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Abstract

In order to simulate stiff biochemical reaction systems, an explicit exponential Euler-
Maruyama scheme is derived for multi-dimensional, non-commutative stochastic dif-
ferential equations with a semilinear drift term. The scheme is of strong order a half
and A-stable in mean square. The combination with this and the projection method
shows good performance in numerical experiments dealing with an alternative for-
mulation of the chemical Langevin equation for a human ether a-go-go related gene
ion channel model.



1 Introduction

While it has been customary to treat the numerical solution of stiff ordinary differential
equations (ODEs) by implicit methods, there are some classes of explicit methods that
are well suited to solving some types of stiff problems. One such class is the class of
Runge-Kutta Chebyshev (RKC) methods. They are useful for the stiff problems whose
eigenvalues lie near the negative real axis. An original contribution is by van der Houwen
and Sommeijer [38] who have constructed explicit s-stage Runge-Kutta (RK) methods
whose stability functions are shifted Chebyshev polynomials Ts(1 + z/s2). These have
stability regions along the negative real axis of [−2s2, 0]. In order to achieve second or
fourth order, this class of methods has been modified by Abdulle and Medovikov [4] and
Abdulle [1], respectively. Note that these methods need to increase the stage number s
for stabilization. Another suitable class of methods is the class of explicit exponential
RK methods for semilinear problems [14, 17, 18, 19, 32]. Although these methods were
proposed many years ago, until recently they have not been regarded as practical because
of the cost of calculations for matrix exponentials, especially for large problems. In order
to overcome this problem, new methods have been proposed [17, 18, 19]. Note that explicit
exponential RK methods are A-stable.

Similarly, for stochastic differential equations (SDEs) stabilized explicit RK methods
have been developed. An original contribution concerning RKC methods is by Abdulle
and his colleagues [2, 3] who have developed a family of explicit stochastic orthogonal
Runge-Kutta Chebyshev (SROCK) methods with extended mean square (MS) stability
regions. Their methods have strong order a half and weak order one for non-commutative
Stratonovich and Itô SDEs, whereas they reduce to the first order RKC methods when
applied to ODEs. By developing their ideas, Komori and Burrage [27, 28] have proposed
weak second order SROCK methods for non-commutative Stratonovich SDEs and strong
first order SROCK methods for non-commutative Itô and Stratonovich SDEs. They
reduce to the first or second order RKC methods when applied to ODEs. Note that these
methods also need to increase the stage number for stabilization. In addition, a class
of exponential integrators for SDEs, known as Local Linearization (LL) methods, have
been proposed by Jimenez [22, 23, 24] and Cruz [12] for the strong approximation to
solutions of SDEs with additive noise, whereas Biscay [7] and Shoji [34] have considered
LL methods for scalar SDEs with multiplicative noise. Mora [30] and Carbonell [10] have
also proposed LL methods for the weak approximation to solutions of SDEs with additive
noise. In addition, exponential integrators have been considered for stochastic partial
differential equations with a semilinear drift term and additive noise [21].

In biochemical kinetics, the chemical Langevin equation (CLE) is an important mod-
elling framework and it plays an intermediate role between the chemical master equation
and the reaction rate equation for biochemical simulation [15, 20, 29]. The CLE consists
of a system of Itô SDEs with non-commutative noise. In a seminal paper Gillespie [15] has
derived an original form of the CLE. Mélykúti, Burrage and Zygalakis [29] have considered
other possible forms and have derived a computationally effective form that needs fewer
Wiener increments than that in Gillespie’s original formulation. In order for simulation
of the CLE to be biological meaningful, approximate solutions have to be non-negative
and they are often required to satisfy other boundary conditions. Dangerfield, Kay and
Burrage [13] have proposed tackling such problems by the use of reflected SDEs [35, 36]
and the projection method [11].
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In the present paper we shall put all these ideas together. In using projection method,
numerical methods with one intermediate stage are the most favourable and so we will
derive an explicit exponential Euler-Maruyama (EM) scheme for multi-dimensional, non-
commutative Itô SDEs with a semilinear drift term. The method together with the
projection method will show very good performance for stiff biochemical problems. In
Section 2 we will introduce the exponential Euler scheme for ODEs and derive the expo-
nential EM scheme for SDEs. After that, we will investigate its MS stability. In Section
3 we will introduce reflected SDEs and the projection method. Section 4 will present
numerical results and Section 5 our conclusions.

2 Exponential schemes

2.1 Exponential Euler scheme

We consider autonomous semilinear ODEs given by

y′(t) = Ay(t) + f(y(t)), t > 0, y(0) = y0, (2. 1)

where y is an Rd-valued function on [0,∞), A is a d × d matrix and f is an Rd-valued
nonlinear function on Rd or a constant vector. By the variation-of-constants formula, the
exact solution of (2. 1) is represented as

y(t) = eAty0 +

∫ t

0

eA(t−s)f(y(s))ds. (2. 2)

When yn denotes a discrete approximation to the solution y(tn) of (2. 1) for an

equidistant grid point tn
def
= nh (n = 1, 2, . . . ,M) with step size h (M is a natural number),

we can derive a numerical scheme by utilizing (2. 2). From (2. 2), we have

y(tn+1) = eAhyn +

∫ tn+1

tn

eA(tn+1−s)f(y(s))ds

if y(tn) = yn. By interpolating f(y(s)) at f(yn) only, we obtain the simplest exponential
scheme for (2. 1) [19]:

yn+1 = eAhyn + A−1
(
eAh − I

)
f(yn), (2. 3)

where I stands for the d× d identity matrix. This is called the exponential Euler scheme.
When we apply (2. 3) to the scalar test equation

y′(t) = λy(t), t > 0, y(0) = y0, (2. 4)

where <(λ) ≤ 0 and y0 6= 0, we have yn+1 = R(λh)yn for which R(z) = ez. Thus, although
(2. 3) is an explicit scheme, it is A-stable, that is, its stability region {z | |R(z)| ≤ 1}
contains the whole left half of the complex plane [9].
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2.2 Exponential EM scheme

Similarly to the previous subsection, we are concerned with autonomous SDEs with the
semilinear drift term given by

dy(t) = (Ay(t) + f(y(t)))dt+
m∑

j=1

gj(y(t))dWj(t), t > 0, y(0) = y0, (2. 5)

where gj, j = 1, 2, . . . ,m are Rd-valued functions on Rd, the Wj(t), j = 1, 2, . . . ,m are
independent Wiener processes and y0 is independent of Wj(t)−Wj(0) for t > 0. If a global
Lipschitz condition is satisfied, the stochastic differential equation (SDE) has exactly one
continuous global solution on the entire interval [0,∞) [5, p. 113].

Similarly to (2. 1), the exact solution of (2. 5) is represented by

y(t) = eAty0 +

∫ t

0

eA(t−s)f(y(s))ds+
m∑

j=1

∫ t

0

eA(t−s)gj(y(s))dWj(s). (2. 6)

By utilizing (2. 6), we can have an approximation to y(tn+1) as follows:

y(tn+1) ' eAhyn + A−1
(
eAh − I

)
f(yn) +

m∑
j=1

(∫ tn+1

tn

eA(tn+1−s)dWj(s)

)
gj(yn)

if y(tn) = yn. In [34], another approximation was considered for scalar SDEs. In order
to approximate the stochastic integrals in the right-hand side, let us consider an approx-
imation ∫ tn+1

tn

αdWj(s) (2. 7)

to
∫ tn+1

tn
ea(tn+1−s)dWj(s), where a ∈ R. Because its MS error is given by

E

[{∫ tn+1

tn

(
ea(tn+1−s) − α

)
dWj(s)

}2
]

=

∫ tn+1

tn

(
ea(tn+1−s) − α

)2
ds,

by differentiating this with respect to α and setting it at zero, we obtain

α = (ah)−1
(
eah − 1

)
. (2. 8)

Hence, we can derive the following exponential EM scheme:

yn+1 = eAhyn + A−1
(
eAh − I

)
f(yn) + (Ah)−1

(
eAh − I

) m∑
j=1

4Wjgj(yn). (2. 9)

In general, when discrete approximations yn are given by a numerical scheme, we say
that the scheme is of strong order p if there exists a constant C such that(

E[||yM − y(T )||2]
)1/2 ≤ Chp

with T = Mh and h sufficiently small [26, 33], where || · || stands for the Euclidean norm.
Let us assume f , gj ∈ C2 for j = 1, 2, . . . ,m. Then, it is known that the EM scheme

yn+1 = yn + h(Ayn + f(yn)) +
m∑

j=1

4Wjgj(yn) (2. 10)

is of strong order a half [26, 33].
The following points can be made.
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• When A goes to the zero matrix, (2. 9) is equivalent to the EM scheme.

• Because the expression on the right-hand side of (2. 9) can be truncated in the
following form

yn+1 = yn + h(Ayn + f(yn)) +
m∑

j=1

4Wjgj(yn)

+
1

2
h2A(Ayn + f(yn)) +

1

2
h

m∑
j=1

4WjAgj(yn)

for a small h, (2. 9) is also of strong order a half.

• It is reasonable to approximate ea(tn+1−s) by the constant α in (2. 7) as even∫ tn+1

tn
sdWj(s) is of order one and a half in MS.

• For (2. 8), (2. 7) obeys the normal distribution with mean 0 and variance∫ tn+1

tn

α2ds =
1

a2h

(
eah − 1

)2
= h+ ah2 +

7

12
a2h3 +O(h4),

whereas
∫ tn+1

tn
ea(tn+1−s)dWj(s) obeys the normal distribution with mean 0 and vari-

ance ∫ tn+1

tn

e2a(tn+1−s)ds =
1

2a

(
e2ah − 1

)
= h+ ah2 +

2

3
a2h3 +O(h4)

(see also [34]).

2.3 MS stability analysis for the exponential EM scheme

As with the deterministic case, if we apply (2. 9) to the scalar test equation [16]

dy(t) = λy(t)dt+
m∑

j=1

σjy(t)dWj(t), t > 0, y(0) = y0, (2. 11)

where y0 6= 0 with probability one (w. p. 1) and where the complex coefficients satisfy

2<(λ) +
m∑

j=1

∣∣σj

∣∣2 < 0, (2. 12)

then, we have

yn+1 = R

(
λh,

m∑
j=1

σj4Wj

)
yn

for which R(z, w) = ez + z−1(ez − 1)w.
Because of (2. 12), the solution of (2. 11) is MS stable (limt→∞E[|y(t)|2] = 0) [16].

On the other hand, the MS stability function R̂ of (2. 9) is given by

R̂(pr, pi, q)
def
= E

∣∣∣∣∣R
(
λh,

m∑
j=1

σj4Wj

)∣∣∣∣∣
2
 = e2pr +

(e2pr − 2epr cos pi + 1) q

p2
r + p2

i

(2. 13)
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where pr
def
= <(λ)h, pi

def
= =(λ)h and q

def
=
∑m

j=1 |σj|2h. The MS stability (E[|yn|2] → 0

(n → ∞)) for (2. 9) is equivalent to R̂(pr, pi, q) < 1 [16]. Thus, the MS stability domain
of (2. 9) is defined by {(pr, pi, q) | R̂(pr, pi, q) < 1}.

We can rewrite (2. 12) as 2pr + q < 0. Using this, we obtain

R̂(pr, pi, q) < e2pr − 2pr (e2pr − 2epr cos pi + 1)

p2
r + p2

i

, (2. 14)

from (2. 13). Denote by ϕ(pr, pi) the expression in the right-hand side.
First, let us consider the case of pi = 0. As

ϕ(pr, 0) =
(pr − 2)e2pr + 4epr − 2

pr

,

we have limpr→−0 ϕ(pr, 0) = 1 and ϕ(pr, 0) is a monotone increasing function of pr. Thus,

R̂(pr, 0, q) < 1 for pr < 0 under the condition (2. 12).
Next, let us consider the case of pi ≥ π. In this case, we have

ϕ(pr, π) ≤ (p2
r − 2pr + π2)e2pr − 4pre

pr − 2pr

p2
r + π2

.

When we denote by ψ1(pr) the expression in the right-hand side, we have ψ1(0) = 1 and

ψ′
1(pr) = 2

{(p2
r + π2 + π) epr − pr + π}u(pr) − 2pr (p2

r + π2) e2pr + p2
r (epr + 2) epr

(p2
r + π2)2 ,

where
u(pr)

def
=
(
p2

r + π2 − π
)
epr − pr − π.

As u′(0) > 0, limpr→−∞ u′(pr) = −1 and u′′(pr) > 0, u(pr) is a convex function and it
reaches its minimum value at a point, say, β, in the interval (−∞, 0]. We can numerically
obtain β = −1.869 and u(β) = 0.304. Thus, u(pr) > 0 holds for pr ≤ 0. This fact leads
to R̂(pr, pi, q) < 1 for pr ≤ 0 and pi ≥ π under the condition (2. 12).

As R̂(pr, pi, q) = R̂(pr,−pi, q), all that remains is the case of π > pi > 0. Denote by
ψ2(pr) ϕ(pr, ε) for a positive ε < π. Then, since ψ′

2(pr) > 0 for pr ≤ −ε, we have ψ2(pr) ≤
ψ2(−π) for pr ≤ −π, which implies ϕ(pr, ε) ≤ ϕ(−π, ε). On the other hand, ϕ(−π, pi)
is a monotone decreasing function of pi when 0 < pi < π, and ϕ(−π, 0) < 1. Thus,
R̂(pr, pi, q) < 1 for pr ≤ −π and 0 < pi < π under the condition (2. 12). Consequently,
we plot the MS stability domain for 0 < pr < −π and 0 < pi < π.

The MS stability domain and its profiles are given in Figure 1. The MS stability
domain is indicated by the colored part in the top left of the figure. Here, the other part
enclosed by the mesh indicates the domain in which the solution of the test SDE is MS
stable. In the bottom of the figure, the dark-colored area indicates the profile of the MS
stability domain when pi = 0, 0.125 or 0.25, whereas the area enclosed by the two straight
lines q = 0 and q = −2pr indicates the region in which the solution of the test SDE is MS
stable. In the top right of the figure, the dark-colored area indicates the profile of the MS
stability domain when q = −2pr, which is the boundary of the stability region of the test
SDE. From these results, we can see that the exponential EM scheme is A-stable in MS
[16], that is, its stability domain contains the domain that satisfies 2pr + q < 0.
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Figure 1: MS stability domain (top left) and its profiles (top right and bottom) for the
exponential EM scheme

For comparisons, lastly let us check the stability of the EM scheme. When (2. 10) is
applied to (2. 11), the MS stability function of (2. 10) is given by

R̂(pr, pi, q) = (1 + pr)
2 + p2

i + q.

The MS stability domain and its profile are given in Figures 2. In the profile, the light-
colored area indicates the region in which the solution of the test SDE is MS stable, but
which is not included in the MS stability domain.

3 Reflected SDEs and projection method

3.1 Reflected SDEs

When (2. 5) is considered for biological simulation, one of the critical problems often
leads to keeping the non-negativity of each component of the solution and conserving
the sum of the components because of having biological meaning – the components of
them represent chemical concentrations. In order to overcome the problem, Dangerfield
et al. [13] have proposed using reflected SDEs instead of directly using (2. 5). In this
subsection, we briefly review the concept of reflected SDEs.

For the solution of (2. 5), we require that 0 ≤ yi(t) ≤ L (i = 1, 2, . . . , d) and∑d
i=1 yi(t) = L for an L > 0. Then, y(t) is restricted to the hyperplane given by
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Figure 2: MS stability domain (left) and its profile (right) for the EM scheme

∑d
i=1 yi(t) = L which lies inside the hypercube bounded by the intervals [0, L]. In what

follows, we denote by D the hyperplane, that is, the reflected domain of the process y(t).
For y(t) to remain on D, we decompose it into the sum of two processes such as

y(t) = x(t) + r(t). Here, x(t) satisfies (2. 5) and describes the behavior of y(t) on
the interior of D, that is, y(0) = x(0) and y(t) = x(t) on D. On the other hand, r(t)
determines the behavior of y(t) on the boundary of D, say ∂D, and reflects y(t) into D.
As the measure induced by r(t) must be concentrated at the time te for which y(te) ∈ ∂D,
the following property is required [6, 13]:

|r|(t) =

∫ t

0

1{y(s)∈∂D}d|r|(s). (3. 1)

In addition, for r(t) to reflect y(t) into D in the direction of the inward pointing unit
normal, the following property is also required [13]:

r(t) =

∫ t

0

ν(s)d|r|(s), (3. 2)

where ν(s) ∈ N(y(s)) if y(s) ∈ ∂D and N(a) is the set of inward pointing unit vectors
to the point a that lies on ∂D. After all, with (3. 1) and (3. 2) we have

dy(t) = (Ay(t) + f(y(t)))dt+
m∑

j=1

gj(y(t))dWj(t) + dr(t), t > 0,

y(0) = y0.

(3. 3)

This SDE is called a reflected SDE [35, 36]. The solution of (3. 3) will be a pair (y(t), r(t))
that satisfies (3. 1) and (3. 2) [31, 37]. As a numerical method to solve reflected SDEs,
Dangerfield et al. [13] have adopted the projection method. In the next subsection, we
will see what it is and how it is used.

3.2 Projection method for reflected SDEs

The projection method is described as follows. When we have an approximate solution
yn ∈ D at time tn, from this we calculate an unreflected approximate solution, say y

(un)
n+1 ,
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by using the EM scheme or the exponential EM scheme. If y
(un)
n+1 ∈ D, we use this as an

approximate solution yn+1 at time tn+1. If not, we use the projection of y
(un)
n+1 onto ∂D.

When Π(·) denotes the projection, this procedure can be rewritten as

yn+1 =

{
y

(un)
n+1 if y

(un)
n+1 ∈ D,

Π(y
(un)
n+1) if y

(un)
n+1 /∈ D.

Although we have not explicitly written calculations for the reflecting process r(t) here,
if we want to do it, note that it can be written as

r0 = 0, rn+1 =

{
rn if y

(un)
n+1 ∈ D,

rn + Π(y
(un)
n+1) − y

(un)
n+1 if y

(un)
n+1 /∈ D.

The projection Π can be described as follows [11]: for any given vector y ∈ Rd, the
projection of y onto D is to solve the minimization problem

u = arg min
x∈D

||x − y||.

Using the Moreau’s identity, Chen and Ye [11] have shown that the problem can be
simplified to a univariate minimization problem. Furthermore, they have shown that
there are d possible candidates which can be computed explicitly and u is the only one of
these that falls into D. After all, the algorithm that gives Π(y

(un)
n+1) is as follows [11, 13]:

1) Set u := yn+1, where yn+1 is an approximate solution to (2. 5) calculated by the
EM scheme or the exponential EM scheme.

2) Sort the elements of u in the ascending order as u(1) ≤ u(2) ≤ · · · ≤ u(d), and set
i := d− 1.

3) Set si by

si :=
1

d− i

(
d∑

k=i+1

u(k) −K

)
.

If si ≥ u(i), then set ŝ := si and go to Step 5). Otherwise, set i := i − 1 and redo
Step 3) if i ≥ 1 or go to Step 4) if i = 0.

4) Set ŝ by

ŝ :=
1

d

(
d∑

k=1

u(k) −K

)
.

5) Return
[max(u1 − ŝ, 0) max(u2 − ŝ, 0) · · · max(ud − ŝ, 0)]>

as the projection of u, where u1, u2, . . . , ud are the unsorted elements of u.
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4 Simulation for a K+ channel

As an example of real interest to biologists, we consider a model for a human ether a-
go-go related gene K+ ion channel [8, 25]. Mélykúti et al. [29] have given the Langevin
formulation of this model. The model has three closed states, one open state and one
inactivation state as five chemical species reacting through ten reactions, and takes the
form

A =


−k1 k2 0 0 0
k1 −k2 − k3 k4 0 0
0 k3 −k4 − k5 − k10 k6 k9

0 0 k5 −k6 − k7 k8

0 0 k10 k7 −k8 − k9

 , (4. 1)

f(y) =
[

0 0 0 0 0
]>
,[

g1(y) g2(y) g3(y) g4(y) g5(y)
]

=


−1 0 0 0 0
1 −1 0 0 0
0 1 −1 0 1
0 0 1 −1 0
0 0 0 1 −1

 diag


√
k1y1 + k2y2√
k3y2 + k4y3√
k5y3 + k6y4√
k7y4 + k8y5√
k9y5 + k10y3


with the conditions 0 ≤ yi(t) ≤ L (i = 1, 2, . . . , 5) and

5∑
i=1

yi(t) = L, (4. 2)

where L =
∑5

i=1 yi(0).
Because the rank of A is four in (4. 1), we cannot apply (2. 9) to this formulation.

We have to reduce the number of state variables.

4.1 State space reduction

When we set U as

U
def
=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 1 1 1 1

 ,
left multiplication by U does not change the first four rows of A and

[g1(y) g2(y) g3(y) g4(y) g5(y)] ,
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yi

yj0

Figure 3: Diagrammatical representation of how the projection method works for our
formulation

but it makes the last row vanish. This fact leads to the following equivalent formulation
with a smaller number of state variables:

A =


−k1 k2 0 0
k1 −k2 − k3 k4 0
−k9 k3 − k9 −k4 − k5 − k9 − k10 k6 − k9

−k8 −k8 k5 − k8 −k6 − k7 − k8

 ,
f(y) =

[
0 0 k9L k8L

]>
, y =

[
y1 y2 y3 y4

]>
,[

g1(y) g2(y) g3(y) g4(y) g5(y)
]

=


−1 0 0 0 0
1 −1 0 0 0
0 1 −1 0 1
0 0 1 −1 0

 diag



√
k1y1 + k2y2√
k3y2 + k4y3√
k5y3 + k6y4√

k7y4 + k8(L−
∑4

i=1 yi)√
k9(L−

∑4
i=1 yi) + k10y3


with y5(t) = L−

∑4
i=1 yi(t).

As (4. 2) is always satisfied in this formulation, the projection method will be used
to keep the non-negativity of the components of the solution. Figure 3 indicates how the
projection method works at a certain time step for this formulation. The oblique solid
or dotted line represents the hyperplane given by (4. 2). The round point is the value at
some time step of the unreflected process, which has a negative i-th component. The star
point is the projection of this point onto D.

4.2 Numerical experiments

In order to see how well the exponential EM scheme behaves, we perform numerical
experiments. Because the dimension of the matrix A is not too large in our problems,
we can diagonalize the matrix [19] for numerical calculations. Assume that we have a
diagonal matrix Λ and a diagonalization matrix R such that

Λ = diag(λ1, λ2, λ3, λ4), AR = RΛ.
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Figure 4: RMSEs of y(5). (Solid: Exp. EM, dash-dotted: EM.)

Then, in (2. 9) we have

eAh = Rdiag
(
eλ1h, eλ2h, eλ3h, eλ4h

)
R−1,

A−1
(
eAh − I

)
= Rdiag

(
eλ1h − 1

λ1

,
eλ2h − 1

λ2

,
eλ3h − 1

λ3

,
eλ4h − 1

λ4

)
R−1.

Note that once we calculate these for a given h, we can use them for every step and
trajectory.

In the sequel, we investigate the root mean square error (RMSE) by simulating 1000
independent trajectories for a given h. We also investigate computational costs. In the

simulation results, we will indicate Sa
def
= ne + nr, where ne and nr stand for the number

of evaluations on the drift or diffusion coefficients and the number of generated pseudo
random numbers, respectively. As we do not know the exact solution of the SDE in our
problem, we will seek a numerical solution by the Milstein scheme [26] with h = 2−10

and use it instead of the exact solution [33]. The Milstein scheme will be used only for
this because it is very costly in our problem due to approximations to stochastic double
integrals and the derivatives of the diffusion coefficients.

The first is a case in which many reflections occur. We set parameters and an initial
condition as follows:

k1 = 0.2, k2 =
k1

50
, ki = k1 (i = 3, 4, . . . , 10),

y0 = [100 50 100 50 100]> (w. p. 1).

The root mean square errors (RMSEs) are indicated in Figure 4. As the solution is a
vector, the Euclidean norm is used. The solid or dash-dotted lines denote the exponential
EM scheme or the EM scheme, respectively. We can see that the exponential EM scheme is
better. On the other hand, Figure 5 indicates the number of reflections per step over 1000
trajectories. We can see that there is not a large difference in the number of reflections.

The second problem is a stiff one depending on the value of k1. We set the other
parameters as follows:

k2 = k1, ki = 0.5 (i = 3, 4, . . . , 10).

The initial condition is the same as the previous case. For several values of k1, RMSEs
are indicated in Figure 6. As k1 becomes large, the SDE becomes increasingly stiff. When
k1=50,
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Figure 5: Number of reflections per step over 1000 trajectories. (Solid: Exp. EM, dash-
dotted: EM.)
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Figure 6: RMSEs of y(5) for several values of k1. (Solid: Exp. EM, dash-dotted: EM.)

for example, we need a small step size h for the EM scheme to solve the SDE numerically
stably. This is because one of the eigenvalues of A is −100.252. (Remember Figure 2.)
On the other hand, for the exponential EM scheme we do not need such a small h as
it is A-stable. Incidentally, Figure 7 indicates the RMSE versus the computational cost
and the number of reflections when k1 = 50. From these results, we can see that the
exponential EM scheme has good performance not only with respect to stability, but also
in terms of computational costs.
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Figure 7: RMSEs of y(5) and the number of reflections per step over 1000 trajectories
when k1 = 50. (Solid: Exp. EM, dash-dotted: EM.)

5 Conclusions

For non-commutative Itô SDEs with the semilinear drift term, we have derived the ex-
ponential EM scheme, which is of strong order a half. Using the scalar test SDE with
complex coefficients, we have investigated stability properties for the scheme and have
shown that it is A-stable in MS.

For the numerical experiments we have dealt with the model for a K+ channel that
is computationally efficient [13], and have carried out the state space reduction for it.
Then, using the reflection technique to keep the non-negativity of the numerical solu-
tions, we have confirmed the advantages of the exponential EM scheme in the numerical
experiments. Whereas the EM scheme has suffered from poor stability properties, the
exponential EM scheme has shown high performance in accuracy, computational costs
and stability.
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