
PHYSICAL REVIEW C 75, 034003 (2007)

Extraction of the neutron magnetic form factor from quasielastic 3 �He(�e, e′) at
Q2 = 0.1–0.6 (GeV/c)2

B. Anderson,10 L. Auberbach,18 T. Averett,3 W. Bertozzi,11 T. Black,11,* J. Calarco,22 L. Cardman,19 G. D. Cates,14,†

Z. W. Chai,11,‡ J. P. Chen,19 Seonho Choi,18,§ E. Chudakov,19 S. Churchwell,4,‖ G. S. Corrado,14 C. Crawford,11 D. Dale,21

A. Deur,20,¶ P. Djawotho,3,** D. Dutta,11,†† J. M. Finn,3 H. Gao,11,†† R. Gilman,16,19 A. V. Glamazdin,9 C. Glashausser,16
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We have measured the transverse asymmetry AT ′ in the quasielastic 3 �He(�e, e′) process with high precision at
Q2 values from 0.1 to 0.6 (GeV/c)2. The neutron magnetic form factor Gn

M was extracted at Q2 values of 0.1 and
0.2 (GeV/c)2 using a nonrelativistic Faddeev calculation which includes both final-state interactions (FSI) and
meson-exchange currents (MEC). Theoretical uncertainties due to the FSI and MEC effects were constrained
with a precision measurement of the spin-dependent asymmetry in the threshold region of 3 �He(�e, e′). We also
extracted the neutron magnetic form factor Gn

M at Q2 values of 0.3 to 0.6 (GeV/c)2 based on plane wave impulse
approximation calculations.
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I. INTRODUCTION

The electromagnetic structure of the nucleon has long
been a topic of fundamental interest in nuclear and particle
physics. First-order nucleon electromagnetic properties are
commonly parametrized in terms of elastic form factors [1].
At low values of four-momentum transfer squared, Q2, these
functions have a simple interpretation as the Fourier transforms
of the nucleon charge and magnetization densities in the Breit
frame. Their precise experimental determination is important
both for testing fundamental theories of hadron structure and
for the analysis of other experiments in the field, such as parity
violation measurements [2,3] which are designed to probe the
strangeness content of the nucleon.
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The proton form factors have been determined with good
precision at low Q2 using Rosenbluth separation of elastic
electron-proton cross sections, and more recently at higher Q2

using a polarization transfer technique [4,5]. The neutron form
factors are less well known because of the zero electric charge
of the neutron, causing its electric form factor to be small, and
experimental complications such as the lack of free neutron
targets and difficulties associated with neutron detectors.

Over the past two decades, with the advent of much
improved experimental facilities, the precise measurement of
both the neutron electric form factor Gn

E and the magnetic form
factor Gn

M has become a focus of activity. Until recently, most
data on Gn

M had been deduced from elastic and quasielastic
electron-deuteron scattering. Inclusive measurements of this
type suffer from large theoretical uncertainties due in part
to the deuteron model employed and in part to corrections
for final-state interactions (FSI) and meson-exchange currents
(MEC). The sensitivity to nuclear structure is reduced by
measuring the neutron in coincidence, 2H(e, e′n) [6], and,
further, by taking the ratio of cross sections of 2H(e, e′n)
to 2H(e, e′p) at quasielastic kinematics [7–11]. Uncertainties
of less than 2% in Gn

M have been achieved in the region
Q2 < 1 (GeV/c)2 using the latter technique [10,11]. Despite
this high precision, there is significant disagreement between
the results of Refs. [6–8] and those of the more recent
experiments [9–11] of up to 10% in the absolute value of
Gn

M . An explanation has been suggested in Ref. [12], but the
issue has remained contentious.

To clarify the situation experimentally, additional data on
Gn

M , preferably obtained using a complementary method, are
highly desirable. Inclusive quasielastic 3 �He(�e, e′) scattering
provides such an alternative approach [13]. In contrast to
deuterium experiments, this technique employs a different
target and relies on polarization degrees of freedom. It is thus
subject to completely different systematics. On the other hand,
because of the more complex physics of the three-body system,
the precise extraction of nucleon form factors from polarized
3He measurements requires careful modeling of the nuclear
structure and of the reaction mechanism. Recent advances in
Faddeev calculations [14–16] have brought theoretical uncer-
tainties of 3He models sufficiently under control to allow such
studies in the nonrelativistic kinematic regime. A precision
comparable to that of the deuterium ratio experiments can be
achieved using the polarized 3He technique [17].

The use of polarized 3He targets was pioneered at MIT-
Bates [18–21] and Mainz [22]. In Ref. [20], Gn

M was extracted
for the first time from quasielastic inclusive scattering from
polarized 3He, although with a large statistical uncertainty.

In this paper, we report on the first precision measurement
of the so-called transverse asymmetry AT ′ , which is sensitive
to Gn

M , in the inclusive reaction 3 �He(�e, e′). The results
were obtained in Hall A at the Thomas Jefferson National
Accelerator Facility (Jefferson Lab). Brief reports of these data
have appeared previously [17,23,24]. This paper presents the
data analysis and evaluation of model uncertainties in much
more detail. In addition, the analysis has been slightly refined.
The results presented here are final.

The neutron magnetic form factor Gn
M was extracted at

Q2 = 0.1 to 0.6 (GeV/c)2 in steps of 0.1 (GeV/c)2 [17,23].
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In addition, high-precision asymmetry data in the 3He
breakup region were obtained at Q2 values of 0.1 and
0.2 (GeV/c)2 [24]. The threshold data provide a stringent test
of the above-mentioned Faddeev calculations because they
cover a kinematical region where the proper treatment of the
reaction mechanism is particularly important.

At the Q2 = 0.1 and 0.2 (GeV/c)2 kinematics, Gn
M was

extracted using a state-of-the-art Faddeev calculation [16]. At
these low Q2 values, relativistic effects are small, and the
nonrelativistic Faddeev results have been shown to be in good
agreement with a diverse set of few-body data, including our
own 3He breakup threshold data [24]. On the other hand, the
extraction of Gn

M from our 3He asymmetry data at higher
values of Q2 with the same precision as that achieved at low
Q2 would require a more advanced theory that includes both
an accurate treatment of reaction mechanism effects (FSI and
MEC) and proper relativistic corrections (and possibly other
refinements, such as �-isobar excitations, presumed to be
small at our kinematics). Unfortunately, such a comprehensive
calculation is not available at the present time, and efforts
to extend the theory are only in the beginning stages. For
example, full inclusion of FSI has been investigated for the
two-body channel in Ref. [25]. The Hannover group has carried
out a coupled-channel calculation of 3 �He(�e, e′) that accounts
for FSI and � isobars [26], but unfortunately also with limited
success at higher Q2. Nonetheless, we observe that the size
of FSI and MEC corrections to inclusive scattering data near
the top of the quasielastic peak has been predicted to diminish
sharply with increasing momentum transfer [27–30]. Hence,
it appears likely that the plane wave impulse approximation
(PWIA), in which the knocked-out nucleon is described by
a plane wave while the spectator pair is fully interacting, is
reasonably accurate at the higher Q2 values of this experiment.
A quantitative estimate of the Q2 behavior of deviations from
the PWIA, in particular of the size of FSI corrections, could
be obtained by performing a y-scaling analysis on the present
3He asymmetry data [31]. Such an analysis may be carried out
in a future publication.

Taking the pragmatic point of view that the PWIA is cur-
rently the best available theory describing inclusive quasielas-
tic scattering from polarized 3He at Q2 � 0.3 (GeV/c)2, we
have extracted Gn

M from our higher Q2 data [23] using
PWIA. While we do not attempt to go beyond the PWIA by
computing corrections for the various effects omitted in this
approximation, we provide estimates of the uncertainties of
the results in considerable detail. Despite the relatively large
theoretical uncertainties in this approach, our results are in
good agreement with the recent deuterium ratio measurements
from Mainz [10,11] in the same Q2 region.

II. THEORY

A. Spin-dependent inclusive electron scattering

Figure 1 depicts inclusive scattering of longitudinally
polarized electrons from a polarized nuclear target. The four-
momentum of the electrons before and after the reaction is k =
(E, k) and k′ = (E′, k′), respectively. The four-momentum

γ∗(ω, �q)

e′(E′, �k′) x

θscatt

y

θ∗

h = ±1 PA(MA, 0)

�σA

z

e(E,�k)

φ∗

FIG. 1. Spin-dependent inclusive electron scattering from a po-
larized target. The target spin angles θ∗ and φ∗ are defined with
respect to the three-momentum transfer vector q.

transfer to the target is q = k − k′ = (ω, q), with the usual
definition Q2 ≡ −q2.

The experiment measured the spin-dependent asymmetry
A = (σ+ − σ−)/(σ+ + σ−), where σ± is the differential cross
section for quasielastic scattering of electrons with helicity
h = ±1 from polarized 3He. It can be expressed in terms of
nuclear response functions R(Q2, ω) and kinematic factors
v(Q2, ω) as [32]

A = −cos θ∗νT ′RT ′ + 2 sin θ∗ cos φ∗νTL′RTL′

νLRL + νT RT

, (1)

where θ∗ and φ∗ are the polar and azimuthal angles of the
target spin direction with respect to the three-momentum
transfer vector q, as shown in Fig. 1. By choosing θ∗ = 0◦
or θ∗ = 90◦, one can select the transverse asymmetry AT ′ or
the longitudinal-transverse asymmetry ATL′ .

The nuclear response functions for inclusive quasielastic
scattering have been obtained through both PWIA and Faddeev
calculations. These calculations will be discussed briefly next.

B. Plane wave impulse approximation

In the PWIA, it is assumed that a single nucleon within the
target nucleus completely absorbs the momentum of the virtual
photon and leaves the interaction region as a plane wave. The
remaining two-nucleon subsystem still undergoes interaction.
Exchange current effects are ignored. The target nucleus, in
our case 3He, however, is described by the solution of the
Schrödinger equation with realistic nuclear forces. Relativistic
effects are included by using relativistic energy conservation
and a relativistic electron-nucleon cross section.

The nuclear current tensor is calculated as the product of
the nucleonic current tensor and the nuclear spectral function,
which contains the nuclear structure information (see, for
example, Refs. [33–36]). The spin-independent part of the
spectral function has the well-known interpretation as the
probability of finding a nucleon of certain momentum and
isospin in the target nucleus [37]. The PWIA formalism
available in the literature is largely but not necessarily fully
covariant.

Expressions for the matrix elements of the nucleonic current
tensor and the spin-dependent nuclear spectral function have
been derived in Ref. [36]. The spectral function can be
computed numerically from the nuclear wave function, which
in turn can be obtained from a model of the nucleon-nucleon
(NN ) potential. With the nucleonic current tensor and the
nuclear spectral function at hand, expressions for the functions
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R(Q2, ω), required in Eq. (1), can be derived and evaluated
numerically [36].

The PWIA results presented in the paper were calculated
following Ref. [33]. The calculation was based on a 3He wave
function derived from the Argonne AV18 NN potential [38]
and used the Höhler nucleon form factor parametrization [39].

C. Nonrelativistic Faddeev calculation

In the Faddeev approach [14], the coordinate-space
Schrödinger equation for three nucleons with two-nucleon
interactions is decomposed into three separate equations
[40]. In momentum space, the three Faddeev equations can
be written as three integral equations. The kernel in each
equation involves only the interaction between one pair of
nucleons. Solutions are obtained numerically. The Faddeev
decomposition of the three-body (and four-body) problem has
proven to be a very useful computational tool in studies of
light nuclei.

With regard to 3He, the Faddeev formalism has been applied
to unpolarized pd and ppn electrodisintegration [15,41] with
full inclusion of all final-state rescattering processes. This
calculation was subsequently extended to electrodisintegration
of polarized 3He [42]. A further extension was made by
including proper treatment of meson-exchange currents [16]
according to the Riska prescription [43], which relates NN

forces and meson-exchange currents in a model-independent
manner through the continuity equation. In Ref. [16], only
the dominant π - and ρ-like meson-exchange terms shown in
Fig. 2 were considered. The effect of � currents has also been
studied and found to be small (see Sec. V B).

The derivation of the nuclear response functions in the
Faddeev approach is described further in Ref. [42]. In this
work, the resulting expressions were evaluated numerically
using the framework of Ref. [16] for a large number of
kinematic points corresponding to the acceptance regions
covered by the experiment. The underlying 3He wave function
was obtained using the BonnB NN potential [44]. Again, the
Höhler parametrization [39] was used to model the nucleon
elastic form factors. The Faddeev calculation does not include
relativistic effects.

γ

N N

π
 ∗

N

N γ∗
N

N

π π

(a)

(b)

γ

N N

ρ
 ∗

N

N γ∗
N

N

ρ ρ

N NN N

FIG. 2. MEC contributions included in the Faddeev calculation
[16]. (a) Couplings to a correlated nucleon pair; (b) couplings to a π

or ρ in flight.

D. Extraction of the neutron magnetic form factor

Because the 3He nuclear spin is carried mainly by the
neutron, the spin-dependent response functions RT ′ and RTL′

can be expected to contain a large if not dominant neutron
contribution at quasielastic kinematics [13]. Comparison of
Eq. (1) with the corresponding expression for scattering from
a free nucleon leads to the expectation (within PWIA) that

RT ′ ∝ Pn

(
Gn

M

)2 + Pp

(
G

p

M

)2
, (2)

RTL′ ∝ PnG
n
MGn

E + PpG
p

MG
p

E, (3)

where Pn and Pp are the effective polarizations of the neutron
and the protons, respectively, in 3He. Because the proton spins
largely cancel, we have |Pp| � |Pn|. Effective polarizations
have been calculated, e.g., in Refs. [33,34,45]. Since |Gn

M | ≈
|Gp

M |, the proton contribution to the transverse response RT ′ is
small, and hence RT ′ is essentially proportional to (Gn

M )2.
Based on these arguments, the asymmetry AT ′ defined in
Eq. (1) can be written as a function of the neutron magnetic
form factor,

AT ′
(
Gn

M
2) = 1 + a

(
Gn

M

)2

b + c
(
Gn

M

)2 , (4)

where |a| 
 1 and b > c at low Q2 where the above
assumptions hold. By comparing AT ′ data with predictions
for AT ′ from a calculation, one can extract Gn

M . The detailed
procedure will be discussed in Sec. VI.

For completeness, we mention that because |Gp

E| 
 |Gn
E|,

the proton contribution to the transverse-longitudinal response
RTL′ may be dominant despite the small effective proton
polarization. Thus inclusive scattering from polarized 3He is
not a promising technique for measuring the neutron electric
form factor Gn

E [21,46].

III. EXPERIMENT

A. Overview and kinematics

The experiment, E95-001, was performed in Hall A at
Jefferson Lab using a continuous-wave electron beam of
15 µA current and 70% longitudinal polarization, incident on
a high-pressure polarized 3He gas target. The beam energies
were 778 and 1727 MeV.

Electrons scattered from the target were detected by
two high-resolution spectrometers (HRSs) positioned on the
left- and right-hand sides of the beam line. Both spectrometers
were configured for electron detection and independent oper-
ation (single-arm mode). The “electron spectrometer” on the
left side of the beam performed the main physics measurement
of inclusive 3 �He(�e, e′) scattering at six different quasielastic
kinematics. The second HRS, the “hadron spectrometer” to
the right of the beam, detected 3 �He(�e, e) elastic scattering
and provided continuous high-precision monitoring of beam
and target polarizations. The kinematic settings are listed in
Table I.
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TABLE I. Kinematic settings for quasielastic and elastic
measurements.

Q2 E E′ θ

[(GeV/c)2] (GeV) (GeV) (deg)

Electron arm (quasielastic)
0.1 0.778 0.717 24.44
0.193 0.778 0.667 35.50
0.3 1.727 1.559 19.21
0.4 1.727 1.506 22.62
0.5 1.727 1.453 25.80
0.6 1.727 1.399 28.85

Hadron arm (elastic)
0.1 0.778 0.760 23.73
0.2 1.727 1.691 15.04

B. Polarized electron source and beam line

The electron beam originated from a laser-driven “strained”
GaAs source [47,48]. Polarized electrons were produced
by illuminating a GaAs crystal in ultra-high vacuum with
high-intensity circularly polarized laser light and removing
electrons excited within the crystal by a strong external
electric field. The polarization of the laser light was controlled
electronically with the help of a Pockels cell. In this way,
the electron beam helicity could be reversed rapidly (typically
at 30 Hz), minimizing systematic errors in the measurement
of spin-dependent asymmetries. To reduce systematic errors
further, the overall sign of the beam helicity was reversed
periodically by inserting a half-wave plate into the injector
laser light path.

The standard Hall A beam-line instrumentation and beam
raster [49] were employed. The beam energy was determined
with an accuracy of better than 0.1% for all kinematics.

C. Polarized 3He target

The experiment employed an optically pumped polarized
3He gas target [49] of the spin-exchange type [50]. The target
cell of this system contained high-pressure (≈10 atm) 3He
gas as well as admixtures of rubidium (to facilitate optical
pumping) and nitrogen (to quench radiation trapping). While
background from the rubidium was negligible, the nitrogen
admixture contributed on the order of 10−2 to the total
target number density, requiring a small dilution correction
(see Sec. IV C).

The target cell proper was a 40 cm long aluminum-
silicate glass cell (ρ = 2.76 g/cm3) with ≈1.2 mm thick
walls and ≈135 µm thick end windows. A second target
cell, the so-called reference cell, was available for calibration
measurements. The reference cell had essentially the same
dimensions as the target cell, except that it had no thin end
windows but rather a uniform glass thickness throughout.
Further details can be found in Refs. [51,52].

A typical 3He nuclear polarization of 40% was achieved.
The target spin direction was either −62.5◦ ± 0.5◦ or
−243.6◦ ± 0.5◦ in the laboratory. (The difference of the
two angles was not exactly 180◦ because of a calibration

inaccuracy.) The target spin was reversed regularly through-
out the experiment to reduce systematic errors from false
asymmetries.

D. Spectrometers

The two spectrometers were equipped with their standard
detector packages [49] consisting of a pair of vertical drift
chambers (VDCs) for tracking, two segmented scintillator
planes to generate the trigger and provide time-of-flight
information, and a CO2 gas Cherenkov detector for elec-
tron/pion separation. The HRSs had a usable momentum
acceptance of approximately 9%. For further pion rejection,
a preshower and a total-absorption shower counter were
employed in the electron-arm HRS, while the hadron-arm HRS
was instrumented with two thin lead-glass shower counters.
The geometric solid angle of each HRS was limited to 6.0 msr
by a rectangular tungsten collimator. The central scattering
angle was surveyed to better than 0.1 mrad.

Trajectories of scattered particles were reconstructed using
the VDC data and the standard optics model of the HRS [49].
The achieved momentum and scattering angle resolutions
σ were better than 0.05% and 2 mrad, respectively. The
transverse (i.e., along the beam) position resolution at the target
was approximately 2 mm.

The pion rejection factor with the Cherenkov detectors
alone was of order 100. Combining the Cherenkov and shower
counters, a factor of over 1000 was achieved. Pion rejection
was only a concern with the left-arm HRS, where pion
production was not kinematically suppressed.

IV. ANALYSIS

A. Overview

The experimental raw asymmetry was calculated as

Aexp = N+ − N−
N+ + N−

, (5)

where N+ and N− are the electron yields normalized by charge
and electronic live time for positive and negative electron
helicities, respectively.

To extract the physics asymmetry, corrections had to be
made for dilution, background, radiative effects, and bin
centering. Sources of dilution were the finite beam and target
polarizations and scattering from the target walls and from the
nitrogen gas in the target. Polarized background arose from
the elastic radiative tail, which extended into the quasielastic
region. Radiative corrections had to be applied to the raw
quasielastic asymmetry. Bin centering corrections account for
finite experimental acceptances.

The normalized yields in Eq. (5) can be written as

N = Nqe + N ert + N emp + NN2 , (6)

where Nqe, N ert, N emp, and NN2 are the contributions of
quasielastic scattering from 3He (before radiative and bin
centering corrections), the elastic radiative tail, the target wall
(“empty target”) scattering, and scattering from nitrogen in the
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target cell, respectively. Using Eq. (6), one can define dilution
factors for each of the three background contributions,

Remp = N emp

Nqe + N ert
, (7)

RN2 = NN2

Nqe + N ert
, (8)

Rert = N ert

Nqe
, (9)

and express the physics asymmetry as

Aphys = (1 + Rert)(1 + Remp + RN2 )
Aexp

PbPt

−RertAert + �Aqe + �Abin, (10)

where PbPt is the product of beam and target polarizations,
Aert is the asymmetry of the elastic radiative tail, �Aqe is the
radiative correction to the quasielastic asymmetry, and �Abin,
the bin centering correction. In Eq. (10), it is assumed that both
the empty target and the N2 contributions have no asymmetry.
During the analysis, the empty target and N2 false asymmetries
were verified to be indeed consistent with zero.

Among the various factors in Eq. (10), Aexp, Remp, and RN2

could be determined directly from data, while Rert, Aert,�Aqe,
and �Abin had to be determined from calculations or simula-
tions. PbPt was monitored continuously during the experiment
via elastic polarimetry and was determined as the ratio between
the measured elastic asymmetry and the simulated elastic
asymmetry, as described in Sec. IV E.

B. Raw asymmetries

Raw asymmetries for both spectrometers were calculated
according to Eq. (5). The quasielastic data were analyzed in
terms of electron energy loss, ω = E − E′, and grouped in
bins of 10, 20, or 18.75 MeV width, depending on Q2. The
elastic data from the right-arm spectrometer were analyzed in
terms of excitation energy, defined as

Ex =
√

M2 + 2M(E − E′) − 4EE′ sin2(θ/2) − M, (11)

where M is the mass of the 3He nucleus and θ the measured
electron scattering angle. The raw elastic asymmetry was
obtained from the region −1 � Ex � + 1 MeV.

The angle between momentum transfer and target spin, θ∗ in
Eq. (1), varied between 0.2◦ and 10.0◦ depending on Q2. This
resulted in an RT L′ contribution to the experimental asymmetry
of less than 2%, as estimated by a PWIA calculation. The RT L′

contribution was included in the theoretical calculations used
to extract Gn

M . Even though theoretical predictions of RT L′

are less accurate than those of RT ′ (because of the uncertainty
in Gn

E), the uncertainty in our extracted Gn
M due to RT L′ is

negligible.
Raw asymmetries obtained for the four different combi-

nations of target spin orientation and overall beam helicity
sign were compared to check for false asymmetries. No
statistically significant false signal was found. For the main
physics analysis, data from the four polarization configurations
were combined to minimize the statistical uncertainty.

C. Empty target and nitrogen dilution factors

Because the target cell was sealed, background from the
target cell wall could not be measured directly by emptying
the target. In addition, the background rate from the nitrogen
buffer gas in the target could not be easily calculated because
the nitrogen partial pressure could only be determined approx-
imately when the cell was filled. Therefore, it was necessary to
determine both background yields in separate calibration runs
with the reference cell.

For each kinematics, quasielastic data were taken with the
reference cell empty and filled with N2 at several pressure
values. The reference cell nitrogen yield as a function of
nitrogen pressure was determined by subtracting the empty
cell yield from the raw yields of the nitrogen runs. As the
reference cell had physical dimensions very similar to those
of the target cell, the reference cell nitrogen spectra could be
used as a direct measure of the target cell nitrogen yield NN2

provided that they were scaled to the nitrogen pressure inside
the target cell.

The nitrogen partial pressure in the 3He target cell was
determined as follows: As shown in Fig. 3, the elastic
nitrogen peak was clearly resolved in both the reference cell
nitrogen spectrum (upper panel) and the spectrum from the
3He target cell (lower panel), as measured with the right-arm
spectrometer. Because the nitrogen pressure corresponding to
the reference cell spectrum was known, the nitrogen pressure
in the target cell could be determined by simple scaling.
This procedure was only required for one kinematic setting
since the nitrogen pressure was essentially constant throughout
the experiment. The result was pN2 = 15.15 ± 0.35 kPa. The
variation of the N2 yield as a function of time was found to be
within ±3%. We assigned an overall uncertainty of 5% to the
measured nitrogen background yields.

Obtaining the empty target yield (i.e., the yield due to
scattering from the 3He target cell walls) from the empty
reference cell data was complicated by two factors: (1) the
background yield from the cell walls was a function of beam
position and the beam tune, and thus reference cell runs did
not necessarily reflect the exact background conditions present
during production data taking, and (2) the reference cell glass
wall thickness and density were not equal to those of the target
cell.

Regarding factor (1), the variation of the empty target yields
obtained under nominally identical experimental conditions
but at different points in time were compared and found to
agree within ±15%.

Regarding factor (2), we note that (a) the target and
reference cells were made of different types of glass, and the
target cell glass density was about 9% larger than that of the
reference cell, (b) the thickness of the reference cell side walls
was found to be, on average, 2.5% thinner than that of the
target cell, as determined by laser interferometry [53], and (c)
the target cell had very thin (135µm) end windows, while the
corresponding reference cell end windows were about as thick
(1.2 mm) as its side walls. Contributions from the end windows
were almost completely eliminated by using a vertex position
cut. The thicker end windows of the reference cell therefore
mattered only insofar as they gave rise to small non-Gaussian
tails that extended into the acceptance. These tails were largely
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FIG. 3. Raw yields measured with the right-arm spectrometer in
the region of the N2 elastic peak using the N2 reference cell (upper
panel) and the 3He target (lower panel) as a function of excitation
energy Ex . The leftmost peak represents the N2 ground state; other
peaks are related to excited states of N2.

due to event reconstruction errors. They were estimated to
contribute on the order of a few percent to the total reference
cell yield; this was comparable in magnitude to the correction
necessary for the thinner and less dense glass walls of the
reference cell. Since these corrections were small and difficult
to compute accurately and could be expected to partly cancel
each other, they were ignored in the analysis, and the resulting
error of a few percent was included in the overall systematic

TABLE II. Estimated systematic uncertainties of the
quasielastic AT ′ asymmetry measurements. HC denotes
helicity correlated. The two columns of uncertainties
correspond to the quasielastic measurements at lower Q2

(0.1 and 0.2) and higher Q2 (0.3–0.6). Values in the center
of both columns are common to all kinematics.

Source δAT ′/AT ′ (%)

Q2 � 0.2 Q2 � 0.3

PbPt 1.3 1.7
Empty target subtraction 1.0 0.25
N2 background subtraction 0.3
QE radiative correction 0.3
Elastic radiative tail 0.3
Spectrometer acceptance 0.5
HC scintillator efficiency 0.1
HC wire chamber efficiency 0.1
HC computer dead time 0.1
HC beam current shift 0.1
HC beam motion 0.1
Pion contamination 0.1
Total 1.8 1.9

uncertainty of the empty target dilution factor. The empty cell
background yield of the 3He target was taken to be identical
to that of the empty reference cell, and an overall systematic
uncertainty of 25% was assigned to the empty yield, taking
into consideration the statistical uncertainty, the time variation
of the yield due to beam-tune variations, and the differences
in the cell properties.

The empty target cell and the N2 dilution factors (Remp

and RN2 ) were determined by combining all empty target
and nitrogen runs, respectively, at the same kinematics. The
nominator in Eqs. (7) and (8) was calculated according to
Eq. (6) as Nqe + N ert = N − N emp − NN2 . The time vari-
ation of the yields was included in the systematic uncer-
tainty of each contribution. The uncertainties are given in
Table II.

An ad hoc upward correction of all the empty target
dilution factors by a factor of 2, which was used in our
prior publications [17,23,53], was dropped in this analysis,
as it had been motivated by an unphysical tail of apparently
poorly reconstructed events seen in the right-arm spectrom-
eter. Instead, a more conservative uncertainty was assigned
to the empty target background subtraction at Q2 = 0.1
and 0.2 (GeV/c)2, where the empty target background is
largest.

D. Monte Carlo simulation

A full Monte Carlo simulation was developed for this exper-
iment [24], which allowed the averaging of theoretical results
over the experimental acceptances and accounted for multiple
scattering, ionization energy loss, external bremsstrahlung,
and internal radiative corrections.
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To calculate the spin-dependent elastic and quasielastic
radiative tails, internal radiation effects were modeled using
the covariant formalism developed in Ref. [54], generalized to
the case of low-Q2 quasielastic scattering. This formalism
accommodates polarization degrees of freedom. Standard,
unpolarized radiative corrections [55] were applied to the
elastic peak region.

E. Elastic polarimetry

The beam and target polarizations, Pb and Pt , were
monitored continuously during the experiment using elastic
polarimetry. Because the 3He elastic form factors, the charge
form factor Fc and the magnetic form factor Fm, are known
very well experimentally [56], the 3He elastic asymmetry can
be calculated as [32]

Ael = −2τvT ′ cos θ∗µ2
AF 2

m + 2
√

2τ (1 + τ )vT L′ sin θ∗ cos φ∗µAZFmFc

(1 + τ )vLZ2F 2
c + 2τvT µ2

AF 2
m

. (12)

Here, the vi are kinematic factors, τ = Q2/4M2
3He, and µA =

µ3He(M3He/MN ) = −6.37, where MN is the nucleon mass. To
allow direct comparison with data, the Monte Carlo program
described in Sec. IV D was used to average Eq. (12) over the
experimental acceptance. We then obtained

PbPt = A
exp
el

Asim
el

× fN2femp, (13)

where A
exp
el and Asim

el are the measured and simulated elastic
asymmetry, respectively, and fN2 and femp are correction
factors for the measured nitrogen and empty target cell
dilution, respectively, for the elastic data sets.

The data for A
exp
el are listed in Table III. Separate data

are shown for each of the four possible spin and helicity
configurations, which are largely consistent within their errors.
For the evaluation of Eq. (13), the weighted average of the data
for the four spin combinations was used. The dilution factors
fN2 and femp were obtained using the procedure described in
Sec. IV C.

No radiative corrections were applied to the elastic data,
since most radiative effects were included in the simulation.
Missing is the spin dependence of the Schwinger correction,
which we deemed negligible.

At the two beam energies, E = 0.778 and E = 1.727 GeV,
the overall relative systematic uncertainty in PbPt was 1.3%
and 1.7%, respectively. In each case, the dominant contribution
came from the uncertainty in the form factors Fc and Fm,
followed by the contribution from the uncertainty in the target
spin direction.

The average PbPt so obtained was 0.208 ± 0.001 ± 0.004,
where the errors are statistical and systematic, respectively. As
a cross-check, independent measurements of the polarizations
were obtained using Møller beam polarimetry and NMR target
polarimetry, yielding an overall average value of PbPt =
0.215 ± 0.013 [57]. The elastic polarimetry results were
used for further analysis and averaged for each quasielastic
kinematic setting separately (cf. Table III) to account for
possible slow changes of the polarizations with time. The
observed stability of the polarization data suggests that this
procedure was adequate.

TABLE III. Measured elastic asymmetries |Aexp
el | for the six quasielastic kinematic settings. Q2

qe and Q2
el

are the momentum transfers of the quasielastic and elastic measurements, respectively. The four columns
of results correspond to the four combinations of the signs of the target spin and beam helicity. Column
headings indicate the laboratory target spin angle and position of the accelerator injector half-wave plate.
Uncertainties are statistical.

Q2
qe [(GeV/c)2] Q2

el [(GeV/c)2] |Aexp
el (%)|

−62.5◦/in −62.5◦/out −243.6◦/in −243.6◦/out

0.1 0.1 1.333 ± 0.027 1.043 ± 0.027 1.067 ± 0.02 1.208 ± 0.030
0.193 0.1 1.078 ± 0.037 1.177 ± 0.027 1.190 ± 0.021 1.102 ± 0.023
0.3 0.2 1.251 ± 0.096 1.222 ± 0.048 1.107 ± 0.067 1.206 ± 0.075
0.4 0.2 1.181 ± 0.055 1.314 ± 0.061 1.168 ± 0.06 1.258 ± 0.057
0.5 0.2 1.265 ± 0.042 1.307 ± 0.039 1.200 ± 0.045 1.184 ± 0.041
0.6 0.2 1.258 ± 0.049 1.301 ± 0.047 1.110 ± 0.05 1.096 ± 0.05
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FIG. 4. Quasielastic AT ′ asymmetry results vs energy transfer ω.
Errors on data points are statistical. The systematic uncertainty is
shown as an error band at the bottom of each panel.

V. ASYMMETRY RESULTS

A. Quasi-elastic transverse asymmetry AT ′

Results for the quasielastic transverse asymmetry AT ′ at
the six measured Q2 points are shown in Fig. 4. Numerical
values can be found in Ref. [53]. The errors on the data
are statistical only, while the systematic uncertainty is shown
as an error band at the bottom of each panel. A detailed
breakdown of the systematic uncertainties is presented in
Table II. The experimental data were corrected for radiative
effects, background, and dilution, as described in detail in the
previous section.

Also shown in Fig. 4 are the results of several calculations.
Dashed lines represent the PWIA calculation [33]. The dash-
dotted and solid curves at the two kinematics with the lowest
Q2 represent, respectively, Faddeev results with inclusion of
FSI only [15] and with inclusion of both FSI and MEC correc-
tions [16]. The calculation from Ref. [16] will be referred to
as the “full Faddeev calculation” in the following. All theory
results were averaged over the spectrometer acceptances using
the Monte Carlo simulation described in Sec. IV D. Further
details on the calculations are given in Sec. II.

One observes excellent agreement of the data with the full
Faddeev calculation over the entire ω range at Q2 = 0.1 and
0.2 (GeV/c)2, while PWIA describes the data well at the higher
Q2, particularly in the region around the quasielastic peak
(near the center of the ω range in each panel).
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FIG. 5. Experimental asymmetry in the region of the 3He
breakup threshold together with theoretical calculations for
(a) Q2 = 0.1 (GeV/c)2 and (b) Q2 = 0.2 (GeV/c)2. The calculations
differ only in the description of the reaction mechanism.

B. Asymmetry in the threshold region

The asymmetries measured in the region around the
two- and three-body breakup thresholds (5.5 and 7.7 MeV,
respectively) are shown in Fig. 5. These results provide a
sensitive test of the quality of the Faddeev calculations.

The threshold asymmetry data were taken with the hadron-
arm spectrometer as a byproduct of the elastic polarimetry
and were analyzed in the same manner as the quasielastic
asymmetries. The kinematics are given in the lower part of
Table I. The Q2 values of 0.1 and 0.2 (GeV/c)2 in Fig. 5
correspond to the momentum transfer at the elastic peak. The
data are plotted as a function of the excitation energy Ex ,
defined in Eq. (11). Horizontal errors represent the uncertainty
in determining Ex , which was dominated by the uncertainty
in the beam energy. The vertical errors are the statistical and
systematic errors added in quadrature. Tables of the data and
uncertainties can be found in Ref. [58].

Figure 5 also shows various theoretical results. Dot-dashed
lines depict those of the PWIA calculations [33], while
those of Faddeev calculations with FSI only [15] appear
as dotted lines. The full Faddeev calculation [16], which
includes both FSI and MEC but not the �-isobar current, is
represented by dashed lines. The solid lines were obtained with
the full calculation after including �-isobar currents. These
calculations employed the AV18 NN interaction potential.
Results obtained with the BonnB potential were found to be
only slightly different from the AV18 results and in even better
agreement with the data [24].
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As can be seen, the agreement between PWIA calculations
and the data is poor at both kinematics, which confirms the
expectation that FSI and MEC corrections are essential in this
region. Indeed, the inclusion of FSI improves the agreement
significantly, and good agreement is achieved once MECs are
added. It has been shown that substantial MECs are needed to
describe the measured elastic electromagnetic form factors of
three-nucleon systems [59]. The corresponding physics should
extend into the low-ω region of inelastic scattering as well.

The good agreement between the full calculation and the
data at Q2 = 0.1 (GeV/c)2 suggests that FSI and MEC effects
are properly treated in the full calculation. The insensitivity
of the results to the addition of �-isobar currents implies a
weak model dependence of the MEC corrections. The small,
systematic discrepancy at Q2 = 0.2 (GeV/c)2 may indicate
that some Q2 dependent effects, such as relativistic and
three-nucleon force effects, become important already at this
momentum transfer.

VI. EXTRACTION OF THE NEUTRON MAGNETIC
FORM FACTOR

The neutron magnetic form factor Gn
M can be extracted

from the measured 3He quasielastic transverse asymmetry AT ′

if a calculation is available that predicts AT ′ as a function of
Gn

M . If we assume, following Eq. (4), that the asymmetry is a
function of (Gn

M )2, we can expand AT ′ around a reference Gn
M

value, G0, such that

AT ′
(
Gn

M
2) = AT ′

(
G2

0

) + ∂AT ′

∂
(
Gn

M
2)

(
G2

0

)(
Gn

M
2 − G2

0

)

+O
((

Gn
M

2 − G2
0

)2)
. (14)

For ease of notation, we normalize all Gn
M values to a

convenient reference scale (the Höhler parametrization [39]
in this case) so that G0 = 1. Equation (14) can be solved for
Gn

M , assuming the second-order term is small:

Gn
M =

√√√√1 + AT ′
(
Gn

M
2) − AT ′(1)

∂AT ′/∂
(
Gn

M
2)(1)

. (15)

Here, AT ′(Gn
M

2) is the measured asymmetry. The pre-
dicted asymmetry, AT ′(1), and the sensitivity factor,
∂AT ′/∂(Gn

M
2)(1), are the output of the model calculation. The

latter two parameters were determined using the full Faddeev
calculation [16] for the lowest two Q2 points of this experi-
ment, and the PWIA calculation [33] for the remaining four
Q2. Results were averaged over the experimental acceptance
using the Monte Carlo program described in Sec. IV D. At each
kinematical point, asymmetries were generated for several
ω-bins around the quasielastic peak. Within each bin, Gn

M

was varied around the reference value G0 by adding a constant
to the functional form Gn

M (Q2) given by the Höhler model.
Gn

M (Q2) was extracted for each ω bin via Eq. (15). A
different functional form, a general second-order expansion
of AT ′(Gn

M ), was also tried. The differences between the
form factors extracted via these two methods was found to
be negligible (<0.1%) for all kinematics [53].

The final Gn
M results were obtained by taking the weighted

average of the Gn
M values from the ω bins closest to the

quasielastic peak. The ω region used for the extraction of
Gn

M covered a width of 30 MeV at Q2 = 0.1 and 0.2, 60 MeV
at Q2 = 0.3, 40 MeV at Q2 = 0.4 and 0.5, and 56.25 MeV at
Q2 = 0.6 (GeV/c)2.

The extraction procedure gives rise to a systematic error
due to the uncertainty in the experimental determination of the
energy transfer ω (±3 MeV). The uncertainty in ω results in
an uncertainty as to the ω region over which to integrate the
theoretical calculation used for the extraction of Gn

M . A shift
of bin boundaries generally translates into a different average
value of AT ′ for the bin and hence a different extracted Gn

M

value.
Furthermore, as can be seen in Fig. 4, the theoretical calcu-

lations, especially PWIA, match the data best in the immediate
vicinity of the quasielastic peak where corrections to the plane
wave picture are smallest, whereas deviations may occur off
the peak. This can introduce an artificial ω dependence into the
extracted Gn

M which goes beyond the effect of the kinematic
variation of Q2 with ω. For this effect to be minimized, the
bins used for the Gn

M extraction should be centered around
the quasielastic peak, assuming that deviations are distributed
roughly symmetrically. The experimental uncertainty in ω may
cause improper centering, resulting in a bias in extracting
Gn

M . The calculated uncertainties in Gn
M resulting from the

uncertainty in ω can be found in Table IV.

VII. ESTIMATE OF THEORETICAL UNCERTAINTIES

A. Nucleon-nucleon potential and nucleon form factors

The effect of different NN potential models on the
predicted asymmetry AT ′ was studied by carrying out the full
Faddeev calculation with the Argonne AV18 and the Bonn
B NN potentials at several representative kinematics. In
a similar manner, to estimate the uncertainty due to the
elastic nucleon form factors other than Gn

M , Faddeev calcu-
lations were performed in which these quantities were varied
individually by their published experimental uncertainties.
The resulting uncertainty in Gn

M from these sources, when
combined in quadrature, is less than 1% for all kinematics
(cf. Table V).

TABLE IV. Results for Gn
M as a ratio to the dipole form factor GD

and uncertainties obtained in the present experiment. The data have
changed slightly from our previously published numbers [17,23] due
to differences in the analysis.

Q2 [(GeV/c)2] Gn
M/(µnGD) δGn

M/Gn
M

Stat.
(%)

Syst.
(%)

Model
(%)

Total
(%)

0.1 0.9481 1.36 1.08 2.2 2.8
0.193 0.9511 1.35 1.26 2.1 2.8
0.3 0.9577 1.35 1.86 5.3 5.8
0.4 0.9694 1.45 1.28 2.5 3.2
0.5 0.9689 1.35 1.25 2.1 2.8
0.6 0.9939 1.55 1.38 2.0 2.9
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TABLE V. Estimated uncertainties of the extracted form factor Gn
M . Systematic uncertainties include contributions from the asymmetry

measurement (AT ′ ; see Table II), the energy transfer determination (ω), and the other nucleon form factors (Gp

E, G
p

M , and Gn
E). Theoretical

(model) uncertainties include contributions from the NN potential model, off-shell effects, FSI, MEC, three-body forces (3BF), Coulomb
corrections, and relativistic effects. In the totals, the uncertainties have been added in quadrature, ignoring any possible correlations between the
contributions, which may very well exist, especially for the model uncertainties. Thus, the numbers should be taken with appropriate caution.

Q2 [(GeV/c)2] Systematic δGn
M/Gn

M (%) Model δGn
M/Gn

M (%)

AT ′ ω G
p

E G
p

M Gn
E Total NN Off-shell FSI MEC 3BF Coulomb Relativity Total

0.1 0.90 0.3 0.44 0.21 0.14 1.08 0.45 1.6 0.5 1.0 0.6 1.0 0.5 2.2
0.193 0.90 0.6 0.53 0.35 0.13 1.26 0.40 1.2 0.5 1.0 1.0 1.0 0.7 2.1
0.3 0.95 1.4 0.56 0.52 0.17 1.86 0.50 0.5 4.5 1.8 1.2 1.0 0.5 5.3
0.4 0.95 0.45 0.46 0.56 0.08 1.28 0.45 0.5 1.8 1.2 1.2 1.0 0.5 2.5
0.5 0.95 0.15 0.38 0.60 0.38 1.25 0.40 0.5 0.7 0.5 1.4 1.0 0.5 2.1
0.6 0.95 0.10 0.32 0.64 0.69 1.38 0.40 0.5 0.5 0.5 1.4 1.0 0.5 2.0

B. Relativistic effects

Since the full Faddeev calculation is nonrelativistic, it was
particularly important to estimate quantitatively the size of
relativistic corrections. Such an estimate can be obtained
within the PWIA, which is theoretically well understood.
Standard PWIA calculations take most relativistic effects
into account (cf. Sec. II B). It is straightforward to modify
the relativistic parts of the PWIA formalism to reflect the
nonrelativistic approximations made in the Faddeev formal-
ism. The differences between the results of such a modified,
nonrelativistic PWIA calculation and the standard relativistic
PWIA results provide an estimate of the error in the Faddeev
results due to relativistic effects.

To this end, we modified three parts of the standard
PWIA formalism: (1) approximations were made to the
relativistic kinematics, (2) the phase space and integral
ranges of the Fermi momentum and the missing mass of
the many-fold integration of the 3 �He(�e, e′) cross-section were
changed according to the nonrelativistic kinematics, and
(3) the relativistic hadronic current was translated into an
approximate nonrelativistic form [60,61]. Among the three
modifications, the change of the kinematics was found to
dominate [62].

With the PWIA results at hand, we developed a heuristic
“recipe” [62] to allow an approximate correction of the
Faddeev results for relativistic effects. The recipe could be
readily applied to existing Faddeev results without the need
for recomputation.

Results of these studies are shown in Fig. 6. The
three curves represent the original relativistic PWIA results
(solid line), nonrelativistic PWIA results obtained using
the modifications described above (dot-dashed line), and
nonrelativistic PWIA results corrected for relativistic ef-
fects though the recipe (dashed line). As can be seen,
the heuristic correction works well up to about Q2 =
0.4 (GeV/c)2.

The acceptance-averaged difference between the rela-
tivistic and nonrelativistic PWIA results at Q2 = 0.1 and
0.2 (GeV/c)2 was taken as the model uncertainty of the
Faddeev results due to relativity.

C. FSI and MEC

To estimate FSI contributions to AT ′ , we carried out
the Faddeev calculation up to Q2 = 0.4 (GeV/c)2 with the
inclusion of FSI effects only. [Already at Q2 = 0.3 (GeV/c)2,
the 3N center-of-mass energy is above the pion production
threshold, and therefore the nonrelativistic framework is no
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FIG. 6. Relativistic effects in AT ′ . The solid line is the standard
relativistic PWIA calculation [33]. The dot-dashed curve is the non-
relativistic PWIA calculation that we developed, and the dashed curve
is the nonrelativistic PWIA calculation with heuristic relativistic
corrections applied (see text).
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depicts the same Faddeev calculation but with relativistic corrections
applied. Comparing the dashed and dot-dashed curves, one can
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longer valid.] Next, we applied relativistic corrections to the
Faddeev results using the ad hoc prescription developed in
Sec. VII B. The “relativistic FSI” results so obtained were
compared with the results of the standard (relativistic) PWIA
calculation, as illustrated in Fig. 7. The difference between the
two calculations in the region around the quasielastic peak is
a measure of the FSI effects at each Q2 point. For the two
highest Q2 values, we extrapolated the FSI data using a purely
empirical fit to the lower Q2 values, as shown in Fig. 9(a).
As expected [27–29], FSI effects decrease significantly as Q2

increases.
In a similar manner, we can estimate the size of MEC

effects by comparing the Faddeev results with inclusion of
FSI only, obtained in the FSI study above, to those of the
full Faddeev calculation. Results are shown in Fig. 8, and
differences between the two calculations are plotted as solid
triangles in Fig. 9(b). As with FSI, we observe a sharp decrease
of MEC corrections with increasing Q2.

It is interesting to compare our results for the size of MEC
corrections with those obtained from theoretical studies of
quasielastic inclusive scattering from polarized deuterium,
2 �H(�e, e′) [30]. The deuterium results are shown in Fig. 9(b)
as solid squares. As can be seen, the data are similar to those
calculated for the corresponding 3He reaction. Assuming a
similar underlying physical mechanism, we use the MEC data
from deuterium to estimate the size of MEC corrections to the
3 �He(�e, e′) data at the highest two Q2 values of our data set.
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FIG. 10. World Gn
M data since 1990. Data points represent the results of the Bonn [7,8] (�), MIT-Bates [6,20] (�, �), NIKHEF/PSI [9] (�),

and the Mainz/PSI [10,11] (�, ×) experiments as well as those of the present measurement (�), where the error bars are the total uncertainties
reported. Also shown are the results of various model calculations: Hammer and Meißner [65] (solid curve), Holzwarth [66] (dotted), Kubis
and Meißner [67] (long-dashed), Lomon [68] (dashed-dotted), and de Melo et al. [69] (short-dashed).

These studies provide rough estimates of the expected
magnitudes of the respective effects. They are not reliable
enough to be used to correct the PWIA results for FSI and MEC
contributions. Consequently, we use the numbers obtained
above as estimates of the model uncertainties inherent in
the PWIA. We take the numbers as the 1σ values of the
uncertainties, which we assume to be symmetric. The resulting
model uncertainties in Gn

M are detailed in Table V and are
propagated into the final Gn

M errors given in Table IV.

D. Off-shell effects

Off-shell corrections to the single nucleon current, includ-
ing the part of the current that describes polarization degrees
of freedom [63], are purely relativistic in nature. While the
PWIA calculation used here includes off-shell effects, they
are ignored in the Faddeev calculation.

We estimated the magnitude of required off-shell correc-
tions to the Faddeev results by comparing results of a modified
version of the PWIA formalism that treats nucleons as on-shell
[62] to those of the standard PWIA.

In addition, theoretical uncertainties due to different possi-
ble off-shell prescriptions were estimated using the difference
of PWIA results obtained with the deForest CC1 and CC2
forms [64]. (The standard PWIA calculation employs CC1.)
While this number represents a minimum uncertainty, as
various other off-shell prescriptions are equally permissible
[63], PWIA calculations using the CC1 form have been found
to agree better with experimental data of unpolarized 3He(e, e′)
scattering than those using other prescriptions [33]. This
suggests the use of the CC1 prescription as a reference in
the polarized case as well.

Results are given in Table V. Interestingly, off-shell effects
dominate the model uncertainty in Gn

M at the lowest two Q2

values.

VIII. FORM FACTOR RESULTS AND DISCUSSION

Numerical values for Gn
M extracted in this work are given

in Table V [in units of the empirical dipole parametrization,
GD = (1 + Q2/0.71)−2] and shown in Fig. 10 along with
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the existing world data set published since 1990 [6–11,20].
The error bars represent the total uncertainties reported by the
respective experiments, including model uncertainties.

The results appear to be largely consistent, with the excep-
tion of the early 2H(e, e′n) data from Bates [6] and the first
2H(e, e′n)/2H(e, e′p) ratio measurement from Bonn [7,8]. The
discrepancy of the data of these two experiments with the rest
of the world data has been attributed to incomplete corrections
for neutrons that miss the neutron detector [12]. The data
of the Bonn experiment [7] were reanalyzed subsequently
[8], resulting in a downward correction of the Gn

M data.
Figure 10 shows the reanalyzed data. We note the satisfactory
agreement between the more recent, high-precision deuterium
ratio measurements [9–11] and the data from this work.
The agreement is well within the total uncertainties of the
experiments, except at Q2 = 0.5 and 0.6 (GeV/c)2, where the
3He results are low by about 5%.

Also shown in Fig. 10 are several theoretical results: a
recent dispersion-theoretical fit by Hammer and Meißner [65]
(solid curve), a chiral soliton model by Holzwarth [66] (dotted
curve), a relativistic baryon chiral perturbation theory (ChPT)
calculation by Kubis and Meißner [67] (long-dashed curve), a
vector meson dominance (VMD) fit by Lomon [68] (dashed-
dotted curve), and a recent light-front quark model by de Melo
et al. [69] (short-dashed curve). It should be noted that all of
these models contain one or more free parameters that have
been fitted to existing data.

As can be seen, the dispersion-theoretical fit [65] and the
VMD fit [68] agree best with the data at Q2 > 0.3 (GeV/c)2,
while the ChPT results [67] and the chiral soliton model [66]
match the data better at lower Q2. The ChPT model is expected
to be good only up to Q2 ≈ 0.3 (GeV/c)2, but it clearly works
very well in its region of validity. The light-front model of de
Melo et al. [69] arguably shows the best overall agreement.
The models by Holzwarth [66], Lomon [68], and de Melo
et al. [69] also describe well the proton form factor ratio
G

p

E/G
p

M and other elastic nucleon form factors in this Q2

region.

IX. CONCLUSIONS

In conclusion, we have determined the neutron magnetic
form factor Gn

M from quasielastic 3 �He(�e, e′) data. At Q2 of

0.1 and 0.2 (GeV/c)2, we used a state-of-the-art Faddeev
calculation that includes FSI and MEC effects and a PWIA
at four additional points between Q2 = 0.3 and 0.6 (GeV/c)2.
The results agree within the total uncertainties with those
obtained by several recent measurements on deuterium, except
at Q2 = 0.5 and 0.6 (GeV/c)2 where the 3He results are
slightly low. A consistent picture of the behavior of Gn

M in this
Q2 region is beginning to emerge, although further precision
measurements as well as improved model calculations, such
as the extension of the Faddeev formalism to higher Q2 in the
case of polarized 3He, remain highly desirable.

In addition, we have measured AT ′ in the two- and three-
body breakup threshold region at Q2 of 0.1 and 0.2 (GeV/c)2

where the sensitivity to FSI and MEC effects is particularly
high. The results agree well with the predictions of the
Faddeev model, especially at Q2 = 0.1 (GeV/c)2, confirming
the validity of the treatment of FSI and MEC effects in this
formalism.
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G. Salmè, Nucl. Phys. A782, 69c (2007).

034003-15


