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SOME NOTES ON FIXED POINT THEOREMS IN
v-GENERALIZED METRIC SPACES

Tomonari Suzuki, Badriah ALaMRI, and Liagat Ali KHAN

Abstract

We study v-generalized metric spaces. We first study the concept of Cauchy sequence. We next
give a proof of the Banach contraction principle in v-generalized metric spaces. The proof is similar
to the proof of the original Banach contraction principle in metric spaces. Also, we give proofs of
Kannan’s and Ciri¢’s fixed point theorems in v-generalized metric spaces.

1. Introduction

Throughout this paper we denote by N the set of all positive integers.
In 2000, Branciari in [3] introduced the following, very interesting concept. See
also [6, 8] and others.

DErFINITION | (Branciari [3]). Let X be a set, let d be a function from X x X into
[0,00) and let ve N. Then (X,d) is said to be a v-generalized metric space if the
following hold:

(N1) d(x,y)=0iff x=y for any x,ye X.

(N2) d(x,y)=d(y,x) for any x,ye X.

(N3) d(x,py) <d(x,u)) +d(ui,up) +---+d(u,y) for any x,uj,uz,...,uy,y€X
such that x,uj,u,...,u,, y are all different.

It is obvious that (X,d) is a metric space if and only if (X,d) is a 1-generalized
metric space. Very recently, in [11], we found that not every generalized metric space
has the compatible topology. See also [12]. In [1], we discussed the completeness of
v-generalized metric spaces.

In this paper, we study v-generalized metric spaces. We first study the concept
of Cauchy sequence. We next give a proof of the Banach contraction principle in
v-generalized metric spaces. The proof is similar to the proof of the original Banach
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contraction principle in metric spaces. Also, we give proofs of Kannan’s and Ciri¢’s
fixed point theorems in v-generalized metric spaces.

2. Preliminaries

In this section, we study the concept of Cauchy sequence. As mentioned above, in
general, v-generalized metric spaces do not necessarily have the compatible topology.
So we have to define the concept concerning the convergence. See [1, 3, 13] and others.

DeriNITION 2. Let (X,d) be a v-generalized metric space.
* A sequence {x,} in X is said to be Cauchy iff

lim sup d(xu,x,) =0
=% m>n

holds.
* A sequence {x,} in X is said to be 2-Cauchy iff

nll)ngc sup{d(xnaxn+1+2j) : ] = 01 1125 s } =0

holds.

* A sequence {x,} in X is said to converge to x iff lim, d(x,x,) =0 holds.

* A sequence {x,} in X is said to converge to x in the strong sense iff {x,} is
Cauchy and {x,} converges to x.

DrerFINITION 3. Let (X, d) be a v-generalized metric space. Then X is complete iff
every Cauchy sequence converges.

It is obvious that every Cauchy sequence is 2-Cauchy. If we assume something
additional, then the converse holds.

LemMa 4. Let (X,d) be a v-generalized metric space. Let {x,} be a 2-Cauchy
sequence such that x, are all different and

lim d(x,,Xu+2) = 0.
n—oo

Then {x,} is Cauchy.
Proor. Fix ¢ > 0. Then there exists £ € N such that
d(Xp, Xpp1427) < € and d(xXp, Xp12) < &

for any jeNU{0} and neN with n>/. Fix jeNU{0} and neN with n>"/.
Then in the case where v =1, we have

d(Xn, Xns2427) < d(dy, Xns1427) + d(Xng142), Xnpa425) < 2e.
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In the other case, where v > 2, we have by (N3)

d(Xn, Xp2427) < d(Xny Xng1427) + d(Xns 14275 Xnt2420)

v—1
+ E d(Xp12j42i Xnt2j42i42)

Therefore {x,} is Cauchy. O
The following is essentially proved in [1].

LemMA 5 ([1]). Let (X,d) be a v-generalized metric space. Let {x,} be a sequence
in X such that x, are all different and

8

d(Xp, Xpt1) < 00.

n=1

Then the following hold:
o {x,} is Cauchy provided v is odd.
o {x,} is 2-Cauchy provided v is even.

By using these lemmas, we can prove the following, which is useful in this
paper.

PROPOSITION 6. Let (X,d) be a v-generalized metric space. Let {x,} be a sequence
in X such that x, are all different,

o0

Zd(x,,,xnﬂ) < 0 and lim d(x,,xu12) =0.

n—oo
n=1

Then {x,} is Cauchy.

ProOF. In the case where v is odd, the conclusion obviously holds by Lemma 5.
In the other case, where v is even, {x,} is 2-Cauchy by Lemma 5 again. So by Lemma
4, {x,} is Cauchy. O

The following is connected with the continuity of d. See also [8].

ProrosiTioN 7 ([13]). Let (X,d) be a v-generalized metric space. Let {x,} and
{yn} be sequences in X converging to u and v in the strong sense, respectively. Then

d(u,v) = im d(x,, yn)

holds.
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3. Fixed point theorems

We give proofs of some fixed point theorems in v-generalized metric spaces. We
note that the proofs in this section are similar to the proofs of the original theorems in
metric spaces.

LemmA 8. Let (X,d) be a v-generalized metric space and let T be a mapping
on X. Assume that

d(T"u, T""'u) < o0

NE

()

n=1

for some ue X. Assume also either of the following:
* v is odd.
* v is even and
(2) lim d(T"u, T""u) =0
n— o0
holds.
Then {T"u} is Cauchy.

Proor. We consider the following two cases:
e There exists k,/ € N such that k </ and T*u= T"u.
e T"u are all different.
In the first case, we note that T%u is a fixed point of T/%. So we have

8

0
d(T”u, Tn+1 Zd Tk+j (/—k) u Tk+1+j (G k Z u7 Tkﬂu).
n=1 j=1 j=1

[M]s

Hence d(T*u, T**'u) > 0 contradicts (1). Thus T*u is a fixed point of 7. Therefore
{T"u} is Cauchy. In the second case, by Lemma 5 and Proposition 6, {T"u} is
Cauchy. O

We give a proof of the following fixed point theorem which is a generalization of
the Banach contraction principle [2, 4].

THEOREM 9 (Branciari [3]). Let (X,d) be a complete v-generalized metric space and
let T be a contraction on X, that is, there exists r€[0,1) such that

d(Tx,Ty) <rd(x,y)

for any x,ye X. Then T has a unique fixed point z of T. Moreover, for any x € X,
{T"x} converges to z in the strong sense.

REMARK. See also [9, 10, 11].
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Proor. Fix ue X. Then we have
0 0
Zd(T"u, ") < Zr"d(u, Tu) < .
n=1 n=1

We also have

lim d(T"u, T""u) < lim r"2d(u, T?u) = 0.

n— o0 n— o0

Therefore by Lemma 8, {7"u} is Cauchy. Since X is complete, {7"u} converges to
some z € X. By Proposition 7, we have

d(z,Tz) = lim d(T"u, Tz) < lim rd(T" 'u,z) = rd(z,z) = 0,

n—oo n—oo
which implies z is a fixed point of 7. Let y be a fixed point of 7. Then we have
d(z,y) = d(Tz,Ty) < rd(z, y)
and hence z= y holds. So the fixed point z is unique. O

We also give a proof of the following fixed point theorem which is a generalization
of Kannan’s fixed point theorem [7].

THEOREM 10. Let (X,d) be a complete v-generalized metric space and let T be a
Kannan mapping on X, that is, there exists o €[0,1/2) such that

d(Tx,Ty) < od(x, Tx) + ad(y, Ty)

for any x,ye X. Then T has a unique fixed point z of T. Moreover, for any x € X,
{T"x} converges to z in the strong sense.

ProOOF. Since
d(Tx, T*x) < ad(x, Tx) + ad(Tx, T*x),
we have
d(Tx, T*x) < rd(x, Tx)
for any x e X, where r:=o/(l —a) €[0,1). Fix ue X. Then we have

d(T"u, T"'u) < Zr"d(u, Tu) < oo,
1 n=1

NgE

n

which implies lim, d(7T"u, T"*'u) = 0. We also have
lim d(T"u, T""*u) < lim (ad(T" 'u, T"u) + ad(T"'u, T"?u)) = 0.

n—oo n—oo



20 Tomonari Suzuki, Badriah ALaMRI, and Liaqat Ali KHAN

Therefore by Lemma 8, {T"u} is Cauchy. Since X is complete, {7"u} converges to
some z€ X. By Proposition 7, we have

d(z,Tz) = lim d(T"u, Tz) < lim (ed(T" 'u, T"u) + ad(z, Tz)) = ad(z, Tz),

n— oo n— o0

which implies d(z, Tz) =0. Hence z is a fixed point of 7. Let y be a fixed point
of T. Then we have

d(z,y)=d(Tz,Ty) < od(z,Tz) + ad(y, Ty) =0
and hence z = y holds. So the fixed point z is unique. O

We finally give a proof of the following fixed point theorem which is a gener-
alization of Ciri¢’s fixed point theorem [5] and Theorems 9 and 10.

THEOREM 11. Let (X,d) be a complete v-generalized metric space and let T be a
mapping on X such that there exists r € [0,1) satisfying

(3) d(Tx, Ty) <rmax{d(x,y),d(x, Tx),d(y, Ty),d(x, Ty),d(y, Tx)}

for any x,ye X. Then T has a unique fixed point z of T. Moreover, for any x € X,
{T"x} converges to z in the strong sense.

Proor. Fix ue X and put
A(m,n) = {T’u: jeNU{0},m < j <n},
A(m, o0) ={Tu: jeNU{0},m < j},
D(m,n) = sup{d(x,y) : x,ye A(m,n)}
and
D(m, 0) = sup{d(x, y) : x, y € A(m, )}

for m,n e NU{0} with m <n, where T is the identity mapping on X. Thus D(m,n)
and D(m, ) are the diameter of A(m,n) and A(m, o), respectively. By (3), we
note

4) D(m,n) <rD(m—1,n)
for m,ne N with m <n. We also note by (3)
(5) max{d(u, T’u) : 1 < j <n} = D(0,n)

for n e N. We consider the following two cases:
* There exists k,/ € N such that k </ and T*u= T"’u.
e T"u are all different.
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In the first case, we note
Dk, —1)=D(k+1,¢) <rD(k,/) =rD(k,/ — 1)
by (4). Hence
D(k,0)=D(k,/—1)=0,

which implies 7% is a fixed point of 7. We next consider the second case. Fix neN
with n>v. By (5), there exists /€N with # <n such that d(u,T’u) = D(0,n). 1If
¢ > v, then we have

D(0,n) = d(u, T’ u)
~1
Z u, T ) +d(T"u, T u)
=0
<vD(0,v) + D(v,?)
<vD(0,v) +r"D(0,¢)
<vD(0,v) +r"D(0,n)

and hence

(6) D(0,n) < D(0,v).

—r

If / < v, then (6) obviously holds. Since n € N is arbitrary, {D(0,n)} is bounded, which
is equivalent to D(0,0) < o0. By (3), we note

D(m,0) <rD(m—1,00) <--- <r"D(0, )

for m € N, which implies that {7"u} is Cauchy. Since X is complete, {7"u} converges
to some ze X. By Proposition 7, we have

d(z,Tz) = lim d(T"u, Tz)

n—oo

< lim rmax{d(T" 'u,z),d(T" 'u, T"u),d(z, Tz),d(T"'u, Tz),d(T"u,z)}

n—oo

=rd(z, Tz)

and hence d(z, Tz) = 0, thus, z is a fixed point of 7. We have shown that there exists a
fixed point in both cases. As in the proof of Theorem 9, we can prove that the fixed
point is unique. O
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