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Interplay of randomness, electron correlation, and dimensionality effects
in quasi-one-dimensional conductors
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We study the interplay of randomness, electron correlation, and dimensionality effects in weakly coupled
half-filled Hubbard chains with weak quenched random potentials, based on the renormalization-group~RG!
approach. We perform a two-loop RG analysis of an effective action derived by using the replica trick, and
examine the following crossovers and phase transitions from an incoherent metal regime:~1! a crossover to the
Anderson localization regime,~2! an antiferromagnetic phase transition, and~3! a crossover to the quasi-one-
dimensional weak-localization regime. The case ofd511e (e!1) dimensions is also mentioned.
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I. INTRODUCTION

The interplay of randomness-driven Anderson locali
tion and electron correlation has been a subject of con
versy over the past two decades.1–4 In d52 and 3 dimen-
sions, coupling between two-particle scattering proces
and diffusive motion of electrons~Cooperon! is treated per-
turbatively in the weak-localization regime, starting with t
Fermi-liquid picture. On the other hand, ind51 dimension,
coupling between two-particle scattering processes
random-potential scattering processes can never be tre
perturbatively because of strong quantum fluctuations. M
tual renormalization effects of randomness and correlatio
d51 have been treated through the renormalization-gr
approach based on the bosonization technique.5,6 In the case
of half-filling in d51, relevant 2kF umklapp scattering
causes a charge gap~Mott gap!. Consequently, the interpla
of randomness and correlation leads to competition betw
the Anderson localization and the Mott insulator phase.7,8

Because of the essential difference in nature betweed
51, 2, and 3 dimensions, the case of quasi-one-dimensio
of particular interest. So far, discussions on a quasi-o
dimensional~Q1D! conductor with an open Fermi surfac
have been made in thenoninteracting case, focused on
weak-localization effects on conductivity9 and magnetic-field
effects on localization.10–12Little attention has been given t
electron correlation effects in Q1D conductors with rand
potentials.

In the case of chains, without random potentials, wea
coupled via interchain one-particle hoppingt' , the system
behaves as a 1D system at high energy~temperature! scales,
v@t' . As the energy decreases, there occurs interchain
particle propagation through thet' process, and the propa
gation of the 1D power-law correlation through the inte
chain particle-hole or particle-particle exchange~ICEX!
processes.13–15 The former process induces one-partic
crossover~1PC! to the Fermi-liquid regime, while the latte
process converts the 1D power-law correlation to a 2D~or
3D! long-range correlation. Since the latter process occ
irrespective of the interchain quasiparticle coherence, a
phase transition takes place from an ‘‘incoherent me
PRB 620163-1829/2000/62~20!/13323~15!/$15.00
-
o-

es

d
ted
-

in
p

en

is
e-

y

e-

rs

l

~ICM! regime,’’ if the latter process dominates the forme
We can confirm this scenario by using a renormalizatio
group~RG! approach based on the assumption that the s
ing procedure in the one-dimensional regime at high-ene
scales remains valid down to the phase transition or cro
over energy scales. Competition between the ICEX-driv
antiferromagnetic~AF! phase transition and the 1PC
half-filled16,17 and dimerized quarter-filled18 organic conduc-
tors have been investigated based on the RG appro
where relevant 2kF umklapp scattering plays a key role fo
the ICEX-driven AF transition from the ICM regime.

In the case of weakly coupled half-filled chains with ra
dom potentials, it is also possible that the phase crosses
from the ICM regime to the Anderson localization~AL !
regime.19 It was recently reported that in a doped organ
compound, (DI-DCNQI)2Ag12xCux , where doping of Cu
controls the dimensionality, randomness, and filling of t
system, an AF ordering accompanied by a charge excita
gap ~Mott gap!, the Anderson localization regime, and
metal phase appear successively upon doping.21 This experi-
mental finding indicates that an interplay of correlation, ra
domness, and dimensionality is realized in this compound
this paper, we extend work presented previously,19 and study
in detail an interplay of randomness, correlation, and dim
sionality effects in the Q1D half-filled Hubbard system wi
weak quenched random potentials based on the RG
proach. The effect of the varying filling is roughly simulate
by changing the umklapp scattering strength. We cons
weakly coupled chains, and treat the interchain one-part
hopping t' perturbatively to examine the consequent int
chain one- and two-particle processes. Instead of
bosonization approach, we use the Grassmann functiona
tegral approach in order to incorporate the interchain o
particle process explicitly. This approach is appropriate
obtain qualitative phase diagrams including a thre
dimensionally ordered phase~the AF phase in the presen
case!, but the feedback effects of the interchain processes
the intrachain processes are then missing. One way to
trieve the interchain feedback effects is to incorporate
imbalance between the elementary particle-particle~PP! and
particle-hole~PH! loops: infrared logarithmic singularity o
13 323 ©2000 The American Physical Society
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the PH loop is smeared ford.1.22 In the present paper, th
(d511e)-dimensional case with randomness is taken
only briefly, because a fuller discussion was presented s
rately by one of the authors.23

This paper is organized as follows: In Sec. II, we consi
an isolated half-filled Hubbard chain with weak quench
randomness. We construct an effective action via the rep
trick, and apply a two-loop RG analysis to it. This part is
reformulation of the bosonization-based approach to
same problem.6,7 In Sec. III, we extend the formulation pre
sented in Sec. II to the case of the weakly coupled cha
Based on the RG flows, we introduce characteristic ene
scales for the ICEX-driven AF transition, the crossover
the AL regime, and the 1PC, and discuss a low-ene
asymptotic phase diagram of the system. The case ofd51
1e is discussed briefly in Sec. IV, followed by a summary
Sec. V.

II. SINGLE-CHAIN PROBLEM

We first consider an isolated half-filled Hubbard cha
with weak quenched randomness@Fig. 1~a!#.

A. Effective action

Here we construct an effective action via the replica tri
The following derivation is similar to that done by Belitz an
Kirkpatrick.4 We linearize the one-particle dispersion at t
Fermi points6kF56p/2 as

FIG. 1. ~a! Half-filled Hubbard chain with random potentia
considered here.~b! Forward and~c! backward scattering due t
random potentials.~d! Backward,~e! forward, and~f! 2kF umklapp
scattering vertices. Inter-replica~g! forward and~h! backward scat-
tering vertices. Solid and dashed lines represent one-particle pr
gators for right- and left-moving electrons, respectively.
p
a-

r
d
a

e

s.
y

y

.

jn~k!5vF~ uku2kF!. ~1!

Based on the bandwidth regularization scheme, we res
the electron wave numbers to the region

Cl5$ku2v l /2<jn~k!<v l /2%, ~2!

where jR(k)5vF(k2kF) (k.0) and jL(k)5vF(2k2kF)
(k,0) are the linearized dispersions for the right- and le
moving electrons. The cutoff of the linearized band is para
etrized asv l5E0e2 l , with a scaling parameterl. The cutoff
energyv l corresponds to a characteristic energy at which
observe the system. From now on we regardv l as the tem-
perature scalev l;T.

The renormalization-group procedure is best formula
in the path-integral representation of the partition functio

Z5E
Cl

DeSl, ~3!

whereSl is the effective action of the system, andD sym-
bolizes the measure of the path integral over the fermio
Grassmann variables belonging to the regionCl . The action
at the energy scale specified byl contains four parts:

Sl5Skin; l1SI; l1Sh; l1Sj; l . ~4!

The kinetic action is given by

Skin; l5 (
kPCl

(
«

(
s

@G R
21~k!Rs* ~k!Rs~k!

1G L
21~k!Ls* ~k!Ls~k!#, ~5!

where k5(k,i«), with « being a fermion thermal frequency
and Rs and Ls are Grassmann variables representing
right- and left-moving electrons with a spins, respectively.
The one-particle propagator is given by

Gn~k!5@ i«2jn~k!#21. ~6!

The two-particle scattering processes caused by the on
repulsion@Fig. 1~a!# contain the normal and umklapp pro
cesses with the dimensionless scattering strengths,gs1s2s3s4

andg3, respectively. The corresponding term is written a

SI; l5pvFT (
$ki %PCl

(
$« i %

(
$s i %

gs1s2s3s4

3Rs1
* ~k1!Ls2

* ~k2!Ls3
~k3!Rs4

~k4!

2
1

2
pvFg3T (

$ki %PCl
(
$« i %

(
s1 ,s2

@Rs1
* ~k1!Rs2

* ~k2!

3Ls2
~k3!Ls1

~k4!1c.c#, ~7!

where T is absolute temperature, and the summation o
energy and momentum is taken under the constraints«1
1«22«32«450 andk11k22k32k45G, with G50 and
G564kF562p for the normal and umklapp processe
respectively. The normal scattering is decomposed into ba
ward and forward scattering as

gs1s2s3s4
5g1ds1s3

ds2s4
2g2ds1s4

ds2s3
, ~8!

a-
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where the forward and backward scattering strengths are
noted byg2 andg1, respectively. Unrenormalized scatterin
strengths are related to the on-site Coulomb repulsionU as

g1;05g2;05g3;05U/pvF . ~9!

Scattering of electrons by the weak random potential@Fig.
1~a!# at a spatial position,x, is taken into account through
real field h(x) corresponding to random forward scatteri
@Fig. 1~b!# and complex fieldsj(x) andj* (x) corresponding
to random backward scattering@Fig. 1~c!#. The correspond-
ing actions are written as

Sh; l52E
0

1/T

dtE dx(
s

h~x!@Rs* ~x,t!Rs~x,t!

1Ls* ~x,t!Ls~x,t!#, ~10!

Sj; l52E
0

1/T

dtE dx(
s

@j~x!Rs* ~x,t!Ls~x,t!

1j* ~x!Ls* ~x,t!Rs~x,t!#. ~11!

We assume the random potential to be governed by Gaus
distributions,

Ph} expF2Dh
21E dxh~x!2G ,

Pj} expF2Dj
21E dxj~x!j* ~x!G , ~12!

where Dh5(pNFth)215vF /th and Dj5(pNFtj)
21

5vF /tj , with th,j and NF being the scattering mean fre
times and the noninteracting one-particle density of sta
respectively. The correlation functions of the random pot
tials are then given by

^h~x!h~y!&5
Dh

2
d~x2y!, ^j~x!j* ~y!&5

Dj

2
d~x2y!.

~13!

In the case of quenched randomness, the free energy is
eraged over random potentials by the replica trick, which
based on the identity

ln Z5 lim
N→0

ZN21

N
. ~14!

By introducingN identical replicas of the system labeled b
the indexa, we obtain

ZN5E
Cl

)
a51

N

Da expF (
a51

N

Sl
aG , ~15!

whereDa symbolizes the measure of the path integral o
the fermionic Grassmann variables in theath replica. Then
we take an average
e-

ian

s,
-

av-
s

r

^ZN&5E dhPhE djdj* PjECl
)
a51

N

Da expF (
a51

N

Sl
aG

[E
Cl
)
a51

N

Da expF (
a51

N

S̃l
aG ~16!

for integerN, continue the result analytically to realN, and
finally take the N→0 limit. Here S̃l

a5S̃kin; l
a 1S̃I; l

a 1S̃h; l
a

1S̃j; l
a is the replicated action corresponding to Eq.~4!. S̃kin; l

a

and S̃I; l
a are written simply by replacingRs and Ls in Eqs.

~5! and ~7! with Grassman variables on theath replica,Rs
a

andLs
a , respectively.

Performing the Gaussian integration overh andj fields,
the forward and backward random scattering parts in theath
replica are obtained as follows:

S̃h; l
a 5

Dh

2 (
b51

N

(
s1 ,s2

E
0

1/T

dt1E
0

1/T

dt2E dxRs1

a* ~x,t1!

3Rs1

a ~x,t1!Ls2

b* ~x,t2!Ls2

b ~x,t2!, ~17!

S̃j; l
a 5

Dj

2 (
b51

N

(
s1 ,s2

E
0

1/T

dt1E
0

1/T

dt2E dxRs1

a* ~x,t1!

3Ls1

a ~x,t1!Ls2

b* ~x,t2!Rs2

b ~x,t2!. ~18!

To set up the RG equations, we need to pick up the lo
rithmically singular contribution originating from Eqs.~17!
and~18!. To do this, we change imaginary time variablest1
andt2 into Dt5t12t2 andt5(t11t2)/2, and introduce a
short-distance cutoffL which characterizes the inelast
scattering regime between replicated systems. Then the
gion vFuDtu<L causes an infrared logarithmic singularit
as the two-particle scattering processes~7! do, and contrib-
utes to the RG equations. Here we note that the condi
vFuDtu<L corresponds to the analogous onevFDt<a in
the bosonization-based formulation†see Eq.~3.2! of Ref. 6#,
where a is a short-distance cutoff parameter of the ord
of the lattice constant. We also note that element
particle-hole and particle-particle loops for a fixe
internal energy« make contributions,2(kPCl

GR(k,«)GL(k

22kF ,«)5(kPCl
GR(k,«)GL(2k,2«)52*0

E0@dj/(j21«2)#

;p/«, for «!E0. The infrared logarithmic singularity
comes from integration over the internal energy,*(d«/«),
which we encounter only in the inelastic channel. From n
on, we keep only the regionvFuDtu<L in Eqs. ~17! and
~18!. Then, taking the Fourier transformation

Rs
a~x!5T1/2(

kPCl
(

«
ei (kx2«t)Rs

a~k!,

Rs
a* ~x!5T1/2(

kPCl
(

«
e2 i (kx2«t)Rs

a* ~k!, ~19!

with x5(x,t) and k5(k,i«), we have
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S̃h; l
a 5

DhL

vF
T (

$ki %PCl
(
$« i %

(
s1 ,s2

(
b51

N

Rs1

a* ~k1!

3Ls2

b* ~k2!Ls2

b ~k3!Rs1

a ~k4!, ~20!

S̃j; l
a 52

DjL

vF
T (

$ki %PCl
(
$« i %

(
s1 ,s2

(
b51

N

Rs1

a* ~k1!

3Ls2

b* ~k2!Ls1

a ~k3!Rs2

b ~k4!, ~21!

where the summation over energy and momentum is ta
under the constraints:«11«22«32«450 and k11k22k3
2k450.

Now random scattering termsinside the same replicaare
absorbed into the intrachain two-particle scattering terms

S̃I; l
a 5pvFg̃1T (

$ki %PCl
(
$« i %

(
s1 ,s2

Rs1

a* ~k1!Ls2

a* ~k2!Ls1

a ~k3!

3Rs2

a ~k4!2pvFg̃2T (
$ki %PCl

(
$« i %

(
s1 ,s2

Rs1

a* ~k1!Ls2

a* ~k2!

3Ls2

a ~k3!Rs1

a ~k4!

2
1

2
pvFg3T (

$ki %PCl
(
$« i %

(
s1 ,s2

@Rs1

a* ~k1!Rs2

a* ~k2!

3Ls2

a ~k3!Ls1

a ~k4!1c.c#, ~22!

where

g̃15g12D̃j , g̃25g22D̃h , ~23!

D̃j5DjL/pvF
2 , D̃h5DhL/pvF

2 . ~24!

The normal (g̃1 and g̃2) and the umklapp (g3) scattering
vertices are represented in Figs. 1~d!, 1~e!, and 1~f!, respec-
tively. On the other hand, random scattering termsbetween
different replicasare written as

S̃h
a5pvFD̃hT (

$ki %PCl
(
$« i %

(
s1 ,s2

(
bÞa

Rs1

a* ~k1!Ls2

b* ~k2!

3Ls2

b ~k3!Rs1

a ~k4!, ~25!

S̃j
a52pvFD̃jT (

$ki %PCl
(
$« i %

(
s1 ,s2

(
bÞa

Rs1

a* ~k1!Ls2

b* ~k2!

3Ls1

a ~k3!Rs2

b ~k4!, ~26!

where the corresponding inter-replica scattering vertices
represented in Figs. 1~g! and 1~h!, respectively.

B. Two-loop renormalization

In the perturbative renormalization-group~PRG! ap-
proach, we assume that scattering strengths (g̃1 , g̃2 , g3 ,
D̃h , and D̃j) are considerably smaller thanE0, and set up
low-order RG equations whose solutions indicate whet
these small perturbations grow toward the low-energy sc
or not. To discuss the interchain one-particle process in S
n

s

re

r
es
c.

III, we need to take account of the self-energy effects wh
are treated at thetwo-loop level. The derivation of the two-
loop RG equations is left to Appendix A. The RG equatio
take the forms

dg̃1 /dl5w122ug̃12D̃j , ~27!

dg̃2 /dl5w222ug̃22D̃h , ~28!

dg3 /dl5w322ug3 , ~29!

dD̃h /dl5wh1~122u!D̃h , ~30!

dD̃j /dl5wj1~122u!D̃j . ~31!

The self-energy processes give

u5
1

4 F g̃1
21g̃2

22g̃1g̃21
1

2
g3

22D̃j
22D̃h

2 G , ~32!

and the vertex corrections give

w152g̃1
21

1

2
g̃1g̃2

22
1

2
g̃1

2g̃21
1

4
g̃1g3

21D̃j
22

1

2
g̃1D̃h

2 ,

~33!

w252
1

2
g̃1

21
1

2
g3

21
1

2
g̃2

31
1

2
g̃1

2g̃22
1

2
g̃1g̃2

22
1

4
g̃1

3

1
1

4
g̃1g3

22
1

4
g̃2g3

22
1

2
g̃2D̃h

21
1

2
D̃hD̃j

2 , ~34!

w352g̃1g312g̃2g32
1

2
g̃2

2g31
1

2
g̃1g̃2g3

1
1

4
g̃1

2g31
1

2
g3D̃h

2 , ~35!

wh5
1

2
D̃j

21
1

2
g̃2

2D̃h1
1

2
g̃1

2D̃h2
1

2
g̃2D̃j

22
1

2
g̃1g̃2D̃h

1
1

4
g̃1D̃j

22
1

4
g3

2D̃h2
1

2
D̃h

32
1

2
D̃hD̃j

2 , ~36!

wj522g̃1D̃j1g̃2D̃j1D̃hD̃j2g̃2D̃hD̃j1
1

2
g̃1D̃hD̃j

22D̃j
22D̃h

2D̃j . ~37!

C. RG flows and low-energy asymptotics of the single chain

Here we discuss the RG flows obtained through soluti
of Eqs. ~27!–~31! with initial values of the scattering
strengths:g1;05g2;05g3;05U/pvF , D̃h;0, andD̃j;0.

1. One-loop RG flows

To grasp qualitative nature of the RG flow, here we pau
to look briefly at the one-loop counterparts of the RG eq
tions:

dg̃1 /dl52D̃j2g̃1
21D̃j

2 , ~38!
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FIG. 2. Two-loop RG flows
when the random forward scatte
ing is present, but the random
backward scattering is absen
@~a!–~d!#, and when both the ran
dom forward and backward sca
terings are present@~e!–~h!#.
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dg̃2 /dl52D̃h2g̃1
2/21g3

2/2, ~39!

dg3 /dl52g3~ g̃122g̃2!, ~40!

dD̃h /dl5D̃h1D̃j
2/2, ~41!

dD̃j /dl5~122g̃11g̃2!D̃j1D̃jD̃h22D̃j
2 . ~42!

Case A: D̃h;0Þ0 and D̃j;050. When the random back
ward scattering is absent, the one-loop RG equations ar
duced to

dG/dl52D̃h2g3
2 , ~43!

dg3 /dl52g3G, ~44!

where D̃h5D̃h;0el and G5g̃122g̃2. In this case, as see
from Eq. ~43!, D̃h competes withg3 and, consequently, th
fixed points are classified into (g3* 50, G* 5`, D̃h* 5`)

and (g3* 5`, G* 52`, D̃h* 5`). This result is consisten
with the finding by Fujimoto and Kawakami.7 The former
fixed point corresponds to the metal phase, where the
dom forward scattering overwhelms the umklapp scatter
while the latter corresponds to the Mott insulator phase.7 For
a fixedD̃h;0, a quantum phase transition occurs at some c
cal strengthUc , between the metal (U,Uc) and the Mott
insulator (U.Uc) fixed points ~for example, Uc

;0.492pvF for D̃h;050.08).
Case B: D̃h;0Þ0 and D̃j;0Þ0. When both random forward

and backward scatterings are present, the RG flows are m
fied, and the fixed points are classified into (g3* 50, G*
5`, D̃h* 5`, D̃j* 5`) and (g3* 5`, G* 52`, D̃h* 5`,

D̃j* 5`). The former fixed point corresponds to the Ande
son insulator phase, while the latter corresponds to the M
insulator phase.7 For D̃h;05D̃j;050.08, a quantum phas
transition takes place atUc;0.439pvF between the former
(U,Uc) and the latter (U.Uc).
re-

n-
g,

i-

di-

-
tt

2. Two-loop RG flows

Next we discuss the two-loop RG flows obtained throu
solutions of Eqs.~27!–~31!.

Case A: D̃h;0Þ0 and D̃j;050. In Figs. 2~a!–2~d!, we show
the flows for U/pvF50.1, 0.3, 0.5, and 0.7, respectivel

with D̃h;050.08. The fixed points are classified into (g3*

50, G* 5`, D̃h* 5`) and (g3* 52, G* 522, D̃h* 50). The
former fixed point is equivalent to the corresponding on
loop fixed point. On the other hand, the latter fixed point
equivalent to the nontrivial fixed point at the two-loo
level,24 corresponding to the pure Mott insulator. We th
see that two-loop analysis does not qualitatively modify
one-loop RG flows and, for a fixedD̃h;0, a quantum phase
transition would occur at some critical strengthUc , between
the metal and the Mott insulator fixed points~for example,
Uc;0.484pvF for D̃h;050.08).

Case B: D̃h;0Þ0 and D̃j;0Þ0. The backward scattering
qualitatively modifies the two-loop RG flows, and we fin
the fixed point (g3* ;2.4003, G* 522.4349, D̃h* 5

20.0560,D̃j* 50.9844) foranyset ofU.0, D̃h;0, andD̃j;0.
In Figs. 2~e!–2~h!, we show the flows forU/pvF50.05, 0.1,
0.3, and 0.5, respectively, withD̃h;05D̃j;050.08.

Now we introduce the characteristic scalesl gap and l loc

through the conditionsg351 at l 5 l gap and D̃j51 at l
5 l loc . The corresponding energy scales,Egap5E0e2 l gap and
Eloc5E0e2 l loc, can be regarded as characterizing the M
gap opening and the Anderson localization, respectively
Figs. 2~e!–2~h!, we see thatl loc, l gap for smallerU, while
l loc. l gap for larger U. This behavior may indicate a cross
over from the Anderson-insulator-like phase to the Mo
insulator-like phase upon increasingU.

The quantum critical behavior between two distinct fix
points, which is observed in the one-loop analysis, is app
ently missing here. However, the fixed point found here
clearly out of the perturbative domain where the RG is va
and lies in the vicinity of the fixed point of the clean syste
In fact, since at this fixed pointD̃h* 520.0560,0, whereas

by the definition ofD̃h @Eq. ~13!#, one must haveD̃h* .0, the
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field h(x) being real, it is clear that the fixed point is a
artifact of the two-loop RG. Thus we believe that the phys
found by Fujimoto and Kawakami7 at one-loop renormaliza
tion is not changed at two-loop renormalization.

III. WEAKLY COUPLED CHAINS

In this section, we consider athree-dimensionalregular
array of parallel chains weakly coupled via the interch
one-particle hoppingt' , as shown in Fig. 3~a!, and examine
the interchain one- and two-particle processes caused byt' .
Here we stress that we deal with a three-dimensional sys
where infinitesimal random potentials do not induce And
son localization.We take thea axis in the direction paralle
to the chains, and theb andc axes in directions perpendicu
lar to the chains. The interchain one-particle hopping proc
between the nearest-neighbor chains causes a disper
22t'(coskb1 coskc). Throughout this section, we assum
that the scaling procedure in the one-dimensional regim
high-energy scales (v@t') remains valid down to the en
ergy scales at which the crossover or phase transition t
place.

A. Renormalization of the interchain processes

The action for the interchain one-particle process in
ath replica is written as

S̃1'; l
a 52 (

kaPCl
(

2p<kb ,kc<p
(

«
(
s

t'~coskb1 coskc!

3@Ls
a* ~K!Ls

a~K!1Rs
a* ~K!Rs

a~K!#, ~45!

FIG. 3. ~a! Three-dimensional regular array of parallel chai
weakly coupled via the interchain one-particle hopping conside
here. Interchain one-particle processes for~b! right- and ~c! left-
moving electrons. The interchain interaction in the antiferrom
netic channel classified into~d! normal and~e! umklapp processes
s

m
-

ss
ion,

at

es

e

where K5(ka ,kb ,kc ,i«), with ka , kb , and kc the wave
numbers along thea, b, andc axes, respectively. The corre
sponding one-particle processes are represented in Figs.~b!
and 3~c!.

By multiple use of the interchain one-particle process
and the intrachain two-particle processes, the interchain t
particle processes are dynamically generated during
renormalization.13–15 We consider only the case where th
most dominant correlation is an antiferromagnetic one. T
corresponding term is written as

S̃2'; l
a 52

pvFT

N'
(
Q

Jq'
Sl

a~Q!•Sl
a~2Q!

2
pvFT

N'
(
Q

Kq'
@Sl

a~2kF1qa ,q' ,iv!

•Sl
a~2kF2qa ,2q' ,2 iv!1c.c#, ~46!

whereN' is the number of chains and Q5(qa ,q' ,iv), with
q'5(qb ,qc) and v being a boson thermal frequency.Jq'

and Kq'
represent the strengths of the interaction betwe

different chains through the normal and umklapp scatteri
respectively@see Figs. 3~d! and 3~e!#. The 2kF spin density is
given by

Sl
a~Q!5 (

ka1qaPCl

kaPCl

(
2p<kb ,kc<p

(
«

Rs
a* ~K1Q!

3
sss8

2
Ls8

a
~K!. ~47!

Derivation of the RG equations for the interchain pr
cesses is left to Appendix B. We obtain the RG equation

d ln t' /dl512u, ~48!

dJq'
/dl5wq'

J 22uJq'
, ~49!

dKq'
/dl5wq'

K 22uKq'
, ~50!

where

wq'

J 5
1

2
~ g̃2

214g3
2!~ t' /E0!2~cosqb1 cosqc!

1
1

2
~ g̃2Jq'

14g3Kq'
!2

1

4
~Jq'

2 14Kq'

2 !, ~51!

wq'

K 52g̃2g3~ t' /E0!2~cosqb1 cosqc!

12~ g̃2Kq'
1g3Jq'

!2Jq'
Kq'

. ~52!

We see that renormalization of the interchain one-part
process comes solely from the intrachain self-energy p
cesses, where a nonuniversal exponentu is given by Eq.
~32!. During the renormalization process, no new interch
one-particle hopping is generated. In Figs. 14~a! and 14~b! of
Appendix B, we show contribution towq'

J andwq'

K , respec-

tively. Although the unrenormalized values ofJq' ;0 and

d

-
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FIG. 4. RG flows oft' , D̃j ,
J, andK for U50.1pvF @~a!–~c!#
andU50.4pvF @~d!–~f!#.
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Kq' ;0 are zero, the first terms of Eqs.~51! and ~52!, which
come from the processes shown in Figs. 14~a-1! and 14~b-1!
of Appendix B, respectively, generate finite magnitudes
Jq' ;0 and Kq' ;0. Then the second terms, which come fro
the processes shown in Figs. 14~a-2! and 14~b-2!, respec-
tively, induce their exponential growth. Finally the thir
terms, which come from the processes shown in F
14~a-3! and 14~b-3!, respectively, cause divergence ofJq'

andKq'
at the critical scaling parameterl c which depends on

the momentumq' in the interchain direction. The divergenc
corresponds to the phase transition to the long-range ord
phase from the ICM regime at a temperature correspond
to l c(q'). The most favorable spin-density-wave vector
given by the commensurate one,q'5Q'

* 5(p,p), at which
the first terms of Eqs.~51! and ~52! become negative an
have maximum absolute values. From now on, we fixq'

5Q'
* , and introduceJ5JQ

'
* , K5KQ

'
* , andl N5 l c(Q'

* ). The

temperatureTN5E0e2 l N gives the antiferromagnetic trans
tion temperature. We note here that Eqs.~51! and ~52! have
the same form as those in the pure case,17 except thatg1 and
g2 in the pure case are merely replaced withg̃1 and g̃2 @see
Eq. ~23!#. In the present formulation,randomness effects o
the interchain processes are incorporated through the mo

fied intrachain two-particle scattering strengths, g˜
1 and g̃2.

B. RG flows and phase diagrams

Based on the RG flows obtained through solutions of E
~27!–~31! and~48!–~50!, we introduce the three characteri
tic scales,l loc , l 1PC, and l N :

D̃j51 at l 5 l loc , ~53!

t' /E051 at l 5 l 1PC, ~54!

J5K52` at l 5 l N . ~55!

Corresponding temperature scales areTloc5E0e2 l loc, TN
5E0e2 l N, andT1PC5E0e2 l 1PC. The scalesl loc andl N , which
f

s.

ed
g

i-

s.

have already been introduced previously, characterize
crossover to the Anderson localization regime inside
ICM regime and the ICEX-driven AF phase transition fro
the ICM regime, respectively. The scalel 1PC gives a qualita-
tive measure around which the one-particle crossover~1PC!
occurs and interchain one-particle band motion begins
evolve.25 Once the interchain one-particle band moti
evolves, randomness effects may be treated as w
localization corrections to the Q1D Fermi liquid~FL!, as
discussed by Abrikosov.9 Thus we call this regime the Q1D
weak-localization~Q1DWL! regime. We shall mention the
weak-localization effects in the Q1D FL regime later in th
subsection.

Here we stress again that we are dealing with a thr
dimensional system where infinitesimal random potentials
not cause Anderson localization. This is what justifies
identification of the fixed point dominated by interchain ho
ping with a Fermi liquid. This identification is certainly in
valid in two dimensions, where infinitesimal random pote
tials would still cause Anderson localization~AL !.

We solve the coupled RG equations~27!–~31! and~48!–
~50!, and check which of Eqs.~53!–~55! is satisfied at the
highest-energy scales~i.e., the smallestl ). Here we fix initial
strengths of the random scattering,D̃h;05D̃j;050.08. In
Figs. 4~a!–4~c! are shown the RG flows oft' , D̃j , J, andK
with t';0 /E050.01, 0.044, and 0.08, respectively, forU
50.1pvF . In this case, due to weakerU, growth ofJ andK

is overwhelmed by growth of eithert' or D̃j , and conse-
quently the low-temperature phases are determined by
competition between the AL and the 1PC. We see that
AL overwhelms the 1PC (l loc, l 1PC) for t';0 /E0,0.044,
while the 1PC overwhelms the AL (l 1PC, l loc) for t';0 /E0
.0.044.

In Figs. 4~d!–4~f! are shown the RG flows oft' , D̃j , J,
andK with t';0 /E050.01, 0.034, and 0.08, respectively, fo
U50.4pvF and D̃h;05D̃j;050.08. In this case, due to
strongerU, growth of D̃j is overwhelmed by growth of ei-
ther t' or J or K, and consequently the low-temperatu
phases are determined by the competition between the
transition and the 1PC. We see that the AF transition ov
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whelms the 1PC (l N, l 1PC) for t';0 /E0,0.034, while the
1PC overwhelms the AF transition (l 1PC, l N) for t';0 /E0
.0.034.

By examining the RG flows for variousU and t';0, we
obtain a phase diagram spanned byU/pvF andt';0 /E0, and
the temperature scaleT/E0 for D̃h;05D̃j;050.08, as shown
in Fig. 5. We see that for very smallt';0, the AL regime
shrinks asU increases and the AF phases appears
U/pvF*0.28. This crossover from the AL to AF phase
caused mainly by the increase of the umklapp scatte
strength, which enhances the interchain AF correlation
suppresses the interchain one-particle process.17,18

In Fig. 6, we compare the cases with randomness (D̃h;0

5D̃j;050.08) and without randomness forU/pvF50.4. We
see that the AF transition temperatureTN in the case with
randomness is suppressed as compared with the case w
randomness. This suppression is mainly ascribed to supp
sion of the umklapp process due to the random forward s
tering. It should be noted here that randomness effects
also remain in the AF phase. However, to clarify this iss

FIG. 5. Phase diagram spanned byU/pvF , t';0 /E0, and the

temperature scaleT/E0 for D̃h;05D̃j;050.08.

FIG. 6. The AF transition and 1PC temperatures in the ca

with randomness,TN and T1PC, @D̃h;05D̃j;050.08#, and without
randomness,TN

pure andT1PC
pure, for U/pvF50.4.
r

g
d

out
es-
t-

ay
,

we need to go beyond the perturbative scheme, which
outside the scope of the present PRG approach.

Now let us briefly mention the weak-localization effec
in the Q1DWL Fermi-liquid regime. For the present, w
shall confine our attention to the noninteracting case. T
present model gives the Q1D impurity-averaged propaga

G Q1D~k,«!5@ i«2vF~ ukau2kF!12t'~coskb1 coskc!

1 i sgn~«!/2t#21, ~56!

where the inverse scattering timet215nv2/vF is caused by
the self-energy processes, as shown in Fig. 7~a!. Heren is the
density of impurities, andv is the strength of the short-rang
random potential. Then the Cooperon propagator is obtai
as

C~q,v!5nv2@ uvu1 i tvFqa

18t2t'
2 ~sin2 qb/21 sin2 qc/2!#21, ~57!

under the condition

vFqa!t21, t' sinqb/2!t21, t' sinqc/2!t21.
~58!

This condition justifies choosing the Cooperon diagrams
the main quantum correction to the conductivity. Then,
obtain the weak-localization correction@Fig. 7~b!# to the
classical conductivitys0,

Ds/s052t2E dq

~2p!3
C~q,0!, ~59!

where the integration is performed under condition~58!. In
the case where the warping of the Fermi surface is m
larger than the broadeningt21 due to the random scatterin
(t't@1), the main contribution toDs/s0 comes from very
small momenta,9,12 qb ,qc!(t't)21. Then, we obtain
Ds/s0;2(t't)22, which is the same as that obtained b
Abrikosov9 in the case of the quadratic dispersion along
a axis. In the opposite case witht't!1, we can integrate
over qb and qc in the entire Brillouin zone, and obtain
Ds/s0;O(1), which indicates that the weak-localizatio
picture breaks down. We see that the weak-localization p
ture on the randomness effects in the Q1D FL regime bre
down ast't approaches unity from the side oft't@1. The
criteria t't;1 may characterize a breakdown of the wea
localization regime from the side of the Fermi liquid.9 This
criteria may be consistent with the RG-based criteriat' /E0

s

FIG. 7. ~a! Self-energy processes caused by the random po
tials. ~b! Weak-localization correction to the classical conductivi
A double solid line represents the Q1D one-particle propaga
G Q1D.
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;D̃j5DjL/pvF
25(1/pvF)(L/tj), which characterizes the

crossover from the AL regime to the Q1D regime from t
one-dimensional side.

Here we consider the case sufficiently away from h
filling, where the umklapp scattering is absent. In Fig. 8,
show a corresponding phase diagram spanned byU/pvF and
t';0 /E0, and the temperature scaleT/E0 for D̃h;05D̃j;0
50.08. In this case the AL regime shrinks asU increases,
but the AF phase never appears. Reduction of the loca
tion temperature upon increasingU can be understood by th
fact that repulsive interactions tend to make the charge d
sity uniform, and thus compete with Anderson localizatio
as discussed in one dimension by Giamarchi and Shast20

Comparing this result with that of Fig. 5, we see that t
presence of the umklapp scattering is essential to cause
ICEX-driven AF transition from the ICM regime. This situ
ation is similar to the case without randomness.17,18

C. AF phase, Anderson localization, and metallic phase
in a doped organic compound„DI-DCNQI …2Ag1ÀxCux

Here we mention an experimentally suggested ph
diagram of a doped organic compoun
(DI-DCNQI)2Ag12xCux ,21 where dimensionality, random
ness, and filling vary upon doping. In the undoped casex
50), this compound consists of nearly isolated quarter-fil
chains along the DCNQI columns and exhibits an AF ord
ing accompanied by the charge excitation gap.26 Upon dop-
ing Cu, the filling decreases gradually from 1/4 (x50) down
to 1/3 (x51), and dimensionality is raised by the increase
the interchain charge transfer via Cu sites. The degree
randomness caused by Cu substitution increases and
creases upon doping, with a maximum located around
intermediate doping region. Resistivity measurements in
cate that the charge excitation gap rapidly collapses u
small doping, and then the Anderson localization phase
pears at around a 48% doping of Cu, where thr
dimensional variable range hopping is clearly observ
Upon further doping, dimensionality is raised, and the s
tem exhibits metallic behavior down to low temperatures
stead of localization.

FIG. 8. Phase diagram in the case where the umklapp scatte
is absent. The notations are the same as in Fig. 5.
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The phase diagram~Fig. 5! may help account for this
experimental finding on successive crossovers@AF→AL→
metallic phase# upon doping, although the present approa
misses being correct in the following two respects. First,
actual (DI-DCNQI)2Ag12xCux , the charge localization for
small x has been attributed to the relevant 4kF umklapp
process27,28instead of the 2kF umklapp process at half-filling
considered in this paper. The 4kF umklapp process is no
treated in the RG formulation unless we take higher-or
scattering processes into account. In the present discus
the presence of the 2kF umklapp scattering is essential t
cause an ICEX-driven AF transition from the ICM regim
We believe that this argument is applicable to the case
quarter-filling, where the relevant 4kF umklapp scattering
also suppresses the interchain one-particle process. Se
in actual (DI-DCNQI)2Ag12xCux , the closing of the charge
gap may be attributed to changing the filling with fixed i
teraction strength, instead of changing the interact
strength with fixed filling. To explicitly change the filling
we should employ the approach used in Ref. 29, which
essentially equivalent to the bosonization-based approac
Ref. 30 in lowest order, although the cutoff functions a
different in each case. To avoid further complexity, w
would not employ this approach.

Keeping these points in mind, we try a simple simulati
of the experimentally suggested successive crossovers.
small x, dimensionality is still low (t';0 is small!, and the
umklapp scattering may still survive at high-energy scal
but it may decrease upon doping. By simply assuming thaU
decreases as doping increases for smallt';0, we simulate a
crossover from the AF regime to the AL regime for smallx.
For further doping,t';0 may increase and the phase cross
over to the Q1DWL regime. We indicate these success
crossovers by the arrows in Fig. 5.

IV. CASE OF dÄ1¿e DIMENSIONS

It may be worth mentioning the (d511e)-dimensional
case with randomness. Because fuller discussion on
topic is presented separately,23 here we comment only briefly
on the relevance to Sec. III. In Sec. III, we assumed that
scaling procedure in the one-dimensional regime at hi
energy scales (v@t'), where both the elementary particle
particle~PP! and particle-hole~PH! loops exhibit logarithmic
singularities, remains valid down to the energy scale
which the crossover or phase transition takes place. Then
treatedt' perturbatively to examine the interchain one- a
two-particle processes caused byt' . This approach is appro
priate to obtain qualitative phase diagrams including a thr
dimensionally ordered phase~the AF phase in the presen
case!, but the feedback effects of the interchain processes
the charge gap formation are then missing. As a con
quence, we cannot clarify the reason why the charge
decreases as dimensionality is raised. One way to retr
interchain feedback effects is to incorporate the imbala
between the PP and PH loops: the infrared logarithmic s
gularity of the PH loop is smeared ford.1. One of the
present authors studied the low-energy asymptotics of thd
511e (e!1) dimensional Hubbard model with a circula
Fermi surface where 2kF umklapp scattering is presenta
priori .23 Here we compare the (d511e)-dimensional case

ng



e

he
u

a

P
c.
oo

t

le
e
th
-

tic
at
th

or

p

the
8 in

e

m-
alf-
en-
ains

that
ains
or

tter-

13 332 PRB 62JUN-ICHIRO KISHINE AND KENJI YONEMITSU
with the case of the weakly coupled chains discussed in S
III.

In d511e, the real part of the elementary PP loop at t
zero total momentum exhibits an infrared logarithmic sing
larity of the form

ReD0~v!;2
1

2pvF
ln~v/E0!, ~60!

whereE0 is the bandwidth cutoff. On the other hand, the re
part of the elementary PH loop at 2kF momentum transfer no
longer exhibits an infrared singularity ford.1 and, in d
511e, takes the form

ReP2kF
~v!;

1

2pvF
F ṽe/2

e/2
1CeG , ~61!

whereṽ5v/2vFkF andCe is a constant independent ofv.
By taking account of this imbalance between the PP and
loops, and repeating similar procedures presented in Se
we obtain the one-loop RG equations instead of the one-l
counterpart of Eqs.~27!–~31!,23

dg̃1

dl
52D̃j2g̃1g̃21@~ g̃22g̃1!g̃11D̃j

2#l l , ~62!

dg̃2

dl
52D̃h2~ g̃1

21g̃2
2!/21~ g̃2

21g3
2!l l /2, ~63!

dg3

dl
52g3~ g̃122g̃2!l l , ~64!

dD̃h

dl
5D̃h1D̃j

2/2, ~65!

dD̃j

dl
5D̃j1D̃jD̃h2@~2g̃12g̃2!D̃j12D̃j

2#l l , ~66!

where the PH loop gives rise to the smooth cutoff22

l l[2pvFU ]

] l
ReP2kF

~v!U5 exp@2e l /2#. ~67!

In this case, a quantum phase transition takes place from
Anderson insulator fixed point (D̃j* 5`, D̃h* 5`, g3* 50) to

the Mott insulator fixed point (D̃j* 5`, D̃h* 5`, g3* 5`) as

Ũ increases.
In Fig. 9, we show a phase diagram spanned byU/pvF ,

d, and the temperature scaleT/E0 for D̃h;05D̃j;050.08,
which corresponds to Fig. 5 in the case of weakly coup
chains. The definition ofTloc is the same as in Sec. III. Th
magnitude of the charge gap is qualitatively given by
energy scale,vgap5E0e2 l gap, at which the umklapp scatter
ing strength exceeds unity;g351.18,31In Fig. 9, we show the
dependence ofvgap on U/pvF andd. In d511e, both the
three-dimensional AF phase transition and the one-par
crossover cannot be specified. Instead, the Mott insul
phase without the AF long-range order appears where
umklapp scatteringg3 overwhelmsD̃j . In d51, a quantum
phase transition from the AL regime to the Mott insulat
c.

-

l

H
II,
p

he

d

e

le
or
e

phase occurs atU/pvF50.44. We see thatvgap decreases as
d increases for a fixedU/pvF , indicating that the charge ga
decreases as dimensionality increases.

In Fig. 10, we show a phase diagram in the case where
umklapp scattering is absent, which corresponds to Fig.
the case of the weakly coupled chains. We see thatTloc de-
creases as a whole asU increases, but the AL regime is th
only possible low-energy asymptotic phase.

V. SUMMARY

In this paper, we have studied the interplay of rando
ness, correlation, and dimensionality effects in the Q1D h
filled Hubbard system with weak quenched random pot
tials based on the RG approach. We first discussed ch
weakly coupled via the interchain one-particle hoppingt' ,
using a two-loop RG analysis based on the assumption
the scaling procedure in the one-dimensional regime rem
valid down to the energy scale at which the crossover

FIG. 9. Phase diagram spanned byU/pvF , d, and the tempera-

ture scaleT/E0 for D̃h;05D̃j;050.08.

FIG. 10. Phase diagram in the case where the umklapp sca
ing is absent. The notations are the same as in Fig. 9.
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phase transition occurs. We discussed the following cro
overs and phase transitions from the incoherent metal~ICM!
regime:~1! the crossover to the Anderson localization~AL !
regime; ~2! the ICEX-driven antiferromagnetic~AF! phase
transition; and ~3! the crossover to the Q1D weak
localization regime~Q1DWL!, where the randomness effec
can be treated as weak-localization corrections to the Q
Fermi liquid ~FL!. The main result is summarized in th
phase diagram shown in Fig. 5. The presence of umkl
scattering is essential to cause an ICEX-driven AF transi
from the ICM regime In the absence of umklapp scatteri
only competition between crossovers to the AL regime a
Q1DWL regime occurs~Fig. 8!. Based on this result, we
tried a simple simulation of the experimentally sugges
successive crossovers (AF→AL→ metallic phase! upon
doping in the organic compound
(DI-DCNQI)2Ag12xCux .21 We also mentioned thed51
1e (e!1) dimensional case.
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APPENDIX A: DERIVATION OF TWO-LOOP RG
EQUATIONS IN SINGLE-CHAIN PROBLEM

In this section, we set up two-loop RG equations for t
single-chain problem described by the effective actionS̃l

a .
o

s-

D

p
n
,
d

d

r
f

e

We split up the set ofk points Cl into two subsets asCl

5Cl 1dl
,

% dCl 1dl
. , where Cl 1dl

, [$kuujn(k)u<v l 1dl/2% and
dCn; l 1dl

. [$kuv l 1dl/2<ujn(k)u<v l /2% represent the low- and
high-energy shells, respectively. Accordingly, the action
decomposed asS̃l5S̃l 1dl

, 1S̃l 1dl
. . Integration over the

modes in the high-energy shell gives

Z5E
Cl 1dl

, )
a51

N

Da expF (
a51

N H S̃l 1dl
a, 1 (

p,q,r 51

`

dSpqr
a J G .

~A1!

All the renormalization effects come from the perturbati
expansion,

dSpqr
a 5

1

p!q! r !
!@S̃I; l 1dl

a. #p@S̃h; l 1dl
a. #q@S̃j; l 1dl

a. # r@c ,

~A2!

where *C
l 1dl
, )a51

N Da means that the fermion momenta a

restricted to the low-energy shell. The average o
the modes in the high-energy shell is defined
!(•••)@5Z.

21*dC
l 1dl
. )a51

N Da exp@S̃kin; l 1dl
a. #(•••), with

Z.5*dC
l 1dl
. )a51

N Da exp@S̃kin; l 1dl
a. #, and the subscriptc rep-

resents the connected diagrams. We perform a perturba
expansion by picking up the Feynmann diagrams whose c
tribution is in proportion todl. Note that diagrams in pro
portion todl give rise to the corresponding logarithmic si
gularity as *0

l dl85 l 5 ln(E0 /vl). Then the renormalized
action is written in the form
S̃l 1dl
a, 1 (

p,q,r 51

`

dSpqr
a 5 (

kPCl 1dl
(

«
(
s

~11udl !@G R
21~k!Rs

a* ~k!Rs
a~k!1G L

21~k!Ls
a* ~k!Ls

a~k!#

1pvF~ g̃11w1dl !T (
$ki %PCl 1dl

(
$« i %

(
s1 ,s2

Rs1

a* ~k1!Ls2

a* ~k2!Ls1

a ~k3!Rs2

a ~k4!

2pvF~ g̃21w2dl !T (
$ki %PCl 1dl

(
$« i %

(
s1 ,s2

Rs1

a* ~k1!Ls2

a* ~k2!Ls2

a ~k3!Rs1

a ~k4!

2
1

2
pvF~g31w3dl !T (

$ki %PCl 1dl
(
$« i %

(
s1 ,s2

@Rs1

a* ~k1!Rs2

a* ~k2!Ls2

a ~k3!Ls1

a ~k4!1c.c#

1pvF~D̃h1whdl !T (
$ki %PCl 1dl

(
$« i %

(
s1 ,s2

(
bÞa

Rs1

a* ~k1!Ls2

b* ~k2!Ls2

b ~k3!Rs1

a ~k4!

2pvF~D̃j1wjdl !T (
$ki %PCl 1dl

(
$« i %

(
s1 ,s2

(
bÞa

Rs1

a* ~k1!Ls2

b* ~k2!Ls1

a ~k3!Rs2

b ~k4!. ~A3!
in
t-
Note that$ki%PCl 1dl here, instead of$ki%PCl in Eqs. ~5!–
~26!.

Next, to restore the original cutoff, we rescale the m
menta and frequencies as

k̂5edlk, ~A4!

and perform the field renormalization
-
R̂~ k̂!5S 11

u23

2
dl DR~k! ~A5!

to keep the kinetic action scale-invariant. We must bear
mind that the length scaleL contained in the random sca
tering strengths (D̃h and D̃j) is also rescaled toLedl5L
1Ldl. Then the renormalized action~A3! takes the form
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(
k̂PCl

(
«̂

(
s

@G R
21~ k̂!R̂s

a* ~ k̂!R̂s
a~ k̂!1G L

21~ k̂!L̂s
a* ~ k̂!L̂s

a~ k̂!#

1pvF@ g̃11~w122ug̃12D̃j!dl#T̂ (
$k̂i %PCl

(
$«̂ i %

(
s1 ,s2

R̂s1

a* ~ k̂1!L̂s2

a* ~ k̂2!L̂s1

a ~ k̂3!R̂s2

a ~ k̂4!

2pvF@ g̃21~w222ug̃22D̃h!dl#T̂ (
$k̂i %PCl

(
$«̂ i %

(
s1 ,s2

R̂s1

a* ~ k̂1!L̂s2

a* ~ k̂2!L̂s2

a ~ k̂3!R̂s1

a ~ k̂4!

2
1

2
pvF@g31~w322ug3!dl#T̂ (

$k̂i %PCl

(
$«̂ i %

(
s1 ,s2

[ R̂s1

a* ~ k̂1!R̂s2

a* ~ k̂2!L̂s2

a ~ k̂3!L̂s1

a ~ k̂4!1c.c]

1pvF@D̃h1$wh1~122u!D̃h%dl#T̂ (
$k̂i %PCl

(
$«̂ i %

(
s1 ,s2

(
bÞa

R̂s1

a* ~ k̂1!L̂s2

b* ~ k̂2!L̂s2

b ~ k̂3!R̂s1

a ~ k̂4!

2pvF@D̃j1$wj1~122u!D̃j%dl#T̂ (
$k̂i %PCl

(
$«̂ i %

(
s1 ,s2

(
bÞa

R̂s1

a* ~ k̂1!L̂s2

b* ~ k̂2!L̂s1

a ~ k̂3!R̂s2

b ~ k̂4!. ~A6!
s
et
at
o

ca

it

e

e

e

es
f

Note that $k̂i%PCl here again, and the original cutoff ha
been restored. By identifying the quantities in brack
@•••# in the second to sixth lines with the renormalized sc
tering strengths, we obtain the RG equations in the form
Eqs.~27!–~31!.

We evaluateu, w1 , w2 , w3 , wh , andwj at the two-loop
level. The self-energy diagrams which contribute tou are
shown in Figs. 11~a!–11~d!. Since the contribution of the
diagrams containing a loop connected via the random s
tering to outer lines, as shown in Fig. 11~e!, is proportional
to the number of replicas,N, and vanishes in the replica lim
N→0, we subtract the contribution of Figs. 11~a8! and
11~b8!, which are fictitiously counted in Figs. 11~a! and
11~b!, respectively. Thus we obtain

u5
1

4 F g̃1
21g̃2

22g̃1g̃21
1

2
g3

22D̃h
22D̃j

2G . ~A7!

The first, second,. . . , sixth terms of the right-hand sid
come from Figs. 11~a!, 11~b!, . . . , 11~d!, 11~a8!, and 11~b8!,
respectively.

FIG. 11. ~a!–~d!, ~a8! and ~b8! are the self-energy diagram
which contribute tou. Diagram~e! is proportional to the number o
replicasN, and vanishes in the replica limitN→0.
s
-
f

t-

The diagrams which contribute tow1 are shown in Fig.
12~a-1!–12~a-4!. We subtract contribution Fig. 12~a-18! and
12~a-28!, which are fictitiously counted in Fig. 12~a-1! and
12~a-2!, respectively. Thus we obtain

w152g̃1
21

1

2
g̃1g̃2

22
1

2
g̃1

2g̃21
1

4
g̃1g3

21D̃j
22

1

2
g̃1D̃h

2 .

~A8!

The first, second,. . . , sixth terms of the right-hand sid
come from Figs. 12~a-1!–12~a-4!, 12~a-18!, and 12~a-28!, re-
spectively.

The diagrams which contribute tow2 are shown in Figs.
12~b-1!–12~b-8!. We subtract contribution of Figs. 12~b-38!
and 12~b-48!, which are fictitiously counted in Figs. 12~b-3!
and 12~b-4!, respectively. Thus we obtain

w252
1

2
g̃1

21
1

2
g3

21
1

2
g̃2

31
1

2
g̃1

2g̃22
1

2
g̃1g̃2

22
1

4
g̃1

31
1

4
g̃1g3

2

2
1

4
g̃2g3

22
1

2
g̃2D̃h

21
1

2
D̃hD̃j

2 . ~A9!

The first, second,. . . , tenth terms of the right-hand sid
come from Figs. 12~b-1!, . . . , 12~b-8!, 12~b-38!, and
12~b-48!, respectively. Two diagrams labeled in Fig. 12~b-8!
give the eighth term.

The diagrams which contribute tow3 are shown in Figs.
12~c-1!–12~c-5!. We subtract contribution of Fig. 12~c-38!,
which is fictitiously counted in Fig. 12~c-3!. Thus we obtain

w352g̃1g312g̃2g32
1

2
g̃2

2g31
1

2
g̃1g̃2g3

1
1

4
g̃1

2g31
1

2
g3D̃h

2 . ~A10!

The first, second,. . . , sixth terms of the right-hand sid
come from Figs. 12~c-1!, . . . , 12~c-5! and 12~c-38!, respec-
tively.
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The diagrams which contribute towh are shown in Figs.
13~a-1!–13~a-7!. We subtract contribution of Figs. 13~a-28!
and 13~a-38!, which are fictitiously counted in Figs. 13~a-2!
and 13~a-3!, respectively. Thus we obtain

wh5
1

2
D̃j

21
1

2
g̃2

2D̃h1
1

2
g̃1

2D̃h2
1

2
g̃2D̃j

22
1

2
g̃1g̃2D̃h

1
1

4
g̃1D̃j

22
1

4
g3

2D̃h2
1

2
D̃h

32
1

2
D̃hD̃j

2 . ~A11!

The first, second,. . . , ninth terms of the right-hand sid
come from Figs. 13~a-1!, . . . , 13~a-7!, 13~a-28!, and
13~a-38!, respectively.

The diagrams which contribute towj are shown in Figs.
13~b-1!–13~b-5!. We subtract contribution of Figs. 13~b-18!
and 13~b-48!, which are fictitiously counted in Figs. 13~b-1!
and 13~b-4!, respectively. Thus we obtain

wj522g̃1D̃j1g̃2D̃j1D̃hD̃j2g̃2D̃hD̃j1
1

2
g̃1D̃hD̃j

22D̃j
22D̃h

2D̃j . ~A12!

The first, second,. . . , seventh terms of the right-hand sid
come from Figs. 13~b-1!, . . . , 13~b-5!, 13~b-18!, and
13~b-48!, respectively. Expressions~27!–~31! and ~32!–~37!
complete the two-loop RG equations for the single-ch
problem.

FIG. 12. Vertex correction diagrams which contribute to~a! w1,
~b! w2, and~c! w3.
n

APPENDIX B: DERIVATION OF RG EQUATIONS
FOR INTERCHAIN PROCESSES

Now, it is straightforward to extend the RG formulation
the single-chain problem to the case of the coupled ch
problem. Integration over the modes in the high-energy s
gives, instead of Eq.~A1!

Z5E
Cl 1dl

, )
a

N

Da expF (
a51

N H S̃l 1dl
a, 1 (

p,q,r ,s,t51

`

dSpqrst
a J G ,

~B1!

where

dSpqrst
a 5

1

p!q! r !s! t!
Š^@SI; l 1dl

a. #p@Sh; l 1dl
a. #q@Sj; l 1dl

a. # r

3@S1'; l 1dl
a. #s@S2'; l 1dl

a. # t&‹c . ~B2!

HereSI; l
a , Sh; l

a , andSj; l
a denote the two-particle interaction

random forward scattering, and random backward scatte
terms of independentN' chains, respectively. Then th
renormalized actions for the interchain processes are wri
in the forms

2 (
kaPCl 1dl

(
2p<kb ,kc<p

(
«

(
s

t'~coskb1 coskc!

3@Ls
a* ~K!Ls

a~K!1Rs
a* ~K!Rs

a~K!# ~B3!

and

FIG. 13. Vertex correction diagrams which contribute to~a! wh

and ~b! wj
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2
pvF

N'
(
Q

@Jq'
1wq'

J dl#Sl 1dl
a ~Q!•Sl 1dl

a ~2Q!

2
pvF

N'
(
Q

@Kq'
1wq'

K dl#

3@Sl 1dl
a ~2kF1qa ,q' ,iv!

•Sl 1dl
a ~2kF2qa ,2q' ,2 iv!1c.c#, ~B4!

corresponding toS1'; l
a. andS2'; l

a. , respectively. The first and
second terms of the expression~B4! correspond to Figs
~14a! and ~14b!, respectively.

Next, we rescale the momenta and frequencies

K̂5(edlka ,k' ,edli«), with k'5(kb ,kc) and Q̂
5(edlqa ,q' ,edliv), and perform the field renormalization

R̂~K̂!5S 11
u23

2
dl DR~K!.

In the rescaling procedure,k' and q' are not rescaled, be-
cause in the energy scale considered here the one-pa
thermal coherence length across the chains becomes co
rable to the distance between the adjacent chains and,
sequently, the scaling procedure is invalid in the direct
perpendicular to the chains. Then the renormalized action
the interchain processes takes the forms

2 (
k̂aPCl

(
2p<kb ,kc<p

(
«̂

(
s

~12udl !t'~coskb1 coskc!

3@ L̂s
a* ~K̂!L̂s

a~K̂!1R̂s
a* ~K̂!R̂s

a~K̂!#, ~B5!

and
hy
s

cle
pa-
n-

n
or

S̃2'; l
a 52

pvF

N'
(
Q̂

@Jq'
1~wq'

J 22uJq'
!dl#Ŝl

a~Q̂!•Ŝl
a~2Q̂!

2
pvF

N'
(
Q̂

@Kq'
1~wq'

K 22uKq'
!dl#

3@Ŝl
a~2k̂F1q̂a ,q' ,i v̂ !

•Ŝl
a~2k̂F2q̂a ,2q' ,2 i v̂ !1c.c#, ~B6!

corresponding toS1'; l
a. andS2'; l

a. , respectively. Thus we hav
reached the RG equations for the interchain processes,
~48!–~50!.

FIG. 14. Renormalization of the ICEX processes in the A
channel for the~a! normal and~b! umklapp processes.
n
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