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Abstract: In difficult classification problems of
the z-dimensional points into two groups having 0-1
responses due to the messy data structure, it is more
favorable to search for the denser regions for the re-
sponse 1 assigned points than to find the boundaries
to separate the two groups. To such problems of-
ten seen in customer databases, we have developed
a bump hunting method using probabilistic and sta-
tistical methods. By specifying a pureness rate in
advance, a maximum capture rate will be obtained.
Then, a trade-off curve between the pureness rate
In find-

ing the maximum capture rate, we have used the

and the capture rate can be constructed.

decision tree method combined with the genetic al-
gorithm. We first explain a brief introduction of our
research: what the bump hunting is, the trade-off
curve between the pureness rate and the capture rate,
the bump hunting using the tree genetic algorithm,
the upper bounds for the trade-off curve using the
extreme-value statistics. Then, the assessment for
the accuracy of the trade-off curve is tackled from
the genetic algorithm procedure viewpoint. Using
the new genetic algorithm procedure proposed, we
can obtain the upper bound accuracy for the trade-
off curve. Then, we may expect the actually attain-
able trade-off curve upper bound. The bootstrapped
hold-out method is used in assessing the accuracy of
the trade-off curve, as well as the cross validation

method.
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1 Introduction

We review our study so far briefly in this section:
these are, 1) what the bump hunting is, 2) the
trade-off curve between the pureness rate and the
capture rate, 3) the bump hunting using the deci-
sion tree, 4) the genetic algorithm adapted to the
tree structure, 5) the upper bound for the trade-
off curve by using the extreme-value statistics, 6)
actual lower bound for the trade-off curve, and
7) their summary. Then following this section,
we discuss the new method, the new GA tree,
and its application to real customer data.

1.1 What is the bump hunting?

Suppose that we are interested in classifying n
points in a z-dimensional feature variable space
into two groups according to their responses,
where each point is assigned response 1 or re-
sponse 0 as its target variable. For example,
if a customer makes a decision to act a certain
way, then we assign response 1 to this customer,
and assign response 0, otherwise. We want to
know the customers’ preferences presenting re-
sponse 1. We assume that their personal fea-
tures, such as gender, age, living district, educa-
tion, family profile, etc., are already obtained.

Many classification problems have been dealt
with elsewhere to rather simpler cases using the
methods of the linear discrimination analysis,
the nearest neighbor, logistic regression, deci-
sion tree, neural networks, support vector ma-
chine, boosting, bagging, and etc. (see [9], e.g.)
as fundamental classification problems. In some



real data cases in customer classification, a dif-
ficulty has been raised; since many response 1
points and 0 points are closely located in the fea-
ture variable space, response 1 points are hardly
separable from response 0 points [10, 11]; there-
fore, it is difficult to find the favorable customers.
In such a case, to find the denser regions to
the favorable customers could be an alternative.
Such regions are called the bumps, and finding
them is called the bump hunting; see Figurel.
The bump hunting has been studied in the fields
of statistics, data mining, and machine learn-

ing [1, 2, 7, 8.

Figure 1: The bump hunting for the denser re-
gions to response 1 points which are hardly sep-
arable from response 0 points.

1.2 Trade-off the
pureness rate and the capture

curve between

rate

By specifying a pureness rate pg in advance,
where the pureness rate p is the ratio of the num-
ber of points of assigned response 1 to the total
number of points assigned responses 0 and 1 in
the target region, a maximum capture rate c,,
will be obtained, where the capture rate c is the
ratio of the number of points assigned response 1
to the number of points assigned responses 0 and
1 in the total regions. Then a trade-off curve be-
tween the pre-specified pureness rate pg and the
maximum capture rate ¢, can be constructed;

see Figure 2.

Now, we let TP be true positive, TN be true
negative, FP be false positive, and FN be false
negative. Since a response 1 point in or outside
the bump regions is considered to be TP or FN,
respectively, and a response 0 in or outside the
bumps is FP or TN, the pureness rate p can be
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Figure 2: Three trade-off curves between the
pureness rate and the capture rate: 1) using the
training data, 2) using the extreme-value statis-
tics.
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in the bump regions; the capture rate ¢ can also
be defined by
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in the total region [16], where “#” expresses the
size of the samples; see Figure 3.

TN
& L iy predicted
0 P P N
’ 1 T P |TP|FN
0 , s{n~[ee [N
o : #TP |
. pureness rate = — —]
. #TP+# I‘Plhm:lp region
I s
o #TP
. L'upTl.lI‘L‘, rate=s ———
bump region #TP+#EN|,,

Figure 3: The pureness rate and the capture rate.

In a recall-precision curve, recall is defined
by #TP/#(TP+FN) which is identical to
the capture rate, and precision is defined by
#TP/#(TP+FP) which is identical to the pure-
ness rate; thus, a trade-off curve between the
capture rate and the pureness rate seems to
be equivalent to a recall-precision curve super-
ficially [4, 6], e.g. However, we should note that
these two are totally different from each other.
As is seen in Figure 4, it can be considered that
our trade-off curve is constructed by collecting
the skyline points consisting of many trade-off



curves where each curve is corresponding to one
classifier [14].
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Figure 4: Trade-off curve as a skyline curve con-
sisting of many classifiers.

1.3 Bump hunting using the decision
tree

In order to make future actions easier, we adopt
simpler boundary shapes such as the union of
z-dimensional boxes located parallel to some ex-
planation variable axes for the bumps as shown
in Figures 1 and 2; that is, it would be convenient
to adopt the binary decision tree. However, can
the decision tree find the bumps?

The decision tree primarily tries to make some
region classify into much purer subregions. Usu-
ally, the purer regions are much concerned with
as the target point regions (the response 1
points), and the decision tree works in such a
situation. However, if we are not interested in re-
sponse 0 point regions where the decision tree in-
tended to find the purer regions, we may discard
such regions and expect much denser regions for
response 1 to the rest of the regions. In a messy
data case as shown in Figure 1, the decision tree
also can do this; that is, it can find the bound-
aries for the bumps. Figure 5 shows how the
decision tree finds the boundaries for the bumps;
this is a typical example in one dimensional case,
however the similar treatment can also be real-
ized in higher dimensions, if the feature variables
are not highly correlated to each other [13].
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Figure 5: The decision tree finds the the bound-
ary for the bumps.

1.4 The GA tree algorithm

In the decision tree, by selecting optimal ex-
planation variables and splitting points to split
the z-dimensional explanation variable subspaces
into two regions from the top node to downward
using the Gini’s index as in the conventional
method, we may obtain the number of response
1 points by collecting nodes where the pure-
ness rates p are satisfying to be larger than the
pre-specified pureness rate py. However, much
response 1 points could be obtained if we lo-
cate appropriate explanation variables to each
branching knot. This is because the conven-
tional algorithm has a property of the local opti-
mizer. Thus, we have developed a new decision
tree method with the assistance of the random
search methods such as the genetic algorithm
(GA) specified to the tree structure, where the
most adequate explanation variables are selected
by using the GA, but the best splitting points
are determined by using the Gini’s index [20];
see Figure 6. We call this the GA tree.

The mutation can be done in the same manner
to the standard genetic algorithms, however, the
crossover should be different from those used in
common because we are dealing with the tree
structures. To preserve good inheritance in the
tree structures, we have designed our crossover
method as shown in Figure 7; we will know later
that this causes many local maxima for the cap-

ture rates.

So far, we have been using the following evolu-
tion procedure in the GA tree:
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Figure 6: The bump hunting procedure using the
decision tree with the genetic algorithm.
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Figure 7: Crossover in the GA tree.

1) the number of initial seeds is set to 30; here,
the initial seeds mean the trees where the expla-
nation variables to be allocated to each branch
are randomly selected,

2) obtain the capture rate to each seed tree, and
select the top 20 best trees,

3) in the next generation, divide each tree to the
left wing with or without the top node and the
right wing with or without the top node, and
combine the left wing and right wing trees of
different parents to produce children trees (see
Figure 7); this is a new crossover procedure in
the GA tree; 40 children are then delivered, and
select the top 20 best trees,

4) this evolution procedure is repeated by the
20th generation,

5) at the final stage, select the best one rule to
apply the future data,

6) the mutation rate is set to around 5%,

7) select the best one tree in the final stage.

1.5 Upper bound for the trade-off
curve by using the extreme-value
statistics

The GA tree algorithm have a strong inclina-
tion of searching for the local maxima because
we are intended to preserve a good inheritance
in evolution procedure. Solutions obtained by
the GA tree primarily are not the global opti-
mal; this is a drawback of the algorithm. How-
ever, we have observed the existence of many lo-
cal maxima with each starting point in the GA
tree procedure. This turns out to become an
advantage; the use of the extreme-value statis-
tics [3] can then be used to estimate the return
period (expected global maximum capture rate),
and the method did work successfully when the
shape of the marginal density function of an ex-
planation variable is simple, such as monotonic
or unimodal [13, 20]. This property is also ob-

served in a real customer database [14].

Thus, we add a function of

8) estimating the upper bound capture rate by
using the best 20 trees in each final stage of the
evolution to our GA tree procedure; that is, we
do procedures 1) - 7) for 20 cases, and estimate
the upper bound using these 20 local maxima.

In Figure 1, how we have obtained the trade-
The
procedures explained above is, however, applied

off curve for the upper bound is shown.

only to the training data.

1.6 Actual lower bound for the trade-
off curve

The solutions mentioned in 1.4 and 1.5 are, how-
ever, the best fitted solutions [9]; that is, the
rules are constructed by using the training data
and the evaluations are performed also by using
the same training data [5, 19]; so, the solutions
could be optimistic. If we apply the rules ob-
tained by the training data to a new test data
case having the same data structure, we may no
longer expect the same performance in the new
data case. We have been aware that we should
pay much attention to this kind of problems even
though the size of the explanation variable is
small [17].



The bootstrapped hold-out method, the BHO,
proposed in [15, 21] or the cross validation
method has been used to estimate the biases be-
tween the results using the training data and
those using the test data [14, 16]. The BHO
produces the tree by using the training data of
randomly selected half size of the sample data
without replacement, and we evaluate the per-
formance of the rule by using the rest of the half
size of the samples. The typical cross valida-
tion of 10-fold cross validation requires the 10
performance evaluations. Thus, we also evalu-
ate the 10 cases of the GA tree procedure in the
BHO procedure [20].

typical cases for the cross validation results and

In Figure 8, we show a

the BHO results in a real data case where pq is
pre-specified to 0.45 ; the real data case will be
explained later. In the figure, we can see the bi-
ases between the results using the training data
and those using the test data are not so differ-
ent from each other between the cross validation
method and the BHO method. We may use the
BHO method when the sample size is small to
some extent.
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Figure 8: The cross validation results and the
bootstrapped hold-out results using the trainig
and test data in a real data case.

1.7 Summarizing

Summarizing the above, the trade-off curve we
are dealing with have three aspects. The first is
the curve obtained by using the training data;
we can apply the if-then-rules to the future data
only to this curve. The second is the return pe-
riod curve obtained by using the extreme-value
statistics; by estimating the upper bound for the
The
third is the trade-off curve obtained by using the

capture rate, we can know where we are.

test data; we can expect the actual capture rate
for response 1. These three are indispensable like

the Trinity to comprehend the whole figure of the
trade-off curve between the pureness rate and the
capture rate. In our previous study, however, we
have not paid attention much to the genetic algo-
rithm procedure itself; the results obtained from
the previous study could be optimistic because
they are using only the training data in the evo-
lution procedure. In this paper, we tackle this
point.

2 Customer Data

A real customer data case we are dealing with is
taken from a corresponding course in Japan [14,
16]. The number of customers is very large, say
160,000; thus, we will not use all these data be-
cause of the high computing cost. Therefore, we
will treat 15,870 samples, randomly selected from
the original database, where the number of re-
sponse 1 (customers we are interested in) is 2,863;
thus the mean pureness rate becomes 18.0%. The
number of features of the customers is more than
60, but we will use 41 variables; the variables are
both continuous and discrete. We call this 1/10
model here. A much smaller case consisting of
1,635 samples was also investigated, where the
number of response 1 is 290; the mean pureness
rate is 17.7%. The number of variables is 44.
We call this 1/100 model. Our primary objec-
tive here is how many response 1 samples can be
captured if we require at least 40-50% pureness
rate, pg, from a practical viewpoint using these
two smaller models.

3 Extreme-Value Statistics Ap-

proach

As mentioned before, the GA tree has a strong
inclination of searching for the local maxima be-
cause we are using the tree structure in evolu-
tion procedure. This property turns out to be a
merit to know the upper bound for the trade-off
curve, although, in general, the genetic algorithm
will not guarantee the global maximum. A set of
samples collected from the local maxima could
be samples for the extreme-value statistics for
maxima. If the mother distribution function is a
normal, exponential, log-normal, gamma, Gum-
bel, or Rayleigh type distribution, then the limit-



ing distribution of the maximum values from the
mother distribution follows the Gumbel distribu-
tion (see [3] e.g.). Thus, we apply the Gumbel
distribution to the local maxima samples. In the
following, we investigated the two cases, 1/100
model and 1/10 model, to assess the reliability
for the trade-off curve due to the limited number

of samples.

3.1 Sample size effect

1/100 model real data case

For example in a data case where samples are
drawn at random with 1/100 probability from a
real customer data case, i.e., 1/100 model men-
tioned above, we have 20 local maxima of 48, 45,
48, 39, 56, 44, 32, 41, 56, 70, 40, 49, 42, 52, 38,
53, 47, 55, 34, 45, for the number of captures
when we specify the pureness rate of 50%. If we
fit the Gumbel distribution to the data, we can
estimate the shape and scale parameters as 7.38
and 42.6. Then, the return capture rate (return
period) for 500 trials is estimated to be 88.5. In
Figure 9, we can see that the histogram of the
sampled data well expresses the fitted Gumbel
distribution density function. Using this result,
we can guess the number of return captures in
the real full data case, which could be 8,642 and
this corresponds to 30.5% capture rate. How-
ever, the results by applying the test data to
the rules obtained by the training data was very
pessimistic. The bias between the training data
trade-off curve and test data one shown in Figure
10 becomes very large because of large number
of explanation variables, resulting that the rules
obtained by the training data are not applica-
ble to decide future action. In the figure, each
point shows the mean value of the 10 cases BHO
results.

1/10 model real data case

A much larger case of 1/10 model mentioned
above is also investigated. The 20 local max-
ima are 207, 230, 251, 258, 255, 238, 170, 229,
204, 292, 247, 218, 281, 237, 230, 206, 195, 208,
193, 147, for the number of captures by the half
training data, and the number of return capture
is estimated as 425.5. Using this result, we can
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Figure 9: Gumbel distribution fit to the 20 local
maxima using the GA tree.

guess the number of return captures in the real
full data case, which could be 4,290 and this cor-
responds to 14.9% capture rate. The results in
this case are considered to be reliable because of
small biases (see Figures 9 and 10); however, the
result obtained by using the 1/100 model is con-
siderably optimistic. About two times of the re-
sponse 1 points are obtained in the 1/100 model.
We should, thus, pay much attention to the num-
ber of samples if the number of explanation vari-
able is large comparing to the samples, which is

well known.
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Figure 10: Trade-off curve assessment using the
test data.



Table 1:
model sizes.

Estimated captures by two different

1/100 model ~ 1/10 model
computed return capture 88.5 425.5
return capture rate 30.5% 14.9%
full model return capture 8,642 4,290

3.2 Trade-off curve assessing using
the bias between the training
data results and the test data re-

sults

As explained before, we can construct the three
kinds of trade-off curves. First, we simply ob-
tain the optimal tree with a pre-specified pure-
ness rate using all the sampled data as the train-
ing data. By connecting these obtained points,
We have
to use these rules (trees) actually. This curve is,

we can construct the trade-off curve.

however, optimistic.

Therefore, to know the actual capture rate, we
By di-
viding the sample data into two groups, train-

have made the second trade-off curve.

ing data and the test data, which is determined
by the accuracy evaluation methods such as the
cross validation and the BHO, a number of points
of pureness rate and capture rate are obtained for
the training data set and the test data set. By
averaging these points, we can obtain the bias
between the training data results and the test
data results. Then, we can apply this bias to the
very original trade-off curve which is obtained
by using all the sampled data. This estimated
trade-off curve indicates the actual capture rate
when we specify the pureness rate. In that sense,
this curve can be a lower bound for the trade-off

curve.

All the points in the trade-off curve are obtained
by using the direct results from the genetic algo-
rithm procedure. The maximum value obtained
for the capture rate cannot necessarily be the real
global maximum. However, using the extreme-
value statistics, we can estimate the return pe-
riod (return capture rate) as the global maximum
value. Therefore, we are able to know where we
are, i.e., we can estimate the upper bound ceiling
for the trade-off curve.

These three kinds of the trade-off curves are, in a
sense, like the Trinity to comprehend the whole
figure of the trade-off curve. However, we do
not know yet the accuracy for the trade-off curve

estimated by the extreme-value statistics.

3.3 Reliability for the return period
due to the number of initial seeds

All the initial seeds have been set to 30 so far.
Considering that the property of the local con-
vergence of the GA procedure, it would be better
to provide much larger number of seeds to verify
if the extreme-value statistics works well. Figure
11 shows the results of the number of captures
in a data case resampled from the real customer
data case when the number of seeds and the suc-
cessive number of iterations are set to larger val-
ues. Here, the pre-specified pureness rate is 50%
and the model is 1/100 scale. We can see that the
extreme-value statistics work very well, and we
can use this method even if the number of sam-
ples to the Gumbel distribution is small such as
20; we can see that the predicted number of cap-
tures by the extreme-value statistics preserve al-
most a constant value even though the converged
local maxima are gradually becoming larger as
the number of seeds becomes larger.
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Figure 11: Number of captures of response 1 ver-
sus number of the seeds in the genetic algorithm.

4 Upper Bound Accuracy Assess-
ment Using the New GA Tree

Since we know that the trade-off curve to actu-
ally applicable rules is optimistic if we use the
training data only, the upper bound curve will



also be optimistic, i.e., be conservative. Here,
we want to know a much more accurate upper
bound for the trade-off curve. The accuracy for
the trade-off curve to actually applicable rules
is assessed by using the cross validation or the
BHO method. In the GA procedures, however,
the optimal tree is constructed by using only the
training data; that is, 20 rules after 20 evolu-
tion generations to each procedure are obtained
by using the training data only. Then, only the
very last generation rule is assessed by using the
test data. This is performed by the assessment
method such as the cross validation or the BHO
method. However, such a method cannot be
applicable to assess the accuracy for the upper
bound curve obtained by using the extreme-value
statistics because the test data results do not
necessarily follow the extrem-value distributions
even though the training data results do. The
upper bound capture rates using the extreme-
value statistics would no longer be obtained be-
cause the results by using the test data would
not necessarily have the property of local max-
imum. Even if we can estimate the optimistic
upper bound for the trade-off curve, we could
not obtain the accuracy of the curve if we insist
on using the cross validation method or the BHO
method as they are.

4.1 Applying the GA tree to the test
data

We, thus, propose here a new genetic algorithm
procedure adapted to the tree structure.

1) the number of initial seeds is set to 30,

2) obtain the capture rate to each seed, and se-
lect the top 20 best trees,

3) in the next generation, select the top 20 best
trees from 40 children trees by the evaluation re-
sults using the test data

4) this evolution procedure is repeated by the
20th generation,

5) at the final stage, select the best one rule to
apply the future data,

6) the mutation rate is set to around 5%,

7) select the best one tree in the final stage.

8) estimate the upper bound capture rate us-
ing the etreme-value statistics using the 20 local

maxima.

So, each evolution generation stage, we produce
the trees, and select the best trees using the test
data. Then, we can expect that the final stage
results could be local maxima for the test data,
and we may apply the extreme-value statistics
to these final results, as we applied the extreme-
value statistics to optimal results obtained by
using the training data. Figure 12 shows one
of the new GA tree procedure results using the
BHO method; the capture rates for the train-
ing data and the test data are not necessarily
monotonically increasing because the optimality
in the training data case is not succeeded to the
next generation. We can see that the capture
rates are stabilized within 10 generations, and
this tendency is observed in simulation data and

real data in common.

capture rate

12%
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Figure 12: Capture rate convergence of response
1 as the evolution generation increases.

Using this new method, 20 local maxima could be
obtained, and we may apply the extreme-value
statistics to these results to estimate a much
more accurate trade-off curve. In addition, we
could assess the accuracy for this trade-off curve.
An illustrative example is shown in Figure 13.

4.2 The new GA tree

Someone suspects that the accuracy evaluation
by using the test data in evolution procedure in
the GA tree would still be optimistic. The test
data are always treated like the training data.
To overcome this problem, we propose here a
new method, classifying the original data into
three subsets; the first subset is for the train-
ing data, the second is for the evaluation data,
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Figure 13: Gumbel distribution fit to the 20 local
maxima using the test data.

and the third is for the test data. The GA proce-
dure is performed using the training data and the
evaluation data; in each evolution process, the
selection is made by using the evaluation data,
which enables us to use the extreme-value statis-
tics with validity. At the final stage in the GA
procedure, the test data subset is used to assess
the accuracy for the upper bound trade-off curve.
Figure 14 illustrates this diagram.

We applied this method to the real customer data
case of 1/10 model mentioned earlier. We can see
that the capture rate results by the evaluation
data and those by the test data are highly corre-
lated to each other; see Figure 15. The trade-off
curve finally can be constructed as shown in Fig-

ure 16.
20 ol
op
7 c)
- (111} cap. max
select top
10 by
applying the
ﬂmdo training ta
| Euo ution

1
1
R =) one
— - select top
g CD)||[ED)|1oey
Hata applying the
rando fevaluation data
. S

A

aceuracy
BELL5S,

Figure 14: The new GA tree diagram.

5 Concluding Remarks
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Figure 15: The relation of the capture rates be-
tween by the evaluation data and the test data.
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Figure 16: The trade-off curves for the upper
bound curve with its accuracy.

responses due to the messy data structure, we
have proposed to use the bump hunting method,
and we have shown that there is a trade-off curve
between the pureness rate and the capture rate,
In finding the maximum capture rate, we have
found that the decision tree method combined
with the genetic algorithm is useful. In this pa-
per, after explained a brief introduction of the
research so far, that is, what the bump hunting
is, the trade-off curve between the pureness rate
and the capture rate, the bump hunting using the
tree genetic algorithm, the upper bounds for the
trade-off curve using the extreme-value statistics,
then, the assessment method for the accuracy of
the trade-off curve is described from the genetic
algorithm procedure viewpoint. Using the new
genetic algorithm procedure proposed, we can
obtain the upper bound accuracy for the trade-

off curve. Using this, we will make future de-



cisions by applying the rules obtained by using

the training data with the knowledge of how far

the rules we are using are located from the op-

timal points.

To do this, we have proposed a

new method, the new GA tree, along with the

bootstrapped hold-out method in assessing the

accuracy of the trade-off curve.
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