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Low-momentum nucleon-nucleon interaction and its application to few-nucleon systems
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Low-momentum nucleon-nucleon interactions are derived within the framework of a unitary-transformation
theory, starting with realistic nucleon-nucleon interactions. A cutoff momentuis introduced to specify a
border between the low- and high-momentum spaces. By Faddeev-Yakubovsky calculations the low-
momentum interactions are investigated with respect to the dependence of ground-state endigaesl tfie
on the parametex. It is found that we need the momentum cutoff paramater5 fm™ in order to reproduce
satisfactorily the exact values of the binding energies’fband“He. The calculation witl\ =2 fm™* recom-
mended by Bogneet al. leads to considerable overbinding at least for few-nucleon systems.
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[. INTRODUCTION interest to explore the sensitivity of calculated results to the
cutoff momentumA.

One of the fundamental problems in nuclear structure cal- Bogneret al. have constructed their LMNN interaction in
culations is to describe nuclear properties, starting with reala way to conserve in the low-momentum region not only the
istic nucleon-nucleoiNN) interactions. However, since this on-shell properties of the original interactidne., phase
kind of interaction has a repulsive core at a short distanceshifts and the deuteron binding eneydput also the half-on-
one has to derive an effective interaction in a model spacshell T matrix [1]. They found that the LMNN interactions
from the realistic interaction, except for the case of precisdor A=2.1 fmi! corresponding tcE,,=350 MeV become
few-nucleon structure calculations. nearly universal, no(or onIy Weakly dependent on the

Recent'y, Bogneet al. have proposed a low-momentum choice of realistic interactions employed. They Suggested us-

momentum space for the two-nucleon system from a realisti§ulations, such as shell-mode)] and Hartree-Fock calcula-
nucleon-nucleon interaction, using conventional effective in1OnS [3]- ]:I'Reg/zcllalfm?ld ;[]hat f?r tlhe "Q?me?mm cutoff in fthe
teraction techniques or renormalization group ofigsin the ~ yicinity of A=2.1 fm ™ the calculated low-lying spectra for
, - : 180, 1*4Te, and®®X are in good agreement with the experi-
construction of the LMNN interaction a cutoff momentuim mer,1tal da’lta and depend weakly do Their results have
is introduced to specify a border between the low- and high; pe y !
momentum spaces been found to agree with the data as well as or even slightly
) o . better than the results based upon thematrix which is
The LMNN interaction is constructed in order to account .- <tructed by taking into account the short-range correla-

for the short-range correlations of Fhe ?WO nucleons InteraCtfions, the Pauli blocking effect, and the state dependence for
ing in the vacuum. So the question is to what extent th ach nucleus

Obta"?e.d LMNN int_eraction Is a gooc! appro>_<ima_tion also for Kuckei et al. [4] investigated the nuclear matter and the

describing correlation of nucleons interacting in a n“dearclosed-shell nucleu0 by using the LMNN interaction ob-

many-body r_ned|um. _The med!um effect could appeaiained by Bogneet al. They concluded that the LMNN in-

through the single-particle potential and three-or-more-bodye, 5 o can be a very useful tool for low-energy nuclear

correlations. From a practical point of view it is of high structure calculations, and one should be cautious if the ob-
servable of interest is sensitive to the single-particle spec-
trum at energies above the cutoff momentum.

*Electronic address: sfujii@nt.phys.s.u-tokyo.ac.jp However, one had better compare with the exact solutions
"Electronic address: epelbaum@jlab.org once for all. In cases of three- and four-nucleon systems we
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SElectronic address: okamoto@mns.kyutech.ac.jp Faddeev-Yakubovsky equatiofts].
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approaches. One approach is based on the unitary transfqP spacg and its complemen{Q spacg such that the
mation of theOkubo form[6] in which a LMNN interaction  Schrédinger equation becomes & 2 block matrix equation

is obtained from the scattering amplitude in momentum ) ) , )
space[7-9. Another is the unitary-model-operator approach {PH P PHQ HP‘I’ } - [P‘P }
(UMOA) [10,17. In contrast to theG-matrix theory the QH'P QHQ || QV’ Qw’

UMOA leads to an energy-independent and Hermitian effec- L

tive interaction in a many-body system. Contrary to theHerePananre the projection operators qfastate onto the
LMNN of Ref. [1], we will not require conservation of the _model space a;‘d Its czomplement, respectively, and they sat-
half-on-shellT matrix, which does not represent an obsery-ISPY P+Q=1, P*=P, Q"=Q, andPQ=QP=0. The Q-space

able quantity. Only low-momentum NN observables such a tate Is easily _ehmmated to produce the projected
the on-shellT matrix, phase shifts and binding energies are chrodinger equation

guaranteed to remain unchanged under a unitary transforma- 1
tion. In principle, one could achieve the equivalence of the [PH'P+ PH’Qm
half-on-shell T matrix by performing an additional unitary

transformation in the low-momentum space. We, however, (4)

refrai_n from doing th"?“ since_ we do not See any conceptual h general, the effective Hamiltonian which is given in pa-
practical advantage in requiring the equivalence of the half- '

on-shellT matrix. renthe_ses depends_on the e_neEg;o be determined. How-

In the present study we first apply the above-mentioned V" if the decoupling equation
methods to the two-nucleon system in momentum space to QH'P=0 (5)
construct the LMNN interaction. Although both approaches
are based on the same idea of a unitary transformation, tHé satisfied, then we have the equation for the energy-
calculation procedures for deriving the LMNN interaction independent effective Hamiltonian in the P space
are independent and quite different from each other. We cal- , " ,
culate selected properties of the two-nucleon system using PH'P(PY’) = E(PY"). (6)
both schemes to confirm the numerical accuracy. This crosg ynitary transformation can be parametrized as
check is useful to ensure the reliability of the numerical cal-
culations. Secondly, we investigate the dependence in [ PA+o'0) P -Pol(l+0o")™2Q
structure calculations of few-nucleon systems, whegne- “\Qul+o’o) P Ql+ee) Q) ()
merically) exact calculations can be performgi2,13, and
discuss the validity of the LMNN interaction by comparing and the wave operatop satisfies the conditionn=QwP.
the obtained results with thexactvalues. Equation(7) is well known as theOkubo form [6]. Notice

This paper is organized as follows. In Sec. Il, after thethat the unitary transformation given in E@¢) is by no
basic formulation of the unitary transformation is presentedmeans unique: in fact one can construct infinitely many dif-
the two methods are given with emphasis on the differenferent unitary transformations which decouple the P and Q
calculation procedures for deriving the LMNN interaction. In subspaces. For example, performing subsequently any addi-
Sec. Ill, LMNN interactions are constructed using bothtional transformation, which is unitary in the P subspace, one
methods from realistic nucleon-nucleon interactions such agould get a different LMNN interactioiil6]. The transfor-
the CD-Bonn[14] and the Nijm-I[15] potentials. Then, the mation in Eq.(7) depends only on the operater which
Faddeev and Yakubovsky equations are solved using thaixes the P and Q subspaces and is in some sense “the
LMNN interactions for various values of the cutoff param- minimal possible” unitary transformation. For more discus-

)

QH’P}(P‘I”) =E(PY).

eter A. Finally, we summarize our results in Sec. IV. sion the reader is referred to R¢@).
In the present study, the above unitary transformation is
II. UNITARY TRANSFORMATION OF THE used in two different methods to derive LMNN interactions.
HAMILTONIAN FOR THE TWO-NUCLEON In the following sections, we shall give details of the two
SYSTEM IN MOMENTUM SPACE methods.

We consider a quantum mechanical system described by a

. . . . A. Method 1
HamiltonianH. The Schrédinger equation reads

Consider a momentum-space Hamiltonian for the two-

HY =EV. (1) nucleon system of the form
Introducing a unitary transformatiod with UUT=1 we ob- H(B.B") = H-(B)8(B - B + V(B.5' 8
tain a transformed Schrédinger equation (PP")=Ho(P)AP ~P") + V(P.P), ®

Hw = B @) whereHy(p)=p>/(2M) with the reduced mass! stands for

the kinetic energy, andl(p,p’) is the bare two-body interac-
with the transformed Hamiltonian and stak¥,=U'HU and  tion. Our aim is to decouple the low- and high-momentum
¥’ =U™p, respectively. We introduce the concept of the ef-components of this two-nucleon potential using the method
fective Hamiltonian by means of the partition technique. Theof unitary transformation. To achieve that, we introduce the
Hilbert space is divided into two subspaces, the model spagerojection operators
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. . Equation(12) and, consequently, also E@.3) have a so-
P=J d*plp)(pl, [pl=<A, called moving singularity, which makes it more difficult to
handle than the LS equation. Indeed, one has to discretize
both p and p’ points in Eq.(13). This does not necessarily
Q= f d®qlaxdl, |g > A, (9)  allow one to solve Eq(13). The differenceE,~E, can be
exactly zero since and p’ belong now to the same set of
whereA is a momentum cutoff whose value will be specified quadrature po_ints. Thus, one cannot calculate the prjncipal
later, and P (Q) is a projection operator onto low- value mtggral in t.he same manner as for the LS equation. To
(highymomentum states. Based on the unitary-SOI"e this equation we have used a method proposed by

transformation operator given in E€), the effective Hamil- ~ Clockle et al.[9]. — _ _ .
tonian in the P space takes the form Another problem arising in solving the linear equation is

o o . . caused by the fact that the driving terfij’(q,p,Ey)/(E,
PH'P=P(1+0'0) (H+ 0o H+Hw+oHo) -E,) becomes very large whep=|p| and q=|d| go to A.
X(1+ow'w) P, (100 Consequently, the equation becomes ill defined. To handle
this problem we have regularized this equation by multiply-
igg the original potentiah/(lz’,IZ) with some smooth func-
tionsf(k’) andf(k) which are zero in a narrow neighborhood
of the pointsk’=A andk=A [17]. The precise form of this
regularization does, in fact, not matt&.

Having determined the operatar, one can calculate the
effective Hamiltonian in the P space according to Ef).

This interaction is by its very construction Hermitigsi.
The requirement of decoupling the two spaces leads to th
following nonlinear integral equation for the operatar

V(G.5) - f (G 5V D) + f FVE,d) (G D)

T, \-1/2 ; ; f
— | B’ dPa (@, 5 IV(E .G ) e(d .5 To evaluate the operat®(1+w'w) ' entering this equation
f P’ (@ POV’ 4)e(d’,P) we first diagonalize the operat6t +w'w) and then take the
= (E, - E9w(d,p), (11) square root. Finally, the effective potential can be found by

subtracting thgnot transformey kinetic energy term from
where we have denoted Ifiy(d) a momentum of the P-space the effective Hamiltonian.
(Q-spacg state and byE, (E;) the kinetic energyE,
=p?/(2M) [Eq=q?/ (2M)].
Alternatively, one can determine the operaiofrom the
following linear equation, as exhibited in Refg.8]: In Eq. (7), the unitary-transformation operatdrhas been
- ) = given by the block form with respect to the projection opera-
w(d,P) = T(G.p.Ep) _f o’ «(d,P)T(P 'P'Ep)_ (12  torsPandQ. We notice here that the operatdrcan also be
Ep—Eq E,—Ey tie written in a more compact form 448]

B. Method 2

Here the integration ovay goes from 0 to\. Consequently, U=(1l+w-0)1l+wo'+w'w) ™2 (14)
the dynamical input in this method is th& matrix . . Lo
T(ﬁl,ﬁz,Epz)- Note that this is not a usual equation of the US|.ng :Ehe above operatadJ, in genera.ll, the. effective inter-
Lippmann-SchwingefLS) type since the position of the pole actionV for a many-nucleon system is defined through
E, in the integration ovep' is not fixed but moves witjp. In ~
solving the integral equation E¢L2), the second argumept V=U"(Ho+V)U - Ho, (15
in w varies, whereas the first ompis a parameter. whereH, is the kinetic energy of the constituent nucleons in
In this study we have used the linearized equation Edthe nuclear system, and is the bare two-body interaction
(12) to project out high-momentum components from thepetween the nucleons. Here we apply thus defined effective
realistic potentials. Since the projection operatBrand Q nteraction to the two-nucleon problem. In that ca&ebe-
do not carry any angular dependence, the integral equatiofbmes the relative kinetic energy of the two nucleons, 4nd
Eq. (12) can be solved for each partial wave independentlythe bare two-body interaction between the two nucleons.

In the partial wave decomposed form it reads Then the LMNN interactiorV,y,, x of interest in the present
wﬁ{ o)~ Tﬁ’,(q,p, Ey) work is given by )
Ep—Eq Viow k = Piow kVPiow ks (16)
A wﬁj(q,p')Tﬁj,(p’,p,Ep) where Py,  is the projection operator onto the low-
-2 | pZdp momentum space for relative two-body states, and is the

- -E, +i . .
0 S same a® in Eq. (9) of method 1. In order to obtai¥,  in

(13) the form of the matrix elements using the plane-wave basis
. . states, we shall present in the following a procedure for the
where  Vji(q,p)=(Isj,qV[lI'sj,p) and  ®)(4,p)  numerical solution.

=(Isj,q|w|l’sj,p). In the uncoupled cadeis conserved and We first consider an eigenvalue equation for the relative
equalsj. In the coupled cases it takes the vallie$+ 1. motion of a two-nucleon system as
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(HO + V)|\I,n> = En|‘yn>- (17) OF
The above equation is written also in an integral form con- To-01}
cerning relative momentlk andk’ as =
> 02}
f (K'[Ho + VIKX(K W)k dk= E(K'[¥),  (18) -0.3 —_—
0 0 05 1 15 2
where k" ]
*° 0.1 T T T
f |k)(k|k? dk=1. (19)
’ '
We here make an approximation for EG8) in a numerical :
integral form by introducing the adequate integral mesh
pointsk; andk; and discretizink— k; andk’ —k; as

> (k[ Ho+ Vi) (kW) = Elg[ W), (20)
J

k [fm!]

FIG. 1. Comparison of LMNN interactions from the CD-Bonn
otential in the case ok =2.0 friL. The diagonal matrix elements
[Viow K) for the 'S, (@) and>S,-*D, (b) partial waves are shown.

where |E> and |E> represent the plane-wave basis states i
the matrices. Those grids are characterized by the me

pointsk; andk;. Thus, |k;) is defined as The lines depict method-@solid) and method-2long-dashegire-
_ — sults. Because they coincide very well, one cannot distinguish both
[ki) = ki VWi k) (21)  lines by the eye.
with the plane-wave statek;) and the weight factors for the
numerical integra\W,. They are normalized as In order to obtain the LMNN interactio(P-space effec-
- tive interaction, we introduce the eigenvalue equation for
(kilk) =&, (22) o'win the P space as
We note here that the eigenvectp#s,) in Eq.(17) can be ool = i) (24

expressed akl,)=|¢.)+w|¢p,) in terms of the operatow
and the P-space componenis,)=P|¥,). Thus, the formal

solution of w is given byw=3,|¥ )%, with the biorthogo-

nal state(¢,| of |#,). In order to obtain the matrix elements v
of w, we first solve Eq.(20) by diagonalizing the matrix (YaViow-l ) =

elements, using the basis_staiks. Then, the matrix ele-

Using the solutions to the above equation, the LMNN inter-
action of a Hermitian type is given by18,19

V@ + 12) (IRl + (1 +u,;><¢a|R*|wﬁ>
VA +p2) + V(1 + 12

25
mentsw for the basis statek,) in the P space anlit,) in the 3
Q space are obtained as where
_ 4 _ - R=P(V+Vw)P (26)
<kq|w|kp> - E(quQI\Ian(ﬁanlkp), 23 is a low-momentum (effective) interaction of a non-

. ) ] ) Hermitian type. Finally, the matrix elements of the LMNN
whered is the number of the basis statése integral points  interaction using the plane-wave basis stékgsand k;) are
in the P space. As shown in E@9) the P spacglow-  gptained as

momentum spageand Q spacéhigh-momentum spagere

defined with a cutoff momentumA as O<k<A and X (K ) Wl Viow W )5l

A <k<o, respectively. The bra statesp, are obtained (K Vigw ko) = ap 27)
~ — 1 ow | :

through matrix inversion  as [{¢,|kp]=[(k, | ]t kiki VW, W

and satisfy the relationsX, <¢>n|kp><kp|¢>n> S, and By an interpolation technique the elements of the potential
<k |¢n><¢n|kp> 5k Ko It should be noted that the solu- are prepared at arbitrary momenta in the P space.

tion w given in Eq. (23) |s ambiguous in the sense that how

to choose the set of eigenvectdf¥,),n=1,2, ... d} is not [Il. RESULTS AND DISCUSSION

unique. We here sele¢t¥/;)} so that they have the largest As mentioned in the previous section, we have two differ-
P-space overlap®,=3%, [(¥,|P|k)]> among all the eigen- ent methods based on the unitary transformation. Here we
states in Eq(20). As we WI|| show later, the numerical cal- make the cross check using both methods.

culation shows that this selection gV} leads to the same In Fig. 1, the diagonal matrix elements of the LMNN
solution obtained from method 1. interactions for the neutron-protds, and>S;->D, channels
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> 1 .
-0.2 - 3p, T —
-50 1 Il 1 1 1
03 L L L 0 50 100 150 200 250 300
05 1 15 2 Ew [MeV]
K [fm ] FIG. 4. Phase shifts for tht§, (a) and the®S;-*D; (b) channels

| below E;,,=300 MeV. Because the lines from the LMNN interac-
tions and the original CD-Bonn potential coincide, one cannot dis-
tinguish both lines by the eye. Ifb) the upper, middle, and lower

) ) ) lines depict thee’Sl phase shift, the mixing parametey, and the
using the CD-Bonn potentidll4] are shown in the case of 3p. phase shift, respectively.

A=2.0 fmil. In order to see the off-diagonal matrix ele-

ments, we also illustraté|V,,,, «/2K) in Fig. 2. One can see

that the results obtained by the two methods are almost thihe 'S, and>S;-*D, channels, as shown in Fig. 4, reproduce

same for both the diagonal and nondiagonal matrix elementsxactly the ones obtained from the original interaction. This

within 3—-4 digits using typically 100 integral grid points. has also been shown by Bogredral. [1].

Having obtained the same results with high precision using We now regard deuteron properties. In the light of the

two very different methods, we have confidence in our nu-unitary transformation for the two-nucleon system, all the

merical results. calculated deuteron binding energies for various values of
In Fig. 3, we show the same matrix elements of the origi-must reproduce the exact value using the original interaction.

nal CD-Bonn potential and the LMNN interaction for the In Table I, calculated deuteron binding energies for various

sake of comparison. The LMNN potential is very different A using the CD-Boniil4] and the Nijm-I[15] potentials are

from the original one. Nevertheless, the scattering phas&bulated together with deuterd@rstate probabilities. Note

shifts and the mixing parameter beld#,,=300 MeV for that theD-state probability is not observali20]. The values

in the last row are the exact values quoted from the original

papers of the CD-Bonn and the Nijm-I potentials. Indeed, we

see that the calculated binding energy for eActeproduces

the exact value with high accuracy. However, as for the

FIG. 2. Comparison of LMNN interactions for the off-diagona
elements(k|V,q, /2K). Description is the same as in Fig. 1.

O1F T T T T I
o .

VvV [fm?]

VvV [fm?]

-0.1

-0.3
0

02 |

051152253

k [fm]

051152253

k [fm! ]

D-state probability, the difference between the results using
the LMNN interaction and the exact value becomes larger as
the value ofA becomes smaller. If one uses the correspond-
ing effective operator in calculating tHe-state probability,
i.e., the unitarily transformed projection operator onto Ehe
state, then one would reproduce the original value for this
quantity.

As shown in Table I, for the deuteron, the difference of
the wave functions does not affect the binding energy since
we perform the unitary transformation for the two-nucleon
system. However, if we apply the LMNN interaction to the
calculation of the ground-state energies of many-body sys-
tems, the situation will change. This is because the unitary
transformation in the two-nucleon Hilbert space is not uni-
tary any more in the Hilbert space of three and more nucle-

FIG. 3. Comparison of the LMNN interaction in the casefof ~ONS. As @ consequence, calculated binding energies will de-
=2.0 fm! and the original CD-Bonn potential for t&, (a) and ~ Pend onA. In order to examine the\ dependence, we
35,-°D, (b) partial waves. The solid and dashed lines depict theperform the Faddeev and Yakubovsky calculations for few-
diagonal matrix elements of the LMNN interaction and the originalnucleon systems. Recent precise calculations for few-
CD-Bonn potential, respectively. nucleon systems are reviewed in Refs2,13.
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TABLE I. Calculated binding energies, (MeV) and D-state probabilitiedy (%) of the deuteron for
various values of\. The values in the last row are those quoted from the original papers of the CD-Bonn and
the Nijm-I potentials.

CD Bonn Nijm |

A (fm™h Ep, (MeV) Pp (%) E, (MeV) Pp (%)
1.0 -2.224576 121 -2.224575 1.24
2.0 -2.224576 3.55 -2.224575 3.83
3.0 -2.224576 4.55 -2.224575 5.12
4.0 -2.224576 4.79 -2.224575 5.53
5.0 —-2.224576 4.83 -2.224575 5.64
6.0 -2.224576 4.83 -2.224575 5.66
7.0 —2.224576 4.83 —-2.224575 5.66

Quoted —2.224575 4.83 —-2.224575 5.66

Figure ga) exhibits the energy shih\E,=E,(A)-E, (<)  components beyond ~8 fm™. However, it should be noted
from the ground-state enerdg () of 3H as a function ofA that the results using the LMNN interaction for the values
based on the CD-Bonn potentiaolid) and the Nijm-1 one smaller thanA ~5 fm™ vary considerably, and there occurs
(short-dashedby a 34-channel Faddeev calculation. In thethe energy minimum around ~2 fm™. The cutoff value,
present study, only the neutron-proton interaction is used fophich produces the minimal value &E,, is close to the

all the channels for simplicity. The exact val@ig(=) using  value proposed by Bognet al. [1]. _
the original potential CD Bonn(Nijm 1) is -8.25 We note here that the wave function using the LMNN

(~8.01) MeV. The long-dashed line depicts the Faddeev cglinteractions is very close to the true wave function if the

lai ing th iginal int " h the hiah Jacobi momentum sép,q) of the three-nucleon system is
culation ‘using the original nteraction, where e NIgN- g 5160 than the adopted value of when we takeA
momentum components beyoAdare simply truncated. The

; P - =4 fm™%.
numerical stability is lost within the area<1 fm™. For the By solving the Yakubovsky equations we can calculate
case of the CD-Bonn potential, we nead>8 fm™ to reach

. : X the binding energy ofHe. A similar tendency of thé de-
the exact value if the accuracy of 100 KeV is required for the, ., qance foPH can be also seen in the results féte. In
case of simple truncation. This situation is greatly improve Fig. 5b), the A dependence of the energy shifE, of .the
It we use tfhe :;MNN mtgracnon. Evdenhlf vk\:.e hrequwe the ground state ofHe is illustrated. We demonstrate only the
accuracy of 1 keV, we do not need the high-momentunny;qe of the CD-Bonn potential. Here we adopt Sheave

[(5+5)-channe] approximation and do not include the Cou-

1 T T T T T 1

_ i\ lomb force for simplicity[12]. We also use only the neutron-
> 0.5 - X 1 proton interaction for all the channels. The exact vaiyec)
2 0 |- et using the original CD-Bonn potential in the above-mentioned
d g5 L ‘ approximations is —27.74 MeV. The shape of the curve is
< similar to that for’H up to A ~2 fm™L. The numerical insta-
aLl TR S bility already starts at <2 fm™’. Here it seems to conserve
01234567 the strong correlation relatiofiL2] betweenAE,(*He) and
A [fm] AEy(*H) where the ratio is about 5 in the region
=3 fm™.
g LI B B O B In the case ofH, the energy shifAE, is about 750 keV
= 5[ N (1 MeV in the case of the Nijm-I potentigaht the minimum
S 1 ST point. On the other hand, the difference amounts to about
E _? B i 3 MeV for “He atA=2.0 fnTl. We remark that the minimal
< 2r ‘He (b) - value of the cutoffA which leads only to small deviations of
:2 C ol ] the ®H and*He binding energies from their exact values is
012 34586 7 A~5fm™L As far as the excitation spectra of low-lying

states from the ground state are concernedAthependence

at A~ 2 fm 'may be weak and the LMNN interactions could
FIG. 5. Energy shifta\E,, of °H (a) and“*He (b) as a function of b€ useful as has been shown in shell-model calcula{idhs

A using the LMNN interactiorisolid) from the CD-Bonn potential. It is noted that for LMNN interactions considered as a

The long-dashed lines ita) and (b) are plotted for the case of purely computational tool, which allows to get rid of the hard

simple momentum cutoff calculations. The short-dashed lin@jin core and thus enables many-body calculations based on real-

depicts the result for the LMNN interaction from the Nijm-I istic NN potentials without using th&-matrix formalism,

potential. we recommend the value of the cutdffof the order of(or

A [fm™]
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higher tham ~5 fm™%. One then ensures that the binding en-culations, if these realistic forces are viewed as purely phe-
ergies do not deviate significantly from their exact values innomenological parametrizations with no physical content,
the case of few-nucleon systems. Further reducing the valuggderlying the only requirement of reproducing properly the
of the cutoff A leads to a significant suppression of the re-low-energy NN data.
pulsive part _of the interaction which becomes y|5|ble. In V. SUMMARY
other words, if one would be able to extend the unitary trans-

formation formalism to more-than-two-nucleon Hilbert ~The LMNN interactions have been derived through a
space, additional three- and more-nucleon forces would benitary-transformation theory from realistic nucleon-nucleon

generated through eliminating the high-momentum compointeractions such as the CD-Bonn and the Nijm-I potentials.
the systems discussed in this wprnd would restore the methods which are based on the common unitary transforma-

values of the few- and many-nucleon binding energies an&'on.hln ordrt]-:‘r to hﬁve ﬁ clr_ol\jlet\:lh_eck of both c%mputzrgodﬁs,

other observables found in calculations with the original, notV€ Nave shown that the interactions obtained by the

transformed, NN forces. wo methods yield the same results. The.LMNN interaction
On the other hand, it is well known that all realistic NN "6Produces the low-energy observables in the two-nucleon

interactions underbind light nuclei such %$ and*He. As a system with high precision, which has been confirmed by the

; calculation of the deuteron binding energy and the phase
consequence, attractive three-nucleon forces are needed dRifts 9 oy P

order to reproduce the experimental numbers. Itis, therefore, e | MNN interaction has been successfully applied to
in principle possible that the repulsive effective many-the Faddeev-Yakubovsky calculations for three- and four-
nucleon forces generated through elimination of the highnycleon systems. The calculated binding energies of the few-
momentum components compensate, to some extent, thefficleon systems begin to deviate from the values calculated
missing attractive forces, minimizing the total effect of the ysing the original NN potentials fok smaller than~5 fm™,
many-nucleon interactions. If this oversimplified picture re-whereas the results obtained by simply cutting off the high
flects the real situation, one would observe a better agregnomentum components without performing a unitary trans-
ment with the data for calculations based on the LMNN in-formation deviate considerably even at much higher values
teractions as compared to the ones based on realistic NBf A. In an appropriately truncated.e., with A=5 fm™?)
forces. Although the results provided by existing many-bodylow-momentum space the LMNN interaction reproduces the
calculations as well as by the present few-body calculationgxact values of the binding energies, at least, for the few-
with LMNN interactions appear to be quite promising in this nycleon systems.
respect, and thus might speak in favor of the above- However, we should keep in mind that the calculations of
mentioned tendency of counteracting these two kinds ofyround-state energies using the LMNN interaction for
many-body forces, to the best of our knowledge, no general- 2 fm™! yield considerably more attractive results than the
proof of the validity of the above-mentioned picture has yetexact values. We note that as shown in Fig. 1 of Kuakei
been offered. al.’s work [4] one needs more than 4.0 finas the cutoff

In addition, one should keep in mind that only restrictedvalue A in order to reproduce at least qualitatively the satu-
information about many-nucleon forces, which might haveration property of nuclear matter. Thus, the application of the
very complicated spin and spatial structures, is provided by MNN interaction to structure calculations should be done
the discrete spectrum. A much better testing ground is servegith care, though the LMNN interaction fat ~ 2 fm™ may
by a variety of scattering observables. It would therefore beye suitable for the calculation of the excitation spectra of
interesting to test the LMNN forces in the three-nucleon conjow-lying states as has been shown in the shell-model calcu-
tinuum. Further, we notice that the choice of the LMNN is |ations[2].
not unique. Preserving the half-on-sh&llmatrix does not
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