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We study the low-energy asymptotics of tHe-1+ e dimensional Hubbard model with a circular Fermi
surface where there iskg umklapp scattering preset priori. Peculiarity of thed=1+ e dimensions is
incorporated through the imbalance between the elementary particle-particle and particqiBHioleops:
infrared logarithmic singularity of the PH loop is smearedédor0. The one-loop renormalization-group flows
indicate that a quantum phase transition from a metallic phase to the Mott insulator phase occurs at a finite
on-site Coulomb repulsiob) for e>0. We also discuss effects of randomness.

. INTRODUCTION temperaturé®!! In the case of weakly-coupled chains, di-
mensional crossovers caused by an interchain hopping
Correlation-driven metal-insulator transitiMIT) in the  have been studied by treatihg perturbatively and assuming
Hubbard model has been a basic problem in condensedbat the scaling procedure in the one-dimensional regime at
matter physics.Central to this issue is the problem of quan- high-energy SC&bSﬂ(ih) remains valid down to the cross-
tum fluctuation controlled by the on-site Coulomb repulsionover energy scale$™** Recently, the filling control MIT in
U, the bandwidthw, and the carrier concentration In the ~ coupled Hubbard chains with infinitely large coordination
half-filled (n=1) case, the zero-temperature bandwidth conllumbers was also studiétl However, these attempts have
trol MIT oceurs at a critical ratio o6 = U/W. U... The exact not clarified the dimensionality effects on the Mott gap, be-
: ) A . cause feedback effects of the interchain processes on the
solution of the Hubbard model is available only in tbe Mott gap have been missing
=1 dimension, where the half-filled ground state is always  the RG method is straightforwardly extended to the case
an insulator with a finite charge excitation gagott gap at 5 g=1+¢ (0<e<1) dimensiong® In this case, only the

U>U.=021n d=2, it is believed that there exists a finite PP loop remains logarithmically singular, while the PH loop
UC except in the case of the perfect nesting WHEE@O.s In is smeared foe>0.17 By taking this fact into account from
the case of thel=2 half-filled Hubbard model with the near- the beginning of renormalization processes, the feedback ef-
est neighbor and the second-nearest-neighbor hoppings, f@cts on the Mott gap may be incorporated. In this paper, by
Monte Carlo simulatiod,a Hartree-Fock approximation, and USing the one-loop RG method, we examine dimensionality
the Gutzwiller approximatiohall indicate thatJ. is finite. In effects on the RG flow of the umklapp process and discuss

PP . LG ' possible QPT’s in the Hubbard model with a circular Fermi
d=o, the dynamical mean-field appro&dmplies that the

k . N . rf ind=1+ e dimensions.
guasiparticle spectral weight in the vicinity of the Fermi sur—Su ace ind ¢ dimensions

f vanish ntin v &k roach ritical val If randomness exists, a QPT between the Mott insulator
ace vanishes continuously a5approaches a critical value 5,4 5 randomness-driven Anderson insulator might arise. In

U~ 1 from below’ The filling control MIT, which occurs as the case ofd=1 at half-filling, based on the RG method,
the carrier concentration approaches half-filling, has alsgyjimoto and Kawakam? found that sufficiently strong ran-
been extensively studied. N dom forward scattering destroys the Mott gap. Recently,
In the d=1 Hubbard model at half-filing, low-energy Qhtsukaet al1®?°studied the half-filled Hubbard model con-
asymptotics is also well understood in terms of thetaining site randomness by using the quantum Monte Carlo
renormalization-grougRG) flow of two-particle scattering  technique and found that the strong randomness destroys the
strengthsg,, g,, andgs, which correspond to the backward, \ott gap. In this paper, we also discuss randomness effects
forward, and Xz umklapp scatterings, respectivély.The  on the QPT's.
RG scheme ind=1 is based on infrared logarithmic singu-  Thjs paper is organized as follows: In Sec. Il we introduce
larities of elementary particle-particl®P) and particle-hole  the g-ology effective action, derive the one-loop RG equa-
(PH) loops that have the same magnitude and opposite signfiens, and discuss possible QPT’s in the absence of random-

In this context, the source of the Mott gap is the umklappness. The effects of randomness are discussed in Sec. Il
scattering, which becomes a relevant perturbationfor0.  followed by concluding remarks in Sec. IV.

The RG flow also indicates that the charge stiffness reaches

zero durlng the renormalization process and thg system be- || HUBBARD MODEL IN D=1+ ¢ DIMENSIONS
comes an insulator. Thus, the RG-based scenario is in perfect
agreement with the exact solution. In this section, we study interplay of electron correlation

Dimensionality effects on thd=1 Mott insulator phase and dimensionality effects in the Hubbard model with a cir-
were phenomenologically treated by cutting off either of thecular Fermi surface id=1+ e dimensions, where there is
PP or the PH loops below some characteristic2ke umklapp scattering.
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A. Effective action @) ®) © K
3,0"
We start with the effective action,
93
= de d% s
S = 5= G H(k,ie)ck(K)c,(K) >
Hubbard_; 27 (27T)d ( 1}2 )
_ TUE 2 ﬁ o % ddk;
2 oo’ =1 —22m) (27)¢

X (g4t ez—es—¢q)
X 8Ky +kg—ky— k= G)GE i

XC:'(KA)C:-/(KS)C(T'(KZ)C(T(Kl)v (1)

wherec? (K) andc,(K) are the Grassmann variables repre-
senting the electron with the spinandK = (k,&) with k and /’\
¢ being ad-dimensional momentum and a Fermion thermal 4 ) 4
frequency, respectively. The noninteracting one-particle [> g
propagator is given by
FIG. 1. Two-particle scattering vertices for tt@ backward(b)
gfl(k, ie)=ie—&(K). 2 forward, and(c) 2k umklapp scattering processes. The momentum

i . . . . L2 L2 transfer between the solid and dashed lineskis i magnitude(d)
The one-particle dispersion (k) = (k*~kg)/2m and the ¢ dependence oM () for e=0.01, 0.1, and 0.5. The elementary

Fermi surface is a-dimensional sphertk|=kg. Since we o o ticle-particle PP and (f) 2. particle-hole(PH) 1000S
consider only the energy scale that is much smaller than th(e) P P (PR () 2ke p (PH) loops.

Fermi energy, we linearize one-particle dispersion as angle ¢ betweenk, and k, as ge(¢) and ge(), respec-

Ek)=ve(|k|—kg), (3)  tively, while C scattering is parametrized by the ange

. ) , ) , betweenk; and k, as gc(¢). Then, the actions for these
wherev is the Fermi velocity. The bandwidth cutdf, is scattering processes id=1+ € contain integration over

introduced and the one-particle processes are restricted t¢hage specific angles with the measure proportional to
—Eg=¢(k)<Ey. In the two-particle scattering part of M ()= el(sin )L [see Eq.(5) and noteS,~ ¢]. In Fig.
Shubbara: |G|=0 and|G|=4k for the normal and the & 1(4) we show¢ dependence of\l. () for e=0.01, 0.1,
umklapp processes, respectively. Although the lattice strucsng 0.5. We see that1(¢) has peaks atp=0 and for
ture ind=1+¢ is not directly involved in this paper, we 4 [M () — 8(¢)+ 8(¢— ) for e—0]. Consequently,
here assume that there is thie2imklapp scattering present the one-dimensionaj-ology classification may be valid even

a priori. We also assume that the normal scattering processgs q=1-+ ¢ with the corresponden®e g-(0)=g., ge()

that enter the RG equationsd+ 1+ € are, as in the case of =0,, 9e(0)=04, 9e(7m) =01, 9e(0)=g,, andge(m)=g;.
d=1, the backward scattering with large momentum transfe{yo nere neglect thg, process that does not enter the one-
|k;—ky| ~2kg and the forward scattering with small momen- loop RG equations discussed below.

tum transfelk;—k,| ~0. Dimensionless scattering strengths
for the scattering processes considered here are denoted b
g; [backward, g, [forward], and g5 [2ke umklapg. The
corresponding scattering vertices are shown in Figa)—1 The peculiarity ofd=1+ ¢ dimensions is incorporated
1(c), respectively, where the momentum transfer between thenly through the integration measure,

solid and dashed lines isk2 in magnitude[the solid and

dashed lines here correspond to the right- and left-moving f %K/ (2m)¢

one-particle propagators in thie=1 limit]. Unrenormalized '

scattering strengths are related to the on-site Coulomb repul- o o ]
sionU ag For our purpose here, it is sufficient to integrate oker

=1|k| and the angleg spanned by and another fixed mo-
01.0=02.0= 93;0:U/7TU|:ED. (4y ~ mentum. Then we can

yB. The elementary particle-particle and particle-hole loops

Restriction of the momentum transfer in the normal scat- d% Sa-1 41 w dea
tering procceses ttks—k,|~2kg and 0 ind=1+ e may be f (277)0'(' )= m] k dkfo dé(sing)™ (- --),
justified, by approaching the limii=1 from d=2 in the (5)
following way. In the case ofl=2 circular Fermi surface,

there are three distinct types of low-energy normal scatteringvhere S;=279%T"(d/2) is the surface area of the
process:’ forward (F) scatterind k;=k,, k,=k3], exchange d-dimensional unit sphere.

(E) scattering[k;=ks, k,=k,], and CooperC) scattering As is well known, in any dimension, the real part of the
[k, +k,=0]. F andE scattering can be parametrized by the elementary PP loofFig. 1(e)] at the zero total momentum,
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03=03+03(91— 20,) 7(w), (13

where m(w) =2mv Ry (). Figure Zal) contains the
PP loop and all other diagrams contain the PH loop. In par-
ticular, renormalization of the umklapp process comes from
the PH loop only. By differentiating Eq$11)-(13) with re-
spect to the scaling parameter

| =In(Eq/w), (14)

we obtain the RG equations

dg;
FIG. 2. Vertex correction diagrams for tii@) normal[g;, g,] - 992t (92—91)91\, (15
and (b) umklapp[gs] processes. White and black circles represent
the normal and umklapp scatterings, respectively. dg,
d o =~ (gt +gd)i2+ (g5 + gdN2, (16
d’k O(&_)—O(—§&)
Ao<w>=f(2 G e © i
o W—GC_k— 3
. . . ) k _ _ W:_QS(gl_ZQZ))\I- (17)
with ©(x) being the step function, exhibits an infrared loga-
rithmic singularity of the forn+’ The PH loop gives rise to the smooth cuttf,
Sagwr=— 2 ogurey Y 7 B0 |
w)=— —10g(w . =|— = — — ~ _
0 (277) Ve g 0 )\| ‘ﬁl 7T((L)) (ZkFUF) eXF{ 6”2] eXF[ E|/2],
In d=1+ €, we obtain (18)
where the ratio of the two cutoff energy scaleg2k-vg is
RA (@)~ — log(w/Ey), (8) of the order of unity. In the absence of the umklapp process,
2muE the RG equations obtained here reproduces those in Ref. 16.
which exactly reproduces the resultdr=1. o
On the other hand, the real part of the elementary PH loop D. Renormalization-group flow and QPT
at 2kg momentum transfefig. 1()], In thed=1 half-filled Hubbard model, the charge degrees
d of freedom are governed by the combination g§,(G=g;
T, (“’)ZJ d°k  O(&k —O(& 9) —2g0,) with the flow lines G—const)z—gézconst. Forany
F (2m)° w— &0t g+iot’ finite U>0, they are scaled tog§ =,G* = —=), which

implies the Mott gap opens due to the relevant umklapp scat-
tering. This RG flow also indicates that the charge stiffness
K,=+(1+G)/(1—-G) reaches zero during the renormaliza-
tion process and the system becomes an insulator. To
2 complement this scenario, it is useful to map the charge sec-
—+Ce} (10)  tor of thed=1 half-filled Hubbard model onto thel+1)-

€/2 dimensional sine-Gordon model by using the bosonization
wherem=w/2veke andC, is a constant independent of technique. The sine Gordon action is of the fotm:

Although this form has already been suggested in Ref. 16,

we confirm, in the appendix, that the-dependent term in 33sz dzr{up/2[Vr\pr(r)]2

Eq. (10) is uniquely determined.

with |Q|=2kg, unlike the case ofi=1, no longer exhibits
an infrared singularity fod>1 and ind=1+ ¢, takes the
form

Rl (o)

2’7TU|:

—[295/(ma)?]cod V8mK, W (N1},

wherer = (x,7) represent¢l+1)-dimensional space-time co-

One-loop renormalization of the scattering Strength%rdinates,‘lfp(r) represents a charge bosgolon field, u,

comes from the vertex correction diagrams represented I the holon velocity, andr is a short distance cutoff. By
Figs. 2a) and 2p) for the normallg;, g.] and umklapp o1ing the RG method directory to the sine-Gordon
[gz] processes, respectively. Thg renormalized scatterlnpnodeng we obtain the RG equationtg;/dl=2(1—K,)ga,
strength,g;, g5, andgs, are thus given by anddK,, /dI= — (8an2/Z4)g2K, where P

C. One-loop renormalization

w
' (A 1
01=011t0102 InEo (92— 091)917(w), (11 a= fo dp p%Jo(p)

andE,=E e is the space-time cutoff. We thus see that

1 o 1
gt = (P4 02 N — (a2 g2
92=02+ 5 (91 gZ)InEO 5921 gy (), (12 becomes relevant for the initial conditidf,.q<1 [corre-
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FIG. 3. RG flows in the case af= 1.1 with (a) U=0.08 and(b)
0.04.(c) The RG trajectories in terms @f; andG=g,;—2g, in d
=1.1. A critical value isU,=0.0588. In thed=1 half-filled Hub-
bard modelg; andG flow along the broken line denoted by “1D
Hubbard.”

sponding toU >0 for the Hubbard mod¢lnd then, accord-
ingly, the charge stiffnesk , is scaled to zero.

Now we consider the case af=1+¢e dimensions. In
Figs. 3a) and 3b) are shown the RG flows fdd = U/mv
=0.08 and 0.04, respectively, id=1.1. In Fig. 3c), we
show the RG flows in terms af; andG =g, — 29, for vari-
ousU in d=1.1. It is found that there exists a critical value

of U, U,=0.0588. ForU>U,, the RG flows exhibit run-
away trajectories towardy§ =«,G * = —«) [shaded region
in Fig. 3(c)], which implies the Mott gap opens at the low-
energy limit just as in the case d&=1. The initial values of
g; andG at =0 correspond to the points on the li=
—gs, represented by a broken line in FigcB In thed=1
half-filled Hubbard modelg; and G flow along this line
(denoted by “1D Hubbard) for any U>0.

points, @% = const,G* =0) for U<U,. Marginal behavior
of g5 is in accordance wittc=g;—2g,—0 [see Eq.(17)]
as|—oo. The smooth cutoff\,=exd —€/2], in Eq. (17)
causes suppression @f during the renormalization process.
This suppression becomes more conspicuous for lagger
The fixed pointG* =0, corresponding to the noninteracting
value of the charge stiﬁnesK”; =1, implies that the Mott

energy limit. Thus a QPT from the metallic phase to the Mott

On the other hand, the RG flows approach the fixedos3
0.2
0.1
1
1.2 g
§~1.4 ------------------- \\
= N ANNNNRNINY
gap collapses and the system becomes metallic at the low .
1.8
04 0.6 0.8

insulator phase may occur &it=U,.

Within the RG-based scheme, it remains debatable how

the marginal behavior aj; for U>U, modifies the ground-

state property. Regarding this point, recently the density-
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FIG. 4. U dependence ofg,q(U) and wg,,=Ege ' in d

Hubbard chains coupled via the interchain one-particle hop-
ping t, .>* As a result, it was found that the Mott gap de-
creases as, increases. This numerical result strongly sup-
ports the RG-based view given here.

We here give qualitative discussion on the magnitude of
the Mott gap based on the RG flo#sThere is no tractable
method to quantitatively obtain the magnitude of the Mott
gap ind>1. However, the magnitude of the Mott gap is
qualitatively given by the energy scalega— Eoe o, at
which the umklapp scattering strength exceeds uigitys 1
[see Fig. 8)]."*To see howwy,,reproduces the Mott gap,

we compare thd) dependence of the exact Mott gapdn
Vp'-1

—126
2v o
- 2~FZI dp———=—,
7eU%J1 sinf /U]
with that of wg,,in d=1. There is arbitrariness in specifica-
tion of the linearized bandwidtk,. In Fig. 4, we show the
case forEy=0.4v ¢, Wherewg,, reproduces\ gyqo{U) well at

least for a weal) where the weak-coupling RG scheme is
valid.
In Fig. 5, we show a low-energy asymptotic phase dia-

AexactU) (19)

Wap/ Fo

04

20

0.2

‘E\\‘&\\\\\%\&\\\

FIG. 5. A low-energy asymptotic phase diagram. We also show

matrix renormalization group method was applied to threeenergy scales of the Mott gapy,,/Eo, as a function ofi andU.
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gram. We also show,,/Eq as a function ofl andU. For a
fixed dimension, the row—energy asymptotic phase corre- Sfa”dom:_g fddxf d7v(X)C5 (X, 7)Co(X,7)
sponds to a metal and the Mott insulator phasesPferU . ) .
and U>U,, respectively. The critical valud)., increases __ f dk f d’q deU(Q)
asd increases, suggesting a lardgeis required for the Mott (2m)¢
gap to open as the dimension increases. Accordingly, for a N
xch(k+q,7)c.(k,7), (20

fixed U, wgap/ Eq decreases with increasing dimensions and
disappears at some critical dimensiah, [for example,d,  is added to the Hubbard acti¢f). Here,
=1.345 forU=0.2].

Apparently wg.,/Eo grows continuously atl=U, for d C(r(X,T):Ek: e e, (k,7)
=<1.4. However, the transition is always discontinuous by the
following reason. As is seen from Fig(@3, g; exceeds unity With 7 being an imaginary time and
during the renormalization process and gives a finite value of
wgap/Eo even for U<U,. Neverthelesswg,,/Eq has no v(X)= > €T%(q)
physical interpretation fo) <U., since the charge stiffness a
is scaled to the noninteracting value. Therefoigq,/E, IS @ random potential at the position We assume that the
grows discontinuously a0 =U,. The magnitude of discon- ra_ndom scattering processes t_hatzéanter the RG equations in
tinuity at the transition point becomes more conspicuous as ¢ =1+ € are, as in the case af=1," characterized by real
increases. At present, it is not clear whether the d|scont|nU|t)"7md complex random fieldg(x) and £(x) for the forward
is an artifact of the one-loop RG method. To elaborate o cattering with small momentum transfgg|~0 and the

this point would require théwo-loopRG analysis, which is Naglfwa:gs Sg;tit?er;ng dL\:\gt?o L?E?ar?;gmeng:;ﬂglarﬁgt ran
too involved a subject to be treated here. Fo P Y, P

We here comment on the relevance of the present study to Ercl)bnl]t:%c;;tsntlals are assumed to be governed by Gaussian dis-
thed=2 lattice Hubbard model. In this paper, we have stud-

ied only the case with eircular Fermi surface. Accordingly, af 5

our results are not smoothly connected to the2 square P ocex;{—Dﬂ f dx n(x) (21)
lattice Hubbard model. In particular, in the case of the per-

fect nesting, the van Hove singularity at ¢r, = ) points 1 .

gives rise to the “log-square” singularity of the elementary P.eexp —D; f d% E(X) E* (%) |, (22)

PH loop at the momentum transf€= (7, 7). Then the
Hartree-Fock solution gives the gap~te 2™¥U  which
indicates that the ground state of the system |s always an D

insulator for a finiteU. This conclusion has been strongly {7(X) 7(Y))randon=—=-8(X—Y), (23
supported by numerical studié3 However the possibility of 2

the MIT at a finiteU in the half-filled lattice Hubbard model D

with a Fermi surface of various geometries has been open to * il YV

question. In the case of thie=2 half-filled Hubbard model (E(X)€* (V) randoni= = 0(X=Y), (24)
with the nearest-neighbor and the second-nearest- ”e'ghbWhereD =(#Np7,) "t andD,=(wNg7,) ~L with 7, , and
hopping mtegrals t( and t’, respectively, a Monte Carlo o d Fie d
simulation? a Hartree-Fock approximation, and the particle density-of-states, respectively.

Gutzwiller approximation, including the antiferromagnetism We consider the quenched randomness where averaging

give finite critical valuesU/t=2.5, 2.064, and 3.902, ré- 4 free energy is accomplished by means of the replica trick,
spectively, fort’/t=0.2. These results are consistent with the,, nich is based on the identity

present findings thain the case of a circular Fermi surface,

which lead to

Ne belng the elastic-scattering mean free time and the one-

the MIT occurs at a finite U foe>0. VA
InZ=lim (25)
N—O N
Ill. EFFECTS OF RANDOMNESS We introduceN identical replicas of the system labeled by

the indexa. Then, by using the path-integral representation

In this section, we study interplay of electron correlat|on,Of the partition function, we have

randomness, and dimensionality effects in thel+ e di-

mensional random Hubbard model withkz2 umklapp N N

scattering’’ ZN=| TI Dc**Dcexp D, s%],
a=1 a=1

where S*= S| ppard™ Srandom IS the total action and sym-

bolizes the measure over the fermionic Grassmann variables
The action for the scattering processes by the random®** andc® depending on a replica index The replica trick

potentials, consists of performing the Gaussian ensemble average

(26)

A. Effective action for quenched randomness
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(ZNY andomfor integerN, continuing the result analytically to

real N, and taking the limitN— 0. We thus obtain
<ZN>random: f dn Pr]f dédé* P.f
N N
1T D+ Dc“exr{ > S“}
a=1 a=1
N N
11 Dc“*Dc“ex;{ > ~S“}, (27
a=1 a=1

where the random scattering parts containe&drare given

by?®

%[ﬁl( delf def(zw)df(zd:

xcq* (k,ry)eq(k, meh (k

' 1 TZ)CU-’(k, ’ 72)

DT% E delf def(zw)df(id:),d

X 2% (k+Q,my)c(k, 71)c%F (K = Q,mp)c? (K, 1),

where|Q|~ 2K .
We here change imaginary time variabkgsand 7, into
Ar=7,— 79 and 7= (7, + 7,)/2. In the integration oveAr,

we introduce a short distance cutoff and keep only the
region,vg|A7|<A, which couples the two-particle scatter-
ing processes and contributes to the RG equations. Then, 1
random forward-and backward-scattering parts are written

JUN-ICHIRO KISHINE
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9,=9,—D (30)
where D,=DA/mvE andD,=D,A/7vZ. Now, in addi-
tion to the two-particle scattering verticgsigs. 1(a)—1(c)],
there appear interreplica vertices as shown in Fi¢gs. &nd
6(b).

B. One-loop renormalization

We obtain the vertex correction diagrams tpr, g,, and
g3 merely by replacingy; andg, in Fig. 2 withg; andgs,
respectively. However, we must avoid counting the diagram
as shown in Fig. &) which apparently renormalizes, but
vanishes in the replica limitN— 0, since summation over
the replica indiceyy=1,2, ... N of the inner loop yields\N.
Keeping this point in mind, we obtain the renormalized scat-
tering strengthg’, g5, andgj, which are analogous to Egs.
(11)—(13) and given by

95 gl+9192|n —[(gz 9191+ Df]m(w), (32
- o~ Ly 0 1,
92292+§(91+92)|nE__5(92"'93)77((0), (33
0
95=03+03(0:— 202) m(w). (34)

Renormalization of the interreplica vertices 8k « in
Figs. Ga) and &b) comes from the vertex correction dia-
ams as shown in Figs(a) and 1b), respectively. We must
void counting the diagram Fig(-4) which vanishes in the
replica limit. We obtain

v DA o o J dk f d¥’ L.
T " = -,
random 21);: S~ (27T)d (27T)di=l D,]—Dn— EDS InE—O, (35)
xfx dei Sleq+ “*(k
—wz’ﬂ' (84 €3 Sl)cg ( ,84) 5 D§ D D§ In +[ Zgl gz)D§+ 2D§]7T((1))
Xchr (K z5)ch, (K ep)ch(k,e 1) (39
DA « < f d f d’ @ 5 ) 5
- o , o ,
2v 1 B= d diz ~
F oo 1) 2md) @mia B 4 \\ B o
X 7®ﬁ5(84+83—82—81) (28 b 4 \
o “Boal B
ax Bx 1 a B ’
Cy (k+Q,eq)c, (K'—Q,e3)c(K,e5)c), (K ,eq),
where (c)
a ~ ~ o"a
. Dy .- -
Cg(X,T)=T1/22 el(k.xfsr)cg(kys)_ (29) \ Iog, - N “)D(i ’,ﬂ
k
‘7 \\\\\—‘4’//) <\‘K\
The actions for the random scatterings inside the same rep- Y a
lica[ B= «] are absorbed into the two-particle backward and

forward scatterings by introducify

91=0:- Dy, (30)

FIG. 6. Interreplica vertices originating from the randdm)

forward and(b) backward scatteringgc) The diagram that is pro-

portional to the number of replicdd and vanishes in the replica
limit N—O.



PRB 62 QUANTUM PHASE TRANSITIONS AND COLLAPSE ®. .. 2383

a, b g
A
o B
4%

a’ B

FIG. 7. The vertex correction diagrams for the
interreplica(a) forward [5,7] and (b) backward

[5§] processes. We must avoid counting the dia-
gram (b-4) which vanishes in the replica limit.

When we differentiate Eqs.32)—(36) with respect to the behavior ind=1+ € qualitatively reproduces the case @f

scaling parametet=In(E,/w), the length scald , must also

=1, where sufficiently strong random forward scattering

be scaled in accordance with the change of the energy scatkestroys the Mott gap.

w, as

dA dw_o 3
AL o 37

Thus we obtain the RG equations

@
W:_D§_9192+[(92_91)91+ DeIN, (38

dg, =~y -~ ~
d_lzz_Dn—(gi+g§)/2+(g§+g§))\|/2, (39
dg ~ o~
d_|3: —03(91—202)\, (40)
db, . .
_|”:Dn+D§/2’ (41
dD,

——=D;+DD,~[(20,-9)D+2DZ]\. (42

C. Renormalization-group flow and QPT

1. In the absence of the random backward scattering

In Fig. 9a) is shown a low-energy asymptotic phase dia-
gram, where we also show energy scales of the Mott gap,
wgap/ Eg, introduced in the previous section. We see that
both the random forward scattering and the raising dimen-
sionality tend to destroy the Mott gap and consequently
widen the metallic region as compared with the pure case
(the phase boundary in the pure case is shown by the gray
solid line).

2. Effects of the random backward scattering

Next, we consider the case where both the random for-
ward and backward scatterings are presefm;;ﬁO and
55;07&0. The random backward scattering makes it possible
for the Anderson localization to occur. In this case, there
occurs a transition from the Anderson insulator fixed point,
(Df ==, D¥=c0, g§=0), to the Mott insulator fixed point,
(Df =, D¥ ==, g§==), asU increases. Typical flows
are shown in Figs. ®-1) and 8b-3) for U=0.1 and 0.4,
respectively. We here introduce the schlg at which f)§
reaches unitysee Fig. 8-1)]. Then,w,.=E,e e gives a
qualitative energy scale around which a crossover to the
Anderson insulator occurs. In the flows of the type of Fig.
8(b-3), g5 always dominatesﬁg and reaches unity at the
scalel =1g4,,<l|oc, indicating that the Mott gap formation

First, we consider the case where the random forwar®Verwhelms the Anderson localization.

scattering is presentfx,l;oaﬁ 0), but the random backward

scattering is absen®);.,=0), whereD ,, andD ., are ini-

We also find flows toward@} =0,D% =, g5=0), as
shown in Fig. 8-2). This type of flow is found only for O

tial strengths of the random forward and backward scatter=d<1.575 in the narrow region & in between the regions
ings, respectively. In this case, the RG flows indicate that th&orrespending to Figs. (B-1) and 8b-3). In these cases,

QPT occurs from a metallic fixed poin~D(f7=oo, g3=0) to
the Mott insulator fixed pointﬁ)’,‘?=oo, gi=) asU in-
creases. Typical flows are shown in Fig$a-8) and &a-2
for U=0.1 and 0.4, respectively, in the cased# 1.1 and
D,.0=0.02, where the critical value &f is U.~0.330. This

however, D ¢ exceeds unity at some scaling parameigr
during the renormalization, which indicates that the pertur-
bative treatment breaks down and the localization occurs
around the energy scale specifiedIbyl .. Thus we inter-
pret that the ground state corresponding to this fixed point is
the Anderson insulator. It is beyond the RG-based scheme to



2384 JUN-ICHIRO KISHINE PRB 62

(a-1) (a-2)
2 — 4 2 — 4
1751|d =1.1 Dnq=0.02 wsl|d =1.1 Dn=002 | /
BN =01 De=0 15 [J=04 De=0 |}
1.25 / 1.25
1 : 1
0.75 511 0.75
05 0.5 a3 D,
m
0.25 g 025
=52 /z
1 2 3 4 5 o5 T 15 472 25 3
(b-1) (b-2) I
2 ~ Ad 2
d =11 D'ty 5 d =1.1
15| | Dn=0.02 / , Dy=0.02 / 125
1H De=0.08 P De=008 ﬁ—q /, > )
0.75 o 2 e \‘ 075
05 Dg/ . A Dg 05
025 . 93 g3 \\ 025
L e e e L L
lioc lioc

FIG. 8. (@) RG flows ofD,, andgs for (a-1) U=0.1 and(a-2 U=0.4 in the case ofi=1.1, D,,,=0.02, andD ;,=0. (b) RG flows of
D, D, andgs for (b-1) U=0.1, (b-2) U=0.2, and(b-3) U=0.4 in the case ofi=1.1, D,.,=0.02, andD..,=0.08.

settle this ambiguity and we do not go into the details on thignetallic phase in the cad@) is replaced with the Anderson
issue here. insulator phase due to the random backward scattering.

In Fig. 9Ab) is shown a low-energy asymptotic phase dia- In the present paper, the ground-state properties were con-
gram, where we also show,./Ey and wg,,/Eo. As com-  jectured based solely on the one-loop RG flows. At present,
pared with Fig. @a), the phase boundary remains nearly un-numerical studies are in progress to complement the views
changed, but the metallic phase in Figa)ds replaced with  given here®
the Anderson insulator phase due to the random backward
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APPENDIX A: DERIVATION OF EQ. (10)
IV. CONCLUDING REMARKS

Our purpose here is to show that thedependence of

In this paper, based on the one-loop RG flows, we hav_%g HZKF(w) is uniquely determined as E(LO). We start with

studied QPT'’s in the Hubbard model with a circular Fermi ] _ T
surface ind=1+ e continuous dimensions, where we as- Ed- (9)- The imaginary counterpart is given by
sume that there iskx umklapp scattering preseatpriori.

Peculiarity of thed=1+ e dimensions was incorporated only Si—1 - w _ -
through the mathematical structure of the elementary PP and =~ J 1o (@)= — Tf—dJ ki~'d kJ do(sin )2

PH loops: infrared logarithmic singularity of the PH loop is (2m) 0

smeared. We have studied the following three cases: XO(— )0 (&) 0= Ecgt &) (AD)

(1) In the absence of randomnesbhe QPT from the
metallic phase to the Mott insulator phase occurs at a fihite ¢ 0< o, <2y ke, 11, (0)=0 for 2vpke<w, and satis-
for e=0. fies 31T, (— )= — 3 Ty (). The delta function in the
(2) In the case where the random forward scattering is. 2ke\ W)= S 2k “’ '
present, but the random backward scattering is aosath  integrand of Eq(A1) is rewritten as
random forward scattering and raising dimensionality tend to

destroy the Mott gap. Consequently, becomes finite for
e=0 and the metallic region becomes wider as compared (0= &gt fk):m
with the pure casé€l).

(3) In the case where both the random forward and back- ] ~ ~
ward scatterings are presenThe phase boundary remains Where we introduced = w/2veke , k=k/kg, t=cos6, and
nearly unchanged as compared with the cé®e but the to=w—(1—w?)/k. So we have

o(t—1op),

+U)
27 %
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Syiki P (1w, the integrand, §2—w?)(u2—1)@=3)2 with 20@-3)2(y
i w):_w—f _dk| 5+ =k —1)@=3)/2 gpd we have
2 2meJi-o 12 k& )
~ — S, kd—l
- 1-w? 2](d-3r2 Iy (@)~ — d—17F 2(d-3)/2
X l—(w— = )1 2kg 22m) %,
gt C=av@-ayz [T -y
:_Wﬁ(l_zjz)(dfa)/z X(1-w9) L du(u—1)
2(2m)%e

Sdflkﬂ_l 2(d-1)/2

o
2(2m) % d—1

x f“‘”d u(u?—»?)(u?—1)@-972, (A2)
1

x(l_z)Z)(d73)/2;)(dfl)/2, (A3)

whereu=k+ . For smallw, since the region of integration which corresponds to a special case of Eq12) in Ref. 17
is limited to the vicinity ofu=1, it is reasonable to replace for |g/=2kg. In d=1+¢, notingS;_,~ €, we obtain
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) Z)s/Z
é f(z)dz= — mie™? — miw?.
C

(1_2)2)1—6/2~
(A8)

The remainder of the contour is deformed into an integral

enclosing the cuts and encircling the paew and the

branch points az=0 andz=*1. The pointz=0, =1 give

no contribution. The integrals encircling the pae » and

the remainder along the real axis give

Z)G/Z
(1_ 2)2)17 €2

+ 27TU|:(e(7T/2)i€_ e(3w/2)ie)9{ HZKF(w)

i ) ‘
jg f(z)dz:7(e(w/2)le+ e(37/2)ie)
c

© X[X(XZ_l)]e/Z
1 (x2—0?)(x2—1)

+ (e(Sw/Z)ie_ e(’ﬂlz)ié)

+ (e(471/2)ie_ 1)

_ _ 2_ €2
XJ' IX[—X(x*—=1)] dx

» (X2— w?)(x2—1)

The real counterpart is obtained by the Kramers-Kronig

transformation,

1

_ @' 0y (o)
do'———

(O]

2
%HZKF((‘)):;PL

9

12
where the symbdP denotes Cauchy principal value integral

(note that B6<w<1). Since the prefactor (2w?) ~** <2 on
the right-hand side of EqA4) has already appeared in the
exact expressiofA2), and the remaining part of the integral,

Eq. (A2), shows no singularity ab=1, the expression for
small w, Eq. (A4), holds analytical property oF [ (w)

correctly even forw~1. Thus it is reasonable to use expres-
sion (A4) in Eq. (A5) and we have

1 o' 1t
mszF(w)~ _2771);:7),[0 do (:0,2_’;)2)(1_’(:)/2)1—5/2’
(AB)
which is to be evaluated for small and e.
To evaluate Eq(A6), let
D)= (A= (A7)
(22— w?)(Z*—-1)

and consider the integral

3gcf(z)dz

along the contour as depicted in Fig. f@z) has poles at

z=* o and branch points a=0, © andz= + 1. We choose
branch cuts in the regiofii z< —1}U{0<9% z}. In the limit

Here the integrals are evaluated for smaland e as

= X[X(x?—1)]

J —1x[ — x(x?—1)]¢?
1 (x2—w?)(x>—1)

— Jw[X(XZ_l)]flJre/ZdX
1

_T(1-3e/4)(el2)
T 2T (1—el2)

~1/e,

where the integral in the second line converges fete0
<4/3. We thus obtain, for smalb and e,

35 f(2)dz= w0~ 27%vEie Rl () +2mi— i
) (A9)
Therefore, we obtaitk HZkF(w) of the form that is correct
up to the leading order ab,

~ €2

1
Ry (0)~5—— , (A10)

UVE ﬁ—'—ce

which is Eq.(10). Although above manipulation gives,
=1/e, it seems feasible to choo&k = — 2/e as suggested in
Ref. 16 to reproduce correctly the limit form MHZkF(w)

=(1/2mvg)logw at e=0. This discrepancy may arise, be-
cause to evaluate EGA5) we used expressiofA4) which
holds analytical property OIHZkF(w) correctly but misses

contribution fromw~1. We do not go into the details here,

as the large circle recedes to infinity, it gives no contribution.since an explicit form of, does not enter the RG equations

The residue at the pole= — gives

(15)—(17) and (38)—(42).
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