,i − 〈yN,i〉)2〉 of the ith element of yN (i = 1, 2, . . . ,M) as estimates of the
means E[yi(T )] and variances V [yi(T )], respectively. On the other hand, because (6. 2)
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Figure 4: Relative errors in the first example

is linear, we can get a system of ODEs with respect to the mean and variance of y(t). In
fact, it is given by dE[y(t)]/dt = ÃE[y(t)] and

dΦ

dt
(t) = ÃΦ(t) + Φ(t)Ã> + Φ(t) + E[y(t)](E[y(t)])>,

where

Ã
def
= A +

1

2
diag(1, 1, . . . , 1), Φ(t) = E

[
(y(t) − E[y(t)])(y(t) − E[y(t)])>

]
.

We simulate 256×106 independent trajectories for a given h. In Monte Carlo simulation for
SDEs, statistical independence properties in pseudorandom numbers are very important
[13]. In addition, their period needs to be very long. For this, we use the Mersenne twister
[17]. By it, for example, we generate a pseudorandom number for 4w̃l/

√
h which takes

±1.
The results are indicated in Fig. 4. In the figure, MRE(ϕ̂) denotes ||ϕ̂ − ϕ0||/||ϕ0||,

where ϕ̂ is an estimator of an unknown vector ϕ and ϕ0 is a numerical solution of the
ODEs with respect to it. Solid or dotted lines means the SROCK2 or SROCK schemes,
respectively, whereas normal or thick lines stand for a relative error of mean or variance.
In the case of M = 40 or 100, calculations were performed by the SROCK2 schemes with
s = 41 or 104 and the SROCK schemes with s = 50 or 100 [2], respectively. Remark that
numerical solutions were not stably obtained by the SROCK when log2 h = −3 or −4.

The second example comes from the following chemistry problem, which has three
species and three reaction channels:

S1 + S2
k1−→ S3, S3

k2−→ S1 + S2, S3
k3−→ S1 + P.

Here, P is a product. This leads to the the following Itô SDE

dy(t) =
3∑

j=1

νjaj(y(t))dt +
3∑

j=1

νj

√
aj(y(t))dwj(t), (6. 3)

where a1(y)
def
= k1y1y2, a2(y)

def
= k2y3, a3(y)

def
= k3y3,

ν1
def
=

 −1
−1
1

 , ν2
def
=

 1
1
−1

 , ν3
def
=

 1
0
−1



19



-5 -4 -3 -2 -1

-12

-10

-8

-6

log2 h
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Figure 5: Relative errors in the second example

and yi means the density of Si. Note that (6. 3) corresponds to the Stratonovich SDE

dy(t) = ν1

(
a1(y(t)) +

k1

4
(y1(t) + y2(t))

)
dt +

3∑
j=2

νj

(
aj(y(t)) +

kj

4

)
dt

+
3∑

j=1

νj

√
aj(y(t)) ◦ dwj(t).

(6. 4)

Let us suppose that y0 = (0 0 20)> as an initial condition and 0 ≤ t ≤ 10, and set
k1 = 0.002, k2 = 0.5 and k3 = 0.04. Similarly to the first example, we simulate 256 × 106

independent trajectories for a given h, but differently from the example we cannot get a
system of ODEs with respect to the mean and variance of y(t) in the closed form. When
we seek MRE(ϕ̂), thus, we use as ϕ0 a numerical solution of the SDE for h = 2−7. The
result for the SROCK2 scheme with 4 stages are indicated in Fig. 5. The positiveness of
any element of the numerical solutions is demanded in this example. Thus, if a trajectory
with a negative element had appeared in calculations, it was replaced with another new
trajectory. Associated with this, it is remarkable that we can see only lower convergence
order than expected order in Fig. 5.

7 Conclusions

We have derived the explicit s-stage SROCK2 schemes with weak order 2 for non-
commutative SDEs. Because the schemes are equivalent to the ROCK2 schemes when
they are applied to ODEs and their parameter values are carefully chosen for stability,
they have large MS stability regions along the negative real axis.

The SROCK2 schemes have the following other features.

• The SROCK2 schemes have only d − 1 random variables (4w̃j’s) except 4wj’s for
one step. On the other hand, for example, the EM scheme has only 4wj’s for one
step. When the step size is set at h/k (k ≥ 2) to obtain better approximations,
however, it in total needs k × d random variables to proceed with calculation from
time t = nh to t = (n + 1)h. Since the SROCK2 schemes can give good approxima-
tions even if the step size is set at h, they need less random variables than the EM
scheme in such cases.
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• The computational costs for each diffusion coefficient do not depend on the dimen-
sion of the Wiener process. For details, see Appendix C. On the other hand, for
example, the scheme proposed in [11] depends it. Thus, the SROCK2 schemes have
big advantages not only in the number of random variables, but also in computa-
tional costs.

In the first mildly stiff problem, the SROCK2 schemes have shown good performance
in accuracy and stability. In the second problem concerning positivity of the solutions,
the convergence order has been reduced practically, but nevertheless shows very good
performance.

Expressions for the implementation of the SROCK2 schemes are given in Appendix
C. In addition, source codes for the schemes and examples are obtainable from Komori’s
homepage:

http://galois.ces.kyutech.ac.jp/˜komori/

Appendix

A Elements of A(0) and b0

As we have seen, A(0) and b0 are given by the Chebyshev formulation in (2. 10). Thus,
by setting g0(y) = f(y) and g1(y) = 0 in (4. 2) and by comparing it with (2. 10), we
obtain the following relationship:

α
(0)
ij

def
= (1 + θi−1) α

(0)
i−1,j − θi−1α

(0)
i−2,j, j = 1, 2, . . . , i − 3,

α
(0)
i,i−2

def
= (1 + θi−1) α

(0)
i−1,i−2, α

(0)
i,i−1

def
= µi−1, α

(0)
ij

def
= 0, j = i, i + 1, . . . , s

for i = 1, 2, . . . , s − 1, and

α
(0)
sj

def
= α

(0)
s−1,j, j = 1, 2, . . . , s − 2, α

(0)
s,s−1

def
= σs, α(0)

ss
def
= 0,

b0,j
def
= α

(0)
sj , j = 1, 2, . . . , s − 2, b0,s−1

def
= α

(0)
s,s−1 + σs − τs/σs, b0,s

def
= τs/σs.

B Expressions for E[G2
j ] and E[GjGl]

E[G2
j ] and E[GjGl] are given as follows:

E[G2
j ] = qj

(
β10 + β11p + β12p

2 + β13p
3
)2

+ 3q2
j

[(
β20 + β21p + β22p

2
)2

+ 2
(
β10 + β11p + β12p

2 + β13p
3
)

(β30 + β31p)
]

+ 9q3
j

[
(β30 + β31p)2 + 2

(
β20 + β21p + β22p

2
)
β40

]
+ 27q4

j β
2
40

+ qj

d∑
m=1
m6=j

qm

[(
δ110 + δ111p + δ112p

2
)2

+2
(
β10 + β11p + β12p

2 + β13p
3
)

(δ120 + δ121p)
]
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+ 2qj

d∑
m=1
m6=j

q2
m (δ120 + δ121p)2 + qj

 d∑
m=1
m6=j

qm


2

(δ120 + δ121p)2

+ 3q2
j

d∑
m=1
m6=j

qm

[
(δ210 + δ211p)2 + 2

(
β20 + β21p + β22p

2
)
δ220

+2 (β30 + β31p) (δ120 + δ121p)]

+ 6q2
j

d∑
m=1
m6=j

q2
mδ2

220 + 3q2
j

 d∑
m=1
m6=j

qm


2

δ2
220 + 18q3

j

d∑
m=1
m6=j

qmβ40δ220,

E[GjGl] = qjql

[(
β20 + β21p + β22p

2
)2

+
(
δ110 + δ111p + δ112p

2
)2

+2
(
β10 + β11p + β12p

2 + β13p
3
)

(δ210 + δ211p)
]

+ 3qjql (qj + ql)
[(

β20 + β21p + β22p
2
)
β40 + (β30 + β31p) (δ210 + δ211p)

]
+ qjql

(
qj + ql + 2

d∑
m=1

qm

)
×
[(

β20 + β21p + β22p
2
)
δ220 + (δ120 + δ121p) (δ210 + δ211p)

]
+ qjql

d∑
m=1
m6=j

qm (δ210 + δ211p)2 + 4q2
j q

2
l δ

2
220

+ 2qjql

qj

d∑
m=1
m6=j

qm + ql

d∑
m=1
m6=l

qm

 δ2
220

+ qjql

(
d∑

m=1

qm

)2

δ2
220 + 2qjql

d∑
m=1

q2
mδ2

220.

Here, note that 3β40 = δ220 was used in the last four expressions of the right-hand side
concerning E[GjGl] to simplify them.

C Useful form for the implimetation of SROCK2

From (2. 10) and Appendix A we have

Ki−1 = yn +
(
α

(0)
i

)>
Y (0,0), i = 1, 2, . . . , s − 2. (C. 1)

From (5. 5) and this,

Y
(j,j)
s−3 = 4wjgj(Ks−3), Y

(0,0)
s−2 = hg0

Ks−3 + α
(2)
s−2,s−3

d∑
j=1

Y
(j,j)
s−3

 .

From (2. 10), (C. 1) and Appendix A,

K−
s−2

def
= Ks−2 − hµs−2g0(Ks−3) = yn +

s−3∑
i=1

α
(0)
s−1,iY

(0,0)
i .
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From (2. 10) and this,

Y
(j,j)
s−2 = 4wjgj

(
K−

s−2 + α
(3)
s−2,s−3Y

(j,j)
s−3

)
.

Similarly, we have

Y
(j,l)
s−2 = ζ

(j,l)
s−2gl(Ks−3),

Y
(0,0)
s−1 = hg0

K−
s−2 + α

(0)
s−1,s−2Y

(0,0)
s−2 +

s−2∑
i=s−3

α
(2)
s−1,i

d∑
j=1

Y
(j,j)
i

 ,

Y
(j,j)
s−1 = 4wjgj

Ks−3 + α
(1)
s−1,s−2Y

(0,0)
s−2 +

s−2∑
i=s−3

α
(3)
s−1,iY

(j,j)
i +

s−2∑
i=s−3

α
(4)
s−1,i

d∑
l=1
l 6=j

Y
(l,l)
i

 ,

Y
(k(l),l)
i =

√
hgl

Ks−3 + α
(6)
i,s−2

d∑
m=1
m6=l

Y
(l,m)
s−2

 (i = s − 1, s),

Y (0,0)
s = hg0

K−
s−2 + α

(0)
s−1,s−2Y

(0,0)
s−2 + σsY

(0,0)
s−1 +

s−1∑
i=s−3

α
(2)
s,i

d∑
j=1

Y
(j,j)
i

 ,

Y (j,j)
s = 4wjgj

Ks−3 +
s−1∑

i=s−2

α
(1)
s,i Y

(0,0)
i +

s−1∑
i=s−3

α
(3)
s,i Y

(j,j)
i +

s−2∑
i=s−3

α
(4)
s,i

d∑
l=1
l 6=j

Y
(l,l)
i

 ,

yn+1 = K−
s−2 + α

(0)
s−1,s−2Y

(0,0)
s−2 + σs

(
Y

(0,0)
s−1 + Y (0,0)

s

)
− σs

(
1 − τs

σ2
s

)(
Y (0,0)

s − Y
(0,0)
s−1

)

+
s∑

i=s−3

b1,i

d∑
j=1

Y
(j,j)
i +

s∑
i=s−1

b2,i

d∑
l=1

Y
(k(l),l)
i .
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