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Abstract

The trunsored model, which is a new incomplete data model regarded as a unified

model of the censored and truncated models in lifetime analysis, can not only estimate

the ratio of the fragile population to the mixed fragile and durable populations or the

cured and fatal mixed populations, but also test a hypothesis that the ratio is equal to a

prescribed value with ease.

Since SARS showed a severe case fatality ratio, our concern is to know such a case

fatality ratio as soon as possible after a similar outbreak begins. The epidemiological

determinants of spread of SARS can be dealt with as the probabilistic growth curve models,

and the parameter estimation procedure for the probabilistic growth curve models may

similarly be treated as the lifetime analysis. Thus, we try to do the parameter estimation

to the SARS cases for the infected cases, fatal cases, and cured cases here, as we usually do

it in the lifetime analysis. Using the truncated data models to the infected and fatal cases

with some censoring time, we may estimate the total (or final) numbers of the patients and

deaths, and the case fatality ratio may be estimated by these two numbers. We may also

estimate the case fatality ratio using the numbers of the patients and recoveries, but this

estimate differs from that using the numbers of the patients and deaths, especially when

the censoring time is located at early stages.

To circumvent this inconsistency, we propose a mixed trunsored model, an extension
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of the trunsored model, which can use the data of the patients, deaths, and recoveries

simultaneously. The estimate of the case fatality ratio and its confidence interval are

easily obtained in a numerical sense.

This paper mainly treats the case in Hong Kong. The estimated epidemiological

determinants of spread of SARS, fitted to the infected, fatal, and cured cases in Hong

Kong, could be the logistic distribution function among the logistic, lognormal, gamma,

and Weibull models. Using the proposed method, it would be appropriate that the SARS

case fatality ratio is roughly estimated to be 17% in Hong Kong. Worldwide, it is roughly

estimated to be about 12-18%, if we consider the safety side without the Chinese case.

Unlike the questionably small confidence intervals for the case fatality ratio using the

truncated models, the case fatality ratio in the proposed model provides a reasonable

confidence interval.

Keywords: truncated data; grouped data; generalized logistic distribution; case fatality

rate; case fatality ratio; mortality rate; case survival ratio; bootstrap.

1. Introduction

A. Motivation and Objectives

WHO reports Severe Acute Respiratory Syndrome (SARS) outbreak as shown in

Appendix (see also [42, 43]). During almost a month from 21 February the SARS virus

spread without isolation of probable patients. Taking into account of the short incubation

period which is estimated as five to eight days (see [22]), it appears that the virus raged

for more than a month without prevention. The number of probable patients appeared to

grow exponentially in this period, and then the control of the human-to-human chain of

transmission of the disease suppressed the growth rate of spreading. It may be considered

that only one seed made a typical epidemic growth curve of the disease spread. Our

concern is first what the appropriate probability distribution for the curve is; the logistic,

the lognormal, the gamma, or the Weibull distribution may be fitted to the data provided

by WHO ([41]).

As SARS showed a severe case fatality ratio (abbreviated CFR here like in [20], but

other terms such as case fatality rate in reference [7, 35, 36] or mortality rate in reference
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[40] are also used), our second concern is to know the ratio as soon as possible after the

outbreak began. Since WHO opens the numbers of probable cases and the fatal cases

to the public day by day, we can estimate the CFR by some censoring time T using the

conditional likelihoods for both the probable and fatal cases; this approach is considered

to be the truncated model approach. However, WHO, in addition to these two data cases,

gave us the recovery (or cured) cases, which would be the fruitful information for the

parameter estimation of the underlying probability distributions; we can also estimate the

CFR using the probable and cured cases. We propose here a new estimation method for

the parameters of the underlying distributions and the CFR using the three data sets of

probable, fatal, and cured cases together. The trunsored model approach (Hirose [17, 18])

can do this, but the traditional truncated model approach cannot.

The objective of the introduction of the trunsored model was to do hypothesis tests

easily (Hirose [17, 18]). This purpose may also be realized in our situation that we use the

three data sets together. However, we do not go deeply into such a direction in this paper;

we introduce the estimation methods of the underlying probability distribution parameters

and of the CFR.

B. Statistical Background

In some lifetime estimation problems, short-term survivors and long-term survivors are

mixed: for example, Boag [3], Farewell [10], and Goldman [12] discussed the proportion of

patients cured by a particular treatment; Anscombe [1] treated market penetration; Maltz

and McCleary [26], and Steinhurst [31] discussed recidivism; Meeker [27] and Hirose [17,

18] applied the model to integrated circuit reliability. Maller and Zhou [25], Zhou and

Maller [37], Sun and Zhou [32], Vu, Maller, and Zhou [34], Peng, Dear, and Carriere [29]

discussed the model as long-term survivors. Tsodikov, Ibrahim, and Yakovlev recently

review the cure rates [33]. In such cases, r events within T are observed from n samples,

but the ratio, pm, of the long-term survivors to the mixed populations is unknown. If

n is unknown, the truncated model (e.g., Johnson, Kotz and Balakrishnan [21]; Meeker

and Escobar [28]; Wallace, Blischke and Murthy [39]; and Klein and Moeschberger [23])

could be applied. However, the information n may be useful in our situation; one of the

advantages to adopt this kind of model is described as the application of the likelihood

ratio test in Hirose [17, 18].

The epidemiological determinants of spread of SARS can be dealt with as the prob-

abilistic growth curve models [24], and the parameter estimation procedure for the prob-

3



abilistic growth curve models may similarly be treated as the lifetime analysis. Thus, we

try to do the parameter estimation to the SARS cases for the infected cases, fatal cases,

and cured cases here, as we usually do it in the lifetime analysis. To estimate the CFR

caused by SARS, the truncated model approach using the infected and fatal growth curves

may be fine. However, the recovery rate by the same approach using the infected and

cured growth curves may not be consistent with the CFR obtained by using the infected

and fatal cases. Thus, the truncated approach cannot have such consistency. A new ap-

proach proposed here, the mixed trunsored model, can have, however. Donnelly et al. [7]

computed the CFR with the admission-to-death and admission-to-discharge distributions,

but the proposed method shown here used the infected case distribution in addition.

2. Trunsored model

2.1 Single Trunsored Model

We define a cumulative probability distribution function, H(t;ψ), which is a linear

combination of F (t; θ) and G(t;φ) given by

H(t;ψ) = sF (t; θ) + (1− s)G(t;φ),

(t ≥ 0, −∞ < s <∞),
(1)

with a combination parameter s, and the corresponding pdf, h(t;ψ), for H is also defined

h(t;ψ) =sf(t; θ) + (1− s)g(t;φ). (2)

Then, the likelihood function for the combined model can be expressed in the form

L(ψ) = {1−H(T ;ψ)}n−r ·
r∏

i=1

h(ti;ψ), (3)

where ti denotes the observed times that events occurred. If we assume that the censoring

time, T , is smaller than the left endpoint, T0, of G(t) such that

G(T ) = 0, g(ti) = 0, (ti < T < T0, i = 1, · · · , n), (4)

i.e., G implies the long-term survivors, then L(ψ) → Lts(θ, s), where

Lts(θ, s) = {1− sF (T ; θ)}n−r ·
r∏

i=1

{sf(ti; θ)}. (5)
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This is the likelihood for the trunsored model in Hirose [17, 18].

For the sake of comparison, we define two additional likelihood functions for the

censored model and the truncated model as

Lc(θ) = {1− F (T ; θ)}n−r ·
r∏

i=1

f(ti; θ), (6)

Lt(θ) =
r∏

i=1

{f(ti; θ)/F (T ; θ)}. (7)

2.2 Mixed Trunsored Model

We consider cumulative probability distribution functions, Fj (j = 1, · · · , J), with

trunsored likelihoods such that

Lj
ts(θj , sj) = {1− sjFj(T ; θj)}nj−rj ·

rj∏

i=1

{sjfj(ti; θj)}, (8)

under the restriction that

ζ(s1, · · · , sJ) = 0, (9)

where nj (j = 1, · · · , J) are the number of samples, and rj (j = 1, · · · , J) are the number

of observed events. If restriction (9) is not imposed, the likelihood equations in (8) can

be solved independently; with the restriction, however, we need to solve the likelihood

equations simultaneously. In SARS applications, F1, F2, and F3 may correspond to the

infected case, fatal case, and cured case growth curves, respectively; restriction (9) implies

that the probable cases are divided into exactly two categories: the fatal and the recovered

cases as in (10)

s1 = s2 + s3. (10)

Then, we can estimate the parameters, sj and θj , by maximizing the likelihood function

for the mixed trunsored model,

Lmts(θ, s) =
J∏

j=1

Lj
ts(θj , sj). (11)

If the time of event is not observed and the number of events in some period, e.g.,

from Ti to Ti+1, are observed instead, we consider the grouped data model such that

Lts(θ, s) = {1− sF (T ; θ)}n−r ·
k∏

i=1

[s{F (Ti+1)− F (Ti)}]. (12)
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In SARS case, Ti to Ti+1 may be one day, two days, or three days.

3. Probability distributions

We consider four typical probability distribution models for the growth curves: the

generalized logistic distribution (GL) [44], the extended lognormal distribution (ELN)

[15], the extended gamma distribution (EGM) [14], and the generalized extreme-value

distribution (GEV) [13], to allow the negative and positive skewness in the distribution

functions [16]; the number of parameters are three including the location parameter.

The logistic distribution with two parameter is often used as the growth model because

this distribution is derived from the differential equation for the biological models; the

generalized logistic curve [44], also known as Richards’ curve [30], is a widely-used and

flexible function for growth modeling by including the shape parameter in the model. The

probability density function and the cumulative distribution function for GL are expressed

by,

fGL(x;σ, µ, β) =
β exp(−z)

σ{1 + exp(−z)}β+1
, (13)

FGL(x;σ, µ, β) =
1

{1 + exp(−z)}β
,

(z = (x− µ)/σ, −∞ < x <∞, −∞ < µ <∞, σ > 0, β > 0).
(14)

This distribution is negatively skewed when β < 1, and is positively skewed when β > 1.

It is symmetric when β = 1, as is known to two parameter logistic distribution.

As mentioned in section 1, probabilistic growth curves of the spread of SARS fitted

to the infected cases, fatal cases, and cured cases can similarly be treated to the lifetime

distributions, we deal with three typical probability distribution models used in the lifetime

analysis. The density functions for ELN, EGM, and GEV are expressed by,

fELN (x;σ, µ, λ) =
1√

2πσ{1 + λz} exp
(
− [log{1 + λz}]2

2λ2

)
, (15)

fEGM (x;σ, µ, λ) =
1

σ|λ|Γ(λ−2)

(
1 + λz

λ2

)λ−2−1

exp
{
−

(
1 + λz

λ2

)}
, (16)

fGEV (x;σ, µ, λ) =
1
σ

(
1 + λz

)1/λ−1 exp
{
−(

1 + λz
)1/λ

}
, (17)

with

σ > 0, λ 6= 0, 1 + λz > 0, z =
x− µ

σ
. (18)
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These three distribution models are the extension models from the log-normal (LN), gamma

(GM), and Weibull (WB) distributions, respectively, with densities,

fLN (x;α, τ, γ) =
1√

2π(x− α)τ
exp

[
−
{log(x−α

γ )}2
2τ2

]
,

(x > α, τ > 0, γ > 0)

(19)

fGM (x;α, β, γ) =
1

γΓ(β)

(
x− α

γ

)β−1

exp
{
−

(
x− α

γ

)}
,

(x ≥ α, β > 0, γ > 0),
(20)

fWB(x; η, β, γ) =
β

η

(
x− γ

η

)β−1

exp

{
−

(
x− γ

η

)β
}
,

(x ≥ γ, η > 0, β > 0).

(21)

4. Applications to SARS

4.1 WHO Data

WHO opened the daily number of probable cases from March 17, 2003, to July 11,

2003, to the public [41]; On September 26, 2003, summary of probable SARS cases with

onset of illness from November 1, 2002, to July 31, 2003, is additionally opened. As

mentioned earlier, the outbreak began by only one seed in Hong Kong; the growth curves

for infected cases, fatal cases, and cured cases in Hong Kong are smooth and natural

comparing to those in other districts such as China, Taiwan and Canada; for example in

Canada, two successive asynchronous outbreaks occurred. Here, we deal with a rather

simple case such as the case in Hong Kong as a primary analysis. The cumulative numbers

of infected patients, deaths, and recovered persons from March 17, 2003, to July 11, 2003,

are shown in Table 1.

4.2 Appropriate Distribution Model using the Truncated Model

To find the most appropriate probability distribution model in the four models intro-

duced previously, we first fit the four models to SARS data for the infected, fatal, and

cured cases. Using the truncated model of (7) with censoring time on July 11, 2003, the

maximum values of the log-likelihood functions are obtained as shown in Table 2, result-

ing that the generalized logistic model has the largest likelihood values for the infected,
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fatal, and cured cases. The difference of the likelihood values between the log-normal and

the gamma is not so large; however, the difference between the generalized logistic and

the log-normal and that between the generalized logistic and the Weibull are significantly

large. We use the generalized logistic model from now on.

The estimated cumulative probability distribution functions of the generalized logis-

tic distribution and the empirical distribution functions for the patients, fatal, and cured

cases are shown in Figure 1; circles, triangles, and squares in the figure express the em-

pirical functions for patients, fatal, and cured cases, respectively, and the dashed lines are

estimated distribution functions. It appears that the shapes of the three probability dis-

tribution functions are almost the same; only the location parameter seems to be different.

We therefore may assume that the shape and scale parameters for these three distribu-

tions are the same; under such an assumption, the maximum likelihood estimates for the

parameters in (13) and (14) are σ̂ = 12.559, λ̂ = 3.2697, µ̂1 = 3.9973 (infected case),

µ̂2 = 25.316 (fatal case), µ̂3 = 25.343 (cured case), and the corresponding log-likelihood

value is −13532.9, which is smaller than the value of sum of the three independently ob-

tained maximum log-likelihood values, −13515.0, for the patients, fatal, and cured cases,

where time t = 0 is set to the date on March 16, 2003; see Table 2. Here, we use the

notation of θj = (σ, λ, µj)T .

(INSERT TABLE 1, 2 AND FIGURE 1 ABOUT HERE.)

4.3 Case Fatality Ratio by the Truncated Model Approach

The observed numbers of the patients and deaths are considered to be grouped (day

by day) and right truncated. By computing both the total expected numbers of patients

and deaths, it seems that we can estimate the CFR as shown below, but the estimate

seems to be questionable.

(a) Inconsistency of the estimate

Using the truncated model likelihood to the infected patients, we can estimate the

total number of patients, m1, in the future. If the estimated parameter is θ̂1, then m̂1 can

be estimated by

m̂1 = r1/F1(T1; θ̂1), (22)

where, T1 is the censoring time. Similarly, the total number of fatal cases, m̂2, and the total

number of cured cases, m̂3, are also calculated easily, if parameters, θ̂2 and θ̂3, are obtained.
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The CFR, pf , and the case survival ratio (abbreviated CSR here, ps, are estimated by

p̂f = m̂2/m̂1, p̂s = m̂3/m̂1, (23)

where the CSR is defined by the number of survivors divided by the number of patients in

this paper.

As mentioned above, the best fit probability distribution model is the generalized

logistic distribution, thus we may obtain the CFR by applying the truncated models with

the generalized logistic distribution to the infected and fatal cases. When we set the

censoring time, T = T1 = T2, on July 11, 2003, and we suppose that the scale and

shape parameters are the same for patients, deaths, and recoveries, then we can obtain

the estimates, m̂1 = 1, 755.71 and m̂2 = 298.66; thus, the CFR, p̂f , becomes 17.01%. If

we use the estimate of the total number of cured cases, m̂3 = 1, 436.17, then the CSR

p̂s = 81.80% (i.e., p̂f = 18.20%) is obtained. Here, these two ratios under the truncated

model approach are obtained by solving the simultaneous likelihood equations,

∂ logLt(θj)
∂θj

= 0, (j = 1, 2, 3), (24)

where θj = (σ, λ, µj)T because we supposed that σj = σ, λj = λ, (j = 1, 2, 3); the number

of unknown parameters are 5 (σ, λ, µ1, µ2, µ3). However, the sum of the CFR, obtained by

using the fatal and infected cases, and the CSR, obtained by using the cured and infected

cases, is not equal to 1. If we set the censoring time on May 25, 2003, this discrepancy

becomes markedly large; we obtain m̂1 = 1, 740.23, m̂2 = 278.90, and m̂3 = 1, 346.46, then

the estimated CFR and the CSR are, p̂f = 16.03% and p̂s = 77.37%. It would be crucial

to get rid of this inconsistency even in earlier stages, i.e., the censoring time is earlier.

(b) Paradox of the error

Using the bootstrap method [8, 9] with 1,000 resampling, we can obtain the confidence

interval for the CFR. When we set the censoring time on May 25, 2003, the 95% confidence

interval for the CFR is computed as 13.60% ≤ pf ≤ 17.40%. This value seems to be

acceptable. If the censoring time is set to the right far enough, e.g., on July 11, 2003,

however, the estimated number of patients, m̂1 = 1, 755.71, and the estimated number

of deaths, m̂2 = 298.66, become very close to the observed numbers of patients, 1755,

and deaths, 298, by that time; in other resampling cases, the results are much the same.

Then,the 95% confidence interval for the CFR is computed as 16.90% ≤ pf ≤ 17.09%
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(heavily skewed as shown in Figure 2). Such very small confidence intervals are also

reported elsewhere ([6]). After the outbreaks are completely ceased, e.g., based on data as

of the December 31, 2003, the CFR might be computed with extremely small variance, if we

use the conditional likelihood. For example, in Hong Kong, the CFR would become to be

just 299/1, 755(= 17.0370370...%) if no new patients, deaths, and recoveries were observed

at all after December 31, 2003; similarly in Taiwan, just 37/346(= 10.69...%) is expected;

in Singapore, just 33/238(= 13.86...%); in Canada, just 43/251(= 17.13...%). However,

the number of deaths in Hong Kong, for example, may differ from that in other situations;

for example, the number of deaths 299 could be 301 by chance; then, the CFR would be

changed to some other value (301/1, 755(= 17.15099715...% > 17.09%)). Assuming that

the CFR of SARS is supposed to be some constant value, then the number of deaths would

be varied by chance. The CFRs in various districts could be fluctuated, but they would

be covered by some interval, say [0.1, 0.2]. This is the reason why I think that the very

small confidence intervals obtained by using the truncated model are paradoxical.

(INSERT FIGURE 2 ABOUT HERE.)

4.4 Mixed Trunsored Model Approach and the Case Fatality Ratio

Based on the truncated model, inconsistent estimates for the CFR and paradoxical

confidence intervals are computed. To circumvent these flaws, we next use the proposed

method, the mixed trunsored model.

All the patients are divided exactly into two categories: fatal cases and cured cases.

This means that pf + ps = 1. This restriction cannot be imposed to the truncated model

approach straightforwardly. The trunsored model approach using (8-12), however, can do

this; we only need to impose the restriction that s3 = s1 − s2. The CFR and the CSR are

calculated by

pf = s2/s1, ps = s3/s1 = 1− pf . (25)

Setting nj (j = 1, 2, 3) to some numbers, e.g., the actual population in Hong Kong (this

is about 6,810,000 persons in 2003 [4]), the estimated parameters, under the assumption

that σj = σ (j = 1, 2, 3) and λj = λ (j = 1, 2, 3), are σ̂ = 12.560, λ̂ = 3.2708, µ̂1 = 3.9911,

µ̂2 = 25.310, µ̂3 = 25.337, ŝ1 = 0.21147×10−3, ŝ2 = 0.44223×10−4, and the corresponding

log-likelihood value is −46, 577 when we set the censoring time on July 11, 2003; thus,

p̂f = 1− p̂s = 17.30% is obtained. If we set the censoring time on May 25, 2003, the CFR
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is computed as p̂f = 17.16%, which is almost the same value as that when the censoring

time is July 11, 2003. The values of the estimates, ŝj (j = 1, 2, 3), are not important by

themselves; they change their values by setting nj (j = 1, 2, 3) to other values, but p̂f and

p̂s are hardly affected by these values.

The CFR under the mixed trunsored model approach with 7 (σ, λ, µ1, µ2, µ3, s1,

s2) unknown parameters are shown in Figure 3 when we vary the censoring time T . The

estimated value of the CFR at time t in the figure means that the estimate is obtained

under the assumption that the censoring time T is equal to t. In the truncated model,

the CFRs are obtained by two estimates: one is by using the numbers of the patients and

deaths, and the other is by using the the numbers of the patients and recoveries. In Figure

3, these two CFRs under the truncated model approach are also shown. We can see that

the estimated CFRs in the mixed trunsored model keep almost a constant value in a wide

range of censoring time, while the CFRs in the truncated model do not, as mentioned

above.

(INSERT FIGURE 3 ABOUT HERE.)

The 95% confidence intervals for the estimates of the CFR using the bootstrap method

are computed as 15.51% ≤ pf ≤ 19.13% and 13.73% ≤ pf ≤ 19.04% when the censoring

time is set to on July 11, 2003, and on May 25, 2003, respectively. The corresponding stan-

dard deviations, SD(p̂f ), are 0.92% and 1.35%, respectively. These values are considered

to be reasonable and acceptable; see the next section. The histogram of the bootstrapped

estimates for the CFR, when the censoring time is on July 11, 2003, is shown in Figure

4. The frequency distributions of the bootstrapped estimates for the CFRs at various

censoring times are shown in Figure 5. We can see that the confidence interval of the CFR

at earlier estimating stage, e.g., 70th day from March 17, 2003, i.e., May 25, 2003, is wider

than that at the final stage, but they are not so different from each other.

(INSERT FIGURES 4 AND 5 ABOUT HERE.)

5. Discussion

5.1 Robustness against the Amount of nj

The confidence intervals for the CFR are obtained under the assumption that nj =

6, 810, 000 (j = 1, 2, 3); other values of nj (j = 1, 2, 3) will provide different confidence
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intervals, but the confidence intervals are not affected much as long as the values of nj

(j = 1, 2, 3) are not so small. For example, using nj = 681, 000 (j = 1, 2, 3), the 95%

confidence intervals for the CFR are computed as 15.52% ≤ pf ≤ 19.11% and 13.64% ≤
pf ≤ 19.20% when the censoring time is set to on July 11, 2003, and on May 25, 2003,

respectively.

5.2 Approximate Standard Deviation of the Case Fatality Ratio

The variance of a ratio X/Y is approximately obtained by

V ar
(X
Y

)
≈

(E(X)
E(Y )

)2

×
(V ar(X)
E(X)2

− 2
Cov(X,Y )
E(X)E(Y )

+
V ar(Y )
E(Y )2

)
, (26)

where X and Y are random variables [2]. We assume that X = s2 and Y = s1. When

the censoring time is late enough, then E(X) and E(Y ) become s2 and s1, and V ar(X)

and V ar(Y ) become approximately s2(1− s2)/n2 and s1(1− s1)/n1. Using Cov(X,Y ) =

ρ
√
V ar(X)V ar(Y ), (26) is approximately reduced to

V ar(p̂f ) ≈ p̂2
f ×

( 1
n̂p

− 2ρ√
n̂pn̂d

+
1
n̂d

)
, (27)

where n̂p and n̂d are the estimates for the numbers of patients and deaths; ρ denotes the

correlation coefficient, Corr(X,Y ), between X and Y . Since n̂p and n̂d are estimated

as 1, 741.3 and 301.16, the approximate standard deviation of the CFR, SD(p̂f ), varies

0.00582 ≤ SD(p̂f ) ≤ 0.01079 according to the value of the correlation coefficient, 0 ≤ ρ ≤
1, which is consistent to the standard deviation obtained by the bootstrap in the mixed

trunsored model.

Using the number of patients, deaths, and recoveries by the date of the December 31,

2003 in various infected districts, approximate CFRs and their 95% confidence intervals

are computed by (27); they are shown in Table 3 and Figure 6. In the figure, the solid

and dashed lines express the 95% confidence intervals when ρ = 0 and when ρ = 1,

respectively. A very rough interval for the CFR, [12, 18]%, includes points in the 95%

confidence intervals of Canada, Hong Kong, Taiwan, Singapore, and Viet Nam, but does

not include points in the 95% confidence interval of China. According to [41], 325 cases

have been discarded in Taiwan since 11 July, 2003 because Laboratory information was

insufficient or incomplete for 135 discarded cases, of which 101 died. World-wide, the CFR

of about 9.6% (including Chinese cases) has been announced by media. However, this
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estimate should be treated cautiously; this is caused mainly by the Chinese CFR, and this

value, about 6.6%, is very different from those in other countries. There would be reasons

for such a very different value of the CFR. One reason would be that Chinese infected

cases were counted circumspectly. However, a noticeable reference is also seen (see [5]),

in which Chinese medicine is found to improve the case survival rate in the treatment of

SARS. In any case, it would be appropriate that the SARS CFR is estimated without the

Chinese case if we consider the safety side. In such a case, it is roughly estimated to be

about 12-18%, worldwide.

(INSERT TABLE 3 AND FIGURE 6 ABOUT HERE.)

6. Concluding remarks

The epidemiological determinants of spread of SARS can be dealt with as the proba-

bilistic growth curve models, and the parameter estimation procedure for the probabilistic

growth curve models may similarly be treated as the lifetime analysis. Thus, we try to do

the parameter estimation to the SARS cases for the infected cases, fatal cases, and cured

cases, here, as we usually do it in the lifetime analysis. The truncated data model approach

using the infected and fatal cases can estimate the case fatality ratio of the disease, but

it also estimates the case fatality ratio using the numbers of the patients and recoveries;

these estimates differ from each other in early censoring time stage. To circumvent this

inconsistency, and to obtain reasonable estimates, the mixed trunsored model, which is an

extension of the censored and truncated unified model, is found to be useful in estimating

the case fatality ratio of SARS, when we use the data of the patients, deaths, and recov-

eries together. Using the proposed method, it would be appropriate that the SARS case

fatality ratio is roughly estimated to be about 12-18% worldwide, if we consider the safety

side without the Chinese case. Unlike the questionably small confidence intervals for the

case fatality ratio using the truncated models, the case fatality ratio in the proposed model

provides a reasonable confidence interval.
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Appendix

WHO (2003) reports SARS outbreak as follows (see [42, 43]):

First recognized as a global threat in mid-March 2003, SARS was successfully con-

tained in less than four months. On 5 July 2003, WHO reported that the last human chain
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of transmission of SARS had been broken. While much has been learned about this syn-

drome since March 2003, including its causation by a new coronavirus (SARS-CoV), our

knowledge about the epidemiology and ecology of SARS coronavirus infection and of this

disease remains limited. Resurgence of SARS remains a distinct possibility and does not

allow for complacency.

The earliest cases are now known to have occurred in mid-November in Guangdong

Province, China. SARS was first carried out into the world at large on 21 February, 2003,

when an infected medical doctor from Guangdong checked into room 911 on the 9th floor

of the Metropole Hotel in Hong Kong. That single hotel floor became the setting for the

international spread of SARS. At least 14 guests and visitors carried the virus with them to

the hospital systems of Toronto, Hong Kong, Viet Nam, and Singapore. The earliest and

most severe outbreaks in Toronto, Hong Kong, Viet Nam, and Singapore were all seeded

by visitors to the hotel. At that time, prior to the first global alert issued by WHO on

12 March 2003, no one was aware that a severe new disease, capable of rapidly spreading

in hospitals, had emerged. Hospital staff responding to the earliest cases failed to protect

themselves from infection as they aggressively fought to save lives. As a result, the disease

rapidly spread within hospitals, infecting staff, other patients, and visitors, and then spilled

out into the larger community as family members and their close contacts became infected.

As the outbreaks grew in size, the number of exported cases rose, with 30 countries and

areas eventually reporting cases.

17



Table 1. Cumulative number of probable cases.

( (a) from March 17 2003 to May 24 2003)

date patients deaths recoveries date patients deaths recoveries

3.17 95 1 – 4.21 1,402 94 436

3.18 123 1 – 4.22 1,434 99 461

3.19 150 5 – 4.23 1,458 105 522

3.20 173 6 – 4.24 1,488 109 567

3.21 203 6 – 4.25 1,510 115 614

3.22 222 7 – 4.26 1,527 121 632

3.24 260 10 – 4.28 1,557 138 710

3.25 286 10 – 4.29 1,572 150 759

3.26 316 10 – 4.30 1,589 157 791

3.27 367 10 – 5.1 1,600 162 834

3.28 425 10 – 5.2 1,611 170 878

3.29 470 10 – 5.3 1,621 179 898

3.31 530 13 – 5.5 1,637 187 930

4.1 685 16 – 5.6 1,646 193 958

4.2 708 16 – 5.7 1,654 204 984

4.3 734 17 – 5.8 1,661 208 1,008

4.4 761 17 – 5.9 1,667 210 1,015

4.5 800 20 – 5.10 1,674 212 1,035

4.7 883 23 – 5.12 1,683 218 1,066

4.8 928 25 – 5.13 1,689 225 1,090

4.9 970 27 – 5.14 1,698 227 1,128

4.10 998 30 154 5.15 1,703 234 1,160

4.11 1,059 32 169 5.16 1,706 238 1,171

4.12 1,108 35 215 5.17 1,710 243 1,191

4.14 1,190 47 229 5.19 1,714 251 1,213

4.15 1,232 56 243 5.20 1,718 253 1,229

4.16 1,268 61 257 5.21 1,719 255 1,237

4.17 1,297 65 272 5.22 1,722 258 1,247

4.18 1,327 69 322 5.23 1,724 260 1,255

4.19 1,358 81 363 5.24 1,724 262 1,266
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Table 1. Cumulative number of probable cases.

( (b) from May 26 2003 to July 11 2003)

date patients deaths recoveries date patients deaths recoveries

5.26 1,726 267 1,276 7.4 1,755 298 1,430

5.27 1,728 269 1,285 7.7 1,755 298 1,430

5.28 1,730 270 1,295 7.8 1,755 298 1,430

5.29 1,732 273 1,302 7.9 1,755 298 1,431

5.30 1,736 274 1,304 7.10 1,755 298 1,431

5.31 1,739 278 1,310 7.11 1,755 298 1,433

6.2 1,746 282 1,319

6.3 1,747 283 1,326

6.4 1,748 283 1,339

6.5 1,748 284 1,343

6.6 1,750 286 1,350

6.9 1,753 288 1,365

6.10 1,754 290 1,368

6.11 1,754 290 1,368

6.12 1,755 291 1,377

6.13 1,755 293 1,380

6.16 1,755 295 1,386

6.17 1,755 295 1,387

6.18 1,755 295 1,393

6.19 1,755 296 1,396

6.20 1,755 296 1,403

6.23 1,755 296 1,411

6.24 1,755 296 1,417

6.25 1,755 296 1,419

6.26 1,755 296 1,419

6.27 1,755 296 1,422

6.30 1,755 298 1,429

7.1 1,755 298 1,429

7.2 1,755 298 1,429

7.3 1,755 298 1,429
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Table 2. Log-likelihood values in the four probability distribution models.

Based on data as of the June 11, 2003, and using the truncated model.

logistic log-normal gamma Weibull

infected −6816.40 > −6817.65 > −6819.00 > −6827.28

fatal −1228.72 > −1230.46 > −1230.54 > −1233.55

cured −5469.89 > −5472.55 > −5475.31 > −5482.64

total −13515.0 > −13520.7 > −13524.8 > −13543.5

Table 3. Approximate case fatality ratios and their standard deviations.

Based on data as of the December 31, 2003.

Country cases deaths case fatality ratio (%) standard deviation (%)

ρ = 0 ρ = 1

Canada 251 43 17.13 2.83 1.53

China 5,327 349 6.55 0.36 0.26

Hong Kong 1,755 299 17.04 1.07 0.58

Taiwan 346 37 10.69 1.85 1.18

Singapore 238 33 13.87 2.58 1.51

Viet Nam 63 5 7.94 3.69 2.55

world-wide 8,096 774 9.56 0.36 0.24

According to [41], 325 cases have been discarded in Taiwan since 11 July 2003

because Laboratory information was insufficient or incomplete for 135 discarded

cases, of which 101 died.
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Figure 1. Empirical probability distributions for  the patients,
deaths, and  recoveries, along with the corresponding
estimated probability distributions.
circles: infected empirical,
triangles: fatal empirical,
squares: cured empirical.
dashed lines: estimated probability distributions.
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Figure 2.   Bootstrapped estimates of the case fatality ratio in the
                 truncated model.
                 The censoring time is set on July 11, 2003.
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Estimated case fatality ratios.
filled circles: mixed trunsored model using patients, deaths, and
recoveries,
triangles: truncated model using patients and deaths,
squares: truncated model using patients and recoveries.
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Figure 4.   Bootstrapped estimates of the case fatality ratio in the mixed
                  trunsored model.
                 The censoring time is set on July 11, 2003.
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Figure 5 Bootstrapped frequency for the case fatality ratio in
the mixed trunsored model.



Figure 6.   Estimated case fatality ratios and their approximate 95%
                  confidence intervals

       Solid line: when correlation coefficiet between numbers of
                   patients and deaths = 0
       Dashed line: when correlation coefficiet between numbers of
                   patients and deaths = 1
       A band [12,18]% includes points in 95% confidence intervals
                   in Canada, Hong Kong, Taiwan, Singapore, and Viet Nam.
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