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Quantum phase transitions and collapse of the Mott gap in thedÄ1¿e dimensional Hubbard
model with 2kF umklapp scattering

Jun-ichiro Kishine*
Department of Theoretical Studies, Institute for Molecular Science, Okazaki 444-8585, Japan

~Received 28 October 1999; revised manuscript received 29 March 2000!

We study the low-energy asymptotics of thed511e dimensional Hubbard model with a circular Fermi
surface where there is 2kF umklapp scattering presenta priori. Peculiarity of thed511e dimensions is
incorporated through the imbalance between the elementary particle-particle and particle-hole~PH! loops:
infrared logarithmic singularity of the PH loop is smeared fore.0. The one-loop renormalization-group flows
indicate that a quantum phase transition from a metallic phase to the Mott insulator phase occurs at a finite
on-site Coulomb repulsionU for e.0. We also discuss effects of randomness.
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I. INTRODUCTION

Correlation-driven metal-insulator transition~MIT ! in the
Hubbard model has been a basic problem in conden
matter physics.1 Central to this issue is the problem of qua
tum fluctuation controlled by the on-site Coulomb repulsi
U, the bandwidthW, and the carrier concentrationn. In the
half-filled (n51) case, the zero-temperature bandwidth c

trol MIT occurs at a critical ratio ofŪ5U/W, Ūc . The exact
solution of the Hubbard model is available only in thed
51 dimension, where the half-filled ground state is alwa
an insulator with a finite charge excitation gap~Mott gap! at

Ū.Ūc50.2 In d52, it is believed that there exists a finit

Ūc except in the case of the perfect nesting whereŪc50.3 In
the case of thed52 half-filled Hubbard model with the near
est neighbor and the second-nearest-neighbor hopping
Monte Carlo simulation,4 a Hartree-Fock approximation, an

the Gutzwiller approximation5 all indicate thatŪc is finite. In
d5`, the dynamical mean-field approach6 implies that the
quasiparticle spectral weight in the vicinity of the Fermi su
face vanishes continuously asU approaches a critical valu
Ūc;1 from below.7 The filling control MIT, which occurs as
the carrier concentration approaches half-filling, has a
been extensively studied.1

In the d51 Hubbard model at half-filling, low-energ
asymptotics is also well understood in terms of t
renormalization-group~RG! flow of two-particle scattering
strengths,g1 , g2, andg3, which correspond to the backwar
forward, and 2kF umklapp scatterings, respectively.8,9 The
RG scheme ind51 is based on infrared logarithmic singu
larities of elementary particle-particle~PP! and particle-hole
~PH! loops that have the same magnitude and opposite si
In this context, the source of the Mott gap is the umkla
scattering, which becomes a relevant perturbation forU.0.
The RG flow also indicates that the charge stiffness reac
zero during the renormalization process and the system
comes an insulator. Thus, the RG-based scenario is in pe
agreement with the exact solution.

Dimensionality effects on thed51 Mott insulator phase
were phenomenologically treated by cutting off either of t
PP or the PH loops below some characteris
PRB 620163-1829/2000/62~4!/2377~11!/$15.00
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temperature.10,11 In the case of weakly-coupled chains, d
mensional crossovers caused by an interchain hoppingt'
have been studied by treatingt' perturbatively and assumin
that the scaling procedure in the one-dimensional regim
high-energy scales (v@t') remains valid down to the cross
over energy scales.12–14 Recently, the filling control MIT in
coupled Hubbard chains with infinitely large coordinatio
numbers was also studied.15 However, these attempts hav
not clarified the dimensionality effects on the Mott gap, b
cause feedback effects of the interchain processes on
Mott gap have been missing.

The RG method is straightforwardly extended to the c
of d511e (0,e!1) dimensions.16 In this case, only the
PP loop remains logarithmically singular, while the PH lo
is smeared fore.0.17 By taking this fact into account from
the beginning of renormalization processes, the feedback
fects on the Mott gap may be incorporated. In this paper,
using the one-loop RG method, we examine dimensiona
effects on the RG flow of the umklapp process and disc
possible QPT’s in the Hubbard model with a circular Fer
surface ind511e dimensions.

If randomness exists, a QPT between the Mott insula
and a randomness-driven Anderson insulator might arise
the case ofd51 at half-filling, based on the RG method
Fujimoto and Kawakami18 found that sufficiently strong ran
dom forward scattering destroys the Mott gap. Recen
Ohtsukaet al.19,20studied the half-filled Hubbard model con
taining site randomness by using the quantum Monte C
technique and found that the strong randomness destroy
Mott gap. In this paper, we also discuss randomness eff
on the QPT’s.

This paper is organized as follows: In Sec. II we introdu
the g-ology effective action, derive the one-loop RG equ
tions, and discuss possible QPT’s in the absence of rand
ness. The effects of randomness are discussed in Sec
followed by concluding remarks in Sec. IV.

II. HUBBARD MODEL IN DÄ1¿e DIMENSIONS

In this section, we study interplay of electron correlati
and dimensionality effects in the Hubbard model with a c
cular Fermi surface ind511e dimensions, where there i
2kF umklapp scattering.
2377 ©2000 The American Physical Society
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A. Effective action

We start with the effective action,

SHubbard5(
s

E
2`

` d«

2pE ddk

~2p!d
G 21~k, i«!cs* ~K !cs~K !

2
pvF

2 (
s,s8

)
i 51

4 E
2`

` d« i

2p E ddki

~2p!d

3d~«41«32«22«1!

3d~k41k32k22k12G!gk1 ,k2 ,k3

ss8

3cs* ~K4!cs8
* ~K3!cs8~K2!cs~K1!, ~1!

wherecs* (K) andcs(K) are the Grassmann variables rep
senting the electron with the spins andK5(k,«) with k and
« being ad-dimensional momentum and a Fermion therm
frequency, respectively. The noninteracting one-part
propagator is given by

G 21~k, i«!5 i«2j~k!. ~2!

The one-particle dispersion isj(k)5(k22kF
2)/2m and the

Fermi surface is ad-dimensional sphereuku5kF . Since we
consider only the energy scale that is much smaller than
Fermi energy, we linearize one-particle dispersion as

j~k!5vF~ uku2kF!, ~3!

wherevF is the Fermi velocity. The bandwidth cutoffE0 is
introduced and the one-particle processes are restricted
2E0<j(k)<E0. In the two-particle scattering part o
SHubbard, uGu50 and uGu54kF for the normal and the 2kF
umklapp processes, respectively. Although the lattice st
ture in d511e is not directly involved in this paper, we
here assume that there is the 2kF umklapp scattering presen
a priori. We also assume that the normal scattering proce
that enter the RG equations ind511e are, as in the case o
d51, the backward scattering with large momentum trans
uk32k2u;2kF and the forward scattering with small mome
tum transferuk32k2u;0. Dimensionless scattering strengt
for the scattering processes considered here are denote
g1 @backward#, g2 @forward#, and g3 @2kF umklapp#. The
corresponding scattering vertices are shown in Figs. 1~a!–
1~c!, respectively, where the momentum transfer between
solid and dashed lines is 2kF in magnitude@the solid and
dashed lines here correspond to the right- and left-mov
one-particle propagators in thed51 limit#. Unrenormalized
scattering strengths are related to the on-site Coulomb re
sion U as9

g1;05g2;05g3;05U/pvF[Ũ. ~4!

Restriction of the momentum transfer in the normal sc
tering procceses touk32k2u;2kF and 0 ind511e may be
justified, by approaching the limitd51 from d52 in the
following way. In the case ofd52 circular Fermi surface
there are three distinct types of low-energy normal scatte
process:17 forward~F! scattering@k15k4 , k25k3#, exchange
~E! scattering@k15k3 , k25k4#, and Cooper~C! scattering
@k11k250#. F andE scattering can be parametrized by t
-
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angle f betweenk1 and k2 as gF(f) and gE(f), respec-
tively, while C scattering is parametrized by the anglef
betweenk1 and k4 as gC(f). Then, the actions for thes
scattering processes ind511e contain integration over
these specific angles with the measure proportional
Me(f)5e/(sinf)12e @see Eq.~5! and noteSe;e#. In Fig.
1~d!, we showf dependence ofMe(f) for e50.01, 0.1,
and 0.5. We see thatMe(f) has peaks atf50 andp for
e!1 @Me(f)→d(f)1d(f2p) for e→0#. Consequently,
the one-dimensionalg-ology classification may be valid eve
in d511e with the correspondence21 gF(0)5g4 , gF(p)
5g2 , gE(0)5g4 , gE(p)5g1 , gC(0)5g2, andgC(p)5g1.
We here neglect theg4 process that does not enter the on
loop RG equations discussed below.

B. The elementary particle-particle and particle-hole loops

The peculiarity ofd511e dimensions is incorporated
only through the integration measure,

E ddk/~2p!d.

For our purpose here, it is sufficient to integrate overk
5uku and the angleu spanned byk and another fixed mo-
mentum. Then we can use22

E ddk

~2p!d
~••• !5

Sd21

~2p!dE kd21dkE
0

p

du~sinu!d22~••• !,

~5!

where Sd52pd/2/G(d/2) is the surface area of th
d-dimensional unit sphere.

As is well known, in any dimension, the real part of th
elementary PP loop@Fig. 1~e!# at the zero total momentum

FIG. 1. Two-particle scattering vertices for the~a! backward,~b!
forward, and~c! 2kF umklapp scattering processes. The moment
transfer between the solid and dashed lines is 2kF in magnitude.~d!
f dependence ofMe(f) for e50.01, 0.1, and 0.5. The elementa
~e! particle-particle~PP! and ~f! 2kF particle-hole~PH! loops.
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D0~v!5E ddk

~2p!d

Q~j2k!2Q~2jk!

v2j2k2jk1 i01
, ~6!

with Q(x) being the step function, exhibits an infrared log
rithmic singularity of the form16,17

RD0~v!52
Sd

~2p!d

kF
d21

vF
log~v/E0!. ~7!

In d511e, we obtain

RD0~v!;2
1

2pvF
log~v/E0!, ~8!

which exactly reproduces the result ind51.
On the other hand, the real part of the elementary PH l

at 2kF momentum transfer@Fig. 1~f!#,

P2kF
~v!5E ddk

~2p!d

Q~jk1Q!2Q~jk!

v2jk1Q1jk1 i01
, ~9!

with uQu52kF , unlike the case ofd51, no longer exhibits
an infrared singularity ford.1 and ind511e, takes the
form

RP2kF
~v!;

1

2pvF
F ṽe/2

e/2
1CeG , ~10!

whereṽ5v/2vFkF andCe is a constant independent ofv.
Although this form has already been suggested in Ref.
we confirm, in the appendix, that thev-dependent term in
Eq. ~10! is uniquely determined.

C. One-loop renormalization

One-loop renormalization of the scattering streng
comes from the vertex correction diagrams represente
Figs. 2~a! and 2~b! for the normal@g1 , g2# and umklapp
@g3# processes, respectively. The renormalized scatte
strength,g18, g28, andg38, are thus given by

g185g11g1g2 ln
v

E0
2~g22g1!g1p~v!, ~11!

g285g21
1

2
~g1

21g2
2!ln

v

E0
2

1

2
~g2

21g3
2!p~v!, ~12!

FIG. 2. Vertex correction diagrams for the~a! normal @g1, g2#
and ~b! umklapp@g3# processes. White and black circles repres
the normal and umklapp scatterings, respectively.
-

p

6,

s
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g

g385g31g3~g122g2!p~v!, ~13!

where p(v)52pvFRP2kF
(v). Figure 2~a1! contains the

PP loop and all other diagrams contain the PH loop. In p
ticular, renormalization of the umklapp process comes fr
the PH loop only. By differentiating Eqs.~11!-~13! with re-
spect to the scaling parameter

l 5 ln~E0 /v!, ~14!

we obtain the RG equations

dg1

dl
52g1g21~g22g1!g1l l , ~15!

dg2

dl
52~g1

21g2
2!/21~g2

21g3
2!l l /2, ~16!

dg3

dl
52g3~g122g2!l l . ~17!

The PH loop gives rise to the smooth cutoff,16

l l[U ]

] l
p~v!U5S E0

2kFvF
D e/2

exp@2e l /2#;exp@2e l /2#,

~18!

where the ratio of the two cutoff energy scalesE0/2kFvF is
of the order of unity. In the absence of the umklapp proce
the RG equations obtained here reproduces those in Ref

D. Renormalization-group flow and QPT

In thed51 half-filled Hubbard model, the charge degre
of freedom are governed by the combination of (g3, G5g1

22g2) with the flow lines (G2const)22g3
25const. Forany

finite U.0, they are scaled to (g3* 5`,G* 52`), which
implies the Mott gap opens due to the relevant umklapp s
tering. This RG flow also indicates that the charge stiffne
Kr5A(11G)/(12G) reaches zero during the renormaliz
tion process and the system becomes an insulator.
complement this scenario, it is useful to map the charge s
tor of the d51 half-filled Hubbard model onto the~111!-
dimensional sine-Gordon model by using the bosonizat
technique. The sine Gordon action is of the form:9

SSG5E d2r$ur/2 @¹ rCr~r!#2

2@2g3 /~pa!2#cos@A8pKrCr~r!#%,

wherer5(x,t) represents~111!-dimensional space-time co
ordinates,Cr(r) represents a charge boson~holon! field, ur

is the holon velocity, anda is a short distance cutoff. By
applying the RG method directory to the sine-Gord
model,23 we obtain the RG equationsdg3 /dl52(12Kr)g3,
anddKr /dl52(8ap2/J l

4)g3
2Kr

3 , where

a5E
0

1

dr r3J0~r!

andJ l5J0e2 l is the space-time cutoff. We thus see thatg3
becomes relevant for the initial conditionKr;0,1 @corre-

t
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2380 PRB 62JUN-ICHIRO KISHINE
sponding toU.0 for the Hubbard model# and then, accord-
ingly, the charge stiffnessKr is scaled to zero.

Now we consider the case ofd511e dimensions. In
Figs. 3~a! and 3~b! are shown the RG flows forŨ5U/pvF
50.08 and 0.04, respectively, ind51.1. In Fig. 3~c!, we
show the RG flows in terms ofg3 andG5g122g2 for vari-
ousŨ in d51.1. It is found that there exists a critical valu
of Ũ, Ũc50.0588. ForŨ.Ũc , the RG flows exhibit run-
away trajectories toward (g3* 5`,G * 52`) @shaded region
in Fig. 3~c!#, which implies the Mott gap opens at the low
energy limit just as in the case ofd51. The initial values of
g3 and G at l 50 correspond to the points on the lineG5
2g3, represented by a broken line in Fig. 3~c!. In the d51
half-filled Hubbard model,g3 and G flow along this line
~denoted by ‘‘1D Hubbard’’! for any U.0.

On the other hand, the RG flows approach the fix
points, (g3* 5const,G* 50) for Ũ,Ũc . Marginal behavior
of g3 is in accordance withG5g122g2→0 @see Eq.~17!#
as l→`. The smooth cutoff,l l5exp@2el/2#, in Eq. ~17!
causes suppression ofg3 during the renormalization proces
This suppression becomes more conspicuous for largee.
The fixed pointG* 50, corresponding to the noninteractin
value of the charge stiffness,Kr* 51, implies that the Mott
gap collapses and the system becomes metallic at the
energy limit. Thus a QPT from the metallic phase to the M
insulator phase may occur atŨ5Ũc .

Within the RG-based scheme, it remains debatable h
the marginal behavior ofg3 for Ũ.Ũc modifies the ground-
state property. Regarding this point, recently the dens
matrix renormalization group method was applied to th

FIG. 3. RG flows in the case ofd51.1 with ~a! Ũ50.08 and~b!
0.04. ~c! The RG trajectories in terms ofg3 andG5g122g2 in d

51.1. A critical value isŨc50.0588. In thed51 half-filled Hub-
bard model,g3 andG flow along the broken line denoted by ‘‘1D
Hubbard.’’
d

w-
t

w

-
e

Hubbard chains coupled via the interchain one-particle h
ping t' .24 As a result, it was found that the Mott gap d
creases ast' increases. This numerical result strongly su
ports the RG-based view given here.

We here give qualitative discussion on the magnitude
the Mott gap based on the RG flows.25 There is no tractable
method to quantitatively obtain the magnitude of the M
gap in d.1. However, the magnitude of the Mott gap
qualitatively given by the energy scale,vgap5E0e2 l gap, at
which the umklapp scattering strength exceeds unity,g351
@see Fig. 3~a!#.13,14To see howvgapreproduces the Mott gap
we compare theŨ dependence of the exact Mott gap ind
51,26

Dexact~Ũ !5
2vF

p2Ũ2E1

`

dh
Ah221

sinh@h/Ũ#
, ~19!

with that ofvgap in d51. There is arbitrariness in specifica
tion of the linearized bandwidthE0. In Fig. 4, we show the
case forE050.4vF , wherevgapreproducesDexact(Ũ) well at
least for a weakŨ where the weak-coupling RG scheme
valid.

In Fig. 5, we show a low-energy asymptotic phase d

FIG. 4. Ũ dependence ofDexact(Ũ) and vgap5E0e2 l gap in d
51.

FIG. 5. A low-energy asymptotic phase diagram. We also sh

energy scales of the Mott gap,vgap/E0, as a function ofd andŨ.
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gram. We also showvgap/E0 as a function ofd andŨ. For a
fixed dimension, the low-energy asymptotic phase co

sponds to a metal and the Mott insulator phases forP̃,Ũc

and Ũ.Ũc , respectively. The critical value,Ũc , increases
asd increases, suggesting a largerU is required for the Mott
gap to open as the dimension increases. Accordingly, fo

fixed Ũ, vgap/E0 decreases with increasing dimensions a
disappears at some critical dimension,dc @for example,dc

51.345 forŨ50.2#.

Apparentlyvgap/E0 grows continuously atŨ5Ũc for d
&1.4. However, the transition is always discontinuous by
following reason. As is seen from Fig. 3~c!, g3 exceeds unity
during the renormalization process and gives a finite valu

vgap/E0 even for Ũ,Ũc . Nevertheless,vgap/E0 has no

physical interpretation forŨ,Ũc , since the charge stiffnes
is scaled to the noninteracting value. Therefore,vgap/E0

grows discontinuously atŨ5Ũc . The magnitude of discon
tinuity at the transition point becomes more conspicuous ad
increases. At present, it is not clear whether the discontin
is an artifact of the one-loop RG method. To elaborate
this point would require thetwo-loopRG analysis, which is
too involved a subject to be treated here.

We here comment on the relevance of the present stud
thed52 lattice Hubbard model. In this paper, we have stu
ied only the case with acircular Fermi surface. Accordingly
our results are not smoothly connected to thed52 square
lattice Hubbard model. In particular, in the case of the p
fect nesting, the van Hove singularity at (6p, 6p) points
gives rise to the ‘‘log-square’’ singularity of the elementa
PH loop at the momentum transferQ5(p,p). Then the
Hartree-Fock solution gives the gap3 D;te22pAt/U, which
indicates that the ground state of the system is always
insulator for a finiteU. This conclusion has been strong
supported by numerical studies.1,3 However the possibility of
the MIT at a finiteU in the half-filled lattice Hubbard mode
with a Fermi surface of various geometries has been ope
question. In the case of thed52 half-filled Hubbard model
with the nearest-neighbor and the second-nearest-neig
hopping integrals (t and t8, respectively!, a Monte Carlo
simulation,4 a Hartree-Fock approximation, and th
Gutzwiller approximation, including the antiferromagnetism5

give finite critical values,U/t52.5, 2.064, and 3.902, re
spectively, fort8/t50.2. These results are consistent with t
present findings that,in the case of a circular Fermi surface
the MIT occurs at a finite U fore.0.

III. EFFECTS OF RANDOMNESS

In this section, we study interplay of electron correlatio
randomness, and dimensionality effects in thed511e di-
mensional random Hubbard model with 2kF umklapp
scattering.27

A. Effective action for quenched randomness

The action for the scattering processes by the rand
potentials,
-

a

d

e

of

ty
n

to
-

-

n

to

or

,

m

Srandom52(
s

E ddxE dt v~x!cs* ~x,t!cs~x,t!

52(
s

E ddk

~2p!dE ddq

~2p!dE dt v~q!

3cs* ~k1q,t!cs~k,t!, ~20!

is added to the Hubbard action~1!. Here,

cs~x,t!5(
k

eik•xcs~k,t!

with t being an imaginary time and

v~x!5(
q

eiq•xv~q!

is a random potential at the positionx. We assume that the
random scattering processes that enter the RG equation
d511e are, as in the case ofd51,28 characterized by rea
and complex random fieldsh(x) and j(x) for the forward
scattering with small momentum transferuqu;0 and the
backward scattering with large momentum transferuqu
;2kF , respectively, due to the random potential. The ra
dom potentials are assumed to be governed by Gaussian
tributions,

Ph}expF2Dh
21E ddx h~x!2G , ~21!

Pj}expF2Dj
21E ddx j~x!j* ~x!G , ~22!

which lead to

^h~x!h~y!& random5
Dh

2
d~x2y!, ~23!

^j~x!j* ~y!& random5
Dj

2
d~x2y!, ~24!

whereDh5(pNFth)21 andDj5(pNFtj)
21 with th,j and

NF being the elastic-scattering mean free time and the o
particle density-of-states, respectively.

We consider the quenched randomness where avera
the free energy is accomplished by means of the replica tr
which is based on the identity

ln Z5 lim
N→0

ZN21

N
. ~25!

We introduceN identical replicas of the system labeled b
the indexa. Then, by using the path-integral representat
of the partition function, we have

ZN5E )
a51

N

Dca* DcaexpF (
a51

N

SaG , ~26!

whereSa5SHubbard
a 1Srandom

a is the total action andD sym-
bolizes the measure over the fermionic Grassmann varia
ca* andca depending on a replica indexa. The replica trick
consists of performing the Gaussian ensemble aver
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^ZN& randomfor integerN, continuing the result analytically to
real N, and taking the limitN→0. We thus obtain

^ZN& random5E dh PhE dj dj* Pj

3E )
a51

N

Dca* DcaexpF (
a51

N

SaG
[E )

a51

N

Dca* DcaexpF (
a51

N

S̃aG , ~27!

where the random scattering parts contained inS̃a are given
by29

Dh

4 (
b51

N

(
s,s8

E dt1E dt2E ddk

~2p!dE ddk8

~2p!d

3cs
a* ~k,t1!cs

a~k,t1!cs8
b* ~k8,t2!cs8

b
~k8,t2!

1
Dj

4 (
b51

N

(
s,s8

E dt1E dt2E ddk

~2p!dE ddk8

~2p!d

3cs
a* ~k1Q,t1!cs

a~k,t1!cs8
b* ~k82Q,t2!cs8

b
~k8,t2!,

whereuQu;2kF .
We here change imaginary time variablest1 andt2 into

Dt5t12t2 andt5(t11t2)/2. In the integration overDt,
we introduce a short distance cutoffL and keep only the
region, vFuDtu<L, which couples the two-particle scatte
ing processes and contributes to the RG equations. Then
random forward-and backward-scattering parts are writte

S̃random
a ;

DhL

2vF
(
s,s8

(
b51

N E ddk

~2p!dE ddk8

~2p!d)i 51

4

3E
2`

` d« i

2p
d~«41«32«22«1!cs

a* ~k,«4!

3cs8
b* ~k8,«3!cs8

b
~k8,«2!cs

a~k,«1!

2
DjL

2vF
(
s,s8

(
b51

N E ddk

~2p!dE ddk8

~2p!d)i 51

4

3E
2`

` d« i

2p
d~«41«32«22«1! ~28!

cs
a* ~k1Q,«4!cs8

b* ~k82Q,«3!cs
a~k,«2!cs8

b
~k8,«1!,

where

cs
a~x,t!5T1/2(

k
ei(k•x2«t)cs

a~k,«!. ~29!

The actions for the random scatterings inside the same
lica @b5a# are absorbed into the two-particle backward a
forward scatterings by introducing28

g̃15g12D̃j , ~30!
the
as

p-
d

g̃25g22D̃h , ~31!

where D̃j5DjL/pvF
2 and D̃h5DhL/pvF

2 . Now, in addi-
tion to the two-particle scattering vertices@Figs. 1~a!–1~c!#,
there appear interreplica vertices as shown in Figs. 6~a! and
6~b!.

B. One-loop renormalization

We obtain the vertex correction diagrams forg̃1 , g̃2, and
g3 merely by replacingg1 andg2 in Fig. 2 with g̃1 and g̃2,
respectively. However, we must avoid counting the diagr
as shown in Fig. 6~c! which apparently renormalizesg̃1, but
vanishes in the replica limit,N→0, since summation ove
the replica indicesg51,2, . . . ,N of the inner loop yieldsN.
Keeping this point in mind, we obtain the renormalized sc
tering strength,g̃18, g̃28, andg38 , which are analogous to Eqs
~11!–~13! and given by

g̃185g̃11g̃1g̃2 ln
v

E0
2@~ g̃22g̃1!g̃11D̃j

2#p~v!, ~32!

g̃285g̃21
1

2
~ g̃1

21g̃2
2!ln

v

E0
2

1

2
~ g̃2

21g3
2!p~v!, ~33!

g385g31g3~ g̃122g̃2!p~v!. ~34!

Renormalization of the interreplica vertices forbÞa in
Figs. 6~a! and 6~b! comes from the vertex correction dia
grams as shown in Figs. 7~a! and 7~b!, respectively. We mus
avoid counting the diagram Fig. 7~b-4! which vanishes in the
replica limit. We obtain

D̃h85D̃h2
1

2
D̃j

2 ln
v

E0
, ~35!

D̃j85D̃j2D̃hD̃j ln
v

E0
1@~2g̃12g̃2!D̃j12D̃j

2#p~v!.

~36!

FIG. 6. Interreplica vertices originating from the random~a!
forward and~b! backward scatterings.~c! The diagram that is pro-
portional to the number of replicasN and vanishes in the replica
limit N→0.
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FIG. 7. The vertex correction diagrams for th

interreplica~a! forward @D̃h# and ~b! backward

@D̃j# processes. We must avoid counting the d
gram ~b-4! which vanishes in the replica limit.
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When we differentiate Eqs.~32!–~36! with respect to the
scaling parameter,l 5 ln(E0 /v), the length scaleL, must also
be scaled in accordance with the change of the energy s
v, as

dL

L
1

dv

v
50. ~37!

Thus we obtain the RG equations

dg̃1

dl
52D̃j2g̃1g̃21@~ g̃22g̃1!g̃11D̃j

2#l l , ~38!

dg̃2

dl
52D̃h2~ g̃1

21g̃2
2!/21~ g̃2

21g3
2!l l /2, ~39!

dg3

dl
52g3~ g̃122g̃2!l l , ~40!

dD̃h

dl
5D̃h1D̃j

2/2, ~41!

dD̃j

dl
5D̃j1D̃jD̃h2@~2g̃12g̃2!D̃j12D̃j

2#l l . ~42!

C. Renormalization-group flow and QPT

1. In the absence of the random backward scattering

First, we consider the case where the random forw
scattering is present (D̃h;0Þ0), but the random backwar
scattering is absent (D̃j;050), whereD̃h;0 andD̃j;0 are ini-
tial strengths of the random forward and backward scat
ings, respectively. In this case, the RG flows indicate that
QPT occurs from a metallic fixed point (D̃h* 5`, g3* 50) to

the Mott insulator fixed point (D̃h* 5`, g3* 5`) as Ũ in-
creases. Typical flows are shown in Figs. 8~a-1! and 8~a-2!
for Ũ50.1 and 0.4, respectively, in the case ofd51.1 and
D̃h;050.02, where the critical value ofŨ is Ũc;0.330. This
ale

d

r-
e

behavior ind511e qualitatively reproduces the case ofd
51,18 where sufficiently strong random forward scatteri
destroys the Mott gap.

In Fig. 9~a! is shown a low-energy asymptotic phase d
gram, where we also show energy scales of the Mott g
vgap/E0, introduced in the previous section. We see th
both the random forward scattering and the raising dim
sionality tend to destroy the Mott gap and consequen
widen the metallic region as compared with the pure c
~the phase boundary in the pure case is shown by the
solid line!.

2. Effects of the random backward scattering

Next, we consider the case where both the random
ward and backward scatterings are present:D̃h;0Þ0 and
D̃j;0Þ0. The random backward scattering makes it poss
for the Anderson localization to occur. In this case, the
occurs a transition from the Anderson insulator fixed poi
(D̃j* 5`, D̃h* 5`, g3* 50), to the Mott insulator fixed point

(D̃j* 5`, D̃h* 5`, g3* 5`), as Ũ increases. Typical flows

are shown in Figs. 8~b-1! and 8~b-3! for Ũ50.1 and 0.4,
respectively. We here introduce the scalel loc at which D̃j

reaches unity@see Fig. 8~b-1!#. Then,v loc5E0e2 l loc gives a
qualitative energy scale around which a crossover to
Anderson insulator occurs. In the flows of the type of F
8~b-3!, g3 always dominatesD̃j and reaches unity at th
scale l 5 l gap, l loc , indicating that the Mott gap formation
overwhelms the Anderson localization.

We also find flows toward (D̃j* 50, D̃h* 5`, g3* 50), as
shown in Fig. 8~b-2!. This type of flow is found only for 0
,d,1.575 in the narrow region ofŨ in between the regions
corresponding to Figs. 8~b-1! and 8~b-3!. In these cases
however,D̃j exceeds unity at some scaling parameterl loc
during the renormalization, which indicates that the pert
bative treatment breaks down and the localization occ
around the energy scale specified byl 5 l loc . Thus we inter-
pret that the ground state corresponding to this fixed poin
the Anderson insulator. It is beyond the RG-based schem
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FIG. 8. ~a! RG flows ofD̃h andg3 for ~a-1! Ũ50.1 and~a-2! Ũ50.4 in the case ofd51.1, D̃h;050.02, andD̃j;050. ~b! RG flows of

D̃h , D̃j, andg3 for ~b-1! Ũ50.1, ~b-2! Ũ50.2, and~b-3! Ũ50.4 in the case ofd51.1, D̃h;050.02, andD̃j;050.08.
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settle this ambiguity and we do not go into the details on t
issue here.

In Fig. 9~b! is shown a low-energy asymptotic phase d
gram, where we also showv loc /E0 and vgap/E0. As com-
pared with Fig. 9~a!, the phase boundary remains nearly u
changed, but the metallic phase in Fig. 9~a! is replaced with
the Anderson insulator phase due to the random backw
scattering.

The present results indicate that the QPT from the And
son to the Mott insulators occurs in bothd51 and d.1.
Recently, Ohtsuka and Hatsugai20 studied the half-filled
Hubbard model containing site randomness by using
Monte Carlo method. They found that the QPT’s from
incompressible~Mott! to a compressible~Anderson! insula-
tor occur in all the cases ofd51, 2, 3. This numerical resul
is consistent with the RG-based views given here.

IV. CONCLUDING REMARKS

In this paper, based on the one-loop RG flows, we h
studied QPT’s in the Hubbard model with a circular Fer
surface ind511e continuous dimensions, where we a
sume that there is 2kF umklapp scattering presenta priori.
Peculiarity of thed511e dimensions was incorporated on
through the mathematical structure of the elementary PP
PH loops: infrared logarithmic singularity of the PH loop
smeared. We have studied the following three cases:

~1! In the absence of randomness: The QPT from the
metallic phase to the Mott insulator phase occurs at a finitU
for e.0.

~2! In the case where the random forward scattering
present, but the random backward scattering is absent: Both
random forward scattering and raising dimensionality tend
destroy the Mott gap. Consequently,Ũc becomes finite for
e>0 and the metallic region becomes wider as compa
with the pure case~1!.

~3! In the case where both the random forward and ba
ward scatterings are present: The phase boundary remain
nearly unchanged as compared with the case~2!, but the
s

-

-

rd

r-

e

e
i

nd

o

d

-

metallic phase in the case~2! is replaced with the Anderson
insulator phase due to the random backward scattering.

In the present paper, the ground-state properties were
jectured based solely on the one-loop RG flows. At pres
numerical studies are in progress to complement the vi
given here.30
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APPENDIX A: DERIVATION OF EQ. „10…

Our purpose here is to show that theṽ dependence of
R P2kF

(v) is uniquely determined as Eq.~10!. We start with
Eq. ~9!. The imaginary counterpart is given by

I P2kF
~v!52p

Sd21

~2p!dE kd21dkE
0

p

du~sinu!d22

3Q~2jk!Q~jk1Q!d~v2jk1Q1jk! ~A1!

for 0,v,2vFkF , I P2kF
(v)50 for 2vFkF,v, and satis-

fies I P2kF
(2v)52I P2kF

(v). The delta function in the
integrand of Eq.~A1! is rewritten as

d~v2jk1q1jk!5
1

vFkF
S 1

2
1

ṽ

k̃
D d~ t2t0!,

where we introducedṽ5v/2vFkF , k̃5k/kF , t5cosu, and
t05ṽ2(12ṽ2)/ k̃. So we have
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FIG. 9. Low-energy asymptotic phase dia
grams in the cases where~a! the random forward
scattering is present, but the random backwa
scattering is absent, and~b! both the random for-
ward and backward scatterings are present. In~a!,
the phase boundary in the pure case~see Fig. 5! is
shown by the gray solid line. We also sho

v loc /E0 andvgap/E0, as a function ofd andŨ.
e

I P2kF
~v!52p

Sd21kF
d21

~2p!dvF
E

12ṽ

1

dk̃S 1

2
1

ṽ

k̃
D k̃d21

3F12S ṽ2
12ṽ2

k̃
D 2G ~d23!/2

52p
Sd21kF

d21

2~2p!dvF

~12ṽ2!(d23)/2

3E
1

11ṽ
du~u22ṽ2!~u221!(d23)/2, ~A2!

whereu5 k̃1ṽ. For smallṽ, since the region of integration
is limited to the vicinity ofu51, it is reasonable to replac
the integrand, (u22ṽ2)(u221)(d23)/2, with 2(d23)/2(u
21)(d23)/2 and we have

I P2kF
~v!;2p

Sd21kF
d21

2~2p!dvF

2(d23)/2

3~12ṽ2!(d23)/2E
1

11ṽ
du~u21!(d23)/2

52p
Sd21kF

d21

2~2p!dvF

2(d21)/2

d21

3~12ṽ2!(d23)/2ṽ (d21)/2, ~A3!

which corresponds to a special case of Eq.~7.12! in Ref. 17
for uqu52kF . In d511e, notingSd21;e, we obtain
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I P2kF
~v!;2

1

4vF
~12ṽ2!211e/2ṽe/2. ~A4!

The real counterpart is obtained by the Kramers-Kro
transformation,

R P2kF
~v!5

2

p
PE

0

1

dṽ8
ṽ8I P2kF

~v8!

ṽ822ṽ2
, ~A5!

where the symbolP denotes Cauchy principal value integr
~note that 0,ṽ,1). Since the prefactor (12ṽ2)211e/2 on
the right-hand side of Eq.~A4! has already appeared in th
exact expression~A2!, and the remaining part of the integra
Eq. ~A2!, shows no singularity atṽ51, the expression for
small ṽ, Eq. ~A4!, holds analytical property ofI P2kF

(v)

correctly even forṽ;1. Thus it is reasonable to use expre
sion ~A4! in Eq. ~A5! and we have

R P2kF
~v!;2

1

2pvF
PE

0

1

dṽ8
ṽ811e/2

~ṽ822ṽ2!~12ṽ82!12e/2
,

~A6!

which is to be evaluated for smallṽ ande.
To evaluate Eq.~A6!, let

f ~z!5
z

~z22ṽ2!~z221!
@z~z221!#e/2, ~A7!

and consider the integral

R
C

f ~z!dz

along the contour as depicted in Fig. 10.f (z) has poles at
z56ṽ and branch points atz50, ` andz561. We choose
branch cuts in the region$R z,21%ø$0,R z%. In the limit
as the large circle recedes to infinity, it gives no contributi
The residue at the polez52ṽ gives

FIG. 10. Contour to evaluate the integral~A6!.
g

-

.

R
C

f ~z!dz52p iep ie/2
ṽe/2

~12ṽ2!12e/2
;2p iṽe/2.

~A8!

The remainder of the contour is deformed into an integ
enclosing the cuts and encircling the polez5ṽ and the
branch points atz50 andz561. The pointsz50, 61 give
no contribution. The integrals encircling the polez5ṽ and
the remainder along the real axis give

R
C

f ~z!dz5
p i

2
~e(p/2)ie1e(3p/2)ie!

ṽe/2

~12ṽ2!12e/2

12pvF~e(p/2)ie2e(3p/2)ie!R P2kF
~v!

1~e(4p/2)ie21!E
1

` x@x~x221!#e/2

~x22ṽ2!~x221!
dx

1~e(3p/2)ie2e(p/2)ie!

3E
2`

21x@2x~x221!#e/2

~x22ṽ2!~x221!
dx.

Here the integrals are evaluated for smallṽ ande as

E
1

` x@x~x221!#e/2

~x22ṽ2!~x221!
dx52E

2`

21x@2x~x221!#e/2

~x22ṽ2!~x221!
dx

;E
1

`

@x~x221!#211e/2dx

5
G~123e/4!G~e/2!

2G~12e/2!
;1/e,

where the integral in the second line converges for 0,e

,4/3. We thus obtain, for smallṽ ande,

R
C

f ~z!dz5p iṽe/222p2vFie R P2kF
~v!12p i2p i.

~A9!

Therefore, we obtainR P2kF
(v) of the form that is correct

up to the leading order ofṽ,

R P2kF
~v!;

1

2pvF
F ṽe/2

e/2
1CeG , ~A10!

which is Eq. ~10!. Although above manipulation givesCe
51/e, it seems feasible to chooseCe522/e as suggested in
Ref. 16 to reproduce correctly the limit form ofR P2kF

(v)

5(1/2pvF)log ṽ at e50. This discrepancy may arise, be
cause to evaluate Eq.~A5! we used expression~A4! which
holds analytical property ofI P2kF

(v) correctly but misses

contribution fromṽ;1. We do not go into the details here
since an explicit form ofCe does not enter the RG equation
~15!–~17! and ~38!–~42!.
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