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1. Introduction

In two-parameter reliability models such as the Weibull, Gumbel (extreme-value),

log-normal and gamma distributions, the maximum likelihood parameter estimation is not

a difficult task. Even one parameter addition to these models, however, makes the esti-

mation difficult; thus, numerous researchers have studied appropriate estimation methods

corresponding to each probability distribution model. The difficulties in three-parameter

models such as the Weibull, log-normal and gamma distributions have gradually been over-

come (Johnson, Kotz and Balakrishnan (1994)). However, four-parameter models such as

the generalized gamma distribution still have difficulties in parameter estimation. This

paper proposes a novel technique to solve the likelihood equations for such a distribution.

The idea is simple: enlarge the parameter space from a simpler model to a more complex

model in parameter estimation, and connect both models continuously in enlarged param-

eter space. This is called the model augmentation here. For example, consider the case of

estimating the maximum likelihood estimates (MLE) of parameters in the two-parameter

Weibull distribution. The one-parameter exponential distribution is a special case in the

Weibull distribution (shape parameter is 1). The MLE of the exponential distribution is

trivial. If the MLE of the exponential distribution and that of the Weibull distribution

can be connected continuously in the Weibull parameter space, the MLE of the Weibull

distribution can be obtained. This is the idea of the model augmentation. This model aug-

mentation can be done by using the continuation method. Thus, the continuation method

is first explained in this paper, and the model augmentation specific to the generalized

gamma distribution is later described.

Although this paper applies the augmentation method to parameter estimation in the

four-parameter generalized gamma distribution as a typical model augmentation method,

this new procedure will be widely applicable because of its generality. For example, an

appropriate finite mixture distribution model might be obtained by augmenting a simpler

model to a more complex model successively.

This paper consists of eight sections including this introduction section. First, Sec-

tion 2 introduces the general idea of the continuation method because this is central for

the model augmentation. Section 3 proposes an extended model for the four-parameter

generalized gamma distribution; the extension is intended to make the numerical estima-

tion procedure stable. Then, Section 4 shows cases of model augmentation between a

simpler model and a more complex model by using the continuation method; this paper
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specifically demonstrates the case for the four-parameter generalized gamma distribution.

Section 5 describes boundary and corner solutions in the extended four-parameter gener-

alized gamma distribution. Section 6 illustrates some typical examples in the distribution,

and Section 7 is devoted to discussions.

2. Continuation method

Suppose that the parameter vector to be estimated is θ = (θ1, θ2, · · · , θm), where m

is the number of unknown parameters. The Newton-Raphson method in solving the log-

likelihood equations, ∇ logL(θ) = 0, often fails to find a solution, unless an appropriate

starting point is carefully selected. It would be beneficial if some additional tools were

available to find such a starting point for the Newton-Raphson method. The continuation

method (Allgower and Georg (1990)) is one such tool for this purpose. Since applications

of the continuation methods to statistical problems are not well known, a brief explanation

seems useful.

2.1 Naive continuation method

Suppose that the functions ∇ logL(θ) and g(θ) are smooth in Rm, and g has a trivial

solution such that g(θ0) = 0 for some θ0. The principle idea of the continuation method

is to first enlarge the parameter space from {θ| θ ∈ Rm} to {(t, θ)| t ∈ R, θ ∈ Rm}
and make a smooth function h(t, θ(t)) in this enlarged parameter space Rm+1. Let’s

define h(0, θ(0)) = g(θ(0)) ≡ g(θ0) = 0 and h(1, θ(1)) = ∇ logL(θ(1)) = 0. The set

C = {(t, θ(t))| h(t, θ(t)) = 0} parameterized by t becomes a smooth curve (path) in Rm+1.

Then, the maximum likelihood estimates can be obtained by pursuing the path from the

trivial starting point (0, θ(0)) ∈ Rm+1 to a target solution point (1, θ(1)) ∈ Rm+1 such

that h(t, θ(t)) = 0 continuously.

There are many connection methods from the trivial starting function to the solution

function, but the linear connection between the two functions is one of the most popular

method. If g(θ) is defined by

g(θ) = ∇ logL(θ) −∇ logL(θ0), (1)

then g(θ) has a trivial solution in a sense that θ0 can be selected arbitrarily as long as θ0
is defined in the parameter space and is a regular point. If a smooth function h(t, θ) is

defined by connecting the two functions, g(θ) and ∇ logL(θ), linearly, then h(t, θ) becomes

h(t, θ) =t · ∇ logL(θ) + (1 − t) · g(θ)

=∇ logL(θ) + (t− 1)∇ logL(θ0),
(2)

2



where,
h(0, θ(0)) =∇ logL(θ(0)) −∇ logL(θ0) = 0,

h(1, θ(1)) =∇ logL(θ(1)).
(3)

Thus, the target solution for ∇ logL(θ) = 0 can be obtained by tracing the points of

h−1(0) from a starting point (0, θ(0)) to a final point (1, θ(1)); θ(1) can be the maximum

likelihood estimates θ̂.

By differentiating h = 0 with respect to t, a differential equation,

d

dt
θ(t) = −[hθ(t, θ(t))]−1ht(t, θ(t)), (4)

is obtained. By applying an Eulerian method to (4), a successive scheme

θ(j+1) = θ(j) − δ(J (j))−1∇ logL(θ0), j = 0, 1, ..., (5)

will find a solution, where J denotes a Jacobian for ∇ logL(θ), and δ is a small number.

Since this iterative method is very similar to the usual Newton-Raphson iterative scheme,

θ(i+1) = θ(i) − (J (i))−1∇ logL(θ(i)), i = 0, 1, ..., (6)

we no longer have to develop a particular code if the Newton-Raphson scheme is already

available (Hirose (1994a)). This is called the naive continuation method. Note that t

should increase monotonically.

2.2 Introducing the arclength as a monotone increasing function

The naive continuation method will fail in solution finding at possible turning points

of t; the turning point means a point where t cannot increase (this will be illustrated

later, e.g., by Fig.2). To circumvent this inconvenience, arclength s on the curve C which

consists of points of h−1(0) is introduced; s is monotone increasing. Parameter t and the

curve C are parameterized by s, and (2) can be denoted as h(C(s)).

By differentiating h = 0 with respect to s,

h′(C(s)) · Ċ(s) = 0 (7)

is obtained, where Ċ(s) = dC/ds. To reduce one free parameter a constraint

‖Ċ(s)‖ = 1, (8)
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should be imposed, where ‖ · ‖ denotes a Euclidian norm (l2 norm). With an assumption

that rank(h′(C(s))) = m, an augmented Jacobian matrix,

A(s) =
(
h′(C(s))
Ċ(s)T

)
, (9)

becomes nonsingular, because h′(C(s)) is orthogonal to Ċ(s) (see (7)). Thus, the direction

of traversing the curve C(s) at each iteration should be determined by a constraint,

det(A(0)) · det(A(s)) > 0. (10)

The starting direction of the curve C(s) is defined such that t(s) > 0 in general cases,

but it is convenient to determine the starting direction in such a manner that logL(θ(1))

is greater than logL(θ(0)) in the maximum likelihood parameter estimation procedure by

experience.

2.3 Predictor-corrector continuation method

Using (8)-(10), increments (dC(s))(j) are obtained by solving a system of linear equa-

tions (7). Then, a new point (Č(s))(j) is obtained by ((C(s))(j) + (dC(s))(j)). However,

this point is not necessarily on the curve C(s). A correction process is needed for finding

a point (C(s̃(j))) such that it is on the curve C(s). For the correction to make the vector

((C(s̃))(j)− (Č(s))(j)) perpendicular to the vector (dC(s))(j) is used. The correction point

(C(s̃))(j) is obtained by solving h((C(s̃))(j)) = 0. This procedure which consists of these

two steps is called the predictor-corrector continuation method. In contrast with the need

of more than 100 steps in the naive continuation method, the predictor-corrector continu-

ation method requires 1/10 times as many steps of the naive continuation for usual cases

in reliability distributions .

3. Generalized gamma distribution

3.1 Historical background

The generalized gamma distribution, proposed by Stacy (1962),

p

a

1
Γ(b)

(x
a

)bp−1

exp
{
−

(x
a

)p}
, (x ≥ 0; a, b, p > 0), (11)

is attractive because of its properties; it includes the exponential, Weibull, gamma, half-

normal (Stacy and Mihram (1965)). Rayleigh and χ2 distributions are also included be-

cause they are in a sub-family of the gamma distribution. Moreover, by using the logarith-

mic transformation to (11), the limiting form of the transformed distribution as b → ∞
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becomes a normal distribution (Bartlett and Kendall (1946)), and consequently (11) be-

comes a log-normal distribution as b→ ∞ (Prentice (1974) and Lawless (1980)). Lienhard

and Meyer (1967) show a physical basis for the model, and Mees and Gerald (1984) apply

the model to study the distributional shape of seed germination curves.

Maximum likelihood estimation for (11) is described in Parr and Webster (1965).

Harger and Bain (1970) show that the three simultaneous likelihood equations can be

reduced to a single non-linear equation in a single unknown p, but they mention that the

Newton-Raphson method does not work well. Lawless (1980) also reports the difficulty in

iterative numerical computation. Stacy (1973) reports the existence of multiple solutions

for the non-linear equation, and Wingo (1987) consents to his claim by using the root

isolation method of Jones, Waller and Feldman (1978). Cohen and Whitten (1988) use a

trial-and-error procedure.

Harter (1967) proposes a four-parameter generalized gamma distribution which in-

cludes a location parameter c (this is also called a threshold parameter),

p

a

1
Γ(b)

(x− c
a

)bp−1

exp
{
−

(x− c
a

)p}
, (x ≥ c; a, b, p > 0), (12)

and show an iterative procedure which consists of the rule of false position and the Newton-

Raphson method for solving the four simultaneous likelihood equations. Along with the

numerical difficulties in the three-parameter case of (11), inclusion of the location param-

eter will cause further difficulties in maximum likelihood parameter estimation. This can

easily be understood by a similar interpretation to Smith (1985); the difficulties are due

to non-regular problem. Johnson, Kotz and Balakrishnan (1994) suggest that this model

is not recommended for analysis of sample data, unless the sample size is large enough to

group the data in a frequency table. Because of these the literature on the four-parameter

generalized gamma model seems to be limited. However, parameter estimation by using

the continuation technique has been proved to be successful and it has brought us new

features of this distribution as will be shown later; it would be useful and helpful if the

estimation procedure by using the continuation technique becomes much easier than that

by using a conventional method such as the Newton-Raphson method, when we refer to

this four-parameter model as one of the distributions for reliability analysis.

3.2 Extended model

In some situation, enlarging the parameter space makes the numerical estimation

more stable. For instance, estimation in the generalized extreme-value (GEV) distribution
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parameter space is more stable than that in the three-parameter Weibull (W3) space

(Hirose (1994a)). This is because the GEV includes the W3; the embedding problem

(Cheng and Iles (1990)) which occurs in the W3 vanishes in the GEV. This paper intends to

make the parameter estimation in larger parameter space to the four-parameter generalized

gamma (GGM4) distribution for stable computation.

Stacy and Mihram’s model (1965) which allows us a negative value of p is one of the

convenient extensions. A transformation of b = 1/λ2 makes the treatment of the limiting

form at b → ∞ easy (Prentice (1974)). Besides, reparameterization of p = 1/k seems

convenient in making the estimation stable; this is similar to the GEV reparameterization

of the three-parameter Weibull distribution. Therefore, an extended (and reparameterized)

model of the GGM4 with the density function,

f(x;λ, k, σ, µ) =
|λ|
σ

1
Γ(1/λ2)

{
1 + λk

(x− µ
σ

)}1/(λ2k)−1

exp
[
−

{
1 + λk

(x− µ
σ

)}1/k]
,

(1 + λk
(x− µ
σ

)
≥ 0; λ = 0, k = 0, σ > 0),

(13)

is proposed by the reparameterization,

a =
σ

|λk| , c = µ− σ

|λk| , p =
1
|k| , b =

1
λ2
. (14)

The model (13) is called the extended four-parameter generalized gamma distribution

(EGGM4) here.

The function (13) becomes a GEV density function when λ = 1, and this restricted

density becomes a Gumbel (GB) density function as k → 0. This extended model (13)

includes various probability distribution models as the model (12) includes a variety of

types of distribution. However, the relationships among the three distributions, the ex-

tended four-parameter generalized gamma (EGGM4), the GEV, and the GB distributions,

are enough to construct the model connection which will be used in Section 4.

The log-likelihood function for (13) is

logL = n{log |λ| − log σ − log Γ(1/λ2)}

+
n∑

i=1

[( 1
λ2k

− 1
)
log

{
1 + λk

(xi − µ
σ

)}
−

{
1 + λk

(xi − µ
σ

)}1/k]
,

(15)

where n denotes the number of samples. When λ2k > 1, function (15) becomes infinity as

x→ µ− σ/(λk), thus a boundary of the maximum likelihood parameter space is λ2k = 1.
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Another formulation for the EGGM4 is briefly discussed in Section 6.

4. Model augmentation

The GEV is a special case in the EGGM4 (λ = 1 in (13)). Thus, the solution of the

likelihood equations in the EGGM4 can be traced from that in the GEV continuously by

using the continuation method when the solution in the GEV has already been obtained in

the interior of the EGGM4 parameter space. That is, the solutions in the GEV and EGGM4

models correspond to the trivial solution θ(0) and the target solution θ(1) respectively in

Section 2. This method, on the other hand, can be interpreted as the model connection

from the simpler (easier) model to the more complex (more difficult) model. In other

words, the GEV enlarges the probability distribution model from three-dimensional space

to four-dimensional space, and the solution of the likelihood equations in the EGGM4 can

be obtained by enlarging the GEV model. If the solutions in the GEV and EGGM4 are

in the interior of the parameter space and these solution points are regular, it is possible

to find the solution in the EGGM4 by tracing the curve C(s) defined by the continuation

method from the GEV solution point to the EGGM4 solution point continuously as long

as the curve C(s) does not have bifurcation points.

The GB is not included in the GEV, but it is a limiting distribution of the GEV (λ =

1, k → 0 in (13)). However, a small perturbation of k from 0 leaving other two parameters,

σ and µ, fixed to the GB’s maximum likelihood estimates, allows an approximate GB

model exist in the GEV space. Then, the solution in the interior of the parameter space in

the GEV can be traced from the solution in the approximate GB continuously when the

solution in the GB has already been obtained.

As a result, the solution in the EGGM4 can be obtained by tracing the two curves

from a point which is an approximate solution of the GB whenever the solution in the GB is

obtained. The solution of the likelihood equations in the GB always exists and is unique;

Pike (1966) has shown this for the two-parameter Weibull case, and by a logarithmic

transformation the Weibull variates become the Gumbel variates. Thus we can always

find a starting point in the EGGM4 parameter space as long as the random variable X is

positive.

However, the GEV does not always have a solution in the interior of the parameter

space; the maximum likelihood estimates may be located on the boundary of the parameter

space, i.e., the location parameter c in (12) approaches the minimum order statistics in

the sample and (12) becomes an exponential density function when b = 1. Similarly, the
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solution in the EGGM4 is not always located in the interior of the parameter space, it may

be located on the boundary. The continuation method seems incompetent in such cases.

However, it leads us to the boundary even in such situations. Therefore, the continuation

method leads us to the interior, the boundary or the corner of the parameter space in the

EGGM4 corresponding to the sampled data. This will be shown in Section 5.

There are many routes to find a solution in the EGGM4 from a trivial starting point

to the final point. Fig.1 shows some typical routes. This paper selects a route from the GB

to the EGGM4 via the GEV, because it seems the most stable way from a computational

view-point by experience.

(INSERT FIG.1 ABOUT HERE.)

5. Boundary and corner solutions

5.1 Boundary solution

A locally maximum point of (12) is defined when bp ≥ 1, and the boundary of the

parameter space is bp = 1. At the boundary, the maximum likelihood of c tends to the

smallest sample of the data, xmin, because exp{−(x − xmin)/a} > exp{−(x − c)/a} for

x ≥ c. Consequently, µ̂ → xmin + λ̂σ̂ when k is eliminated in the reparameterized model.

Then (13) becomes at the boundary

f(x;λ, σ) =
|λ|
σ

1
Γ(1/λ2)

exp
{
−

(x− xmin

λσ

)λ2}
,

(λ = 0, σ > 0).
(16)

5.2 Corner solution

If λ→ ∞ (σ → 0) with λσ = τ (τ :const.) in (16), (16) becomes a uniform distribution

f(x; τ) =
1
τ
, (xmin ≤ x < xmax; τ > 0), (17)

where xmax is the largest sample of the data. This is easily seen by the fact that

λ2/Γ(1/λ2) → 1,

exp
{
−

(x− xmin

τ

)λ2}
→ 1 (0 ≤ x− xmin < τ),

→ 1/e (x− xmin = τ),

→ 0 (otherwise),

when λ→ ∞.
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6. Examples

The generalized gamma distribution includes many types of the distribution according

to the values of the parameters as mentioned in Stacy and Mihram (1965). In this section,

however, only the typical degenerated cases which have not been introduced so far are

mainly dealt with. That is, boundary solutions and a corner solution relevant to such

degenerated distributions are treated.

6.1 Interior solution: example 1

Before degenerated cases are dealt with, a useful four-parameter case which has a

solution in the interior of the parameter space is introduced first. Hirose and Lai (1997),

treat a difficult Weibull analysis due to shape parameter divergence. That is, the log-

likelihood function is maximized as the shape parameter tends to infinity. In the literature

of Hirose and Lai (1997) the data are dealt with as grouped and are considered in the

enlarged distribution model, the GEV, because of circumvention of non-regularity and the

divergent problem. However, the problem for the positive endpoint still remains in the

Weibull or GEV distributions unless some other techniques such as the Bayesian method

(Smith and Naylor (1987)) is introduced. Such an annoying problem vanishes when the

EGGM4 is applied to the same data (data #2) as in Kako (1986).

The parameter estimation method in the extreme-value distributions by using the

maximum likelihood estimates in the GB as a starting point for the continuation method

has already been illustrated by Hirose (1994a), thus how successfully the continuation

method can search the solution of the log-likelihood equations in the EGGM4 is introduced

here. The maximum likelihood estimates of the parameters in the GEV,

f(x;σ, µ, k) =
1
σ

{
1 + k

(x− µ
σ

)}1/k−1

exp
[
−

{
1 + k

(x− µ
σ

)}1/k]
,

(1 + k
(x− µ
σ

)
≥ 0; k = 0, σ > 0),

(18)

are σ̂ = 0.2730, µ̂ = 3.364, k̂ = −0.1593, and logLmax = −7.4936 when the sampled

data are treated as continuous data. By using these values in addition to λ = 1 as

a starting point in the EGGM4 parameter space, the predictor-corrector continuation

method successfully traces the curve C(s) to each optimum parameter as shown in Fig.2.

In the figure, parameter s is implicitly hidden; one turning point is seen around t = −4,

and this would not be traced by the naive continuation method. The maximum likelihood

estimates are λ̂ = 2.751, k̂ = 0.03747, σ̂ = 0.2246, µ̂ = 3.661; logLmax = −6.8060 which
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is slightly larger than that of the GEV. The Newton-Raphson method by using the same

starting point as in the continuation method fails to search this local maximum point;

instead, it finds a stationary but not a local maximum point, λ = 0.8941, k = −0.2291,

σ = 0.2940, µ = 3.282, where logL = −7.5003.

The origin (endpoint) of the distribution is obtained by using the parameter trans-

formation (14) as ĉ = 1.482, and it is intriguing that this value is strictly positive. The

problem of negative endpoint vanishes accidentally here, although its confidence interval

includes 0 (the standard error computed by using the delta method is 1.266). The shapes

of the density functions of the EGGM4 and the GEV are shown in Fig.3.

(INSERT FIGS.2 AND 3 ABOUT HERE.)

6.2 Boundary solutions

The EGGM4 may not have a solution in the interior of the parameter space, but we

can give a boundary optimum solution. Such a case in the W3 is shown in Rockette, Antle,

and Klimko (1974).

(a) Semi half-normal: example 2

Using the data case 1 in Table 1 which are taken from the data case 4 in Kako

(1986), the continuation method provides a curve approaching the boundary in the EGGM4

parameter space; this is shown in Fig.4 in which λ2k → 1 and c → xmin can be seen. By

using a point, λ = 1.5, σ = 0.65, near the boundary, as a new starting point for the

degenerated density (16), the continuation method can find a local maximum point on the

boundary as shown in Fig.5. They are λ̂ = 2.000, σ̂ = 0.6544 (consequently, k̂ = 0.2501

and µ̂ = 3.909), and logLmax = −8.4147. Since the shape of this density function is similar

to the half-normal distribution of (λ, k) = (
√

2, 1/2), the distribution of this example can

be denoted as semi half-normal.

(INSERT TABLE 1 ABOUT HERE.)

(INSERT FIGS.4 AND 5 ABOUT HERE.)

(b) Reverse J-shaped: example 3

When the maximum likelihood parameter estimation procedure in the GEV locates

an optimum point at the corner k = 1, the search in the EGGM4 should be begun at

the boundary, λ = k = 1, µ = xmin + σ. The data case shown in Engelhardt and Bain

(1979) corresponds to such a case. Along the boundary, the continuation method searches
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a solution successfully as λ̂ = 0.8842, σ̂ = 49.94 (consequently, k̂ = 1.279 and µ̂ = 196.9),

and logLmax = −52.088. Fig.6 shows a difference between the corner solution in the

GEV which is a two-parameter exponential distribution and the boundary solution in the

EGGM4; the solution in the EGGM4 can express a steeper tangent at the endpoint, which

cannot be expressed in the GEV distribution.

(INSERT FIG.6 ABOUT HERE.)

6.3 Corner solution: example 4

There are some cases in which local maxima exist neither for the density (13) nor

for the density (16). For the data case 2 in Table 1 which are taken from the data

case 1 in Kako (1986), the continuation method in the EGGM4 parameter space gives

an approximate boundary maximum point, λ = 2.09, σ = 0.475. Using this point as a

starting point for the degenerated model (16), the continuation procedure traces a curve

which approaches the boundary t = 1 but will never cross the boundary as shown in

Fig.7 on the left; parameter λ seems to diverge. By using a reparameterization τ = λσ

and k (because k → 0 as λ → ∞), the continuation method reaches an optimum point,

τ̂ = 1.2, and the maximum log-likelihood value is −3.6464 (Fig.7 on the right). This

degenerated model is a uniform distribution in (17) which has two endpoints, xmin = 2.6

and xmax = 3.8.

(INSERT FIG.7 ABOUT HERE.)

7. Discussions

7.1 Alternative formulation for EGGM4

In Section 3, the existence of an alternative extension for the EGGM4 model is men-

tioned. This formulation is expressed as:

f(x;λ, k, σ, µ) =
1
σ|λ|

1
Γ(1/λ2)

{ 1
λ2

+
k

λ

(x− µ
σ

)}1/(λ2k)−1

exp
[
−

{ 1
λ2

+
k

λ

(x− µ
σ

)}1/k]
,

(1 + λk
(x− µ
σ

)
≥ 0; λ = 0, k = 0, σ > 0),

(19)

by the reparameterization,

a =
|λ|σ
|k| , c = µ− σ

|λk| , p =
1
|k| , b =

1
λ2
. (20)

11



When k = 1, (19) becomes the extended three-parameter gamma distribution (EGM3)

which is introduced by Hirose (1994b and 1998). Thus, an alternative route from the

normal distribution to the EGGM4 via the EGM3 is possible (see Fig.1). This model also

includes the GEV model (λ = 1). However, (19) is not recommended as an extended model

for the GGM4 from a numerical stability viewpoint.

Table 2 shows some computational results obtained by the EGGM4 models using (13)

and (19); the table also includes the results from the GEV and EGM3 for comparison.

All the estimates are located in the interior of the parameter space. An indication that

the locations of the estimates of σ̂ and µ̂ in the EGGM4 using (19) are far from those

obtained by the GEV and EGM3 models can be seen in some cases. On the other hand,

these estimates in the EGGM4 using (13) do not seem to show this tendency very much.

This suggests that parameter estimation using the model (13) is more stable than that

using (19) as long as the starting point is set to the optimum values of the GEV or the

EGM3. Practical experience supports this. Therefore, the model (13) is recommended for

the extension of the GGM4.

(INSERT TABLE 2 ABOUT HERE.)

7.2 Multiple solutions

Stacy (1973) finds multiple solutions for the log-likelihood equations in the GGM3 to

the data in Menon (1963). These solutions are, θ1=(0.029, 0.001, −5.300), θ2= (3.986,

0.004, 0.247), and θ3=(0.029, 61.542, 7.604); θ=(a, b, p). Wingo (1987) gives another

solution, θ4=(3.7717, 0.0059, 0.2531), to the same data. The continuation method can

lead us to the local maximum point θ̂5=(3.9611, 0.0043021, 0.24734) using the optimum

point (a, p)=(1.8435, 0.50573) in the W2 with b = 1. However, it does not direct us to

other local maximum points. I have a strong belief that θ2 and θ4 should be identical to θ5.

The Newton-Raphson method shows that the point θ6=(0.029436, 0.00098393, −5.3008)

is a stationary point, but it is not a local maximum point. This indicates the difficulty

of the numerical computation in parameter estimation even in the GGM3, as well as the

existence of the multiple solutions for the likelihood equations in the EGGM4.

8. Concluding remarks

The numerical difficulties in maximum likelihood parameter estimation in the four-

parameter generalized gamma distribution have hindered us from obtaining the estimates.

Due to the nonlinearity of the likelihood equations we ought to use some iterative methods

12



such as the Newton-Raphson method for finding a solution. In maximum likelihood es-

timation in reliability engineering, the exponential family, especially extreme-value types

of the distribution, has been used, and it is known that the initial value setting is subtle.

The continuation method has made us free from the initial value search as shown in this

paper, typically in the four-parameter generalized gamma distribution.

The starting point for the continuation method can arbitrarily be selected if the point

is a regular point in the interior of the parameter space. However, computational experience

still suggests that we use an appropriately selected point because of stability in computing.

The idea of the model augmentation from a simpler model to a more complex model seems

to help this, and practically the model augmentation works well. This estimation method

is so general, and it can be applied to many cases even if they are more complex.

Aimed at stable computation, the four-parameter generalized gamma distribution

is reparameterized and extended as the Weibull model is extended to the generalized

extreme-value distribution in this paper. This extended model includes the generalized

extreme-value distribution which includes the Gumbel distribution as the limiting case.

These relationships make us use the model connection from the Gumbel distribution to

the four-parameter generalized gamma distribution.

In obtaining the maximum likelihood estimates of the parameters, the continuation

method shows paths to optimum solutions. In a certain case, the path reaches the boundary

of the parameter space, and the continuation method finds the optimum point along the

boundary. It can find even the degenerated distribution functions including the uniform

distribution. This characteristics cannot be realized by the Newton-Raphson method and

related root finding methods.
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Table 1. Data ∗1

case # data

3.0 4.2 3.8 3.8 3.3 2.7
1 2.7 3.3 3.2 3.5 3.5 2.6

3.1 3.4 2.8 2.9 3.1 3.1
3.6 3.4

3.4 3.8 3.1 2.6 2.9 3.0
2 3.2 3.5 3.5 3.7 3.1 3.6

3.5 2.8 2.9 3.1 2.9 2.9
2.7 3.6

∗1: Kako (1986)



Table 2. Computational Results by the EGGM4, GEV, and EGM3

data source model estimates

λ̂ k̂ σ̂ µ̂ log L

Kako (1986)*2 EGG4(3) 2.751 0.03747 0.2246 3.661 −6.80599
EGG4(19) 2.751 0.03747 0.02968 1.770 −6.80599

GEV 1 −0.1593 0.2730 3.364 −7.49358
EGM3 −0.7177 1 0.4172 3.160 −7.00027

Smith et. al. (1987)*3 EGG4(3) 0.7457 0.01849 0.2755 1.399 −14.2394
EGG4(19) 0.7457 0.01849 0.4955 17.36 −14.2394

GEV 1 0.08435 0.2729 1.642 −14.2853
EGM3 −0.2781 1 0.3145 1.507 −14.8607

Smith et. al. (1987)*4 EGG4(3) 1.432 0.08907 0.2255 1.394 −2.00359
EGG4(19) 1.432 0.08907 0.1100 0.4882 −2.00359

GEV 1 0.04692 0.2215 1.249 −2.08236
EGM3 −0.4158 1 0.2687 1.130 −2.04942

Harter et. al. (1966)*5 EGG4(3) 1.666 0.2758 63.31 151.0 −205.833
EGG4(19) 1.666 0.2758 22.82 62.87 −205.833

GEV 1 0.4547 46.28 104.3 −206.258
EGM3 0.2961 1 43.81 92.68 −206.759

Harter et. al. (1966)*6 EGG4(3) 1.359 0.3235 44.43 138.0 −196.390
EGG4(19) 1.359 0.3235 24.05 91.68 −196.390

GEV 1 0.4292 35.84 114.3 −196.518
EGM3 0.2650 1 34.03 104.8 −196.889

Lambert (1964) EGG4(3) 0.8781 0.6360 157.4 398.4 −564.072
EGG4(19) 0.8781 0.6360 204.1 476.0 −564.072

GEV 1 0.6088 192.3 459.2 −564.101
EGM3 0.5609 1 177.5 426.2 −564.167

Lieblein et.al. (1956) EGG4(3) 1.191 0.5300 49.89 95.38 −112.841
EGG4(19) 1.191 0.5300 35.18 72.07 −112.841

GEV 1 0.6272 40.07 78.76 −112.850
EGM3 0.5913 1 37.24 72.22 −112.914

∗2: Data Case #2 in Kako (1986)
∗3: Data Case #1 in Smith and Naylor (1987)
∗4: Data Case #2 in Smith and Naylor (1987)
∗5: Data Case #1 in Harter and Moore (1966)
∗6: Data Case #2 in Harter and Moore (1966)
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Data Case in Engelhardt and Bain (1979)
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