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Abstract

Packet classification is used in various network applications such as firewalls, access

control lists, and network address translators. This technology uses ternary content

addressable memories (TCAMs) to perform high speed packet forwarding. However,

TCAMs dissipate high power and their cost are high. Thus, reduction of TCAMs is

crucial.

First, this thesis derives the prefix sum-of-products expression (PreSOP) and the number

of products in a PreSOP for an interval function. Second, it derives Ψ(n,τ p), the number

of n-variable interval functions that can be represented with τp products. Finally, it

shows that more than 99.9% of the n-variable interval functions can be represented

with ⌈32n − 1⌉ products when n is sufficiently large. These results are useful for fast

PreSOP generator and for estimating the size of Ternary Content Addressable Memories

(TCAMs) for packet classification.

Second, this thesis shows a method to represent interval functions by using head-tail

expressions. The head-tail expressions represent greater-than GT (n : A) functions, less-

than LT (n : B) functions, and interval functions IN0(n : A,B) more efficiently than

sum-of-products expressions, where n denotes the number of bits to represent the largest

value in the interval (A,B). This paper proves that a head-tail expression (HT) repre-

sents an interval function with at most n words in a ternary content addressable memory

(TCAM) realization. It also shows the average numbers of factors to represent interval

functions by HTs for up to n = 16, which were obtained by a computer simulation. It

also conjectures that, for sufficiently large n, the average number of factors to represent

n-variable interval functions by HTs is at most 2
3n−

5
9 . Experimental results also show

that, for n ≥ 10, to represent interval functions, HTs require at least 20% fewer factors

than MSOPs, on the average.

Third, this thesis presents a method to generate head-tail expressions for single-field

classification functions. First, it introduces a fast prefix sum-of-product (PreSOP) gen-

erator (FP) which generates products using the bit patterns of the endpoints. Next, it

shows a direct head-tail expression generator (DHT). Experimental results show that
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DHT generates much smaller TCAM than FP. The proposed algorithm is useful for

simplified TCAM generator for packet classification.

Finally, this thesis shows methods to simplify rules in TCAMs for packet classification.

First method, it partitions the rules into groups so that each group has the same source

address, destination address and protocol. After that, it simplifies rules in each group

by removing redundant rules. A computer program was developed to simplify rules

among groups. Experimental results show that this method reduces the size of rules up

to 57% of the original specification for ACL5 rules, 73% for ACL3 rules, and 87% for

overall rules. This algorithm is useful to reduce TCAMs for packet classification. In the

second method, we reduce the number of words in TCAM for multi-field classification

functions by using head-tail expressions. It presents MFHT, an O(r2)-algorithm to

generate simplified TCAMs for two-field classification functions, where r is the number

of rules. Experimental results show that MFHT achieves a 58% reduction of words for

random rules and a 52% reduction of words for ACL and FW rules. Moreover, MFHT

is fast. The methods are useful for simplifying TCAM for packet classification.



Contents

Abstract i

Contents iii

List of Figures v

List of Tables vi

List of Abbreviations and Symbols vii

1 Introduction 1

1.1 Background and Purposes of Research . . . . . . . . . . . . . . . . . . . . 1

1.2 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminary 5

2.1 Logic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Interval Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Prefix Sum-of-Products Expression . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Ternary Content Addressable Memory . . . . . . . . . . . . . . . . . . . . 8

2.5 Packet Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Generating Prefix Sum-of-Products Expressions for Interval Functions 12

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Definitions and Basic Properties . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Number of Products in an MPreSOP . . . . . . . . . . . . . . . . . . . . . 15

3.4 Number of Interval Functions Requiring τp Products . . . . . . . . . . . . 18

3.5 Statistical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5.1 Average Number of Products . . . . . . . . . . . . . . . . . . . . . 21

3.5.2 Variance of the Numbers of Products . . . . . . . . . . . . . . . . . 21

3.6 Proof of Optimality and Statistical Properties . . . . . . . . . . . . . . . . 22

3.6.1 Proof of Lemma 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6.2 Proof of Lemma 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6.3 Proof of Theorem 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.6.4 Proof of Theorem 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.8 Conclusions and Comments . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Derivation of Head-Tail Expressions for Interval Functions 29

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

iii



Contents iv

4.2 Definition and Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.1 Prefix Sum-of-Products Expression . . . . . . . . . . . . . . . . . . 31

4.3 Head-Tail Expressions for Interval Functions . . . . . . . . . . . . . . . . . 32

4.3.1 Derivation of Head-Tail Expressions for Interval Functions . . . . . 33

4.3.2 Examples of Head-Tail Expressions for Interval Functions . . . . . 40

4.3.3 The Number of Factors to Represent an Interval Function by a
Head-Tail Expression . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Head-Tail Expressions for Single-Field Classification Functions 50

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Definitions and Basic Properties . . . . . . . . . . . . . . . . . . . . . . . 51

5.3 Realization of Interval Functions on TCAM . . . . . . . . . . . . . . . . . 53

5.4 Head-Tail Expressions for Interval Functions . . . . . . . . . . . . . . . . . 54

5.5 Fast Prefix SOP Generator . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.6 Direct Head-Tail Expression Generators . . . . . . . . . . . . . . . . . . . 58

5.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Head-Tail Expressions for Multi-Field Classification Functions 63

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2 Definition and Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2.1 Classification Functions . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3 Simplification of rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3.1 Partitioning rules into groups . . . . . . . . . . . . . . . . . . . . . 67

6.3.2 Elimination of redundant rules . . . . . . . . . . . . . . . . . . . . 69

6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.5 Simplification of TCAM for Multi-Field Classification Functions . . . . . 76

6.6 Number of Factors to Represent a Multi-Field Classification Rule . . . . . 78

6.6.1 Number of Products in a PreSOP to Represent a Multi-Field Clas-
sification Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.6.2 Number of Factors in a Head-Tail Expression to Represent a Multi-
Field Classification Rule . . . . . . . . . . . . . . . . . . . . . . . . 80

6.6.3 Number of Factors in a PreSOP and Head-Tail Expression to Rep-
resent a Multi-Field Classification Rule . . . . . . . . . . . . . . . 80

6.7 Algorithm to Generate Simplified Expressions for Multi-Field Classifica-
tion Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.8 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7 Conclusion and Future Work 90

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Acknowledgements 93

List of Publications 95



List of Figures

1.1 Illustration of packet classifier in network applications . . . . . . . . . . . 1

2.1 Maps for f = IN0(4 : 0, 15) . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 TCAM Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Derivation of MPreSOP for IN0(6 : 2, 14) . . . . . . . . . . . . . . . . . . 18

3.2 Average numbers of products in MSOPs and PreSOPs for different sizes
of intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Maps for IN0(n : 0, 31) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Circuit for a head-tail expressions . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Map for Lemma 4.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Example of Lemma 4.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5 Derivation of a head-tail expression for IN0(n : 0, 15) . . . . . . . . . . . . 41

4.6 Maps for PreSOP and head-tail expression representing IN0(n : 0, 27) . . 42

5.1 Maps for Example 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Realization using TCAM and RAM. . . . . . . . . . . . . . . . . . . . . . 54

5.3 Pseudocode for FP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4 Pseudocode for DHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5 Steps of DHT in Example 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.1 TCAM Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2 Illustration of grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3 Pseudocode for grouping the rules . . . . . . . . . . . . . . . . . . . . . . 68

6.4 Illustration of intersection of rules represented by PreSOPs . . . . . . . . 70

6.5 Relations between rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.6 Pseudocode for checking the relation between fields . . . . . . . . . . . . . 72

6.7 Pseudocode for checking the relation between rules in multiple fields . . . 73

6.8 Pseudocode for simplifying rules within a group . . . . . . . . . . . . . . . 74

6.9 Maps for two-field classification rule . . . . . . . . . . . . . . . . . . . . . 77

6.10 Description of two-field classification rule . . . . . . . . . . . . . . . . . . 79

6.11 Pseudocode for MFHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.12 Comparison of execution times for PreSOPG, SFHT, and MFHT in mil-
lisecond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.13 Comparison of execution times for MFHT and Ref. [49] in millisecond . . 88

v



List of Tables

2.1 Packet Classifier Based on Accept or Discard Condition . . . . . . . . . . 9

2.2 Example of rules in packet classifier . . . . . . . . . . . . . . . . . . . . . 10

3.1 Example of rules in packet classifier . . . . . . . . . . . . . . . . . . . . . 12

3.2 Various methods to represent classification functions . . . . . . . . . . . . 13

3.3 List of interval functions for n = 4 and τp = 3 for different s . . . . . . . . 20

3.4 Average numbers of products needed to represent interval functions . . . 27

3.5 Probabilities of interval functions that can be represented with at most
τp products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Example of classification function . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Comparison with previous works . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Realization of IN0(n : 0, 15) by TCAM and RAM . . . . . . . . . . . . . . 41

4.4 Realization of IN0(n : 0, 27) in TCAM and RAM . . . . . . . . . . . . . . 43

4.5 Numbers of GT (n : A) or LT (n : B) functions requiring τ factors in HTs
for n = 1 to n = 16 produced by a heuristic algorithm . . . . . . . . . . . 46

4.6 Numbers of n-variable interval functions requiring τ factors in HTs for
n = 1 to n = 16 produced by a heuristic algorithm . . . . . . . . . . . . . 47

4.7 Average numbers of factors to represent n-variable interval functions by
HTs (near minimum) and exact MSOPs for n = 1 to n = 16 . . . . . . . . 48

5.1 Example of classification function . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Implementation on TCAM . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3 Realization based on PreSOP. . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Realization based on HT. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.5 Realization of LT (8 : 247) by TCAM and RAM . . . . . . . . . . . . . . . 57

5.6 Realization of Example 6.1 in TCAM and RAM . . . . . . . . . . . . . . 60

5.7 Comparison of performance . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.1 Simplified example of a packet classifier . . . . . . . . . . . . . . . . . . . 63

6.2 TCAM representation of Example 6.3 . . . . . . . . . . . . . . . . . . . . 71

6.3 Performance of the simplification algorithm . . . . . . . . . . . . . . . . . 75

6.4 TCAM Words for Example 6.6 . . . . . . . . . . . . . . . . . . . . . . . . 76

6.5 TCAM Words for Example 6.12 . . . . . . . . . . . . . . . . . . . . . . . 83

6.6 TCAM Words for Example 6.13 . . . . . . . . . . . . . . . . . . . . . . . 86

6.7 Number of TCAM Words for Random Rules . . . . . . . . . . . . . . . . 86

6.8 Number of TCAM Words for ACL and FW Rules . . . . . . . . . . . . . 87

vi



List of Abbreviations and

Symbols

Abbreviations

ACL Access Control List

DA Destination Address

DHT Direct Head-Tail Expression

DP Destination Port

FP Fast Prefix Sum-of-Products

FPGA Field Programmable Gate Array

FW Firewall

HT Head-Tail Expression

IPv4 Internet Protocol Version 4

LSI Large Scale Integrated Circuit

MFHT Multi-Field Head-Tail Expression

MPreSOP Minimum Prefix Sum-of-Products Expression

MSOP Minimum Sum-of-Products Expression

PI Prime Implicant

PO Protocol

PreSOP Prefix Sum-of-Products Expression

RAM Random Access Memory

SA Source Address

SFHT Single-Field Head-Tail Expression

SOP Sum-of-Products Expression

SP Source Port

TCAM Ternary Content Addressable Memory

vii



List of Abbreviations and Symbols viii

Symbols

f single-field logic function

F multi-field logic function

n the number of variables

m the number of bits

r the number of fields

x variable

a⃗ vector (an−1, an−2, . . . , a1, a0)

(A,B) an open interval

GT (n : A) greater-than function

LT (n : B) less-than function

IN0(n : A,B) interval function

τp the number of products in PreSOP

τm the number of products in MSOP

τh the number of products in HT

µ average

σ2 variance

Ψ(n,τ p) the number of n-variable interval functions that require τp products

in their MPreSOPs

ζ the minimum number of factors to represent a function f by an HT

Si the logic functions represented by products of PreSOPs that show

segments of an interval

O order notation showing the computational complexity



Chapter 1

Introduction

1.1 Background and Purposes of Research

The demand for fast network has been increased with the growth of data transmission

and memory technology. One of the core technology in fast network connection is packet

classification. Packet classification [6, 11, 23, 45, 47, 57, 62, 63] is a function to map or

filter each incoming packet for a decision in an ordered list of rules. Packet classifications

have been used in various networking applications such as routers, firewalls (FW) and

access control lists (ACL).

A packet classifier is specified by a set of rules. And a rule is specified by fields. A

field can be represented by a product or an interval. In internet IPv4, fields are source

address (32-bit word), destination address (32-bit word), source port (16-bit interval),

destination port (16-bit interval), and protocol (8-bit word). Figure 1.1 illustrates of

packet classifiers in various network applications.

Router
Wireless

Source (User)

Firewall

Destination (User)

Hub Destination (Server)

Destination (Internet)

Packet Classifier

Figure 1.1: Illustration of packet classifier in network applications

1



Chapter 1. Introduction 2

In packet classification, Ternary Content Addressable Memories (TCAMs) [3, 5, 17, 29,

32, 34, 48] are used as the hardware to perform high-speed packet forwarding. TCAMs

have become de facto standard in network applications. TCAM has three values, i.e.,

0, 1, and * (don’t care).

Since a TCAM works simultaneously, it only takes O(1) time to find a matched rules

in the packet classifier. Moreover, a TCAM has priority encoder to return the first

matched rule action. Suppose that a packet header comes, then the TCAM checks the

rules simultaneously by comparing the header with all entries. After that, if there are

multiple matches, then the TCAM will return the index of the upmost matched rule.

Inspite of the fact that TCAMs are fast, TCAMs have drawbacks:

• Disipate high power: Since TCAMs are used in network processor in packet

classification and routing look up which require high performance, the power is-

sue is also the main consideration in TCAMs [2]. It is reported in [30] that a

conventional 4.5 Mb static TCAM dissipates approximately 7 Watt assuming a

suply voltage of 1.5 Volt and the operating frequency of 143 Mhz. The issue will

cause problems if we consider a very high-speed router or a packet classifier which

requires high amount of TCAMs and works in a GHz speed.

• Expensive: The TCAM cost is expensive. In [28], a 1 Mb TCAM chip costs

about 200-250 U.S. dollars and the TCAM cost is a significant fraction of router

or packet classifier costs.

Moreover, packet classifiers have their own problems which are directly related to the

TCAMs:

• Rule expansion: To represent a port field, we use an interval function. An inter-

val function can be represented as a sum of prefixes. The expression represented by

a sum of prefixes is called a prefix sum-of-products expression (PreSOP). Note

that each prefix corresponds to a word in a TCAM. To represent any interval

function by a PreSOP, in the worst case, 2n − 2 products are necessary [60]. For

instance, when n = 16, the worst case is [1, 65534] where requires 2n−2 = 30 words

in single field. Thus, if we have two fields (i.e, source and destination ports), it

requires 30 × 30 = 900 words in a TCAM. Moreover, in IPv4 the total bits in a

word is atleast 104 bits. This can cause a significant expansion in the TCAM size.

• Rapid increasing of internet: The exponential growth of the internet has

stressed its routing system. While the data rates of links have kept pace with
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the increasing traffic, it has been difficult for paket processing capacity of routers

to keep up with these increased data rates [36]. This issue will impact the increas-

ing of the need of router’s capacity and speed which is directly related to the need

of a huge TCAM size in a router or a packet classifier.

To overcome these problems, minimization of TCAM size is necessary. Logic minimiza-

tion in packet classification is quite different from that of large-scale integrated circuit

(LSI) design. When a TCAM is used instead of a two-level AND-OR circuit, the op-

timization is more complicated than that of sum-of-products expressions (SOPs) [26].

Also, the logic optimization must be done much faster than conventional ones. For

some cases, the data must be updated in every second. So, we cannot use conventional

time-consuming algorithms [9, 40].

In this thesis, we presents some methods related to logic minimization in TCAMs. First,

we show that the minimum PreSOP (MPreSOP) and the number of products in a

MPreSOP to represent an open interval (A,B) can be easily generated. We also the

statistical properties on the numbers of products in MPreSOP for interval functions.

Second, we introduce an efficient method to represent interval functions called head-

tail expressions (HTs). We prove that any interval function can be represented by

an HT with at most n factors. Next, we use HTs to reduce TCAM size for single-

field classification functions. We evaluate it by using benchmark function of packet

classification called ClassBench. Finally, we propose methods to simplify TCAM size in

multi-field classification functions. In the first method, we remove redundant rules by

partitioning the rules into groups having the same source address, destination address

and protocol. Then, we check the relation among rules within a group and remove the

redundant rules. In the second method, we use HTs to reduce TCAM size for multi-field

classification functions. In this case, we propose a fast method to generate a simplified

TCAM directly.

1.2 Organization of Thesis

This thesis consists of seven chapters. Each chapter is organized as follows.

Chapter 1 is an indroduction. It shows applications to the internet.

Chapter 2 defines basic terminology on logic functions, prefix sum-of-products expres-

sions (PreSOPs), interval functions, and packet classifications.
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Chapter 3 formulates PreSOPs for interval functions, shows a method to generate Pre-

SOPs from the binary representations of endpoints of an interval. It also derives statis-

tical properties of PreSOPs, which are useful to estimate TCAM sizes.

Chapter 4 shows a new representation for interval functions called head-tail expressions

(HTs). It shows a special property of interval functions to represent the interval functions

with fewer words than PreSOPs. Finally, it shows that any interval function can be

represented by an HT with at most n factors.

Chapter 5 shows a method to represent single-field classification functions by HTs. It

explains the algorithm in detail and evaluates its performance using benchmark functions

generated by ClassBench. The direct HT algorithm (DHT) is 6 × 105 times faster and

produces smaller TCAMs than ESPRESSO-EXACT.

Chapter 6 proposes two methods to reduce TCAMs for multi-field classification func-

tions. The first one is a fast redundancy removal for packet classification. And the

second one is a TCAMs generator for multi-field classification functions.

Chapter 7 summarize the thesis.



Chapter 2

Preliminary

This chapter defines terminology and theoretical background used in this thesis.

2.1 Logic Function

Definition 2.1. A logic function, denoted by f(xn−1, xn−2, . . . , x0) or simply f , is a

mapping:

f(xn−1, xn−2, . . . , x0) : {0, 1, . . . , r − 1}n → {0, 1, . . . , r − 1},

where each xi is called a variable. When r = 2, a logic function is a two-valued logic

function that is a mapping:

f(xn−1, xn−2, . . . , x0) : {0, 1}n → {0, 1},

where each xi is called a binary variable. When r > 2, a logic function is a multi-

valued logic function, and each xi is called a multi-valued variable.

Definition 2.2. A multiple-output logic function F = (f0, f1, . . . , fm−1) is a map-

ping:

F : {0, 1, . . . , r − 1}n → {0, 1, . . . , r − 1}m.

Specially, when m = 1, it is called single-output logic function.

Definition 2.3. Let S ⊆ {0, 1, . . . , r − 1}. Then, xS is a literal of a variable x.

5
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Definition 2.4. Shannon expansion of a logic function f with respect to a variable

xi is:

f(xn−1, xn−2, . . . , x0) =
j=0∨

r−1

xji · f(xn−1, xn−2, . . . , xi−1, j, xi+1, . . . , x0),

and each f(xn−1, xn−2, . . . , xi−1, j, xi+1, . . . , x0) is called a cofactor of f with respect

to xi

In this thesis, we assume that a given logic funtion is completely specified and has no

redundant variables.

2.2 Interval Function

Definition 2.5. Let A and B be integers such that A < B. An open interval (A,B)

denotes the set of integers X such that A < X < B. Note that endpoints are not

included. The size of an open interval (A,B) is C = B −A− 1.

In this paper, only open intervals are considered. Thus from here, an open interval is

simply denoted by an interval.

Definition 2.6. An n-input interval function is:

IN0(n : A,B) =

⎧
⎨

⎩
1, if A < X < B

0, otherwise,

where X =
∑n−1

i=0 xi · 2i, A and B are integers.

An interval function can be represented by a product of a greater-than (GT ) function

and a less-than (LT ) function.

Definition 2.7. An n-input GT function is:

GT (n : A) =

⎧
⎨

⎩
1, if X > A

0, otherwise.

An n-input LT function is:

LT (n : B) =

⎧
⎨

⎩
1, if X < B

0, otherwise,
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where X =
∑n−1

i=0 xi · 2i, A and B are integers.

2.3 Prefix Sum-of-Products Expression

Definition 2.8. A binary literal has a form xa, where x is a binary variable and

a ∈ {0, 1}, and

xa =

⎧
⎨

⎩
1, if x = a

0, if x ̸= a.

Definition 2.9. x = x1 and x̄ = x0 are literals of a variable x. An AND of literals is

a product. An OR of products is a sum-of-products expression (SOP).

Definition 2.10. Let F be an SOP. τ(F) denotes the number of products in F .

Definition 2.11. A prefix SOP (PreSOP) is an SOP consisting of products having the

form x∗n−1x
∗
n−2 . . . x

∗
m+1x

∗
m, where x∗i is xi or x̄i and n− 1 ≥ m.

Definition 2.12. An SOP representing a given function f with the fewest products

is a minimum sum-of-products expression (MSOP). A PreSOP representing a given

function f with the fewest products is a minimum PreSOP (MPreSOP). An MSOP and

an MPreSOP for f are denoted by MSOP(f) and MPreSOP(f), respectively.

Lemma 2.1. Let τm(f) = τ(MSOP(f)) and τp(f) = τ(MPreSOP(f)). Since an MPre-

SOP is a restricted case of an MSOP, we have τm(f) ≤ τp(f).
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(b) MPreSOP

Figure 2.1: Maps for f = IN0(4 : 0, 15)

Example 2.1. Fig. 2.1(a) shows an MSOP: x̄0x2 ∨ x0x̄1 ∨ x1x̄3 ∨ x̄2x3 for the interval

function f = IN0(4 : 0, 15). Fig. 2.1(b) shows the MPreSOP: x̄3x̄2x̄1x0 ∨ x̄3x̄2x1 ∨
x̄3x2 ∨ x3x̄2 ∨ x3x2x̄1 ∨ x3x2x1x̄0. Thus, τ(f) = 4 and τ(f) = 6.
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Lemma 2.2. Any product in a PreSOP can be represented by an interval function:

xan−1
n−1 x

an−2
n−2 · · · xamm = IN0(n : k2m − 1, (k + 1)2m),

where k =
∑n−m−1

i=0 am+i · 2i, and m denotes the number of missing variables. Note that

k = 0, 1, . . . , 2n−m − 1 and m = 0, 1, 2, . . . , n.

Thus, the products in the PreSOP for IN0(4 : 0, 15) are represented as follows:

x̄3x̄2x̄1x0 : (0, 2) (k = 1,m = 0)

x̄3x̄2x1 : (1, 4) (k = 1,m = 1)

x̄3x2 : (3, 8) (k = 1,m = 2)

x3x̄2 : (7, 12) (k = 2,m = 2)

x3x2x̄1 : (11, 14) (k = 6,m = 1)

x3x2x1x̄0 : (13, 15) (k = 14,m = 0)

The numbers in the smaller boxes in Fig. 2.1 show the values X = 8x3+4x2+2x1+x0.

A PreSOP is a special case of an SOP. Thus, for a given function f , a PreSOP may

require more products than an SOP. However, PreSOPs are often used in the internet

applications since they can be generated quickly from the tree or a decision diagram (DD)

representing the function. Also, the PreSOPs generated from trees or DDs are disjoint

[60]. This means that we cannot apply the absorption law to simplify the expression.

On the other hand, to simplify an SOP, we have to apply the absorption law. The time

complexity for the absorption law to an SOP is O(np2), where n denotes the number

of bits to represent the maximum value of the interval, and p denotes the number of

products. Thus, the SOP minimizer tends to be slow. This is the reason why PreSOPs

are used instead of SOPs in internet applications.

2.4 Ternary Content Addressable Memory

A content addressable memory (CAM) simultaneously compares the inputs vector with

the entire list of registered vectors [33]. TCAM is a de facto standard in routers and

devices for packet classification. Fig. 2.2 shows an example of a TCAM circuit [43]. The

search data is compared with the stored words. When there is a match, the match line

sends the signal to the priority encoder to produce the match address.
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Figure 2.2: TCAM Circuit

To show the concept of a packet classification using a TCAM, for simplicity, assume the

packets are accepted when

(1 ≤ X ≤ 14),

where X = 8x3 + 4x2 + 2x1 + x0. When multiple matches occur, the priority encoder

detects the match line with the smallest index. In this example, the packet classification

uses only one field specified by four bits. The packet classifier can be implemented as

shown in Table 2.1(a). Note that the condition for Accept can be represented as

f = x̄3x̄2x̄1x0 ∨ x̄3x̄2x1 ∨ x̄3x2 ∨ x3x̄2 ∨ x3x2x̄1 ∨ x3x2x1x̄0.

The bottom word of the TCAM in Table 2.1(a) consists of all don’t cares. Thus, the

TCAM requires 7 words.

Table 2.1: Packet Classifier Based on Accept or Discard Condition

(a) Accept

TCAM SRAM

0001 Accept
001* Accept
01** Accept
10** Accept
110* Accept
1110 Accept
**** Discard

(b) Discard

TCAM SRAM

0000 Discard
1111 Discard
**** Accept
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Since, f can be simplified as

f = x̄3x2 ∨ x̄2x1 ∨ x̄1x0 ∨ x3x̄0,

the number of TCAM words can be reduced to five. However, the complement of the

function can be represented as

f̄ = x̄3x̄2x̄1x̄0 ∨ x3x2x1x0.

Thus, the circuit can be simplified by implementing the Discard condition instead of the

Accept conditions as shown in Table 2.1(b), which uses only three words. In this case,

the entries for the static random access memory (SRAM) also must be modified.

2.5 Packet Classification

Definition 2.13. [41] A classification function with k fields is a mapping F : D1 ×
D2 × · · · × Dk → {0, 1, 2, · · · , r}, where Di = {0, 1, · · · , 2ti − 1} (i = 1, 2, · · · , k). F is

specified by a set of r rules. A rule consists of k fields, and each field Di is specified by

an interval of ti bits.

In the internet, packets are classified by the source address (SA), the destination address

(DA), the source port (SP), the destination port (DP), and the protocol type (PO). Table

2.2 shows an example of a packet classifier. In this case, the classifier consists of three

rules, and each rule consists of five fields. In IPV4, an internet address is specified

by a 32-bit number, while the ports are specified by intervals of 16-bit numbers. The

protocol type is specified by an 8-bit number. The fields often have *, which denotes

don’t care. If the result of the classification is Accept, then the corresponding packet is

sent to the next destination. Otherwise, the packet is discarded.

Table 2.2: Example of rules in packet classifier

SA DA SP DP PO Action

66.219.40.∗ 176.31.166.∗ [0, 65535] 6790 TCP Accept
∗ 15.238.61.128 ∗ [1024, 65535] ∗ Accept
∗ ∗ ∗ ∗ ∗ Discard

In packet classification [7], rules are applied from the top to the bottom. Thus, in Table

2.2, if the source address is 66.219.40.11, the destination address is 176.31.166.23, the

source port is 1025, the destination port is 6790, and the protocol type is TCP, then

the first rule is satisfied, and the packet is sent to the next address. If the first rule is

not satisfied, then the second rule is checked. If the second rule is not satisfied, then
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the last rule is checked. Since the last rule has * in all the fields, the last rule is always

satisfied. In this case, the packet is discarded. Thus, the packet classification in Table

2.2 can be considered as a five-field classification function.

Note that all the fields can be represented by intervals [41]. For example, an 8-bit

address

1001****

can be represented by the interval

[9× 16, 9 × 16 + 15] = [144, 159].

Also, a single value i.e 7 can be represented by the interval [7, 7].



Chapter 3

Generating Prefix

Sum-of-Products Expressions for

Interval Functions

This chapter is related to prefix sum-of-products expressions for interval functions. We

derive the PreSOPs and show the optimality of PreSOPs in interval functions. We also

analyze the statistical properties. The results are useful to estimate the size of TCAMs

for packet classification.

3.1 Introduction

Packet classification [7, 15–17, 31, 61] is a core function in computer network components,

such as routers [19], firewalls [14, 20, 21], network address translators, and access control

lists (ACL) [22]. A ternary content addressable memory (TCAM) [33, 43] implements

packet classification functions. Although a TCAM is fast, it is expensive and dissipates

high power [1].

Table 3.1: Example of rules in packet classifier

Rule Source IP Destination IP Source Port Destination Port Protocol Action

1 66.219.40.∗ 176.31.166.∗ (−1, 65536) 6790 TCP Permit
2 ∗ 15.238.61.128 ∗ (1023, 65536) ∗ Permit
3 ∗ ∗ ∗ ∗ ∗ Deny

Table 3.1 shows an example of a packet classifier consisting of five fields: the source

IP, the destination IP, the source port, the destination port, and the protocol. In this

example, both the source IP and the destination IP are represented by 32 bits, and they

12
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Table 3.2: Various methods to represent classification functions

Method [Ref.] Representation Bound

Binary Tree [60] n-variable binary prefixes 2n− 2
2-valued MSOP [41] n-variable binary non-prefixes 2n− 4
Gray encoding [8] n-variable binary prefixes 2n− 4
Output encoding [38] (n+ 1)-variable binary prefixes n
4-valued MSOP [42] (n2 )-variable 4-valued non-prefixes n− 1
TCAM with comparator circuit [46] A direct interval 1

are specified by prefixes. Both the source port and the destination port are represented

by 16 bits, and they are specified by intervals. The protocol is represented by a value

of 8 bits or ∗ (don’t care). The action has two values: permit and deny. However, it

can have more values such as deny and log or permit and log. When each of the port

fields is specified by either ∗ (don’t care) or a single value, each rule corresponds to one

word in a TCAM. However, when a port field is specified by an open interval such as

(0, 7), rule expansion occurs, i.e., each rule corresponds to many words in a TCAM

[12]. If the packet header matches all the fields of a rule, then the rule is considered to

be matched. If several rules match at the same time, then the rule with the smallest

number is applied.

To represent a port field, we use an interval function. An interval function can be

represented as a sum of prefixes. The expression represented by a sum of prefixes is

called a prefix sum-of-products expression (PreSOP). Note that each prefix corresponds

to a word in a TCAM. To represent any interval function by a PreSOP, in the worst

case, 2n− 2 products are necessary [60].

A sum-of-product expression (SOP) requires no more products than a PreSOP to rep-

resent the same function, and in many cases, the SOP requires fewer products than the

PreSOP. For example to represent the interval (0, 2n − 1), a PreSOP requires 2(n − 1)

products, while an SOP requires only n products [39]. Although we can obtain an exact

minimum SOP, it is often time consuming. In the design of integrated circuits for mass

production, SOPs are routinely used [9, 40]. Their minimization cost can be amortized

by many integrated circuits. However, in the case of packet classification, PreSOPs are

used instead of SOPs.

To reduce the number of words in a TCAM for ACL, minimization algorithms for SOPs,

that are suitable for embedded microprocessors, have been developed [4, 24]. It uses a

ternary trie as a basic data structure. Such an algorithm is fast, but produces solutions

with many more products than the exact minimum solutions for some classes of functions

[39].
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Table 3.2 lists various methods to represent classification functions and their TCAM

sizes. In [41, 44], the number of products needed to represent an interval function of

n variables by a standard encoding in SOPs is analyzed. They show that any interval

function can be represented with at most 2n − 4 products in an SOP. Especially, the

paper [41] shows that only two interval functions require 2n − 4 products in SOPs. In

the paper [42], a 4-valued TCAM is proposed, where inputs are encoded with a 1-out-

of-4 code. In this method, any interval function can be represented with at most n− 1

products by a 4-valued SOP. To use this method in packet classification, a special CAM

and a 4-valued logic minimizer are necessary. In the paper [46], a special TCAM that

performs interval matching directly by a special circuit is proposed. In this case, each

rule corresponds to just one word in a TCAM, but we need a special TCAM which would

be expensive. In the paper [8], Gray encoding is used to reduce the number of products.

In the Gray encoding, any interval (A−1, A+2), where A is a non-negative integer, can

be represented with a single product. The paper [8] showed that any interval function

can be represented with at most 2n− 4 products in a PreSOP.

In a TCAM, a priority encoder is included to produce a unique address among the

matched data [33]. By changing the order of rules stored in a TCAM, we can often reduce

the number of products needed to represent the function [12, 28]. In [26], the authors

presented a method to minimize the number of TCAM words. Although this method

can find an exact minimum solution, it requires computation time that is impractically

large. In [38], an output encoding is used to reduce the number of products. To use this

method in a real packet classification, a TCAM and an external memory are necessary.

In this chapter, we show that 1) the minimum PreSOP (MPreSOP) and the number

of products in a MPreSOP to represent an open interval (A,B) can be quickly gener-

ated and calculated, and 2) the average number of products in MPreSOPs for interval

functions is µ(n) ≈ n − 2, and the variance is σ2(n) ≈ n
2 + 11. Also, by numerical

calculation, we show that 99.9% of the functions can be represented by PreSOPs with

at most ⌈32n− 1⌉ products when n > 12.

3.2 Definitions and Basic Properties

Lemma 3.1. Let −1 ≤ A < B ≤ 2n. The number of distinct open interval functions in

(A,B), is N(n) = 2n−1(2n + 1).

1A(n) ≈ B(n) i ff|A(n) −B(n)| → 0 as n → ∞.
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Proof: Let the size of an interval (A,B) be C = B−A−1. For C = 1, C = 2, . . . , C = 2n,

the numbers of distinct interval functions are 2n, 2n−1, 2n−2, . . . , 1, respectively. Thus,

we have N(n) = 2n + (2n − 1) + (2n − 2) + . . .+ 1 = 2n−1(2n + 1). !

3.3 Number of Products in an MPreSOP

In this section, we show that, given an interval (A,B), the PreSOP and the number of

products in the PreSOP can be generated quickly and calculated. Previously, PreSOPs

are generated by using binary trees [60]. However, the PreSOP of an interval (A,B) can

be generated directly from its binary representations of the endpoints (A and B). Thus,

the PreSOP for a given interval can be generated quickly.

Definition 3.1. A vector literal has the form X a⃗, where X = (xn−1, xn−2, . . . , x1, x0)

and a⃗ = (an−1, an−2, . . . , a1, a0).

X a⃗ =

⎧
⎨

⎩
1, if X = a⃗

0, if X ̸= a⃗.

It is equivalent to xan−1
n−1 x

an−2
n−2 · · · xa00 .

Lemma 3.2. xa = x̄ · ā ∨ x · a.

Lemma 3.3. A GT function has the following MPreSOP:

GT (n : A) = (xn−1ān−1) ∨
0∨

i=n−2

⎛

⎝
i+1∧

j=n−1

x
aj
j

⎞

⎠xiāi,

where a⃗ = (an−1, an−2, . . . , a1, a0) is the binary representation of A. τp(GT (n : A)) =
∑n−1

i=0 āi.

Proof: See 3.6.1. !

Similarly to Lemma 3.3, we have:

Lemma 3.4. An LT function has the following MPreSOP:

LT (n : B) = (x̄n−1bn−1) ∨
0∨

i=n−2

⎛

⎝
i+1∧

j=n−1

x
bj
j

⎞

⎠ x̄ibi,

where b⃗ = (bn−1, bn−2, . . . , b1, b0) is the binary representation of B. τp(LT (n : B)) =
∑n−1

i=0 bi.
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Similarly to GT (n : A) and LT (n : B), an interval function IN0(n : A,B) is represented

as an MPreSOP.

Theorem 3.1. Let a⃗ = (an−1, an−2, . . . , a1, a0) and b⃗ = (bn−1, bn−2, . . . , b1, b0) be the

binary representations of A and B, respectively. Let s be the largest index such that

as ̸= bs, then IN0(n : A,B) can be represented by:

0∨

i=s−1

[( i+1∧

j=n−1

x
aj
j

)
xiāi ∨

( i+1∧

j=n−1

x
bj
j

)
x̄ibi

]

. (3.1)

Proof: Since both GT (n : A) and LT (n : B) have at most n products, the AND

operation between GT and LT functions produces at most n2 products.

Let ai and bi be the components of a⃗ and b⃗, respectively, where s + 1 ≤ i ≤ (n − 1).

For every pair of products in GT and LT functions, there exist a pair of components

(xiāi) and (x̄ibi). These components cancel each other when s + 1 ≤ i ≤ (n − 1).

The cancellation occurs for three cases: the first case occurs when (xiāi) · (x̄ibi); the
second case occurs when (xiāi) · xbii ; and the last case occurs when (x̄ibi) · xaii . In the

first case, xi · x̄i yields 0. In the second and the third cases, by Lemma 3.2, we have

xiāi(x̄ib̄i ∨ xibi) = xiāibi = 0 and x̄ibi(x̄iāi ∨ xiai) = xiāibi = 0, respectively. Thus, IN0

can be simplified to:

IN0(n : A,B) =
(
xan−1
n−1 x

an−2
n−2 · · · xas+1

s+1 xsās ∨ · · · ∨ xan−1
n−1 x

an−1
n−2 · · · xa11 x0ā0

)

·
(
xbn−1
n−1 x

bn−2
n−2 · · · xbs+1

s+1 x̄sbs ∨ · · · ∨ xbn−1
n−1 x

bn−2
n−2 · · · xb11 x̄0b0

)
.

Thus, the interval function IN0 has at most (s + 1)2 products. Since as ̸= bs, there

are only two cases that produce non-zero products: the first case occurs for the AND

operation between a GT product xsās, and an LT product without a x̄s literal. The

second case occurs for the AND operation between an LT product x̄sbs, and a GT

product without a xs literal.

By performing all AND operations for those cases, the interval function IN0 is repre-

sented as a disjunction of the products for GT and LT functions without

xan−1
n−1 x

an−2
n−2 · · · xas+1

s+1 xsās and xbn−1
n−1 x

bn−2
n−2 · · · xbs+1

s+1 x̄sbs.

Thus, we have the theorem. !
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Lemma 3.5. Let f(xn−1, xn−2, . . . , x1, x0) = x̄n−1f0∨xn−1f0, where f0 = f(0, xn−2, . . . , x1, x0)

and f1 = f(1, xn−2, . . . , x1, x0). Then, MPreSOP(f) has the form

x̄n−1MPreSOP(f0) ∨ xn−1MPreSOP(f1).

Proof: See 3.6.2. !

Theorem 3.2. Let a⃗ = (an−1, an−2, . . . , a1, a0) and b⃗ = (bn−1, bn−2, . . . , b1, b0) be the

binary representations of A and B, respectively. Let s be the largest index such that

as ̸= bs. Then, the expression (3.1) in Theorem 3.1 is the MPreSOP, and

τp(IN0(n : A,B)) =
s−1∑

i=0

(āi + bi).

Proof: It is clear from Eq. (3.1) and Lemma 3.5. !

Example 3.1. Derive τp(IN0(6 : 2, 14)) and the MPreSOP for IN0(6 : 2, 14). The bi-

nary representations of A = 2 and B = 14 are a⃗ = (0, 0, 0, 0, 1, 0) and b⃗ = (0, 0, 1, 1, 1, 0),

respectively. Since (a5, a4) = (b5, b4) = (0, 0) and a3 ̸= b3, we have s = 3. Thus,

τp(IN0(6 : 2, 14)) =
2∑

i=0

(āi + bi) = 4.

In Figure 3.1, the top row shows products of GT (n : 2) and LT (n : 14). The middle row

shows their maps. And the bottom row shows the MPreSOP for IN0(n : 2, 14). Note

that the largest products in GT (n : 2) and LT (n : 14) are removed, where the grey side

indicates the GT (n : 2) part and the white side indicates the LT (n : 14) part. Thus, the

MPreSOP is IN0(6 : 2, 14) = x̄5x̄4x̄3x̄2x1x0 ∨ x̄5x̄4x̄3x2 ∨ x̄5x̄4x3x̄2 ∨ x̄5x̄4x3x2x̄1.

Theorem 3.1 can be used to generate MPreSOPs from binary representations of end-

points (A,B).

Lemma 3.3, Lemma 3.4, and Theorem 3.1 do not cover the cases when endpoints are

A = −1 and B ≤ 2n − 1, or, A ≥ 0 and B = 2n, or, A = −1 and B = 2n, because they

require (n+1) bits to represent the interval functions. These points are called extremal

endpoints.

Lemma 3.6. In the extremal endpoints, we have GT (n : −1) = LT (n : 2n) = IN0(n :

−1, 2n) = 1, IN0(n : −1, B) = LT (n : B), and IN0(n : A, 2n) = GT (n : A).
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Figure 3.1: Derivation of MPreSOP for IN0(6 : 2, 14)

3.4 Number of Interval Functions Requiring τp Products

In this section, we derive the formula for the number of interval functions requiring τp

products in their MPreSOPs. With this, we can estimate the TCAM sizes for packet

classification [17].

Definition 3.2. Let Ψ(n,τ p) be the number of n-variable interval functions that require

τp products in their MPreSOPs.

To derive Ψ(n,τ p), we have to consider the extremal endpoints that appeared before

Lemma 3.6. Thus, the integers must be represented by (n+ 1) bits for enumeration.

Definition 3.3. Let A and B be integers such that −1 ≤ A < B ≤ 2n. Let s(A,B)

be the largest integer such that as ̸= bs. s(A,B) is called separation index, where

0 ≤ s(A,B) ≤ n. The binary representations of A and B are a⃗ = (an, an−1, . . . , a1, a0)

and b⃗ = (bn, bn−1, . . . , b1, b0), respectively. A = −1 and B = 2n correspond to extremal

endpoints that require (n+ 1) bits.

In derivingΨ( n,τ p), the separation index s is used as a parameter to enumerate the

number of interval functions. Table 3.3 shows all IN0(4 : A,B) functions of n = 4

variables that require τp = 3 products, where the upper integer denotes A, while the lower

integer denotes B. The integers at the left side of the bits are the decimal representations
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of A and B. Also, A and B are represented by n+1 = 5 bit numbers, the least significant

s bits are separated by | to show the patterns of the combinations. For example, when

s = 2, two cases satisfy the requirements. In the first case, the lower endpoint (A)

contributes
(2
1

)
= 2 products, while the upper endpoint (B) contributes

(2
2

)
= 1 product.

In the second case, A contributes
(2
2

)
= 1 product, while B contributes

(2
1

)
= 2 products.

Thus, we have
(2
2

)(2
1

)
+
(2
1

)(2
2

)
= 4.

The top four pairs in Table 3.3 in the column headed by s = 2 denote all possible

combinations of the least significant s bits that produce τp = 3 products. The bottom

four pairs correspond to the repetition of the top four pairs. Note that, in the top four

pairs, the 4th bits in A (i.e., a3) and B (i.e., b3) are 0s, while, in the bottom four pairs,

the 4th bits are 1s.

By Theorem 3.2, we enumerate τp with respect to the least significant s bits in the

binary representations of the endpoints. Thus, we define:

Definition 3.4. Let η(s,τ p) be the number of interval functions with the separation

index s that require τp products in their PreSOPs.

Lemma 3.7. η(s,τ p) =
(2s
τp

)
.

Proof: By Theorem 3.2, η(s,τ p) is equal to the number of combinations such that

s−1∑

j=0

(āj + bj) = τp.

This number is equal to the number of ways to distribute τp elements to 2s bins. Thus,

we have
(2s
τp

)
. !

Lemma 3.8. Let r(n, s) be the number of repetitions that multiplies η(s,τ p). Then, we

have r(n, s) = 2n−s−1.

From here, we will consider the extremal endpoints that require (n+1) bits to represent

the numbers. These cases occur when one of endpoints is −1 or 2n. Note that the

binary representation of −1 is a⃗ = (an, an−1, . . . , a1, a0) = (1, 1, · · · , 1, 1) and the binary

representation of 2n is b⃗ = (bn, bn−1, . . . , b1, b0) = (1, 0, · · · , 0, 0).

Lemma 3.9. For the interval functions with s(A,B) = n and τp ≤ n, we have η(n,τ p) =

2
(n
τp

)
.

Proof: When s(A,B) = n, an ̸= bn. This occurs when A = −1 andB ≤ 2n−1, or, A ≥ 0

and B = 2n. In these cases, one of endpoints i.e., A = −1 or B = 2n, contributes no

product. Because of that, the other endpoints must contribute τp products. The number
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Table 3.3: List of interval functions for n = 4 and τp = 3 for different s

s = 2 s = 3 s = 4

0: 000 | 00 0: 00 | 000 3: 00 | 011 1: 0 | 0001
5: 001 | 01 8: 01 | 000 11: 01 | 011 16: 1 | 0000
0: 000 | 00 1: 00 | 001 3: 00 | 011 2: 0 | 0010
6: 001 | 10 9: 01 | 001 13: 01 | 101 16: 1 | 0000
1: 000 | 01 1: 00 | 001 3: 00 | 011 4: 0 | 0100
7: 001 | 11 10: 01 | 010 14: 01 | 110 16: 1 | 0000
2: 000 | 10 1: 00 | 001 5: 00 | 101 8: 0 | 1000
7: 001 | 11 12: 01 | 100 11: 01 | 011 16: 1 | 0000
8: 010 | 00 2: 00 | 010 5: 00 | 101 -1: 1 | 1111

13: 011 | 01 9: 01 | 001 13: 01 | 101 7: 0 | 0111
8: 010 | 00 2: 00 | 010 5: 00 | 101 -1: 1 | 1111

14: 011 | 10 10: 01 | 010 14: 01 | 110 11: 0 | 1011
9: 010 | 01 2: 00 | 010 6: 00 | 110 -1: 1 | 1111

15: 011 | 11 12: 01 | 100 11: 01 | 011 13: 0 | 1101
10: 010 | 10 4: 00 | 100 6: 00 | 110 -1: 1 | 1111
15: 011 | 11 9: 01 | 001 13: 01 | 101 14: 0 | 1110

4: 00 | 100 6: 00 | 110
10: 01 | 010 14: 01 | 110
4: 00 | 100 7: 00 | 111

12: 01 | 100 15: 01 | 111

of ways to produce τp products is
(n
τp

)
. Thus, we have η(n,τ p) =

(n
τp

)(n
0

)
+
(n
0

)(n
τp

)
= 2
( n
τp

)
.

!

Example 3.2. In Table 3.3, when s = n = 4 and τp = 3, the extremal endpoints occur,

and we have η(4, 3) = 2
(4
3

)
= 8.

Lemma 3.10. For s(A,B) ≥ n and τp > n, η(s,τ p) = 0.

Proof: Note that no interval function satisfies the condition. For s = n and τp > n, the

only allowable endpoints are 2n+1 and 2n. These endpoints contribute no products, and

the remaining space from another endpoint can be represented with only n products. !

Theorem 3.3.

Ψ(n,τ p) =

(
n−1∑

s=1

2n−s−1

(
2s

τp

))
+ 2

(
n

τp

)
.

Proof: Ψ(n,τ p) is given as the sum of the number of open interval functions η(s,τ p)

times the repetition factor r(n, s) for every possible s:

Ψ(n,τ p) =

⎛

⎜⎝
n−1∑

s=⌈ 1
2 τp⌉

r(n, s)η(s,τ p)

⎞

⎟⎠+ η(n,τ p). (3.2)
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For the separation index s(A,B), we have ⌈12τp⌉ ≤ s(A,B) ≤ n. s(A,B) takes its

maximum and minimum values in the extremal endpoints. Thus, the sum operation in

Eq. (3.2) is bounded from ⌈12τp⌉ to n − 1. Moreover, since
(2s
τp

)
= 0 when 2s < τp, the

lower bound can be simply 1. From Lemmas 3.7 to 3.10 and Eq. (3.2), we have the

theorem. !

3.5 Statistical Properties

In this section, we show some statistical properties of the number of products in Pre-

SOPs. We assume that each function is equally likely. Therefore, the probability dis-

tribution function of the number of interval functions with τp products in PreSOPs is

given by Ψ(n,τp)
N(n) , where N(n) is the number of distinct open interval functions in (A,B).

3.5.1 Average Number of Products

The average number of products in PreSOPs (mean) for n-variable interval functions

is given by

µ(n) =
1

N(n)

2(n−1)∑

τp=1

τp ·Ψ(n,τ p),

where N(n) is the total number of distinct interval functions of n variables, and Ψ(n,τ p)

is the number of interval functions that require τp products.

Theorem 3.4.

µ(n) ≈ n− 2.

Proof: See 3.6.3. !

3.5.2 Variance of the Numbers of Products

The variance [10] of the numbers of products in PreSOPs for interval functions is given

by

σ2(n) =

2(n−1)∑

τp=1

τ2p
Ψ(n,τ p)

N(n)
− µ(n)2.
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Theorem 3.5.

σ2(n) ≈ n

2
+ 1.

Proof: See 3.6.4. !

Lemma 3.11. (Chebyshev’s inequality [10]) Let X be a random variable with a

finite expected value µ and a finite non-zero variance σ2. Then, for any real number

k > 0, we have

Pr(|X − µ|) ≥ kσ) ≤ 1

k2
.

For k = 2, we have,

Pr(|X − µ|) ≥ 2σ) ≤ 1

4
.

Corollary 3.1. For large n, at least 75% of n-variable interval functions can be repre-

sented by PreSOPs with (n− 2) +
√

2(n+ 2) products.

3.6 Proof of Optimality and Statistical Properties

3.6.1 Proof of Lemma 3.3

Since we consider PreSOPs, we have the following:

When an−1 = 0:

GT (n : A) = xn−1 ∨ x̄n−1MPreSOP(GT (n − 1 : Â)),

where Â is the integer represented by (an−2, an−3, . . . , a1, a0).

When an−1 = 1:

GT (n : A) = xn−1MPreSOP(GT (n − 1 : Â)).

For n = 1 and n = 2, it is clear that the lemma holds. By mathematical induction, we

have the lemma. !

3.6.2 Proof of Lemma 3.5

In the case of SOPs, an MSOP can be found by the following approach [40]:
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1) Generate the set of all the prime implicants (PIs).

2) Among the set of PIs, select a minimum set of PIs that covers the minterms.

Let PI(f) be the set of all the PIs for f . Then, we have the following relation [35]

PI(f) = x̄n−1PI(f0) ∪ xn−1PI(f1) ∪ PI(f0 · f1).

In the case of PreSOPs, an MPreSOP can be found by a similar approach, but the first

step should be modified as follows:

1’) Generate PrePI(f), the set of all the PIs for f having the form x∗n−1x
∗
n−2 · · · x∗m.

Note that PrePI(f) can be written as

PrePI(f) = x̄n−1PrePI(f0) ∪ xn−1PrePI(f1).

Since functions are represented by PreSOPs, all the products have the form x∗n−1x
∗
n−2 · · · x∗m.

Thus, we do not have to generate PrePI(f0 · f1). This implies that to obtain the

MPreSOP(f), we can minimize the subfunctions independently as follows: MPreSOP(f) =

x̄n−1MPreSOP(f0) ∨ xn−1MPreSOP(f1). !

Corollary 3.2. Let f(xn−1, xn−2, . . . , x0) = x̄n−1f0∨xn−1f1, where f0 = f(0, xn−2, . . . , x0)

and f1 = f(1, xn−2, . . . , x0). Then,

τp(f) = τp(f0) + τp(f1).

Lemma 3.12.

n∑

i=1

i

(
n

i

)
= n2n−1.

n∑

i=1

i2
(
n

i

)
= n(n+ 1)2n−2.

Lemma 3.13.

n∑

i=1

i2i = 2n+1(n− 1) + 2.

n∑

i=1

i22i = 2n+1(n2 − 2n+ 3)− 6.
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3.6.3 Proof of Theorem 3.4

The average number of products in PreSOPs is

µ(n) =
1

N(n)

2(n−1)∑

k=1

kΨ(n, k)

=
1

N(n)

2(n−1)∑

k=1

k
n−1∑

s=1

2n−s−1

(
2s

k

)
+

2

N(n)

2(n−1)∑

k=1

k

(
n

k

)

=
1

N(n)

2(n−1)∑

k=1

k
n−1∑

s=1

2n−s−1

(
2s

k

)
+

n2n

(2n + 1)2n−1
.

The second term is negligibly smaller than the first term. For the first term, by Lemmas

3.12 and 3.13, we have

2(n−1)∑

k=1

k
n−1∑

s=1

2n−s−1

(
2s

k

)

=
n−1∑

s=1

2n−s−1
2(n−1)∑

k=1

k

(
2s

k

)
=

n−1∑

s=1

2n−s−1s22s

=
n−1∑

s=1

s2n+s−1 = 2n−1
n−1∑

s=1

s2s

= 2n−1(2n(n− 2) + 2) = 22n−1(n− 2) + 2n.

Thus,

µ(n) ≈ 22n−1(n− 2) + 2n

N(n)
≈ 22n−1(n− 2)

22n−1
= n− 2.

Hence, we have the theorem. !

3.6.4 Proof of Theorem 3.5

The variance of the numbers of products in PreSOPs is

σ2(n) =
1

N(n)

2(n−1)∑

k=1

k2Ψ(n, k)− µ2(n)

=
G

N(n)
− µ2(n).
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Note that by Theorem 3.3, we have

G =

2(n−1)∑

k=1

k2Ψ(n, k)

=

2(n−1)∑

k=1

k2
n−1∑

s=1

2n−s−1

(
2s

k

)
+ 2

2(n−1)∑

k=1

k2
(
n

k

)
.

The first term in G is equal to

n−1∑

s=1

2n−s−1
2(n−1)∑

k=1

k2
(
2s

k

)

=
n−1∑

s=1

2n−s−12s(2s+ 1)22s−2

=
n−1∑

s=1

2n+s−1(s2 +
s

2
)

= 2n−1
n−1∑

s=1

s22s + 2n−2
n−1∑

s=1

s2s.

The second term in G is negligibly smaller than the first term, so we can ignore it. Thus,

from Lemma 3.13, G is approximated by

2n−1(2n((n − 1)2 − 2(n − 1) + 3)− 6) + 2n−2((n− 2)2n)

or,

22n−1((n − 1)2 − 2(n − 1) + 3) + 22n−2(n− 2).

Thus, we have

G

N(n)
≈ 22n−1((n − 1)2 − 2(n− 1) + 3)

22n−1
+

n− 2

2

≈ (n− 1)2 − 2(n− 1) + 3 +
n− 2

2
.

Hence,

σ2(n) ≈ G

N(n)
− (n − 2)2

≈ (n− 1)2 − 2(n− 1) + 3− (n − 2)2 +
n− 2

2

≈ n+ 2

2
.

Thus, we have the theorem. !
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3.7 Experimental Results

Although we have the formula for the number of products in MPreSOPs, we do not

have one in MSOPs. To compare the numbers of products of PreSOPs with MSOPs

[9], we generated all the interval functions for n = 1 to n = 12. To obtain exact

minimum SOPs, we used ESPRESSO-EXACT [9]. In MSOPs, the maximums occur for

IN0(n : 2n−3, 7 · 2n−3 − 1) and IN0(n : 2n−2, 3 · 2n−2 − 1) [41]. On the other hand, as

shown in Section 3, in PreSOPs, the maximum occurs for IN0(n : 0, 2n − 1).
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Figure 3.2: Average numbers of products in MSOPs and PreSOPs for different sizes
of intervals

Fig. 3.2 compares average numbers of products in MSOPs and PreSOPs for different

sizes of intervals. The curves for MSOPs tangent to the envelope τ = log2(B −A) and

τ is the number of products in an MSOP. In Fig. 3.2 the envelope is shown by the

black dotted curve. The peaks of the curves show that PreSOPs require more products

(including the maximum, τp = 2(n− 1)) when the size of interval approaches to 2n − 2,

and the curves drop sharply when the sizes of intervals are 2n − 1 (τp = n) and 2n

(τp = 1). Table 3.4 shows the average numbers of products needed to represent interval

functions. The ratio of the numbers of products in PreSOPs to that of MSOPs for n > 5

is about 1.05.

We calculated the probabilities of the interval functions that can be represented with

at most τp products for n = 8 to n = 16. Table 3.5 shows that, for n > 12, more than

98.75% of the interval functions can be represented with ⌈n+
√

2(n + 2)− 2⌉ products,
and more than 99.9% of the interval functions can be represented with ⌈32n−1⌉ products.
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Table 3.4: Average numbers of products needed to represent interval functions

n N(n) MSOP PreSOP Difference Ratio

4 136 2.39706 2.47794 0.08088 1.03374
5 528 3.12879 3.27462 0.14583 1.04661
6 2080 3.94327 4.15433 0.21106 1.05352
7 8256 4.81541 5.08539 0.26999 1.05607
8 32896 5.72671 6.04672 0.32001 1.05588
9 131328 6.66450 7.02535 0.36084 1.05414
10 524800 7.62032 8.01366 0.39334 1.05162
11 2098176 8.58858 9.00732 0.41874 1.04876
12 8390656 9.56540 10.00391 0.43850 1.04584

Table 3.5: Probabilities of interval functions that can be represented with at most τp
products

n τp = ⌈µ(n) + c⌉
c = σ(n) c = 2σ(n) c = σ2(n)

8 95.03587% 99.67169% 99.67169%
9 94.00204% 99.44642% 99.89416%
10 93.01715% 99.17569% 99.80526%
11 92.08265% 99.68811% 99.93380%
12 91.19742% 99.54448% 99.88636%
13 90.35921% 99.37685% 99.95988%
14 89.56528% 99.18796% 99.93412%
15 88.81274% 98.98061% 99.97608%
16 88.09875% 98.75744% 99.96191%

3.8 Conclusions and Comments

As key contributions of this chapter, we

1. showed that the MPreSOP and the number of products in the MPreSOP (τp) to

represent an interval (A,B) can be directly obtained.

2. derived the formula Ψ(n,τ p) for the number of interval functions that require τp

products in PreSOPs.

3. showed by experiments that the average number of products in MSOPs is approx-

imated by τ = log2(B −A).

4. showed that the average number of products needed to represent interval functions

of an n-bit field by PreSOPs is µ(n) ≈ n− 2, with a variance σ2(n) ≈ n
2 + 1.

5. showed by numerical computations that more than 99.9% of the interval functions

of an n-bit field can be represented by PreSOPs with at most ⌈32n− 1⌉ products,
when n > 12.



Chapter 3. Generating PreSOP Expressions for Interval Functions 28

To represent an interval of an n-bit field, a PreSOP requires up to 2(n − 1) products.

When both the source and the destination ports have n = 16 bits fields, the number of

products needed to represent one rule by a PreSOP can be up to 2(n− 1)× 2(n− 1) =

30 × 30 = 900. Theorem 3.4 shows that the average number of products needed to

represent an interval is about n − 2. Thus, when the rule have two interval fields, the

average numbers of products needed to represent one rule by PreSOP would be (n−2)2,

which is 142 = 196 when n = 16. In the real applications, the rule expansion is not so

large. For example, the paper [60] reported that the average number of TCAM entries

for 12 real packet classifiers is 6.2 times of their number of rules. This is because, in the

real applications, the distributions of the interval functions are not uniform.



Chapter 4

Derivation of Head-Tail

Expressions for Interval Functions

This chapter shows a new method to represent interval functions called head-tail ex-

pressions (HTs). The head-tail expressions represent greater-than GT (X : A) functions,

less-than LT (X : B) functions, and interval functions IN0(X : A,B) more efficiently

than sum-of-products expressions, where n denotes the number of bits to represent the

largest value in the interval (A,B). This paper proves that a head-tail expression (HT)

represents an interval function with at most n words in a ternary content addressable

memory (TCAM). It also shows the average numbers of factors to represent interval

functions by HTs for up to n = 16, which were obtained by a computer simulation. It

also conjectures that, for sufficiently large n, the average number of factors to represent

n-variable interval functions by HTs is at most 2
3n−

5
9 . Experimental results also show

that, for n ≥ 10, to represent interval functions, HTs require at least 20% fewer factors

than MSOPs, on the average.

4.1 Introduction

Table 4.1 shows an example of a classification function. This function has two fields that

correspond to the source and the destination ports represented by intervals. In Table

4.1, values are tested in a sequential manner from the top to the bottom. In a TCAM,

the operation is equivalent to testing rows in a sequential order [26]. When each port is

specified by either * (don’t care) or a single value, each rule corresponds to one word in a

TCAM. However, when a port is specified by an interval such as (0, 65536), the interval

must be represented by multiple words in a TCAM [12]. For example, the interval

(0, 65536) requires 16 words. Suppose that the header of incoming packets with source

29
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port 1080 wants to access a destination with destination port 2080. As in Table 4.1, the

header does not match to the first rule, but matches to the second rule, thus the action

is Accept and the packet is sent to the destination.

Table 4.1: Example of classification function

Rule Source Port Destination Port Action

1 (0, 65536) 6790 Accept
2 (999, 2001) (0, 5590) Accept
3 ∗ ∗ Deny

Table 4.2 compares our work with previous works, where n denotes the number of bits

to represent the largest value in the interval. The first method [46] uses a special circuit

to represent an interval directly. Thus, any interval can be represented by a single word.

However, this method is the most expensive because it uses non-standard TCAMs.1 The

second method [41] uses an exact minimum sum-of-products expression (MSOPs) to

represent an interval. This method uses standard TCAM, and any interval function can

be represented with at most 2(n−2) products. Since we have to minimize TCAM words,

this method is quite time consuming. The third method [37] uses output encoding. This

method also uses a special circuit in addition to the TCAM, while it requires at most

n words to represent an interval. The method proposed in this paper uses a head-tail

expression (HT) [13] to represent an interval. This method requires a RAM in addition

to the TCAM. Since HTs can be generated from the binary representations of endpoints

of the intervals, time to generate HTs is quite short. The third method and our methods

require the same number of TCAM words to represent a field. However, our method uses

only standard components such as TCAM and RAM. On the other hand the method of

[37] requires special hardware, which would be very expensive.

Table 4.2: Comparison with previous works

Parameter Ref. [46] Ref. [41] Ref. [37] This paper

Method Comparator MSOP Output encoding Head-tail expr.
Hardware Special circuit TCAM TCAM + Special circuit TCAM + RAM

Representation Direct interval n-bit non-prefix n+ 1-bit prefix n-bit prefix
Max. # of words to represent a field 1 2(n− 2) n n

Cost High Low High Low

In this paper, we show a method to represent an interval function using a head-tail

expression (HT). The head-tail expressions efficiently represent greater-than GT (n : A)

functions, less-than LT (n : B) functions, and interval functions IN0(n : A,B). We

prove that any interval function can be represented by an HT with at most n factors.

We also show the average numbers of factors to represent interval functions by HTs for

up to n = 16, which were obtained by a computer simulation. And, we conjecture that,

1Using non-standard LSIs is very expensive, since the development cost of such LSIs is very high,
and the size of the market is not large enough to amortize the development cost.
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for sufficiently large n, the average number of factors in HTs to represent n-variable

interval functions is 2
3n −

5
9 . By computer simulation, we also show that, for n ≥ 10,

to represent interval functions, HTs require at least 20% fewer factors than MSOPs, on

the average.

This chapter is organized as follows: In Section 4.2, important words are defined and the

basic properties of interval function are explained. In Section 4.3, a head-tail expression

(HT) is introduced to represent GT , LT and IN0 functions. In Section 4.4, experimental

results are shown. Finally, in Section 4.5, the paper is concluded. A preliminary version

of this chapter was presented in [50].

4.2 Definition and Basic Properties

In this section, we present definitions and basic properties before we step into the main

contribution of this chapter i.e., head-tail expression.

4.2.1 Prefix Sum-of-Products Expression

Definition 4.1. Let F be an SOP. τ(F) denotes the number of products in F . τp(f)

denotes the number of products in MPreSOP(f).

In general, an SOP requires fewer products than a PreSOP to represent the same function

[41]. However, in the internet communication area, PreSOPs are used instead of SOPs,

since PreSOPs can be quickly generated from the binary decision trees of the functions

[60].

Lemma 4.1. The minimum PreSOPs (MPreSOPs) of GT and LT functions can be

represented as follows:

GT (n : A) = (xn−1ān−1) ∨
0∨

i=n−2

⎛

⎝
i+1∧

j=n−1

x
aj
j

⎞

⎠xiāi,

LT (n : B) = (x̄n−1bn−1) ∨
0∨

i=n−2

⎛

⎝
i+1∧

j=n−1

x
bj
j

⎞

⎠ x̄ibi,

where a⃗ = (an−1, · · · , a0) and b⃗ = (bn−1, · · · , b0) are the binary representations of A and

B, repectively. GT and LT have
∑n−1

i=0 āi and
∑n−1

i=0 bi disjoint products, respectively.

Example 4.1. When n = 4 and A = 0, we have a⃗ = (0, 0, 0, 0). Thus, GT (4 : 0) =

x3 ∨ x2x̄3 ∨ x1x̄2x̄3 ∨ x0x̄1x̄2x̄3.
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Example 4.2. When n = 4 and B = 15, we have b⃗ = (1, 1, 1, 1). Thus, LT (n : 15) =

x̄3 ∨ x̄2x3 ∨ x̄1x2x3 ∨ x̄0x1x2x3.

Theorem 4.1. Let a⃗ = (an−1, an−2, · · · , a1, a0) and b⃗ = (bn−1, bn−2, · · · , b1, b0) be the

binary representations of A and B, respectively, and A < B. Let s be the largest index

such that as ̸= bs. Then, IN0(n : A,B) can be represented by

0∨

i=s−1

[( i+1∧

j=n−1

x
aj
j

)
xiāi ∨

( i+1∧

j=n−1

x
bj
j

)
x̄ibi

]

.

The number of products is

τp(IN0(n : A,B)) =
s−1∑

i=0

(āi + bi).

When A = B − 1 or A + 1 = B, the interval (A,B) has empty set, thus IN0(n : A,B)

has no product (including the case when s = 0). When A = −1 and/or B = 2n, these

endpoints are called by extremal endpoints.

Lemma 4.2. In the extremal endpoints, we have GT (n : −1) = LT (n : 2n) = IN0(n :

−1, 2n) = 1, IN0(n : −1, B) = LT (n : B), and IN0(n : A, 2n) = GT (n : A).

The optimality of GT (n : A), LT (n : B), and IN0(n : A,B) functions represented by

PreSOPs has been discussed in Chapter 3.

Example 4.3. Let A = 0, B = 31 and n = 5. In this case, a⃗ = (0, 0, 0, 0, 0) and

b⃗ = (1, 1, 1, 1, 1). By Theorem 4.1, the PreSOP for IN0(n : 0, 31) is

x̄4x̄3x̄2x̄1x0 ∨ x4x3x2x1x̄0 ∨ x̄4x̄3x̄2x1 ∨ x4x3x2x̄1

∨ x̄4x̄3x2 ∨ x4x3x̄2 ∨ x̄4x3 ∨ x4x̄3.

Fig. 4.1(a) shows its map. The integers in the map denote decimal representations of

minterms, where X =
∑n−1

i=0 xi · 2i. The PreSOP requires τp(IN0(n : 0, 31)) = 4+ 4 = 8

products.

Note that an MSOP for IN0(n : 0, 31) is x̄4x3 ∨ x̄3x2 ∨ x̄2x1 ∨ x̄1x0 ∨ x̄0x4. Fig. 4.1(b)

shows its map.

4.3 Head-Tail Expressions for Interval Functions

In this section, we use head-tail expressions (HTs) to represent interval functions. We

use HTs [13] that were introduced to design NAND networks. Lemma 4.1 shows that



Chapter 4. Derivation of HTs for Interval Functions 33

x4
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1 5 13 9
3 7 15 11
2 6 14 10

x0
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27 23 19
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x1

x2 x2

x3 x3
PreSOP

(a)

x4

4 12 8
1 5 13 9
3 7 15 11
2 6 14 10

x0

24 28 20 16
25 29 21 17
27 23 19
26 30 22 18

x1

x2 x2

x3 x3
MSOP

(b)

Figure 4.1: Maps for IN0(n : 0, 31)

when the binary representation of A has t 0’s, a PreSOP for GT (n : A) requires t

products. Especially when an−1 = an−2 = · · · = a0 = 0, the PreSOP requires n products.

Similarly, it also shows that when the binary representation of B has t 1’s, a PreSOP

for LT (n : B) requires t products, and n products when bn−1 = bn−2 = · · · = b0 = 1.

Theorem 4.1 shows that when an−1 = an−2 = · · · = a0 = 0 and bn−1 = bn−2 = · · · =
b0 = 1, the PreSOP for IN0(n : A,B) requires 2(n − 1) products. Thus, if the PreSOP

is used in a TCAM, we need up to 2(n− 1) words.

However, the number of TCAM words can be reduced if we use the properties of a

TCAM. We will show such a method in this section.

4.3.1 Derivation of Head-Tail Expressions for Interval Functions

Definition 4.2. A head-tail expression (HT) has a form

f =
0∨

i=t

[
0∧

j=s

(h̄ij)

][
0∧

k=v

(gik)

]

, (4.1)

where for (i = 0, 1, · · · , t), (h̄ij) is the head factor and (gik) is the tail factor and hij

and gik are represented by products. In this thesis, (product) and (product) are called
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factors. Products are used for PreSOPs and MSOPs, while factors are used for HTs.

Both products and factors are realized in the form of words in TCAMs. Note that an

SOP is considered as a special case of an HT.

Example 4.4.
(
x̄6x̄5x̄4

)
·
(
x̄6x̄5x4

)
· (x3x2) ∨

(
x̄6x̄5x̄4

)
·
(
x̄6x̄5x4

)
· (x̄3x̄2) is an HT.

Lemma 4.3. The circuit in Fig. 4.2 consisting of a TCAM and a RAM implements an

HT.

In Fig. 4.2, the circuit realizes the function f = (h̄0)g0 ∨ (h̄1)g1 ∨ · · · ∨ (h̄t)gt. In this

case, we assume that the functions represented by HTs are disjoint each other. Note

that TCAM has a priority encoder in the output part [33, 43]. A factor corresponds to

a word in a TCAM. Since the upper words have higher priority than the lower words,

the TCAM will produce an action for the upmost matched word. Thus, in Fig. 4.2, if

the input pattern mismatches h0 and matches g0, then the output is 1. However, if the

input pattern matches both h0 and g0, then the output is 0. Thus, unlike Programmable

Logic Arrays (PLAs) [40], the order of words in the TCAM is very important.

h0

...

ht

g0

...

gt

Pr
io

rit
y

En
co

de
r

0

...

0

1

...

1

TCAM RAM

Figure 4.2: Circuit for a head-tail expressions

Lemma 4.4. When am−1 = am−2 = · · · = am−d = 0, and other bits are 1’s, the GT

function can be represented by the head-tail expression with two factors

GT (n : A) =

⎛

⎝
m∧

j=n−1

x
aj
j

m−d∧

i=m−1

x̄i

⎞

⎠ ·

⎛

⎝
m∧

j=n−1

x
aj
j

⎞

⎠ ,

where a⃗ = (an−1, an−2, · · · , a1, a0) is the binary representation of A, and d (d ≥ 1) is the

number of consecutive 0’s in a⃗. When n− 1 < m, the product
∧m

j=n−1 x
aj
j is represented

by the constant function 1.
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Proof: In Lemma 4.1, let am−1 = am−2 = · · · = am−d = 0 and let other bits be 1’s. In

this case, we have

GT (n : A) =
m−d∨

i=m−1

⎛

⎝
i+1∧

j=n−1

x
aj
j

⎞

⎠xi

=
m−d∨

i=m−1

⎛

⎝
m∧

j=n−1

x
aj
j

⎞

⎠
(

i+1∧

k=m−1

xakk

)

xi

=
m−d∨

i=m−1

⎛

⎝
m∧

j=n−1

x
aj
j

⎞

⎠xi

=

⎛

⎝
m∧

j=n−1

x
aj
j

⎞

⎠ ·
(

m−d∨

i=m−1

xi

)

=

⎛

⎝
m∧

j=n−1

x
aj
j

⎞

⎠ ·
(

m−d∧

i=m−1

x̄i

)

=

⎛

⎝
m∧

j=n−1

x
aj
j

⎞

⎠ ·

⎛

⎜⎝

⎛

⎝
m∧

j=n−1

x
aj
j

⎞

⎠ ∨
(

m−d∧

i=m−1

x̄i

)⎞

⎟⎠

=

⎛

⎝
m∧

j=n−1

x
aj
j

m−d∧

i=m−1

x̄i

⎞

⎠ ·

⎛

⎝
m∧

j=n−1

x
aj
j

⎞

⎠ .

Thus, we have the lemma. In this case: (h̄1) =
(∧m

j=n−1 x
aj
j

∧m−d
i=m−1 x̄i

)
is the head

factor, and (g1) =
(∧m

j=n−1 x
aj
j

)
is the tail factor. Note that when n − 1 < m, the

product
∧m

j=n−1 x
aj
j is represented by the constant function 1. !

Example 4.5. Let A = 0. The binary representation of A is a⃗ = (0, 0, 0, 0). By

Lemma 4.4, we have a group of consecutive 0’s, where m = 4 and d = 4. Thus,

GT (4 : 0) =

⎛

⎝
m∧

j=n−1

x
aj
j

m−d∧

i=m−1

x̄i

⎞

⎠ ·

⎛

⎝
m∧

j=n−1

x
aj
j

⎞

⎠

=
(
x̄3x̄2x̄1x̄0

)
· (1).

It requires two factors.

Lemma 4.5. When bm−1 = bm−2 = · · · = bm−d = 1, and other bits are 0’s, the LT

function can be represented by the head-tail expression with two factors

LT (n : B) =

⎛

⎝
m∧

j=n−1

x
bj
j

m−d∧

i=m−1

xi

⎞

⎠ ·

⎛

⎝
m∧

j=n−1

x
bj
j

⎞

⎠ ,
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where b⃗ = (bn−1, bn−2, · · · , b1, b0) is the binary representation of B, and d (d ≥ 1) is the

number of consecutive 1’s in b⃗. When n− 1 < m, the product
∧m

j=n−1 x
bj
j is represented

by the constant function 1.

Proof: The proof is similar to that of Lemma 4.4. !

Lemmas 4.4 and 4.5 are just for interval functions with a special property. The gener-

alization of GT and LT functions represented by head-tail expressions are:

Lemma 4.6. A greater-than (GT ) or a less-than (LT ) functions can be represented by

the head-tail expression:

0∨

i=p−1

( 0∧

j=q−1

h̄ij

)
(gi),

where p, q are integers and p ≤ n.

As explained before, a PreSOP is a special case of HTs, thus an interval function can

be represented by an HT. Note that an interval function can be segmented into smaller

interval functions which are represented by HTs. Each HT consists of head factors and

a tail factor.

Lemmas 4.4 and 4.5 are used to represent only one group of consecutive 0’s or 1’s. When

multiple groups of consecutive 0’s or 1’s exist in a⃗ or b⃗, Theorems 4.2 and 4.3 are used.

Definition 4.3. In two logic function h and g, if g(x) = 1 for all x such that h(x) = 1,

then g includes h, denoted by h ⊆ g.

Lemma 4.7. Let ⊆ denote the inclusion relation. If h0 ⊆ g0 ⊆ h1 ⊆ g1 ⊆ · · · ⊆ hp−2 ⊆
gp−2 ⊆ hp−1 ⊆ gp−1, then Z = g0h̄0 ∨ g1h̄1 ∨ · · ·∨ gp−2h̄p−2 ∨ gp−1h̄p−1 is represented by:

Z = h̄0(h̄1 ∨ g0)(h̄2 ∨ g1)

· · · (h̄p−2 ∨ gp−3)(h̄p−1 ∨ gp−2)gp−1

Proof: The grey area in the map of Fig. 4.3 indicates the covering of Z. Thus, we have

the lemma. !

Theorem 4.2. Let a⃗ = (an−1, an−2, · · · , a1, a0) be the binary representation of an in-

teger A. Let cp−1, cp−2, · · · , c1, c0 be the starting indexes of consecutive 0’s groups in a⃗,

where cp−1 > cp−2 > · · · > c1 > c0. Let the isolated 1’s be acp−2+1 = acp−3+1 = · · · =
ac1+1 = ac0+1 = 1, where ck +1 is the index of isolated 1’s among groups of consecutive
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h0

g0

h1

g1

hp-2

gp-2

hp-1

gp-1

... ...
Figure 4.3: Map for Lemma 4.7

0’s in a⃗. Then, the GT (n : A) can be represented by p+ 1 factors:

⎛

⎝
c0+1∧

j=n−1

x
aj
j

c0+1−d0∧

i=c0

x̄i

⎞

⎠ ·

⎛

⎝
c1+1∧

j=n−1

x
aj
j

c1−d1∧

i=c1

x̄i

⎞

⎠ · · ·

·

⎛

⎝
cp−1+1∧

j=n−1

x
aj
j

cp−1−dp−1∧

i=cp−1

x̄i

⎞

⎠ ·

⎛

⎝
cp−1+1∧

j=n−1

x
aj
j

⎞

⎠ ,

where dp−1, dp−2, · · · , d1, d0 (for i = 0, 1, · · · , p − 1, di ≥ 1) are numbers of consecutive

0’s in the groups which start from the indexes cp−1, cp−2, · · · , c1, c0, respectively. Note

that, in a⃗, except for the group of consecutive 0’s, remaining bits are 1’s.

Proof: Lemma 4.4 and Lemma 4.6 are used to represent p terms of head-tail expressions.

Each group of consecutive 0’s in a⃗ can be represented by:

h̄0g0 =

⎛

⎝
c0+1∧

j=n−1

x
aj
j

c0+1−d0∧

i=c0

x̄i

⎞

⎠ ·

⎛

⎝
c0+1∧

j=n−1

x
aj
j

⎞

⎠

· · ·

h̄p−1gp−1 =

⎛

⎝
cp−1+1∧

j=n−1

x
aj
j

cp−1+1−dp−1∧

i=cp−1

x̄i

⎞

⎠ ·

⎛

⎝
cp−1+1∧

j=n−1

x
aj
j

⎞

⎠ ,

where h0 ⊆ g0 ⊆ · · · ⊆ hp−1 ⊆ gp−1. The number of required factors is 2p. Since the

starting index of a group of consecutive 0’s is ck, the relation between m in Lemma 4.4

and ck is m = ck+1 and m−dk = ck+1−dk. Moreover, the index of isolated 1 satisfies

the relation ck − dk = ck−1 + 1. Thus, we have x
ack−dk
ck−dk

= x
ack−1+1

ck−1+1 = xck−dk = xck−1+1,
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where the binary representation of A is:

a⃗ = (· · · ,

ack
↓
0 , 0, · · · ,

ack+1−dk
↓
0 ,

ack−dk
=ack−1+1

↓
1 ,

ack−1
↓
0 , 0, · · · )

Therefore, h̄k ∨ gk−1 can be combined to a factor:

h̄k ∨ gk−1 =

⎛

⎝
ck+1∧

j=n−1

x
aj
j

ck+1−dk∧

i=ck

x̄i

⎞

⎠ ∨

⎛

⎝
ck−1+1∧

j=n−1

x
aj
j

⎞

⎠

=

⎛

⎝
ck+1∧

j=n−1

x
aj
j

ck+1−dk−1∧

i=ck

x̄i

⎞

⎠

∨

⎛

⎝
ck+1∧

j=n−1

x
aj
j

ck+1−dk∧

i=ck

x̄i

⎞

⎠ · xck−1+1

=

⎛

⎝
ck+1∧

j=n−1

x
aj
j

ck+1−dk−1∧

i=ck

x̄i

⎞

⎠ ∨ xck−1+1

=

⎛

⎝
ck+1∧

j=n−1

x
aj
j

ck+1−dk∧

i=ck

x̄i

⎞

⎠ ∨ xck−dk

=

⎛

⎝
ck+1∧

j=n−1

x
aj
j

ck−dk∧

i=ck

x̄i

⎞

⎠.

In this case, 2p factors can be reduced to only p+1 factors. Thus, we have the theorem.

!

Theorem 4.3. Let b⃗ = (bn−1, bn−2, · · · , b1, b0) be the binary representation of an inte-

ger B. Let cp−1, cp−2, · · · , c1, c0 be the starting indexes of consecutive 1’s groups in b⃗,

where cp−1 > cp−2 > · · · > c1 > c0. Let the isolated 0’s be bcp−2+1 = bcp−3+1 = · · · =
bc1+1 = bc0+1 = 0, where ck + 1 is the index of isolated 0’s among groups of consecutive

1’s in b⃗. In this case, LT (n : B) can be represented by p+ 1 factors:

⎛

⎝
c0+1∧

j=n−1

x
bj
j

c0+1−d0∧

i=c0

xi

⎞

⎠ ·

⎛

⎝
c1+1∧

j=n−1

x
bj
j

c1−d1∧

i=c1

xi

⎞

⎠ · · ·

·

⎛

⎝
cp−1+1∧

j=n−1

x
bj
j

cp−1−dp−1∧

i=cp−1

xi

⎞

⎠ ·

⎛

⎝
cp−1+1∧

j=n−1

x
bj
j

⎞

⎠ ,

where dp−1, dp−2, · · · , d1, d0 (for i = 0, 1, · · · , p − 1, di ≥ 1) are numbers of consecutive

1’s in the groups which start from the indexes cp−1, cp−2, · · · , c1, c0, respectively. Note

that, in b⃗, except for the group of consecutive 1’s, remaining bits are 0’s.
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Proof: The proof is similar to that of Theorem 4.2. !

Theorems 4.2 and 4.3 are useful when there are multiple groups consecutive 0’s or

consecutive 1’s, and each group of consecutive 0’s or 1’s is separated by a single 1 in a

GT , or a single 0 in an LT functions.

Lemma 4.8. Let −1 ≤ A < B ≤ 2n, an interval function IN0(n : A,B) can be

represented by

IN0(n : A,B) = GT (n : A) ·GT (n : B − 1)

= LT (n : A+ 1) · LT (n : B).

Proof: An interval function IN0 can be represented by a AND of GT and LT functions

IN0(n : A,B) = GT (n : A) · LT (n : B).

Since GT (n : A) = LT (n : A+ 1) and LT (n : B) = GT (n : B − 1), we have the lemma.

!

Example 4.6. Represent IN0(n : −1, 4) and IN0(n : 3, 8) by GT and/or LT functions.

IN0(n : −1, 4) = GT (n : −1) ·GT (n : 3)

= LT (n : 0) · LT (n : 4)

IN0(n : 3, 8) = GT (n : 3) ·GT (n : 7)

= LT (n : 4) · LT (n : 8)

0 2 6 4
1 3 7 5x0

x1

x2

IN0(X:3,8) = LT(X:4)·LT(X:8)

IN0(X:-1,4) = GT(X:-1)·GT(X:3)

Figure 4.4: Example of Lemma 4.8

Fig. 4.4 illustrates Lemma 4.8. The white part corresponds to an expression for IN0(n :

−1, 4), while the grey part corresponds to an expression for IN0(n : 3, 8).
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4.3.2 Examples of Head-Tail Expressions for Interval Functions

Example 4.7. Represent IN0(n : 0, 15) using a head-tail expression. Since the largest

value is 15, we have n = 4. Binary representations of A = 0 and B = 15 are a⃗ =

(0, 0, 0, 0) and b⃗ = (1, 1, 1, 1), respectively. The largest index such that as ̸= bs is s = 3.

So, in Theorem 4.1, the products are produced from the index s − 1 which restricts the

GT for only in xan−1
n−1 x

an−2
n−2 · · · xass area, and the LT for only in xbn−1

n−1 x
bn−2
n−2 · · · xbss area.

We have n = 4 and there are three consecutive 0’s in a⃗. Thus, the interval function can

be represented by

x̄3 ·GT (n : 0) ∨ x3 · LT (n : 15).

By applying Lemma 4.4 and the restriction x̄3 with m = 3 and d = 3, we have

x̄3 ·GT (n : 0) =

⎛

⎝
3∧

j=3

x
aj
j

0∧

i=2

x̄i

⎞

⎠ ·

⎛

⎝
3∧

j=3

x
aj
j

⎞

⎠

=
(
x̄3x̄2x̄1x̄0

)
· x̄3.

We have three consecutive 1’s in b⃗ and let m = 3 and d = 3. By applying Lemma 4.5

and the restriction x3, we have

x3 · LT (n : 15) =

⎛

⎝
3∧

j=3

x
bj
j

0∧

i=2

xi

⎞

⎠ ·

⎛

⎝
3∧

j=3

x
bj
j

⎞

⎠

=
(
x3x2x1x0

)
· x3.

The maps for IN0(n : 0, 15) are shown in Fig. 4.5. The top row shows the PreSOP, which

requires 6 products. The middle row shows an HT. The three products produced by three

consecutive 0’s in a⃗ in a PreSOP are converted into a head-tail term in the left. Likewise,

the three products produced by three consecutive 1’s in b⃗ in a PreSOP are converted into

a head-tail term in the right. Each HT uses two words and the total number of words

is four. However, when an HT whose term shares literals of a variable (x̄3 and x3),

the HT can be reduced as shown in the bottom row of Fig. 4.5. This expression still

needs a product to represent the universe, which is indicated by the constant 1 in the

bottom row of Fig. 4.5. Table 4.3 shows realizations of the function, where the TCAM

stores the words and the RAM stores the actions. Table 4.3(a) corresponds to the top

row of Fig. 4.5, Table 4.3(b) corresponds to the middle row of Fig. 4.5, and Table 4.3(c)

corresponds to the bottom row of Fig. 4.5.
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Figure 4.5: Derivation of a head-tail expression for IN0(n : 0, 15)

Table 4.3: Realization of IN0(n : 0, 15) by TCAM and RAM

(a)

TCAM RAM
0001 1
001* 1
01** 1
10** 1
110* 1
1110 1
**** 0

(b)

TCAM RAM
0000 0
0*** 1
1111 0
1*** 1

(c)

TCAM RAM
0000 0
1111 0
**** 1

Example 4.8. Represent IN0(n : 0, 27) by an HT. Binary representations of A = 0

and B = 27 are a⃗ = (0, 0, 0, 0, 0) and b⃗ = (1, 1, 0, 1, 1), respectively. To represent the

function, we use Lemma 4.8:

IN0(n : 0, 27) = LT (n : 1) · LT (n : 27).

By Lemma 4.1, we know that LT (n : 1) =
(
x̄4x̄3x̄2x̄1x̄0

)
. The next step is to derive

LT (n : 27). b⃗ has two consecutive groups of 1’s and a single isolated 0 between them.
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Figure 4.6: Maps for PreSOP and head-tail expression representing IN0(n : 0, 27)

The first consecutive group of 1’s starts from the index c1 = 4 and the second group

starts from c0 = 1, and d0 = d1 = 2. By Theorem 4.3 we can represent it by an HT:

LT (n : 27) =

⎛

⎝
2∧

j=4

x
bj
j

0∧

i=1

xi

⎞

⎠ ·
(

2∧

i=4

xi

)
· (1)

=
(
x4x3x̄2x1x0

)
·
(
x4x3x2

)
· (1).

The reduced HT for the interval function is

IN0(n : 0, 27) =
(
x̄4x̄3x̄2x̄1x̄0

)
·
(
x4x3x̄2x1x0

)

·
(
x4x3x2

)
· (1).

Fig. 4.6 shows the maps for IN0(n : 0, 27). The top row shows the PreSOP which requires
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7 products. The bottom row shows the HT which requires four factors. Table 4.4 shows

the realization of the function by using a TCAM and a RAM with four words.

Table 4.4: Realization of IN0(n : 0, 27) in TCAM and RAM

TCAM RAM
00000 0
11011 0
111** 0
***** 1

4.3.3 The Number of Factors to Represent an Interval Function by a

Head-Tail Expression

Definition 4.4. Let ζ(f) be the minimum number of factors to represent a function f

by an HT.

Lemma 4.9.

ζ(GT (n : A)) ≤ ⌈n+ 1

2
⌉, and

ζ(LT (n : B)) ≤ ⌈n+ 1

2
⌉.

Proof: Consider a binary representation a⃗ that makes the number of factors in an HT

for a GT function maximum. If there is three or more consecutive 0’s in a⃗, then we can

reduce the number of factors in the HT, by Theorem 4.2. Note that when more than

one groups of consecutive 0’s exist in arbitrary location in GT , we can use Lemma 4.6

to segment each group into an HT by Theorem 4.2.

In Theorem 4.2, regardless the number of 0’s in each group, if there are p groups, the

number of factors is p+1. For instance, if we have a group with two or more consecutive

0’s, the number of factors are the same p + 1 = 2. Note that when only a group with

two consecutive 0’s exists, the number of factors are not reduced by Theorem 4.2. So,

to avoid such reduction of the factors and to get the maximum number of factors in

an HT, one possibility is by alternating 0 and 1 in the binary representation. Another

possibility is by alternating two consecutive 0’s and two consecutive 1’s in the binary

representation3. In these cases, we have at least ⌈n2 ⌉ zeros, and their numbers of factors

in HTs are the same as the numbers of products in PreSOPs which are ⌈n2 ⌉. Thus, the
3The numbers of factors in HTs for GT functions become maximum for various cases. Other cases

occur when the binary representations are the combination of alternating 0, 1, two consecutive 0’s, and
two consecutive 1’s in which the numbers of 0’s are equal to or greater than ⌈n

2 ⌉ and Theorem 4.2 cannot
be used to reduce the numbers of factors.
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maximum number of factors in an HT for a GT function occurs when the number of 0’s

is equal to or greater than ⌈n2 ⌉, and Theorem 4.2 cannot be used to reduce the number

of factors. The argument for LT functions is similar.

When n is odd: Suppose that the number of the factors to represent a GT function

takes its maximum when a⃗ = (0, 1, 0, 1, · · · , 1, 0). The number of 0’s is n+1
2 , the number

of 1’s is n−1
2 , and no consecutive 0’s exist.

By Lemma 4.1, the number of products for GT is bounded above by
∑

āi. So, when the

number of 0’s is equal to or less than n+1
2 , the lemma holds. When the number of 0’s is

greater than n+1
2 , there exist consecutive 0’s in the sequence of ai. In this case, we can

apply Theorem 4.2 iteratively to reduce the number of factors and apply Lemma 4.6 to

construct GT . In both cases, the number of factors does not exceed n+1
2 . Thus, we have

ζ(GT (n : A)) ≤ n+ 1

2
.

The argument for the number of the factors for an LT function is similar. When b⃗ =

(1, 0, 1, 0, · · · , 0, 1), the number of 1’s is n+1
2 , the number of 0’s is n−1

2 , and no consecutive

1’s exist. When the number of 1’s is equal to or greater than n+1
2 , Theorem 4.3 are used

iteratively to reduce the number of factors, we have

ζ(LT (n : B)) ≤ n+ 1

2
.

When n is even: When a⃗ = (0, 1, 0, 1, · · · , 0, 1), the numbers of 0’s and 1’s in GT

are the same which are n
2 . However, this does not make the number of factors in an

HT maximum which is n
2 + 1. The number of factors becomes its maximum when

a⃗ = (0, 1, 0, 1, · · · , 0, 1, 0, 0). The last two components are a1 = a0 = 0 (d = 2) that

produce two factors as explained in Lemma 4.4. Thus, we have

ζ(GT (n : A)) ≤ n

2
+ 1.

Likewise, for LT , the number of factors becomes its maximum when b⃗ = (1, 0, 1, 0, · · · , 1, 0, 1, 1).
Thus, we have

ζ(LT (n : B)) ≤ n

2
+ 1.

Combining these two cases, we have the lemma. !

Lemma 4.9 can be extended to an interval function:
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Theorem 4.4.

ζ(IN0(n : A,B)) ≤ n

Proof: Let a⃗ = (an−1, an−2, · · · , a1, a0) and b⃗ = (bn−1, bn−2, · · · , b1, b0) be binary rep-

resentations of A and B, respectively, and A < B. According to Theorem 4.1, if the

most significant bits (MSBs) are the same, then we can ignore the MSBs and consider

the function with fewer variables. Assume that the MSB is different, i.e., an−1 = 0 and

bn−1 = 1. The function can be expanded into

IN0(n : A,B) = x̄n−1GT (n− 1 : A) ∨ xn−1LT (n− 1 : B)

When n is odd: Let an−1 = 0 and bn−1 = 1. Consider the case when ζ(GT (n−1 : A))

and ζ(LT (n − 1 : B)) take their maximum values. Note that, according to Theorem

4.1, we only consider bits after the s’th of the binary representation such that as ̸= bs.

By Lemma 4.9 (the even part), the vectors are a⃗ = (0, 0, 1, 0, 1, · · · , 0, 1, 0, 0) and b⃗ =

(1, 1, 0, 1, 0, · · · , 1, 0, 1, 1), where s = n− 1. In this case, we can apply Theorem 4.2 and

Theorem 4.3 iteratively to obtain GT and LT functions. Note that there are literals of

the same variable in both HTs. They are g1 = x̄n−1 and g2 = xn−1. In this case, we can

combine the literals of both tail factors to form one factor as follows:

(h̄1p h̄1p−1 · · · h̄11)x̄n−1 ∨ (h̄2q h̄2q−1 · · · h̄21)xn−1

= (h̄1p h̄1p−1 · · · h̄11) · (h̄2q h̄2q−1 · · · h̄21) · (1). (4.2)

Thus, by Lemma 4.9, we have

ζ(IN0(n : A,B)) = ζ(GT (n− 1 : A)) + ζ(LT (n− 1 : B))

≤ ⌈n
2
⌉+ ⌈n

2
⌉ = n+ 1.

Moreover, by Eq. (4.2), we have

ζ(IN0(n : A,B)) ≤ n+ 1− 1 = n.

When n is even: The HTs for both GT and LT functions contribute and we have

ζ(IN0(n : A,B)) = ζ(GT (n− 1 : A)) + ζ(LT (n− 1 : B))

≤ ⌈(n− 1) + 1

2
⌉+ ⌈(n − 1) + 1

2
⌉ = n.

Thus, we have the theorem. !
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4.4 Experimental Results

We developed a heuristic algorithm [51] to generate HTs for interval functions that

uses the properties of Lemma 4.4, Lemma 4.5, Theorem 4.2, and Theorem 4.3. By the

computer program, we represented all the interval functions for n = 1 to n = 16 by HTs.

There are N(n) = (2n+1)(2n−1) distinct interval functions of n variables. When n = 16,

the total number of the distinct interval functions is approximately 231 ≈ 2.147 × 109.

Table 4.5: Numbers of GT (n : A) or LT (n : B) functions requiring τ factors in HTs
for n = 1 to n = 16 produced by a heuristic algorithm

n # Factors (τ)
1 2 3 4 5 6 7 8 9

1 2
2 3 1
3 4 4
4 5 9 2
5 6 16 10
6 7 25 28 4
7 8 36 60 24
8 9 49 110 80 8
9 10 64 182 200 56
10 11 81 280 420 216 16
11 12 100 408 784 616 128
12 13 121 570 1344 1456 560 32
13 14 144 770 2160 3024 1792 288
14 15 169 1012 3300 5712 4704 1408 64
15 16 196 1300 4840 10032 10752 4992 640
16 17 225 1638 6864 16632 22176 14400 3456 128

Table 4.5 shows the distribution of GT or LT functions that require τ factors in HTs

for up to n = 16 produced by the heuristic algorithm [51]. As shown in the table, to

represent a GT or an LT function, n+1
2 words are necessary when n is odd, and n

2 + 1

words are necessary when n is even. For GT and LT functions, the heuristic program

generates exact minimum HTs.

Table 4.6 shows the distribution of interval functions that require τ factors in HTs for up

to n = 16 produced by the heuristic algorithm. It shows that with an HT, any interval

functions can be represented with at most n factors.

Let µh(n) be the average number of factors to represent n-variable interval functions by

HTs produced by the heuristic algorithm. Table 4.7 shows µh(n) for n = 1 to n = 16.

We represented all the interval functions by HTs generated by the heuristic algorithm

[51]. Thus, they may not be minimum. Since (23n −
5
9 )/µh(n) approaches to 1.00 with

the increase of n, we have the following:
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Table 4.6: Numbers of n-variable interval functions requiring τ factors in HTs for
n = 1 to n = 16 produced by a heuristic algorithm

n # Factors (τ )
1 2 3 4 5 6 7 8

1 3
2 7 3
3 15 16 5
4 31 51 42 12
5 63 132 181 124 28
6 127 307 574 644 364 64
7 255 672 1537 2384 2240 1024 144
8 511 1419 3714 7220 9504 7424 2784 320
9 1023 2932 8405 19212 32204 35968 23520 7360

10 2047 5979 18222 46844 93996 136016 129408 71744
11 4095 12096 38401 107504 247200 435200 544816 445504
12 8191 24355 79426 236444 603152 1236272 1910016 2080768
13 16383 48900 162277 504700 1393148 3217408 5866784 7980416
14 32767 98019 328926 1054932 3090572 7840416 16323584 26503616
15 65535 196288 663329 2173104 6655392 18175744 42109520 78930432
16 131071 392859 1333410 4431844 14023392 40562080 102439456 216008512
n # Factors (τ )

9 10 11 12 13 14 15 16
1
2
3
4
5
6
7
8
9 704

10 19008 1536
11 211904 48128 3328
12 1476288 608768 119808 7168
13 7620096 4731904 1707264 293888 15360
14 31901824 26889216 14729728 4687872 711680 32768
15 114450048 122574848 91806208 44679168 12634112 1703936 69632
16 364880640 474360832 454498304 304347136 132431872 33488896 4038656 147456

Conjecture 4.1. For sufficiently large n, the average number of factors to represent

n-variable interval functions is at most 2
3n−

5
9 .

We also obtained µs(n), the average numbers of products to represent n-variable interval

functions by exact MSOPs, using exact algorithm for n = 1 to n = 14. The fourth

column of Table 4.7 shows values of µs(n). The first experiment, for n = 1 to n = 13,

we used Intel Dual2Duo 3.0 GHz microprocessor with 8 GB memory. We generated all

the interval functions and minimized them using ESPRESSO-EXACT [9] which obtains

exact minimum SOPs. For n = 13, to obtain µs(13), it took one month. The second one,

for n = 14, we used Intel Xeon 8-core 2.27 GHz microprocessors with 24 GB memory

and paralleled the program into 8 parts, and the computation took nearly a month.

By using the same method, for n = 16, it would take a few years to obtain µs(16).

The rightmost column of Table 4.7 shows the ratio ρ(n) = µh(n)
µs(n)

. It shows that ρ(n)
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Table 4.7: Average numbers of factors to represent n-variable interval functions by
HTs (near minimum) and exact MSOPs for n = 1 to n = 16

n Head-Tail Expression MSOP Ratio (ρ(n))

µh(n)
( 23n−

5
9 )

µh(n)
µs(n)

µh(n)
µs(n)

1 1 0.1111 1 1
2 1.3 0.5983 1.3 1
3 1.7222 0.8387 1.7778 0.97
4 2.2574 0.9352 2.3971 0.94
5 2.8523 0.9739 3.1288 0.91
6 3.4822 0.9892 3.9433 0.88
7 4.1301 0.9954 4.8154 0.86
8 4.7873 0.9980 5.7267 0.84
9 5.4492 0.9991 6.6645 0.82
10 6.1135 0.9996 7.6203 0.80
11 6.7790 0.9998 8.5886 0.79
12 7.4450 0.9999 9.5654 0.78
13 8.1114 0.9999 10.5487 0.77
14 8.7779 0.9999 11.5362 0.76
15 9.4445 0.9999 - -
16 10.1111 0.9999 - -

decreases with the increment of n. The experimental results also show that, for n ≥ 10,

HTs require at least 20% fewer factors than MSOPs, on the average.

Moreover, we can observe interesting sequences in Table 4.5. Let Cτ (n) be the value of

the τ -th column in Table 4.5. For τ = 1 to τ = 6, we have:

C1(n) = n+ 1

C2(n) = (n− 1)2

C3(n) =
(n− 3)(n − 2)(2n − 5)

3

C4(n) =
(n− 4)2[(n − 4)2 − 1]

3

C5(n) =
(n− 7)(n − 6)(n − 5)(n − 4)(2n − 11)

15
, and

C6(n) =
4

90
(n− 7)2[(n− 7)2 − 1][(n − 7)2 − 4].

The derivation of these formulas are future work.

4.5 Conclusion

In this chapter, we introduced head-tail expressions (HTs) to represent interval functions.

We showed that HTs efficiently representGT , LT and interval functions. We also showed
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that a pair of a TCAM and a RAM directly implements an HT. Finally, we prove that

an HT requires at most n factors to represent any interval function IN0(n : A,B).

By a heuristic algorithm, we obtained average numbers of factors to represent interval

functions in HTs for up to n = 16. And, we conjecture that, for sufficiently large n, the

average number of factors by HTs to represent n-variable interval functions is 2
3n −

5
9 .

We also show that, for n ≥ 10, HTs generated by our heuristic program require at least

20% fewer factors than MSOPs, on the average.



Chapter 5

Head-Tail Expressions for

Single-Field Classification

Functions

In this chapter, we present a method to generate head-tail expressions for single-field

classification funcions. First, we introduce a fast prefix sum-of-products expression (Pre-

SOP) generator (FP) which generates products using the bit patterns of the endpoints.

Next, we propose a direct head-tail expression generator (DHT). Experimental results

show that DHT generates much smaller TCAM than FP. The proposed algorithm is

useful for simplified TCAM generator for packet classification.

5.1 Introduction

Table 5.1 shows an example of a classification function with two fields that correspond

to the source and the destination ports represented by intervals. The representation in

TCAM is described in Table 5.2. When each port is specified by either * (don’t care)

or a single value, each rule corresponds to one word in a TCAM. However, when a port

is specified by an open interval such as (0, 16) or (−1, 15), the interval requires multiple

words in a TCAM [12]. For example, in Table 5.2, both intervals (0, 16) and (−1, 15)
require 4 words. This problem (i.e., rule expansion) is the main subject of this chapter.

In this chapter, we present a fast reduction of TCAM using a head-tail expression (HT).

First, we introduce a fast PreSOP generator (FP). Then, we propose a direct head-tail

expression generator (DHT). Finally, by experimental results, we show that DHT is

faster and produces better solutions than other algorithms.

50
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Table 5.1: Example of classification function

Rule Source Port Destination Port Action

1 (0,16) 2 Accept
2 3 (-1,15) Accept
3 * * Deny

Table 5.2: Implementation on TCAM

Rule Source Port Destination Port Action
x3 x2 x1 x0 x3 x2 x1 x0

1 0 0 0 1 0 0 1 0 Accept
1 0 0 1 * 0 0 1 0 Accept
1 0 1 * * 0 0 1 0 Accept
1 1 * * * 0 0 1 0 Accept
2 0 0 1 1 0 * * * Accept
2 0 0 1 1 1 0 * * Accept
2 0 0 1 1 1 1 0 * Accept
2 0 0 1 1 1 1 1 0 Accept
3 * * * * * * * * Deny

This chapter is organized as follows: Section 5.2 shows definitions, and basic properties

of PreSOPs and interval functions. Section 3.5 shows a head-tail expression for an

interval function. Section 4.5 presents a fast PreSOP generator (FP). Section 5.5 presents

a head-tail expression generator using greedy approach (HT), and a direct head-tail

expression generator (DHT). Section 5.6 shows experimental results. And finally, Section

5.7 concludes the paper.

5.2 Definitions and Basic Properties

Lemma 5.1. A GT function can be represented by the PreSOP:

GT (n : A) =
n−2∨

i=0

⎛

⎝
i+1∧

j=n−1

x
aj
j

⎞

⎠xiāi ∨ xn−1ān−1,

where a⃗ = (an−1, an−2, · · · , a1, a0) is the binary representation of A. It has
∑n−1

i=0 āi

disjoint products.

Example 5.1. Consider the PreSOP for GT (n : A), where n = 4 and A = 0. The binary

representation of A is a⃗ = (0, 0, 0, 0). The PreSOP is x̄3x̄2x̄1x0 ∨ x̄3x̄2x1 ∨ x̄3x2 ∨ x3.
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Figure 5.1: Maps for Example 5.2

Lemma 5.2. An LT function can be represented by the PreSOP:

LT (n : B) =
n−2∨

i=0

⎛

⎝
i+1∧

j=n−1

x
bj
j

⎞

⎠ x̄ibi ∨ x̄n−1bn−1,

where b⃗ = (bn−1, bn−2, · · · , b1, b0) is the binary representation of B. It has
∑n−1

i=0 bi

disjoint products.

Theorem 5.1. Let a⃗ = (an−1, an−2, · · · , a1, a0) and b⃗ = (bn−1, bn−2, · · · , b1, b0) be the

binary representations of A and B, respectively, and A < B. Let t be the largest index

such that at−1 ̸= bt−1. Then, IN0(n : A,B) can be represented by:

0∨

i=t−2

[( i+1∧

j=n−1

x
aj
j

)
xiāi ∨

( i+1∧

j=n−1

x
bj
j

)
x̄ibi

]

.

The number of products is
∑t−2

i=0(āi + bi).

Example 5.2. Let A = 0, B = 15 and n = 4. Note that a⃗ = (0, 0, 0, 0) and b⃗ =

(1, 1, 1, 1). By Lemma 5.1, the PreSOP for GT (4 : 0) is x̄3x̄2x̄1x0 ∨ x̄3x̄2x1 ∨ x̄3x2 ∨ x3.
The number of products is

∑3
i=0 āi = 4. By Lemma 5.2, the PreSOP for LT (4 : 15) is

x3x2x1x̄0∨x3x2x̄1∨x3x̄2∨x̄3. The number of products is
∑3

i=0 bi = 4. And, Theorem 5.1

shows that IN0(4 : 0, 15) requires 3 + 3 = 6 products. The PreSOP for IN0(4 : 0, 15) is

x̄3x̄2x̄1x0 ∨ x̄3x̄2x1 ∨ x̄3x2 ∨x3x̄2 ∨x3x2x̄1 ∨x3x2x1x̄0. Fig. 5.1 shows their maps, where

the integers in the maps denote X = 8x3 + 4x2 + 2x1 + x0. Note that a minimum SOP

for IN0(4 : 0, 15) is x0x̄1 ∨ x1x̄2 ∨ x2x̄3 ∨ x3x̄0.
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5.3 Realization of Interval Functions on TCAM

A ternary content addressable memory (TCAM) shown in Fig. 5.2 compares the input

vector with the entire list of registered vectors, simultaneously. When multiple matches

occur, the priority encoder selects the match line with the smallest index. The RAM

stores the corresponding Action for the TCAM words. A straightforward method to

design TCAM is to use a PreSOP.

Example 5.3. Design the TCAM that represents GT (4 : 0). The PreSOP for GT (4 : 0)

is

f(x3, x2, x1, x0) = x̄3x̄2x̄1x0 ∨ x̄3x̄2x1 ∨ x̄3x2 ∨ x3.

Table 5.3 shows the corresponding TCAM realization.

Table 5.3: Realization based on PreSOP.

TCAM RAM
x3 x2 x1 x0
0 0 0 1 1
0 0 1 * 1
0 1 * * 1
1 * * * 1
* * * * 0

Table 5.4: Realization based on HT.

TCAM RAM
x3 x2 x1 x0
0 0 0 0 0
* * * * 1

Note that the first product in the PreSOP corresponds to the first TCAM word, and

the second product in the PreSOP corresponds to the second TCAM word, etc. In the

TCAM, we append the all don’t care product at to the bottom. This word represents

the default value for the rest of the combinations. Thus, the number of TCAM words is

τ(PreSOP ) + 1, where τ(PreSOP ) denotes the number of products in the PreSOP. In

the RAM, the first τ(PreSOP ) entries are 1, while the τ(PreSOP ) + 1th entry is 0.

However, in the circuit shown in Fig. 5.2, the interval function can often be implemented

more efficiently. Since GT (4 : 0) can be represented as

f(x3, x2, x1, x0) = (x̄3x̄2x̄1x̄0) · (1),



Chapter 5. HTs for Single-Field Classification Functions 54

0 0 0 1

...

1 * * *

0 0 1 *

...

* * * *

Pr
io

rit
y

En
co

de
r

1

...
1

1

...
0

TCAM RAM
(Registered Vectors) (Action Memory)

Packet 
Header Action

0
1...

...

m-1
m

Figure 5.2: Realization using TCAM and RAM.

f is implemented by the TCAM shown in Table 5.4. In this case, the combination that

makes f = 0 is first detected, and other combinations for the default value f = 1 is

detected by the bottom word in the TCAM. Thus, we need only two TCAM words.

To find more efficient realizations for TCAMs, we need a new method to represent a

function. In the next section, we introduce such a method.

5.4 Head-Tail Expressions for Interval Functions

In this section, we introduce head-tail expressions [13] that efficiently represent interval

functions. As shown in Section II, the number of products in a PreSOP for an interval

function is
∑t−2

i=0(āi + bi). This value increases with the number of 0’s and 1’s in binary

representations of A and B, respectively. However, this problem can be resolved by

using a head-tail expression.

Definition 5.1. A head-tail expression (HT) has the form

f =
0∨

i=t

[
s∧

j=1

(h̄ij)

][
v∧

k=1

(gik)

]
, (5.1)

where for (i = 0, 1, · · · , t), (h̄ij) is the head factor and (gik) is the tail factor, and

hij and gik denote products. In this paper, (product) and (product) are called factors.

When there are no head factors, the HT is an SOP.

Example 5.4. (x1x2) · (x3x4) · (x5x6)∨ (x1x4) · (x2x3) · (x̄5x̄6) is a head-tail expression.

HTs are a generalization of SOPs, and often require fewer factors to represent the same

function.
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Lemma 5.3. An arbitrary logic function f can be represented by a head-tail expres-

sion (Eq. (5.1)).

The next two theorems show that when the binary representations of endpoints have

special property, HTs can be directly generated from the binary representations of end-

points.

Theorem 5.2. Let a⃗ = (an−1, an−2, · · · , a1, a0) be the binary representation of an in-

teger A. Let cp−1, cp−2, · · · , c1, c0 be the starting indexes of consecutive 0’s groups in a⃗,

where cp−1 > cp−2 > · · · > c1 > c0. Let the isolated 1’s be acp−2+1 = acp−3+1 = · · · =
ac1+1 = ac0+1 = 1, where ck +1 is the index of isolated 1’s among groups of consecutive

0’s in a⃗. Then, the GT (n : A) function can be represented by an HT with p+ 1 factors:

⎛

⎝
c0+1∧

j=n−1

x
aj
j

c0+1−d0∧

i=c0

x̄i

⎞

⎠ ·

⎛

⎝
c1+1∧

j=n−1

x
aj
j

c1−d1∧

i=c1

x̄i

⎞

⎠ · · ·

·

⎛

⎝
cp−1+1∧

j=n−1

x
aj
j

cp−1−dp−1∧

i=cp−1

x̄i

⎞

⎠ ·

⎛

⎝
cp−1+1∧

j=n−1

x
aj
j

⎞

⎠ ,

where dp−1, dp−2, · · · , d1, d0 (for i = 0, 1, · · · , p − 1, di > 0) are numbers of consecutive

0’s in the groups which start from the indexes cp−1, cp−2, · · · , c1, c0, respectively. Note

that, in a⃗, except for the group of consecutive 0’s, remaining bits are 1’s.

Example 5.5. Let A = 0. The binary representation of A is a⃗ = (0, 0, 0, 0). By

Theorem 5.2, we have a group of consecutive 0’s, where n = 4, p = 1, cp−1 = c0 = 3

and d0 = 4. Thus,

GT (4 : 0) =

⎛

⎝
c0+1∧

j=n−1

x
aj
j

c0+1−d0∧

i=c0

x̄i

⎞

⎠ ·

⎛

⎝
c0+1∧

j=n−1

x
aj
j

⎞

⎠

= (x̄3x̄2x̄1x̄0) · (1).

Theorem 5.3. Let b⃗ = (bn−1, bn−2, · · · , b1, b0) be the binary representation of an inte-

ger B. Let cp−1, cp−2, · · · , c1, c0 be the starting indexes of consecutive 1’s groups in b⃗,

where cp−1 > cp−2 > · · · > c1 > c0. Let the isolated 0’s be bcp−2+1 = bcp−3+1 = · · · =
bc1+1 = bc0+1 = 0, where ck + 1 is the index of isolated 0’s among groups of consecutive
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1’s in b⃗. In this case, LT (n : B) can be represented by an HT with p+ 1 factors:

⎛

⎝
c0+1∧

j=n−1

x
bj
j

c0+1−d0∧

i=c0

xi

⎞

⎠ ·

⎛

⎝
c1+1∧

j=n−1

x
bj
j

c1−d1∧

i=c1

xi

⎞

⎠ · · ·

·

⎛

⎝
cp−1+1∧

j=n−1

x
bj
j

cp−1−dp−1∧

i=cp−1

xi

⎞

⎠ ·

⎛

⎝
cp−1+1∧

j=n−1

x
bj
j

⎞

⎠ ,

where dp−1, dp−2, · · · , d1, d0 (for i = 0, 1, · · · , p − 1, di > 0) are numbers of consecutive

1’s in the groups which start from the indexes cp−1, cp−2, · · · , c1, c0, respectively. Note

that, in b⃗, except for the group of consecutive 1’s, remaining bits are 0’s.

Example 5.6. Represent LT (n : B) by a PreSOP and a head-tail expression, where

n = 8 and B = 247. b⃗ = (1, 1, 1, 1, 0, 1, 1, 1) is the binary representation of B. By

Lemma 5.1, we have the PreSOP of LT :

LT (n : B) = x7x6x5x4x̄3x2x1x̄0 ∨ x7x6x5x4x̄3x2x̄1

∨ x7x6x5x4x̄3x̄2 ∨ x7x6x5x̄4 ∨ x7x6x̄5 ∨ x7x̄6 ∨ x̄7.

The number of products is
∑n−1

i=0 bi = 7. However, the head-tail expression for LT (n : B)

requires only three factors (p+ 1 = 2 + 1). By Theorem 5.3, we have:

LT (n : B) = (x7x6x5x4x̄3x2x1x0) · (x7x6x5x4x3) · (1)

The binary representation of B = 247 is:

b⃗ = (

bc1=7

↓
1 ,

b6
↓
1,

b5
↓
1 ,

b4
↓
1︸ ︷︷ ︸

d1

,

b3
↓
0 ,

bc0=2

↓
1 ,

b1
↓
1 ,

b0
↓
1︸ ︷︷ ︸

d0

)

There are p = 2 groups of consecutive 1’s, which start from indexes c0 = 2 and c1 = 7,

and the numbers of consecutive 1’s are d0 = 3 and d1 = 4, respectively.

Table 5.5(a) shows the PreSOP realization for the interval (−1, 247). Seven TCAM

words realize the interval (−1, 247), and the RAM works as the OR function. On the

other hand, Table 5.5(b) shows HT-realization for the same function: two TCAM words

realize the interval (246, 28), and the RAM works as the NOR function. Since the RAM

can be programmed freely, the NOR function instead of the OR function can be imple-

mented. In this way, we can generate a smaller TCAM than the conventional approach.
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Table 5.5: Realization of LT (8 : 247) by TCAM and RAM

(a)

TCAM RAM
x7 x6 x5 x4 x3 x2 x1 x0
1 1 1 1 0 1 1 0 1
1 1 1 1 0 1 0 * 1
1 1 1 1 0 0 * * 1
1 1 1 0 * * * * 1
1 1 0 * * * * * 1
1 0 * * * * * * 1
0 * * * * * * * 1
* * * * * * * * 0

(b)

TCAM RAM
x7 x6 x5 x4 x3 x2 x1 x0
1 1 1 1 0 1 1 1 0
1 1 1 1 1 * * * 0
* * * * * * * * 1

5.5 Fast Prefix SOP Generator

FP(A Fast PreSOP Generator):

/∗ Input: The binary representations of A and B which are stored in V ector(⃗a) and
V ector(⃗b), respectively. ∗/

/∗ Output: TCAM words for PreSOP. ∗/
1: Find the largest index such that as ̸= bs,

s← ⌊log2 (A⊕B)⌋.
2: For both vectors (V ector(⃗a) and V ector(⃗b)), perform below.
3: for i = 0; i < s; i++ do
4: if V ector[s− 1− i] = B flg then
5: Output[n− 1, . . . , s− i]← V ector[n− 1, . . . , s− i]
6: Output[s− 1− i]← A flg
7: end if
8: end for
9: Terminate.

Figure 5.3: Pseudocode for FP

In this section, we present a fast PreSOP generator (FP). Various PreSOP generators

exist [60], [27], [12]. Fig. 5.3 shows the pseudocode of FP. The inputs are V ector(⃗a)

and V ector(⃗b) that are binary representations of A and B, respectively. First, to apply

Theorem 5.1, the largest index where as ̸= bs is found by s = ⌊log2 (A⊕B)⌋. After that,
each vector of the endpoints (A,B) represented by V ector[n − 1, . . . , 0] is checked. In

this case, A flg is true iff it is checking V ector(⃗a), while B flg is true iff it is checking

V ector(⃗b). Note that A flg = B flg. If the checked vector value is true, then it produces

Output[n − 1, . . . , 0] as the binary representation of the product. Because at most one

product is produced for each variable, and only s bits are checked, the time complexity

for n-bit FP is O(s) · n ≈ O(n2). Moreover, the space complexity for FP is O(n2),
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because FP uses n bits to represent a vector and at most O(n) vectors are necessary to

represent the function.

5.6 Direct Head-Tail Expression Generators

In this section, we present a direct head-tail expression generator (DHT) to represent

intervals (ports). DHT generates the TCAM words from the lower and the upper end-

points of the interval (A,B). Fig. 5.4 shows a DHT. Similar to FP, DHT finds the

largest index such that as ̸= bs. After that, it checks every bit in V ector[n − 1, . . . , 0]

and returns Mode. A flg is true iff it is checking V ector(⃗a), and B flg is true iff it is

checking V ector(⃗b). Note that A flg = B flg. The detail of each Mode is as follows:

• Mode 0 : Produces no output.

• Mode 1 : Theorem 5.1 is used to produce the word.

• Mode 2 : Theorem 5.2 or Theorem 5.3 is used to produce the word.

Fig. 5.4 shows that the time complexity for n-bit DHT is O(s) · n ≈ O(n2). In every

case (Mode), the index i is incremented after it checks V ector[n − 1, . . . , 0] in DHT.

Thus, the algorithm iterates s times, where s = t−1 denotes the largest index such that

as ̸= bs. Furthermore, the space complexity for DHT is O(n2), because similar to FP,

DHT uses only n bits to represent a vector and at most O(n) vectors are necessary to

represent the function.

Example 5.7. Let A = 383, B = 441 and n = 9. The binary representations of

A and B are a⃗ = (1, 0, 1, 1, 1, 1, 1, 1, 1) and b⃗ = (1, 1, 0, 1, 1, 1, 0, 0, 1), respectively. To

find the TCAM words for IN0(9 : 383, 441), the algorithm in Fig. 5.4 is used. First,

s is computed using s = ⌊log2 (A⊕B)⌋ = 7. Since ai = 1 for i = 0 to i = s − 1,

no factor is produced from V ector(⃗a). Next from V ector(⃗b), at i = 0, 1 is detected,

goes to Mode 1. At i = 1, 0 is detected, goes to Mode 0 and generates a word using

Theorem 5.1: 110111000 → 1, or the factor (x8x7x̄6x5x4x3x̄2x̄1x̄0) (Fig. 5.5, Mode

1a). At i = 2, Mode is 0. At i = 3, 1 is detected, goes to Mode 1. At i = 4,

1 is detected, goes to Mode 2 and generates a word using Theorem 5.3: 110111***

→ 0, or the factor (x8x7x̄6x5x4x3) (Fig. 5.5, Mode 2a, the first output). At i = 5,

1 is detected, stays at Mode 2. At i = 6, 0 is detected, goes to Mode 2. Because

the iteration finishes at s − 1 = 6, and there is a group of consecutive 1’s in b⃗, the

algorithm generates the word by Theorem 5.3: 110****** → 1, or the factor (x8x7x̄6)

(Fig. 5.5, Mode 2a, the second output) and terminates. Note that, the corresponding
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DHT(A Direct HT Generator):

/∗ Input: The binary representations of A and B which are stored in V ector(⃗a) and
V ector(⃗b), respectively. ∗/

/∗ Output: TCAM words of the head-tail expression. ∗/
1: Find the largest index such that as ̸= bs,

s← ⌊log2 (A⊕B)⌋.
2: For i = 0 to i = s − 1, iterate the below for V ector(⃗a) and V ector(⃗b). Checks

V ector(⃗a) i ffA flg = 1, and checks V ector(⃗b) i ffB flg = 1.
3: for i = 0; i < s; i++ do
4: switch Mode
5: case 0:
6: if V ector[i] = B flg then
7: Mode ← 1: Generate no output.
8: else
9: Mode ← 0

10: end if
11: case 1:
12: if V ector[i] = B flg then
13: Mode ← 2: A group of consecutive 0’s or 1’s is

detected. By Theorem 5.2 or 5.3, generate
the head factor (h̄i).

14: else
15: Mode ← 0: Only a single 0 or 1 is detected.

Use Theorem 5.1 to generate a product.
16: end if
17: case 2:
18: if V ector[i] = B flg then
19: Mode ← 2
20: else
21: if V ector[i+ 1] = B flg then
22: Mode ← 2: Groups of consecutive 0’s or 1’s

are detected. By Theorem 5.2 or 5.3,
generate the factor (h̄i−1 ∨ gi).

23: else
24: Mode ← 0: If groups of consecutives 0’s or

1’s are detected, generate the tail factor (gi)
using Theorem 5.2 or 5.3.

25: end if
26: end if
27: end switch
28: end for
29: Terminate.

Figure 5.4: Pseudocode for DHT

HT is (x8x7x̄6x5x4x3x̄2x̄1x̄0) ∨ (x8x7x̄6x5x4x3)(x8x7x̄6). Table 5.6 shows the produced

TCAM pattern.
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Figure 5.5: Steps of DHT in Example 6.1

Table 5.6: Realization of Example 6.1 in TCAM and RAM

TCAM RAM
x8 x7 x6 x5 x4 x3 x2 x1 x0
1 1 0 1 1 1 0 0 0 1
1 1 0 1 1 1 * * * 0
1 1 0 * * * * * * 1
* * * * * * * * * 0

Example 5.8. Obtain the HT for IN0(9 : 383, 441) by an algebraic approach. First,

obtain PreSOPs for GT and LT functions:

GT (9 : 383) = x8x7

LT (9 : 441) = x̄8 ∨ x8x̄7 ∨ x8x7x̄6x̄5 ∨ x8x7x̄6x5x̄4

∨ x8x7x̄6x5x4x̄3 ∨ x8x7x̄6x5x4x3x̄2x̄1x̄0
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Table 5.7: Comparison of performance

Data Number PreSOP SOP HT
of Products Time(µs) Products Time(ms) Factors Reduction(%) Time(µs)

Rules FP ESPRESSO-EXACT DHT

ACL1 9760 13675 1.06 13667 786.702 12672 7.335 1.18
ACL2 9827 19449 1.11 19449 873.288 11221 42.306 1.16
ACL3 9323 16794 1.06 16699 740.238 11712 30.261 1.18
ACL4 9670 17179 1.05 17171 731.940 12022 30.019 1.20
ACL5 6457 8713 0.99 8713 723.748 7301 16.206 1.19
FW1 9753 34188 1.03 34188 758.240 12180 64.373 1.16
FW2 9865 19100 1.06 19100 824.233 11712 38.681 1.17
FW3 9583 25923 1.02 25923 705.497 11251 56.598 1.18
FW4 9517 62406 1.25 62406 670.166 17066 72.653 1.10
FW5 9513 22553 1.05 22553 723.124 11139 50.610 1.24
IPC1 9590 12969 1.03 12955 806.414 10439 19.508 1.13
IPC2 10000 10000 0.96 10000 775.081 10000 0.000 1.06

Next, obtain the PreSOP for the interval function:

GT (9 : 383) · LT (9 : 441) = x8x7x̄6x̄5 ∨ x8x7x̄6x5x̄4

∨ x8x7x̄6x5x4x̄3 ∨ x8x7x̄6x5x4x3x̄2x̄1x̄0.

Finally, obtain the HT for IN0(9 : 383, 441):

x8x7x̄6(x̄5 ∨ x5x̄4 ∨ x5x4x̄3) ∨ (x8x7x̄6x5x4x3x̄2x̄1x̄0)

= (x8x7x̄6)(x5x4x3) ∨ (x8x7x̄6x5x4x3x̄2x̄1x̄0)

= (x8x7x̄6)(x8x7x̄6x5x4x3) ∨ (x8x7x̄6x5x4x3x̄2x̄1x̄0)

Note that DHT directly generates the TCAM patterns from the endpoints.

Fig. 5.5 illustrates the steps of DHT in Example 6.1. It compares each bit of the

lower and the upper endpoints; decides which mode be enter; and generates the reduced

TCAM patterns.

5.7 Experimental Results

Since no benchmark data for packet classifications is available, ClassBench [59] was used

to generate classification functions. First, we generated PreSOPs for various functions.

Then, we reduced the number of products in PreSOPs by ESPRESSO-EXACT [9].

Note that ESPRESSO-EXACT produces SOPs, which often require fewer products than

PreSOPs. Table 5.7 compares PreSOPs and SOPs. However, ESPRESSO-EXACT did

not significantly reduce the sizes of PreSOPs inspite of its long computation time.

Second, we applied the head-tail expression generator DHT to the same classification

functions. Since the DHT in Fig. 5.4 is only for a single field function, we applied DHT
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twice to obtain the HT. As shown in Table 5.7, the maximum reduction occurred in

FW4, where the reduction ratio is more than 70%. In this case, many intervals that

require many products in the PreSOP are reduced by the HT. On the other hand, no

reduction occurred in IPC2, where each interval is represented by a single product and

cannot be reduced by an HT. In terms of the speed, DHT is about 6× 105 times faster

than ESPRESSO-EXACT.

In these experiments, we generated simplified expression for each rule independently,

but we did not check for the redundancy among rules. Thus, we may still be able to

reduce the number of factors by spending extra time.

5.8 Conclusion

In this chapter, we used head-tail expressions to represent interval functions. We intro-

duced a fast prefix SOP generator (FP) which generates products using the bit patterns

of the endpoints. We proposed DHT to produce head-tail expressions directly from the

endpoints (A,B). Experimental results showed that DHT is 6 × 105 times faster and

produces smaller TCAMs than ESPRESSO-EXACT.



Chapter 6

Head-Tail Expressions for

Multi-Field Classification

Functions

This chapter discusses methods to reduce the TCAM size for multi-field classification

functions. In the first part, we will show a redundancy removal for packet classification.

By partitioning rules into groups and checking the relations among the rules in each

group, we can remove some redundant rules [55]. The second one, we implement head-tail

expressions for multi-field classification functions. We present an O(r2)-algorithm, called

MFHT, to generate simplified TCAMs for two-field classification functions, where r is

the number of rules. Experimental results show that MFHT achieves a 58% reduction of

words for random rules and a 52% reduction of words for ACL and FW rules. Moreover,

MFHT is fast and useful for simplifying TCAM for packet classification.

6.1 Introduction

Table 6.1: Simplified example of a packet classifier

SA DA SP DP PO Action

5 11 [2, 2] [5, 5] 2 Accept
5 11 [0, 2] [6, 7] 2 Accept
5 11 [0, 3] [5, 5] 2 Accept
11 4 [4, 7] * 2 Accept
11 4 [3, 6] * 2 Accept
* * * * * Discard

63
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In a packet classification [7], rules are prioritized from the top to the bottom. In Table

6.1, if the source address is 11, the destination address is 4, the source port is 5, the

destination port is 5, and the protocol type is 2, then the first to the fourth rules are not

satisfied, but the fifth rule is satisfied. Thus, the packet is sent to the next destination.

If the higher rule is not satisfied, then the lower rule is checked. Since the last rule has

* in all the fields, the last rule is always satisfied. In this case, the packet is discarded.

Thus, the packet classification in Table 6.1 can be considered as a five-field classification

function. Note that all the fields can be represented by intervals [41]. A single value

e.g., 2 can be represented by the interval [2, 2]. Fig. 6.1 shows an example of a TCAM

circuit [43] for the packet classifier in Table 6.1. The search data is compared with the

stored words. When there is a match, the match line sends the signal to the priority

encoder to produce the match address. In this case, the search data matches the rule

with the address 101 or five.

!"#$!$! !$!! $!$#!$!#!$

%"#$!$! !$!! $$&#!!&#!$

'"#$!$! !$!! $!$#!!&#!$

("#$!$! !$!! $&&#!$!#!$

)"#!$!! $!$$ !&&#&&&#!$

*"#!$!! $!$$ $!&#&&&#!$

+"#!$!! $!$$ !$&#&&&#!$

,"#!$!! $!$$ !!$#&&&#!$

-"#&&&&#&&&&#&&&#&&&#&&

Pr
io

rit
y 

En
co

de
r

Match Lines

Match Address
!$!

!$!! $!$$ !$!#!$!#!$

Search Data

Figure 6.1: TCAM Circuit

The first problem is a rule expansion. In Table 6.1, there are six rules. However, to

represent these rules by a TCAM, the source port and the destination port which are

represented by intervals often require multiple words. For example, the third rule has

source port [0, 2] which require two words i.e., 00* and 010. This phenomenon is called

a rule expansion. A rule can be represented by a prefix SOP (PreSOP) which can

be generated directly from an interval [53]. This is a small example of a rule expansion.

When there are many rules, the rule expansion will become a burden.

In this chapter, first, we show a method to simplify rules in TCAMs for packet classifica-

tion. We partition the rules into groups so that each group has the same source address,

destination address and protocol. After that, we simplify rules of a group by removing
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rules that are already covered by other rules. We developed a computer program to

simplify rules. Experimental results show that this method reduces the size of rules up

to 57% of the original specification for ACL5 rules, 73% for ACL3 rules, and 87% for

overall rules. This algorithm is useful for reducing TCAMs for packet classification.

Second, we show a method to reduce the number of words in a TCAM to represent

k-field classification functions. We use a head-tail expression to represent a multi-field

classification function. We derive the number of factors in multi-field classification rules

by head-tail expressions. Furthermore, we present an O(rk)-algorithm called MFHT to

generate simplified head-tail expressions for k-field classification functions, where r is

the number of rules. Experimental results show that MFHT achieves a 58% reduction of

words for random rules, and a 52% reduction of words for ACL and FW rules. Moreover,

MFHT is fast and useful for simplifying TCAM for packet classification.

6.2 Definition and Basic Properties

Theorem 6.1. Let a⃗ = (an−1, an−2, · · · , a1, a0) and b⃗ = (bn−1, bn−2, · · · , b1, b0) be the

binary representations of A and B, respectively, and A < B. Let s be the largest index

such that as ̸= bs. Then, IN0(n : A,B) can be represented by

0∨

i=s−1

[( i+1∧

j=n−1

x
aj
j

)
xiāi ∨

( i+1∧

j=n−1

x
bj
j

)
x̄ibi

]

.

The number of products is

τp(IN0(n : A,B)) =
s−1∑

i=0

(āi + bi).

Lemma 6.1. Any logic function f(xn−1, xn−2, · · · , x0) can be represented as

f(xn−1, xn−2, · · · , x0) =
∨

ξi(X1)Ii(X2),

where X1 = (xn−1, xn−2, · · · , xm) and X2 = (xm−1, xm−2, · · · , x0). ξi(X1) are mutually

disjoint products having the form x∗n−1x
∗
n−2 · · · x∗m, x∗ denotes either x or x̄,

∨
i ξi(X1) =

1 and Ii(X2) denotes an interval function of m variables.

Theorem 6.2. Let a⃗ = (an−1, an−2, · · · , a1, a0) be the binary representation of an in-

teger A. Let cp−1, cp−2, · · · , c1, c0 be the starting indexes of consecutive 0’s groups in a⃗,

where cp−1 > cp−2 > · · · > c1 > c0. Let the isolated 1’s be acp−2+1 = acp−3+1 = · · · =
ac1+1 = ac0+1 = 1, where ck +1 is the index of isolated 1’s among groups of consecutive
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0’s in a⃗. Then, the GT (n : A) can be represented by p+ 1 factors:

⎛

⎝
c0+1∧

j=n−1

x
aj
j

c0+1−d0∧

i=c0

x̄i

⎞

⎠ ·

⎛

⎝
c1+1∧

j=n−1

x
aj
j

c1−d1∧

i=c1

x̄i

⎞

⎠ · · ·

·

⎛

⎝
cp−1+1∧

j=n−1

x
aj
j

cp−1−dp−1∧

i=cp−1

x̄i

⎞

⎠ ·

⎛

⎝
cp−1+1∧

j=n−1

x
aj
j

⎞

⎠ ,

where dp−1, dp−2, · · · , d1, d0 (for i = 0, 1, · · · , p − 1, di ≥ 1) are numbers of consecutive

0’s in the groups which start from the indexes cp−1, cp−2, · · · , c1, c0, respectively. Note

that, in a⃗, except for the group of consecutive 0’s, remaining bits are 1’s.

Theorem 6.3. Let b⃗ = (bn−1, bn−2, · · · , b1, b0) be the binary representation of an inte-

ger B. Let cp−1, cp−2, · · · , c1, c0 be the starting indexes of consecutive 1’s groups in b⃗,

where cp−1 > cp−2 > · · · > c1 > c0. Let the isolated 0’s be bcp−2+1 = bcp−3+1 = · · · =
bc1+1 = bc0+1 = 0, where ck + 1 is the index of isolated 0’s among groups of consecutive

1’s in b⃗. In this case, LT (n : B) can be represented by p+ 1 factors:

⎛
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x
bj
j
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xi
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⎠ ·
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⎞
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where dp−1, dp−2, · · · , d1, d0 (for i = 0, 1, · · · , p − 1, di ≥ 1) are numbers of consecutive

1’s in the groups which start from the indexes cp−1, cp−2, · · · , c1, c0, respectively. Note

that, in b⃗, except for the group of consecutive 1’s, remaining bits are 0’s.

6.2.1 Classification Functions

Definition 6.1. [41] A classification function with k fields is a mapping F : D1 ×
D2 × · · · × Dk → {0, 1, 2, · · · , r}, where Di = {0, 1, · · · , 2ti − 1} (i = 1, 2, · · · , k). F is

specified by a set of r rules. A rule consists of k fields, and each field Di is specified by

an interval of ti bits.

Example 6.1. Let F : SA×DA×SP ×DP ×PO → {0, 1, 2, · · · , r} be a classification

function. SA, DA, SP , DP and PO show source address, destination address, source

port, destination port and protocol, respectively. The number of bits in the fields are

tSA = tDA = 4, tSP = tDP = 3, and tPO = 2. The classification function has r = 6

rules described in Table 6.1 and Fig. 6.1 shows its TCAM realization.
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6.3 Simplification of rules

This section describes the method to simplify rules in packet classification by partitioning

the rules into groups, checking the relation among the rules, and removing rules that

are covered by other rules.

6.3.1 Partitioning rules into groups

!"#$!$! !$!! $!$#!$!#!$

%"#$!$! !$!! $$&#!!&#!$

'"#$!$! !$!! $!$#!!&#!$

("#$!$! !$!! $&&#!$!#!$

)"#!$!! $!$$ !&&#&&&#!$

*"#!$!! $!$$ $!&#&&&#!$

+"#!$!! $!$$ !$&#&&&#!$

,"#!$!! $!$$ !!$#&&&#!$

-"#&&&&#&&&&#&&&#&&&#&&#

Packet classification in binary
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$!$#!!&

$&&#!$!$!$! !$!! !$

!$!! $!$$ !$
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k
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(SA, DA, SP, DP, PO)
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(SP, DP)

(SP, DP)

Index

Index

Index

Figure 6.2: Illustration of grouping

In this subsection, we show an algorithm to partition rules into group so that each group

have the same SA, DA and PO. Let FSA, FDA, FSP , FDP and FPO be fields of source

address, destination address, source port, destination port, and protocol, respectively.

Each field Fi is represented by a specific number of bits. In this case, SA and DA are

represented by 32 bits, SP and DP are represented by 16 bits, and PO is represented by

8 bits.

Fig. 6.2 illustrates the process. First, every rule is represented by a binary number,

sorted and stored in the TCAM. After that, SA, DA, and PO is checked and compared

with the existing grouped rules. If there is no match, new group is created which contains

a new index of the group, a single SA, DA, and PO fields, and several SP and PO fields.

The process begins by representing the interval fields i.e., the source port and the des-

tination port are represented by PreSOPs. This can be done by using Theorem 6.1.

The resulting words have τSP and τDP products and they are stored in PreSOPSP and

PreSOPDP , for SP and DP, respectively.
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Grouping(FSA, FDA, FSP , FDP , FPO):

/∗ Input: Classification rules, consist of 32 bits source and destination addresses (FSA

and FDA), 16 bits intervals of source and destination ports (FSP , FDP ), and 8 bits
protocol FPO. ∗/

/∗ Output: Structured groups of classification rules. ∗/
1: for i = 0; i < r; i++ do

/∗ PreSOPs are used to represent intervals of source and destination ports. We
use Theorem 6.1 to represent FSP and FDP , where the PreSOPs products are
stored in array PreSOPSP and PreSOPDP , respectively . /∗

2: PreSOPSP [τSP ].
3: PreSOPDP [τDP ].
4: if i ̸= 0 then
5: while k < j do
6: if (Group[k] → FSA == FSA) · (Group[k] → FDA == FDA) · (Group[k] →

FPO == FPO) then
7: Break.
8: else
9: k ++.

10: end if
11: end while
12: else
13: if i == 0 then
14: j = 0;
15: else
16: j = k.
17: end if

/∗ No match, build a new group and store FSA, FDA and FPO in the group. ∗/

18: Group[j]→ FSA = FSA.
19: Group[j]→ FDA = FDA.
20: Group[j]→ FPO = FPO.
21: end if
22: for k = 0; k < τSP ; k ++ do
23: for l = 0; l < τDP ; l ++ do

/∗ Storing FSP and FDP in the form of PreSOPs ∗/
24: Group[j]→ FSP [m] = PreSOPSP [k].
25: Group[j]→ FDP [m] = PreSOPDP [l].
26: m++
27: end for
28: end for
29: end for
30: return Group.
31: Terminate.

Figure 6.3: Pseudocode for grouping the rules

After that, the current SA, DA, and PO are compared with the existing groups. If there

is a match to a group, it will break the while operation (Fig. 6.3, line 7), and directly
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store PreSOPSP and PreSOPDP to the group as described in lines 24 and 25. Symbol

→ shows a pointer to a member of structure i.e., Group[j].

6.3.2 Elimination of redundant rules

In this subsection, we show algorithms to detect relation between rules. By knowing the

relation, we can eliminate redundant rules.

Theorem 6.4. Let S1 and S2 be logic functions represented by products of PreSOPs

that show segments of an interval. Then, only the following three cases occur:

Case 0: S1 · S2 = 0.

Case 1: S1 ⊆ S2.

Case 2: S1 ⊇ S2.

Proof: Suppose that S1 and S2 have the following form:

S1 = x∗n−1x
∗
n−2 . . . x

∗
m+1x

∗
m,

S2 = x†n−1x
†
n−2 . . . x

†
m+1x

†
m,

where x∗i and x†i denote literals of xi or a missing variable.

There exist two variables in S1 and S2 which are, x∗i and x∗j , and x†i and x†j, respectively.

Suppose that S1 · S2 ̸= 0. This case occurs when

1. x∗i and x†i are the same literal or one or both of them are missing.

2. x∗i is a literal xi or x̄i, and x∗j is missing in S1, and x†j is a literal xj or x̄j , and x†i
is missing in S2, where i ̸= j.

When 2) is true, either S1 or S2 is not a product of PreSOP which contradicts the

hypothesis. When 1) is true, the products of PreSOPs are still possible to occur such

that

S1 = x∗n−1x
∗
n−2 . . . x

∗
m+1x

∗
m,

S2 = x†n−1x
†
n−2 . . . x

†
k+1x

†
k,

when x∗i = x†i for i = n − 1, n − 2, · · · , k and k ≤ m. However, this case is covered in

Case 1 or 2 (S1 ⊆ S2 or S1 ⊇ S2). Thus, the cases when S1 · S2 ̸= 0, S1 ̸≤ S2 and

S1 ̸≥ S2 never occur. !
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In Theorem 6.4, we assume that S1 and S2 are represented by products of PreSOPs.

Note that if the segments of filed are represented by SOPs, then Theorem 6.4 does not

hold.

Example 6.2. Consider the case

S1 = x4x̄2, S2 = x̄3x1

In this case S1 · S2 ̸= 0, S1 ! S2, and S1 " S2. Note that x̄3x1 is not a product of a

PreSOP, since literals for x4 and x2 are missing.

Lemma 6.2. Let F1 and F2 be logic functions. If F1 ⊇ F2, then

F̄1 · F2 ∨ F1 · F̄2 ∨ F1 · F2 = F1.

(a) F1 in a PreSOP requires two
products

(b) F ′
1 and F ′′

1 are represented by
products in a PreSOPs

Figure 6.4: Illustration of intersection of rules represented by PreSOPs

Example 6.3. Fs1 := [4, 15]1, Fd1 := [0, 15], Fs2 := [8, 11] and Fd2 := [0, 3]. Assume

that F1 = Fs1 · Fd1 and F2 = Fs2 · Fd2. In Fig. 6.4, Fs is the source port field that is

represented by the the horizontal axis and Fd is destination port field that is represented

by the vertical axis. By Theorem 6.1, we have

Fs1 = x̄3x2 ∨ x3,

Fd1 = 1,

Fs2 = x3x̄2,

Fd2 = x̄3x̄2.

Table 6.2 represents TCAM for F1 and F2. Note that F1 consists of two segments (which

are F ′
1 and F ′′

1 in Fig. 6.4(b)). In fact, the interval [4, 15] in Fig. 6.4(a) requires two

words in a TCAM i.e., 01** and 1***.
1Fs1 is a logic function, and [4, 5] is an interval. Since any interval can be represented by a logic

function, we use this notation (:=).
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Table 6.2: TCAM representation of Example 6.3

F1 = Fs1 · Fd1 Interval

01**-**** [4, 7] × [0, 15]
1***-**** [8, 15] × [0, 15]

F2 = Fs2 · Fd2 Interval

10**-00** [8, 11] × [0, 3]

(a) F1 ⊇ F2 (b) F1 = F2

(c) F1 ⊆ F2

Figure 6.5: Relations between rules

Lemma 6.3. Consider two rules: F1 = Fs1 · Fd1 and F2 = Fs2 · Fd2. Assume that F1

has a higher priority than F2. When, Fs1 ⊇ Fs2 and Fd1 ⊇ Fd2, the second rule F2 can

be removed without changing the operation of the classification function.

Example 6.4. Check the relation between F1 and F2 in Fig. 6.5(a). We have F1 = Fs1 ·
Fd1 and F2 = Fs2 ·Fd2, where F1 has a higher priority than F2. Note that Fs1 := [0, 15],

Fd1 := [0, 15], Fs2 := [0, 7] and Fd2 := [0, 15]. Note that, Fs1 ⊇ Fs2 and Fd1 ⊇ Fd2, and

F1 = Fs1 · Fd1 = 1,

F2 = Fs2 · Fd2 = x̄7x̄3.

And, F1 ⊇ F2. Thus, F2 can be removed.

Lemma 6.4. Let F1 = Fs1 ·Fd1 and F2 = Fs2 ·Fd2 be the first rule and the second rule,

respectively. Assume that F1 has a higher priority than F2, and F1 and F2 have the
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same actions. When, Fs1 ⊆ Fs2, Fd1 ⊆ Fd2, and no rule avoids F1 from F2, then, the

first rule F1 can be removed without changing the operation of classification function.

Example 6.5. Let Fs1 := [0, 7], Fd1 := [0, 7], Fs2 := [0, 15] and Fd2 := [0, 7]. Assume

that F1 = Fs1 ·Fd1 and F2 = Fs2 ·Fd2 and F1 has a higher priority than F2. Also, assume

that F1 and F2 have the same action. Note that

F1 = Fs1 · Fd1 = x̄7x̄3,

and

F2 = Fs1 · Fd1 = x̄3.

In this case, Fs1 ⊆ Fs2 and Fd1 ⊆ Fd2. Fig. 6.5(c) shows the relation. When the packet

classifier consists of only these two rules, the first rule can be removed without changing

the operation of the classification function.

Note that Lemmas 6.3 and 6.4 also hold for logic functions. However, Theorem 6.4 holds

only for PreSOPs because it requires the special property of PreSOPs.

Subset1D(F1, F2):

/∗ Input: F1 and F2 store the words of a same field (e.g., source port) in the first rule
and the second rule, respectively. ∗/

/∗ Output: Integer inc that represent the relation between F1 and F2: inc = 1 means
F2 ⊆ F1, inc = 2 means F1 ⊆ F2, and inc = 0 means F1 · F2 = 0. ∗/

1: for i = 0; i < n; i++ do
2: if F1[i] == ∗ then

/∗ F2 ⊆ F1. ∗/
3: inc = 1.
4: else if F2[i] == ∗ then

/∗ F1 ⊆ F2. ∗/
5: inc = 2.
6: else if F1[i] ̸= F2[i] then

/∗ F1 · F2 = 0. ∗/
7: inc = 0.
8: end if
9: end for

10: if i == n then
11: inc = 1.
12: end if
13: return inc.
14: Terminate.

Figure 6.6: Pseudocode for checking the relation between fields
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We try to simplify the rules by Theorem 6.4, Lemmas 6.2, 6.3 or 6.4. Subset1D(F1, F2)

is an algorithm to find the relation between fields described in Fig. 6.6. The inputs are

F1 and F2 having fields with n-bit words. The output inc shows the relation:

• inc = 0: F1 · F2 = 0.

• inc = 1: F2 ⊆ F1.

• inc = 2: F1 ⊆ F2.

As shown in Fig. 6.6 line 10 and 11, when F1 = F2, the output is inc = 1.

The algorithm runs in O(n) time. This algorithm is used to find the relation between

rules with multiple fields.

Subset2D(Fs1, Fd1, Fs2, Fd2):

/∗ Input: Fs1, Fd1, Fs2, and Fd2 that store the words of source port (Fs) and destination
port (Fd) fields in the first rule and the second rule, respectively. ∗/

/∗ Output: Integer inc that represent the relation between F1 and F2: inc = 1 means
F2 ⊆ F1, inc = 2 means F1 ⊆ F2, and inc = 0 means F1 ·F2 = 0 where F1 = Fs1 ·Fd1

and F2 = Fs2 · Fd2. ∗/
1: if (Subset(Fs1, Fs2) == 1)·(Subset(Fd1, Fd2) == 1) then

/∗ F2 ⊆ F1. ∗/
2: inc = 1.
3: else
4: if (Subset(Fs1, Fs2) == 2)∨(Subset(Fs1, Fs2) == 1) then
5: if (Subset(Fd1, Fd2) == 1)∨(Subset(Fd1, Fd2) == 2) then

/∗ F1 ⊆ F2. ∗/
6: inc = 2.
7: end if
8: else

/∗ F1 · F2 = 0. ∗/
9: inc = 0.

10: end if
11: end if
12: return inc.
13: Terminate.

Figure 6.7: Pseudocode for checking the relation between rules in multiple fields

By using Subset1D(F1, F2), we can check the relation between rules. In Fig. 6.8,

Subset2D(Fs1, Fd1, Fs2, Fd2) compares F1 and F2 to find the relation between them

where F1 = Fs1 · Fd1 and F1 = Fs2 · Fd2. The return value of this algorithm is inc that

has the same meaning as Subset1D(F1, F2).

The main algorithm is Simplifying(Group[c]) which simplify the rules in a group. In the

group, NUM represents the number of products in PreSOPs of FSP and FDP . Symbol
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Simplifying(Group[c]):

/∗ Input: A group of classification rules, consists of a source address, a destination
address, a protocol, and several source and destination ports. ∗/

/∗ Output: A simplified group of rules. ∗/
1: NUM is the number of source and destination ports in the group in the form of

PreSOPs.
/∗ Checking the relation between rules by Lemma 6.3. ∗/

2: for i = 0; i < NUM − 1; i++ do
3: for j = i+ 1; j < NUM ; j ++ do
4: if Subset2D(Group[c] → FSP [i], Group[c] → FDP [i], Group[c] → FSP [j],

Group[c]→ FDP [j]) == 1 then
5: Remove Group[c]→ FSP [j] and Group[c]→ FDP [j].
6: end if
7: end for
8: end for
9: for i = NUM − 1; i ≥ 1; i−− do

10: for j = i− 1; j ≥ 0; j −− do
/∗ Checking the relation between rules by Lemma 6.4 ∗/

11: SubCase = Subset2D(Group[c] → FSP [i], Group[c] → FDP [i], Group[c] →
FSP [j], Group[c]→ FDP [j]).

12: if SubCase == 1 then
13: Remove Group[c]→ FSP [j] and Group[c]→ FDP [j].
14: else if SubCase == 2 then
15: Remove Group[c]→ FSP [i] and Group[c]→ FDP [i].
16: end if
17: end for
18: end for
19: return Group[c].
20: Terminate.

Figure 6.8: Pseudocode for simplifying rules within a group

→ represents a pointer to the structure Group[c] which contains a word of SA, DA and

PO, and several words of SP and DP. This algorithm contains two iterations. The first

one checks the relations among the rules using Lemma 6.3 (Fig. 6.8 line 2). In this case,

the rules are checked from the top to the bottom and if the upper rule covers the lower

one, we can remove the lower rules as in Lemma 6.3. The second one uses Lemma 6.4 to

check the relations among the rules (Fig. 6.8 line 9). In this case, the rules are checked

from the bottom to the top. If the lower rule covers the upper one and there is no rule

(with different action) that avoids between them, we can remove the upper rule using

Lemma 6.4. The removing processes are described in Fig. 6.8 lines 5, 13, and 15.
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Table 6.3: Performance of the simplification algorithm

Data #Rules PreSOP A Fast Simplification Relative
#Products Time(ms) #Groups #Products Grouping Simplifying Max #Intervals Size(%)

(τp) (τ̂p) Time(ms) Time(ms) in a Group (
τ̂p
τp

)

ACL1 9760 13675 20.576 7250 10953 345.935 6.627 21 80.095
ACL2 9827 19449 22.477 9614 19002 637.304 22.718 60 97.701
ACL3 9323 16794 20.064 4938 12286 271.569 11.179 35 73.157
ACL4 9670 17179 20.756 6315 14276 364.669 9.623 42 83.101
ACL5 6457 8713 12.935 3323 5008 116.605 3.539 45 57.477
FW1 9753 34188 20.459 9586 33429 892.382 72.224 99 97.779
FW2 9865 19100 22.440 9850 19058 565.168 4.039 13 99.921
FW3 9583 25923 19.473 9337 25048 887.412 51.386 143 96.624
FW4 9517 62406 24.045 9071 59778 826.639 205.120 273 95.788
FW5 9513 22553 18.975 9258 21379 814.964 45.480 147 94.794
IPC1 9590 12969 20.107 8090 11663 503.980 3.188 13 89.929
IPC2 10000 10000 20.510 10000 10000 785.166 0.215 1 100.000

6.4 Experimental Results

We applied our program to simplify packet classification rules. Since the real packet

classification data is confidential, we used ClassBench to generate benchmark data for

evaluation [59]. First, we generated the PreSOPs of the classification rules. In Table

6.3, in the column headed by PreSOP shows the number of products and the total CPU

time to generate PreSOPs. To generate PreSOPs for a classification function with nearly

10000 rules, it took about 20 ms. We can directly generate PreSOPs from the binary

representations of intervals [53].

Next, we simplified the classification rules by using algorithms in Section III. First, we

applied Grouping(FSA, FDA, FSP , FDP , FPO). It took longer time: to check every rule

requires O(r2) time, where r is the number of rules in the original PreSOPs. Moreover,

the number of rules that have the same FSA, FDA and FPO are limited (only 15% of

the total rules). On the other hand, Simplifying(Group[c]) takes shorter time. This is

because the number of intervals in a group is relatively small. Thus, it is faster although

Simplifying(Group[c]) has the complexity O(nr2), where n is the number of bits in FSP

or FDP and r is the number of rules in the original PreSOPs. In the case of FW4 rules,

it has the maximum number of intervals in a group with the largest number. Thus, the

execution time for Simplifying(Group[c]) is also the longest (205.12 ms). However, if

we run all the programs (i.e., PreSOP, Grouping, and Simplifying), for a classification

function with nearly 10000 rules, we can simplify all the groups with total time 0.7

second on the average. In these experiments, we used a PC utilizing an 2 GHz Intel

Core i7 with 8 GB memory and 64 bits Windows-OS.

Finally, we counted the number of products in PreSOPs after simplification. As we

can see in Table 6.3, the largest reduction occurred in ACL5 and ACL3 rules: they are
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reduced to 57% and 73% of the original specification, respectively. This is because many

rules were removed by Simplifying algorithm.

We can generate an exact minimum PreSOP for a given interval. However, the bench-

mark functions generated by ClassBench have redundancy. Thus, the PreSOPs gener-

ated for a benchmark function also have redundancy. Thus, we can reduce the number

of rules.

6.5 Simplification of TCAM for Multi-Field Classification

Functions

In this subsection, we present a method to reduce TCAM words for multi-field classi-

fication functions. We show that a multi-field classification function is represented by

head-tail expressions, and they can be reduced by the absorption law.

Property 6.1. A PreSOP for a multi-field classification function cannot be reduced by

the absorption law.

On the other hand, we can generate a simplified head-tail expression for some multi-field

classification functions directly as follows:

Table 6.4: TCAM Words for Example 6.6

Field f1 Field f2 Results

PreSOP PreSOP Products
[0, 2] [0, 10]

10 → 1 1010 → 1 101010 → 1
0* → 1 100* → 1 10100* → 1

0*** → 1 100*** → 1
0*1010 → 1
0*100* → 1
0*0*** → 1
****** → 0

Head-Tail Expr. Head-Tail Expr. Factors
[0, 2] [0, 10]

11 → 0 1011 → 0 ✭✭✭✭✭✭
111011 → 0

** → 1 11** → 0 ✭✭✭✭✭✭
1111** → 0

**** → 1 11**** → 0
**1011 → 0
**11** → 0
****** → 1

Example 6.6. Consider the rule of a two-field classification function F = f1 ·f2, where
f1 and f2 represent intervals [0, 2] = (−1, 3) and [0, 10] = (−1, 11), respectively. In this
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Figure 6.9: Maps for two-field classification rule

case, by Theorem 6.1, their PreSOPs are

f1 = IN0(2 : −1, 3) = LT (2 : 3)

= x1x̄0 ∨ x̄1

f2 = IN0(4 : −1, 11) = LT (4 : 11)

= x3x̄2x1x̄0 ∨ x3x̄2x̄1 ∨ x̄3.
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The intersection of these PreSOPs produce a TCAM with 7 words (a 6-product PreSOP

and a universal product that makes the rest values 0’s), which are shown in the upper

group of rows in Table 6.4. In this case, the action value 1 corresponds to Accept, while

the action value 0 corresponds to Discard. Fig. 6.9(a) shows the map.

However, if we represent these functions by head-tail expressions (Theorem 6.3), we have

f1 = IN0(2 : −1, 3) = LT (2 : 3) (6.1)

= (x1x0) · (1)

f2 = IN0(4 : −1, 11) = LT (4 : 11) (6.2)

= (x3x̄2x1x0) · (x3x2) · (1)

If we obtain the intersection of f1 and f2 in Table 6.4, then we have 6 words, which are

shown by the lower group of rows in Table 6.4.

Furthermore, we can generate the simplified expression directly from Eq. (6.1) and Eq.

(6.2)

F = f1 · f2 = (x5x4) · (x3x̄2x1x0) · (x3x2) · (1).

Note that to perform the intersection operation between f1 and f2, we have to increase

the indexes of variable of factors in f1 by four (the number of variable in f2). The final

TCAM requires only p1 + p2 + 1 = 1 + 2 + 1 = 4 words as shown in Fig. 6.9(b), where

p1 + 1 and p2 + 1 are the number of words for of the head-tail expressions in f1 and f2,

respectively.

Since the application of the absorption law is time-consuming, we generate simplified

expressions directly.

6.6 Number of Factors to Represent a Multi-Field Classi-

fication Rule

In this section, we derive the number of factors to represent a multi-field classification

rule. This formula is useful to estimate the TCAM size for the multi-field classification

functions [52].

Lemma 6.5. Assume that a field function fi is represented with a sum of ui distinct

head-tail expressions, and mi (disjoint) products, and each head-tail expression has pij+1
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factors. Then, the total number of factors for the field function is

τi = mi +
ui∑

j=1

(pij + 1).

Proof: By Lemma 6.1, any logic function can be represented as a sum of interval func-

tions. The number of factors for fi is the sum of the number of products in the PreSOP

and the number of factors of the head-tail expressions. !
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Figure 6.10: Description of two-field classification rule

Example 6.7. Fig. 6.10 shows an example of a two-field classification rule: F = f1 ·f2,
where f1 is represented by a PreSOP with three products, and two head-tail expressions,

while f2 is represented by a PreSOP with two products, and three head-tail expressions.

At the bottom rows of head-tail expressions, there are tail factors representing constants

1’s. However, they are not counted in mi.

Lemma 6.6. Let F =
∧k

i=1 fi be a rule. Then, the number of factors to represent a

k-field classification rule is at most

k∏

i=1

(mi + si),

where mi is the number of the products in a PreSOP for fi, ui is the number of the head-

tail expressions for fi, and si =
∑ui

j=1(pij + 1) for i = 1, 2, · · · , k, and each head-tail

expression has pij + 1 factors.
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6.6.1 Number of Products in a PreSOP to Represent a Multi-Field

Classification Rule

Corollary 6.1. When each field is represented by a PreSOP, the number of products to

represent a rule is at most

k∏

i=1

mi,

where mi is the number of products in the PreSOP to represent the i-th field.

6.6.2 Number of Factors in a Head-Tail Expression to Represent a

Multi-Field Classification Rule

Lemma 6.7. When all the fields are represented by head-tail expressions, the rule can

be represented by a head-tail expression with

(

1 +
k∑

i=1

(
∑ui

j=1 pij)

ui

)

· U

factors, where U =
∏k

i=1 ui, and ui is the number of the head-tail expression for fi.

Proof: We can directly generate simplified head-tail expression for a multi-field classi-

fication rule. Consider the case of k = 2 and F = f1 · f2. Instead of representing the

function by (p11 + 1)(p21 + 1) factors, it can be represented by p11 + p21 + 1 factors as

shown in Example 6.6. When the first field has u1 head-tail expressions and the second

field has u2 head-tail expressions, the total number of factors is

u2∑

i=1

u1∑

j=1

(p1j + p2i + 1) = u2

u1∑

j=1

p1j + u1

u2∑

j=1

p2j + u1u2,

where U = u1u2 is the number of the new head-tail expressions produced by the inter-

section operations. Extension for larger k is straightforward. !

6.6.3 Number of Factors in a PreSOP and Head-Tail Expression to

Represent a Multi-Field Classification Rule

Lemma 6.8. When some fields of a k-field classification rule are represented by Pre-

SOPs and other fields are represented by head-tail expressions, the number of factors
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is

(
t−1∏

i=1

mi

)(
1 +

k∑

i=t

(
∑ui

j=1 pij)

ui

)
· U,

where mi is the number of the products in the PreSOP (i = 1, 2, · · · , k), ui is the number

of head-tail expressions for fi, and U =
∏k

i=t ui.

Proof: It is clear from Lemma 6.6 and Lemma 6.7. !

Example 6.8. Derive numbers of products or factors:

• The maximum number of products in a PreSOP for a k-field classification rule. As

shown in [60],[41], an interval function can be represented with at most 2(n − 1)

products by a PreSOP. Thus, by Lemma 6.6, we have

k∏

i=1

2(n − 1) = (2n− 2)k.

• The maximum number of factors in a head-tail expression for a k-field classification

rule when no simplification rule is applied. The number of factors in a head-tail

expression for an interval function is at most n [51]. Thus, by Lemma 6.6, we

have

k∏

i=1

n = nk.

• The number of factors in a head-tail expression for a k-field classification rule,

when the simplified expression is generated directly, and each field is represented

by a single head-tail expression. In this case, by Lemma 6.7, we have

1 +
k∑

i=1

pi1,

since U =
∏k

i=1 ui = 1.

Example 6.9. Consider the two-field classification function F = f1 · f2, where both f1

and f2 represent the interval (0, 216 − 1). This function is often used to illustrate the

rule expansion in TCAM realizations [17],[27],[60].

Note that fi corresponds to IN0(n : A,B) in Theorem 6.1, where n = 16, A = 0, and

B = 216 − 1. The number of products in the PreSOP for fi is 2(n − 1) = 30, and the

PreSOP for F requires 30× 30 = 900 products.
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The head-tail expressions are

f1 = (x̄n−1x̄n−2 . . . x̄0) · (xn−1xn−2 . . . x0) · (1).

f2 = (ȳn−1ȳn−2 . . . ȳ0) · (yn−1yn−2 . . . y0) · (1).

Thus, both f1 and f2 require only three factors, and the head-tail expression for F requires

3 × 3 = 9 factors if no simplification is applied. When the simplified expression is

generated directly, we have F = (x̄n−1x̄n−2 . . . x̄0) · (xn−1xn−2 . . . x0) · (ȳn−1ȳn−2 . . . ȳ0) ·
(yn−1yn−2 . . . y0) · (1), which requires only five factors.

Example 6.10. Find the number of factors for a two-field rule F = f1 · f2, where each

function is represented by a PreSOP and head-tail expressions. First, by Lemma 6.6, we

have

(m1 + s1)(m2 + s2)

= m1m2 +m1s2 +m2s1 + s1s2,

where si =
∑ui

j=1(pij + 1). By Lemma 6.7 and 6.8, the number of factors is reduced to

m1m2 +m1

u2∑

j=1

(p2j + 1) +m2

u1∑

j=1

(p1j + 1)

+ u2

u1∑

j=1

p1j + u1

u2∑

j=1

p2j + u1u2,

where ui is the number of head-tail expressions for fi.

Example 6.11. Find the number of factors for the function in Example 6.6 when both

fields (f1 and f2) are represented by head-tail expressions. Consider Lemma 6.7, in f1

and f2, we have m1 = 0, m2 = 0, u1 = 1, u2 = 1, p11 = 1 and p21 = 2. Thus, the

number of factors is

2∑

i=1

pi1 = 1 + 3 = 4.

Example 6.12. Consider the rule of the two-field classification function F = f1 · f2,
where f1 and f2 represent (9800, 42112) and (6438, 36296), respectively. Table 6.5 shows

the TCAM representations of f1 and f2, where f1 has 11 factors, while f2 has 12 factors.

They are represented by PreSOPs and head-tail expressions, and have the structures in

Fig. 6.10. Note that the last row of each column has a universal product that defines

the non-covered values as 0’s. The universal product is always attached to the last row

of the TCAM as a default value and it is not involved in the reduction of the TCAM.

If the function is represented by a head-tail expression, then the last row should be the
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universal product with the action value 1. In this case, the action value 1 corresponds

to Accept and the action value 0 corresponds to Discard.

Table 6.5: TCAM Words for Example 6.12

Field f1 Field f2
101001000******* → 1 1000110111000*** → 1
101000********** → 1 1000110111****** → 0
100************* → 1 1000111********* → 0
0010011001001000 → 0 1000************ → 1
0010011001000*** → 0 0001100100100111 → 1
0010011000****** → 0 0001100100100*** → 0
0010011********* → 1 00011001000***** → 0
00100*********** → 0 00011000******** → 0
000************* → 0 00011*********** → 1
0*************** → 1 000************* → 0
**************** → 0 0*************** → 1

**************** → 0

In this case, in f1 and f2, we have m1 = 3, m2 = 2, u1 = 2, and u2 = 3. In the head-tail

expressions for f1, we have p11 = 3 and p12 = 2, while in the head-tail expressions for

f2, we have p21 = 2, p22 = 3, and p23 = 1. Thus, as derived in Example 6.10, the

expression requires

m1m2 +m1

3∑

j=1

(p2j + 1) +m2

2∑

j=1

(p1j + 1)

+ 3
2∑

j=1

p1j + 2
3∑

j=1

p2j + (2)(3)

= (3)(2) + (3)(9) + (2)(7) + (3)(5) + (2)(6) + (2)(3)

= 80

factors. Note that the straightforward method requires 10× 11 = 110 factors.

When both fields are represented by PreSOPs, the binary representations of 9800, 42112,

6438, and 36296 are

a⃗1 = (0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0),

b⃗1 = (1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0),

a⃗2 = (0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0), and

b⃗2 = (1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0),
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respectively. By Theorem 6.1, the numbers of products in PreSOPs for f1 and f2, are

13 and 15, respectively. If we consider Property 5.1, then the number of products for the

two-field classification rule in the PreSOP is 13× 15 = 195.

6.7 Algorithm to Generate Simplified Expressions for Multi-

Field Classification Functions

In this section, we present an algorithm to generate simplified expressions for multi-field

classification functions called MFHT. For one-field and two-field classification functions,

methods using dynamic programming have been proposed in [49].

Fig. 6.11 shows the pseudocode for MFHT for two-field classification function. In

this algorithm, head-tail expressions are detected, and a simplified expression is gen-

erated directly. The inputs are {ListF1, Act1} and {ListF2, Act2}, while the output is

{ListOut,ActOut}. ListF1 and ListF2 consists of the factors (products) of head-tail

expressions (PreSOPs) for f1 and f2, respectively. τ1 and τ2 denote the number of fac-

tors (products) in ListF1 and ListF2, respectively. First, each action in Act1 is checked.

If Act1[i] is 1, then a disjoint or a PreSOP product is detected. Therefore, ListF1[i] and

all the factors in ListF2 are concatenated. In Fig. 6.11, the concatenation operation is

denoted by ◦. Otherwise, a head-tail expression in ListF1[i] is detected. In this case, if

a disjoint/PreSOP product is detected in ListF2[j], then all the factors in head-tail ex-

pression for ListF1[i] are concatenated to ListF2[j]. size(ListF1[i]) denotes the number

of factors for the head-tail expression. Lastly, if in both ListF1[i] and ListF2[j] are de-

tected as the head-tail expressions, then the simplified expression is directly generated.

Fig. 6.11 shows that the time complexity of the algorithm is τ1τ2 steps or O(r2). After

checking ListF1[i], all factors in ListF2 are concatenated with ListF1[i].

Consider the case, where the function has three fields. Let the number of reduced

factors be τ ′1 where the reduced factors are the outputs produced by applying MFHT in

ListF1 and ListF2 resulting ListOut, and ListF3 stores all factors representing f3. In

this case, we can compute the factors of the function by replacing the data as follows:

ListF1 ← ListOut, and ListF2 ← ListF3. Then, for reducing the third factors, it costs

at most τ ′1τ3 steps or O(r2) · r ≈ O(r3). This shows that the complexity of MFHT for

k-field classification functions is O(rk).

Example 6.13. Consider the rule of the two-field classification function F = f1 · f2,
where both f1 and f2 represent (0, 15), and they are defined by 4-bit numbers. From

Example 6.4, we have the head-tail expressions for f1 and f2, and their TCAM repre-

sentations as shown in Table 6.6(a).
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MFHT for two-field classification function:

/∗ Input: {ListF1, Act1} and {ListF2, Act2} that store all the factors and actions for
f1 and f2, respectively. ∗/

/∗ Output: {ListOut, ActOut}, concatenated and reduced factors and actions repre-
sented by head(H)-tail(T) expressions (HTs) and disjoint products with the total
number of factors τ . ∗/

1: Let τ1 be the number of factors in ListF1, and τ2 be the number of factors in ListF2.

2: τ ← 0.
3: for i = 0; i < τ1; i++ do
4: if Act1[i] == 1 then

/∗ ListF1[i] is a disjoint/PreSOP product. ∗/
5: for j = 0; j < τ2; j ++ do
6: ListOut[τ ]← ListF1[i] ◦ ListF2[j].
7: ActOut[τ ]← Act2[j].
8: τ ← τ + 1.
9: end for

10: else
/∗ An HT is detected in ListF1[i]. ∗/

11: for j = 0; j < τ2; j ++ do
12: if Act2[j] == 1 then

/∗ ListF2[j] is a disjoint/PreSOP product. ∗/
13: ListOut[τ ]← (HT of ListF1[i]) ◦ ListF2[j].
14: ActOut[τ ]← Act1[i].
15: τ ← τ + size(ListF1[i]).
16: else

/∗ HTs are detected in ListF1[i] and ListF2[j]. Generate simplified ex-
pression from ListF1[i] and ListF2[j]: ∗/

17: ListOut[τ ]← (Hs of ListF1[i]) ◦ (T of ListF2[j]).
18: ActOut[τ ]← 0.
19: τ ← τ + size(ListF1[i])− 1.
20: ListOut[τ ]← (T of ListF1[i]) ◦ (Hs of ListF2[j]).
21: ActOut[τ ]← 0.
22: τ ← τ + size(ListF2[j])− 1.
23: ListOut[τ ]← (T of ListF1[i]) ◦ (T of ListF2[j]).
24: ActOut[τ ]← 1.
25: τ ← τ + 1.
26: end if
27: end for
28: end if
29: end for
30: Terminate.

Figure 6.11: Pseudocode for MFHT

First, the first action of the factors in f1 (Act1[0]) is checked. Since the value of Act1[0]

is 0 (line 4 of Fig. 6.11), a head-tail expression is detected in f1. Next, the first action

of the factors in f2 (Act2[0]) is checked. A head-tail expression is also detected in f2.
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Table 6.6: TCAM Words for Example 6.13

(a) TCAM for Each Field

HT of f1 HT of f2
Hsa 0000 → 0 Hs 0000 → 0

1111 → 0 1111 → 0
Tb **** → 1 T **** → 1

(b) Simplified TCAM for F

F = f1 · f2
Hs 0000**** → 0

1111**** → 0
****0000 → 0
****1111 → 0

T ******** → 1

aHs: Head Factors
bT: Tail Factor

Thus, we generate the simplified expression directly: 1) concatenate the head factors

(Hs) of f1 and the tail factor (T) of f2, 2) concatenate T of f2 and Hs of f1, and 3)

concatenate T of f1 and f2. We have the simplified TCAM for F with 5 words as shown

in Table 6.6(b).

To assess the effectiveness of MFHT, we also compare MFHT to an algorithm called

single-field head-tail generator (SFHT) [51] where each field is represented by head-tail

expressions and no simplification is performed among the fields. If SFHT is applied

instead of MFHT, F requires 3 × 3 = 9 words. Moreover, if we represent both of the

fields by PreSOPs, from Example 6.1, we have 6 products for each field and the TCAM

for F requires 6× 6 + 1 = 37 words.

6.8 Experimental Results

Since the data for access control list (ACL) and firewall (FW) are confidential in nature,

no benchmark data are available for packet classifications. ClassBench is software to

generate benchmark data for evaluation [59]. First, we generated a five-field random

classification function by ClassBench, where the two fields (source port and destination

port) are represented by intervals. We also developed an algorithm PreSOPG to generate

expression, where each field is PreSOP [53]. Table 6.7 shows that, the SFHT achieved

47.76% reduction, while MFHT achieved 57.85% reduction over PreSOPG for random

rules.

Table 6.7: Number of TCAM Words for Random Rules

#Rules PreSOPG SFHT MFHT

50000 9791417 (100%) 5114996 (52.24%) 4127403 (42.15%)
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Next, we generated five-field ACL and FW functions shown in Table 6.8, by ClassBench.

In ACL functions, the source port has only the trivial interval [0, 65535] (which has the

size of the interval C = 65534). Because the source port field can be represented without

a literal, the MFHT produced the same solutions as SFHT. In FW functions where both

source and destination ports have non-trivial intervals, MFHT produces solutions with

fewer factors than SFHT. MFHT achieved 52% reduction for ACL and FW rules over

PreSOPG.

In these experiments, we generated 50000 rules to see the run time of the algorithms. In

practice, the numbers of rules are between 100 until 41000 rules depend on applications

[26, 49].

Table 6.8: Number of TCAM Words for ACL and FW Rules

Data #Rules #DISa #DIPb PreSOPG SFHT MFHT
Words Words Words

ACL1 49910 1 35 68426 63880 63880
ACL2 48461 1 3 98139 55651 55651
ACL3 49894 1 38 95577 63585 63585
ACL4 49633 1 52 89214 62015 62015
ACL5 39039 1 5 51825 43797 43797
FW1 48442 3 3 167002 59766 56588
FW2 49313 2 1 96723 58795 58795
FW3 47275 3 3 136045 55653 53234
FW4 46774 6 6 313330 84038 79684
FW5 46847 3 4 110542 54074 52343

Total 1226823 601254 589572
Ratio 100% 49% 48.05%

aDIS: Distinct Intervals in Source Port (C > 1).
bDIP: Distinct Intervals in Dest. Port (C > 1).
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Figure 6.12: Comparison of execution times for PreSOPG, SFHT, and MFHT in
millisecond

We also compared the execution times of PreSOPG, SFHT, and MFHT for classification

functions with r = 10000 to 50000 ACL and FW rules. In this case, we generated rules

by setting the variable <number of rules> to 10000, 25000, and 50000 in the ClassBench
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program. Fig. 6.12 shows CPU time in millisecond. This shows that the execution times

of SFHT and MFHT are close. But, when the number of rules increases, the CPU time

for MFHT grows faster than SFHT because MFHT generates simplified expression for

multi-field classification functions (O(r2)). Moreover, the average execution time to

simplify a single rule for MFHT is nearly 1 microsecond. In the experiments, we used a

2 GHz Intel Core i7 with 8 GB memory and 64 bits OS-X.
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Figure 6.13: Comparison of execution times for MFHT and Ref. [49] in millisecond

Lastly, we compared the execution time of MFHT (as in Fig. 6.12) and the execution

time of dynamic programming algorithm represented in [49]. The method [49] using

dynamic programming produced expressions with the same number of words as MFHT.

The algorithm [49] runs in O(rwn2) worst case time, where r is the number of rules, w

is the number of actions, and n is the number of bits. Furthermore, in Fig. 6.13, we can

see that MFHT is much faster (100 times) than the algorithm in [49].

6.9 Conclusion

In this chapter, first, we showed a fast method to simplify rules for packet classifica-

tion in TCAMs. We partitioned rules into groups so that each group has the same

source address, destination address and protocol. After that, we simplified rules by

removing redundant rules. We have developed a computer program to simplify rules.

Experimental results show that this method reduces the size of rules up to 57% of the

original specification for ACL5 rules, 73% for ACL3 rules, and 87% for overall rules.

This algorithm is useful to reduce TCAMs for packet classification.

Second, we presented a method to reduce the number of factors in a head-tail expression

for multi-field classification functions. We derived the head-tail expression for a rule of a
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multi-field classification function. Furthermore, we presented an algorithm to generate

simplified expressions for multi-field classification functions. Experimental results show

that MFHT [54, 56] achieved 58% reduction over PreSOPG for random rules, and 52%

reduction for ACL and FW rules. Moreover, MFHT is more than 100 times faster than

that of the reference [49].



Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we discussed about prefix sum-of-products expressions (PreSOPs), head-

tail expressions and their implementation in classification functions.

First, we considered PreSOPs for interval functions and we derived minimum PreSOPs

and the numbers of products in the minimum PreSOP (τp) to represent an interval

functions. Then, we derived the formula Ψ(n,τ p) for the number of interval functions

that require τp products in PreSOPs. And, we showed by experiments that the average

number of products in MSOPs is approximated by τ = log2 (B −A) where A and B

are the endpoints of the intervals. We also showed that the average number of products

µ(n) needed to represent interval functions of an n-bit field by PreSOPs is µ(n) ≈ n−2,

with an approximate variance σ2(n) ≈ n
2 + 1. We showed by numerical computations

that more than 99.9% of the interval functions of an n-bit field can be represented by

PreSOPs with ⌈32n− 1⌉ products, when n > 12. These results are useful for estimating

the TCAM size for packet classifications.

Second, we proposed a new method to represent interval functions called head-tail ex-

pressions. We derived the head-tail expressions for greater-than (GT (n : A)) and less-

than (LT (n : B)) functions. We found that when there is a special property in the

binary representation of A for GT (n : A) function or in the binary representation of B

for LT (n : B) function, we can represent the interval functions efficiently (i.e., with a

fewer factors). We prove that an HT requires at most n factors to represent any inter-

val function IN0(n : A,B). By a heuristic algorithm, we obtained average numbers of

factors to represent the interval functions in HTs for up to n = 16. And, we conjec-

ture that, for sufficiently large n, the average number of factors by HTs to represent

90
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n-variable interval functions is 2
3n−

5
9 . We also show that, for n ≥ 10, HTs generated by

our heuristic program require at least 20% fewer factors than MSOPs, on the average.

Third, we derived head-tail expressions to simplify TCAMs for single-field classification

functions. We developed a fast prefix sum-of-product generator. And, we proposed

DHT to produce head-tail expressions directly from the endpoints (A,B). We used

ClassBench to generate benchmark functions of packet classification. And we generate

the simplified packet classifier by using DHT. Experimental results showed that DHT is

6 × 105 times faster and produces smaller TCAMs than ESPRESSO-EXACT. DHT is

useful for minimizing the TCAM size in packet classification.

Finally, we presented methods to simplify TCAMs for multi-field classification funci-

tions. First, we showed a quick method to simplify rules for packet classification. We

partitioned rules into groups so that each group has the same source address, destina-

tion address and protocol. After that, we simplified rules by removing redundant rules.

We have developed a computer program to simplify rules. Experimental results show

that this method reduces the size of rules up to 57% of the original specification for

ACL5 rules, 73% for ACL3 filter, and 87% for overall rules. Second, we use head-tail

expressions to reduce TCAM size for multi-field classification functions. We derived the

head-tail expression for a rule of a multi-field classification function. Furthermore, we

presented an algorithm to generate simplified expressions for multi-field classification

functions. Experimental results show that MFHT achieved 58% reduction over Pre-

SOPG for random rules, and 52% reduction for ACL and FW rules. Moreover, MFHT

is fast. These methods are useful to reduce TCAMs for packet classification.

7.2 Future Work

There are still many open problems in this area of logic minimization, especially for

internet applications, which are interesting to explore. The first is finding the optimal

head-tail expressions for arbitrary functions: If we come up with a huge set of rules,

how to find the optimal (i.e., the smallest) TCAM represented by HTs and prove their

optimality are still big challanges. And, the idea, such as combining the fastest and the

most efficient algorithms in packet classification into a one comprehensive system (i.e.,

system-on-chip (SoC)) that is stored in devices, is also a promising research. Moreover,

in these days, the network connection speed already reaches the frequency of GHz.

Thus, parallel computing may be a solution along with a faster TCAM technology for

the next generation high-speed packet classification. Finally, the application of HTs for

LSI-CAD, such as logic sythesis in FPGA, since our research results show that HTs
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require fewer factors than MSOPs, is another challange to reduce the sizes of a circuits

in FPGA blocks.
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