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Abstract

This paper gives a modification of a class of stochastic Runge-Kutta methods
proposed in a paper by Komori (2007). The slight modification can reduce
the computational costs of the methods significantly.
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1. Introduction

Runge-Kutta type methods for stochastic differential equations (SDEs)
have been recently developed by many researchers [1, 2]. As an example of
such methods, Komori [3] derived a stochastic Runge-Kutta (SRK) scheme
with weak order 2 for non-commutative Stratonovich SDEs from a framework
of SRK methods. Compared with other previous schemes, the scheme had
the advantage that it can reduce the number of random variables that need
to be simulated. Rößler [4], however, has pointed out that for this scheme the
computational costs linearly depend on the dimension of the Wiener process
for each diffusion coefficient, and has proposed new schemes without this
drawback. But this requires 55 order conditions to be solved in order to
construct weak second-order methods.

Email addresses: komori@ces.kyutech.ac.jp (Yoshio Komori), 
kevin.burrage@comlab.ox.ac.uk, kevin.burrage@gmail.com (Kevin Burrage)

Preprint submitted to Journal of Computational and Applied Mathematics April 15, 
2011
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).



In the present paper, we show that the drawback can be also removed in
Komori’s framework of SRK methods and only 38 order conditions need to
be solved. The paper is organized as follows. In Section 2, we will briefly
introduce this new class of SRK methods and the expression of their order
conditions with rooted trees. In Section 3 we will concretely seek the order
conditions under a modified setting on parameters and random variables.
Lastly, we will give a brief discussion.

2. Preliminary

As preparation for the following sections, we give a brief introduction to
a framework of our SRK methods and expressions for the order conditions
in order to attain weak order two. Consider a d-dimensional Stratonovich
stochastic differential equation

dy(τ) = g0(y(τ))dτ +
m∑

j=1

gj(y(τ)) ◦ dWj(τ), 0 ≤ τ ≤ Tend, y(0) = x0,

where Wj(τ) is a scalar Wiener process. Let τn be an equidistant grid point

nh (n = 0, 1, . . . , M) with step size h
def
= Tend/M < 1 (M is a natural number)

and yn a discrete approximation to the solution y(τn). In addition, suppose
that the initial approximate random variable y0 has the same probability law
with all moments finite as that of x0, and define weak order in a usual way
[2, 3]. As numerical methods for weak approximations, our SRK methods
are given by

yn+1 = yn +
s∑

i=1

m∑
ja,jb=0

c
(ja,jb)
i Y

(ja,jb)
i ,

Y
(ja,jb)
ia

= η̃
(ja,jb)
ia

gjb
(yn +

s∑
ib=1

m∑
jc,jd=0

α
(ja,jb,jc,jd)
iaib

Y
(jc,jd)
ib

)

(1)

(1 ≤ ia ≤ s, 0 ≤ ja, jb ≤ m), where c
(ja,jb)
i and α

(ja,jb,jc,jd)
iaib

are constant

parameters and where each η̃
(ja,jb)
ia

is a random variable independent of yn

and its 2kth moment is supposed to be equal to K1h
2k if jb = 0, or K2h

k

otherwise for constants K1, K2 and k = 1, 2, . . ..
We can express the weak order conditions by multi-colored rooted trees

(MRTs), whose definition is given in [3] and whose totality is denoted by T .
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The weak order conditions are given as follows. Let ρ(t) be the number of
vertices of t ∈ T and r(t) the number of vertices of t with the color 0, and
suppose that any component of gj is sufficiently smooth and the regularity
of the time discrete approximation is satisfied. If the following conditions are
satisfied, the time discrete approximation yM converges to the y(τM) with
weak (global) order q as h → 0:

E

[
L∏

j=1

Φ̃(tj)

]
= E

[
L∏

j=1

Φ(tj)

]
(2)

for any t1, . . . , tL ∈ T (1 ≤ L ≤ 2q) satisfying
∑L

j=1(ρ(tj) + r(tj)) ≤ 2q and

E
[
Φ̃(t)

]
= 0 (3)

for any t ∈ T satisfying ρ(t) + r(t) = 2q + 1, where the elementary weight
Φ(t) and the elementary numerical weight Φ̃(t) are defined in [3].

3. Weak second order conditions for our SRK methods

In (1) we seek weak second order conditions that lead to a reduction in the
number of evaluations on the diffusion coefficients. We can achieve this by
slightly changing the parameter settings considered in [3]. Taking generality
into account, we will leave implicitness in parameters as much as possible.

We use the same simplifying assumptions as those in [3], which are given
by seven equalities for Φ̃(t). Four of them are as follows: for τ (j), [τ (0)](j),
[τ (l)](j), [τ (j)](l) ∈ T

s∑
ia=1

m∑
ja=0

c
(ja,j)
ia

η̃
(ja,j)
ia

= 4Wj,

s∑
ia,ib=1

m∑
ja,jb=0

c
(ja,j)
ia

η̃
(ja,j)
ia

α
(ja,j,jb,l)
iaib

η̃
(jb,l)
ib

=
4Wj(4Wl + 4W̃l)

2
,

s∑
ia,ib=1

m∑
ja,jb=0

c
(ja,j)
ia

η̃
(ja,j)
ia

α
(ja,j,jb,0)
iaib

η̃
(jb,0)
ib

=
h4Wj

2
,

s∑
ia,ib=1

m∑
ja,jb=0

c
(ja,l)
ia

η̃
(ja,l)
ia

α
(ja,l,jb,j)
iaib

η̃
(jb,j)
ib

=
4Wj(4Wl −4W̃l)

2

(4)
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where 0 < j < l and 4Wj (1 ≤ j ≤ m) and 4W̃l (2 ≤ l ≤ m) are given as
in [3]. Further, as in the same as [3] we set

η̃
(0,0)
i = h, η̃

(j,j)
i = 4Wj (j > 0), c

(ja,0)
i = c

(0,jb)
i = 0 (ja, jb 6= 0),

α
(ja,0,jc,0)
iaib

= 0 (ja 6= 0 or jc 6= 0), α
(ja,0,jc,j)
iaib

= 0 (ja 6= 0 or jc 6= j).

On the other hand, for each (1 ≤) j (≤ m), chose a value in {1, 2, . . . , j −
1, j + 1, . . . , m}, say k(j), and assume

c
(ja,j)
i = 0 (ja 6= j, k(j)), c

(k(j),j)
i = 0 (i ≤ s − 3),

α
(ja,j,jc,jd)
iaib

= 0 (ja 6= j, k(j) and (jc 6= 0 or jd 6= 0)),

α
(j,j,jc,jd)
iaib

= 0 (jc 6= jd), α
(k(j),j,jc,jd)
iaib

= 0 (jc 6= 0, j),

α
(k(j),j,0,jd)
iaib

= 0 (jd 6= 0), α
(k(j),j,j,jd)
iaib

= 0 (jd = 0, j)

(5)

for j > 0 and

η̃
(j,l)
s−2 =

{
4Wj4W̃l/

√
h (l > j),

−4W̃j4Wl/
√

h (j > l),
η̃

(j,l)
i =

√
h (i > s − 2),

α
(k(j),j,j,l)
iaib

= 0 (ia, ib ≤ s − 3 or ia ≤ ib)

(6)

for j 6= l and j, l > 0 (we always assume the restrictions for j, l in the sequel).

Note that η̃
(j,0)
i , η̃

(0,j)
i (1 ≤ i ≤ s) and η̃

(j,l)
i (1 ≤ i ≤ s− 3) do not need to be

set since they are not used below.
From the first equations in (4) and (5) we obtain

s∑
ia=1

c
(j,j)
ia

= 1, c
(k(j),j)
s−2 = c

(k(j),j)
s−1 + c(k(j),j)

s = 0. (7)

Similarly, from this and the other three equations in (4) we have

s∑
ia,ib=1

c
(j,j)
ia

α
(j,j,0,0)
iaib

=
1

2
,

s∑
ia,ib=1

c
(j,j)
ia

α
(j,j,l,l)
iaib

=
1

2
,

s∑
ia=s−1

s∑
ib=1

c
(k(j),j)
ia

α
(k(j),j,0,0)
iaib

= 0,

c
(k(j),j)
s−1 α

(k(j),j,j,l)
s−1,s−2 + c

(k(j),j)
s α

(k(j),j,j,l)
s,s−2 = 1

2
, c

(k(j),j)
s α

(k(j),j,j,l)
s,s−1 = 0.

(8)

Here, note that the last equation in (7) and the last two equations in (8)
yield

α
(k(j),j,j,l)
s,s−1 = 0. (9)
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Remark 1. We also have the following.

i) For the trees in which a node and its child node are colored with the

same color, their elementary numerical weights do not have η̃
(j,l)
i be-

cause α
(ja,j,jc,j)
iaib

= 0 (ja 6= j or jc 6= j) and α
(ja,0,jc,0)
iaib

= 0 (ja 6= 0 or
jc 6= 0).

ii) For the trees in which the root is colored with 0, their elementary

numerical weights do not have η̃
(j,l)
i because α

(ja,0,jc,jd)
iaib

= 0 (ja 6= 0 or
jc 6= jd).

iii) For the trees in which the root is colored with j and has a child
node colored with l which has a child node colored with k (6= 0, l),

their elementary numerical weights do not have η̃
(j,l)
i or η̃

(l,k)
i because

α
(ja,j,jb,l)
iaib

α
(jb,l,jc,k)
ibic

= 0 (ja 6= j or jb 6= l or jc 6= k) from (5), (6) and (9).

Consequently, concerning weak order 2, all the trees whose elementary
numerical weights have η̃

(j,l)
i areg0glgj ,

gjg0gj ,

glg0gj ,

glgl gj ,

g0gl gj ,

glglgl gj
as well as [τ (0)](j) and [τ (l)](j) dealt with in (8). Let us seek the order con-
ditions concerning the above MRTs. For the MRTs except the second and
fourth ones, (2) holds automatically. In order to satisfy (2) for the others
and (3) for the fourth one, we obtain

s∑
ia,ib,ic=1

c
(j,j)
ia

α
(j,j,0,0)
iaib

α
(0,0,j,j)
ibic

= 0,
s∑

ia,ib,ic=1

c
(j,j)
ia

α
(j,j,l,l)
iaib

α
(j,j,l,l)
iaic

=
1

2
,

s∑
ia=s−1

c
(k(j),j)
ia

(
α

(k(j),j,j,l)
ia,s−2

)2

= 0.

(10)

Incidentally, in the same way as that in [3] we can obtain the order condi-
tions concerning the trees whose elementary numerical weights do not have
η̃

(j,l)
i . Summarizing all mentioned up to here, we have all 38 order conditions

for weak order 2: 32 of them are the same as (11)–(42) in [3] and the other
6 order conditions are given by

c
(k(j),j)
s−2 = c

(k(j),j)
s−1 + c(k(j),j)

s = α
(k(j),j,j,l)
s,s−1 =

s∑
ia=s−1

s∑
ib=1

c
(k(j),j)
ia

α
(k(j),j,0,0)
iaib

= 0,

s∑
ia=s−1

c
(k(j),j)
ia

(
α

(k(j),j,j,l)
ia,s−2

)2

= 0,
s∑

ia=s−1

c
(k(j),j)
ia

α
(k(j),j,j,l)
ia,s−2 =

1

2
.
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4. Discussion

The difference in the order conditions between the present paper and [3]
is only the last six equality relationships. For example, let us set s = 4 and
use the same values for c

(ja,ja)
ia

(ja = 0, j) and α
(ja,ja,jb,jb)
iaib

(jb = 0, j, l) as those
in [3], which means that the first 32 order conditions are satisfied. Further,

if we set α
(j,l,0,0)
iaib

= 0 and c
(k(j),j)
3 = γ (a nonzero constant), then we obtain

c
(k(j),j)
2 = α

(k(j),j,j,l)
43 = 0, c

(k(j),j)
4 = −γ, α

(k(j),j,j,l)
32 = −α

(k(j),j,j,l)
42 =

1

4γ

from the 6 order conditions. This new method leads to

Y
(k(j),j)
3 =

√
hgj(yn +

1

4γ

m∑
jd=1
jd 6=j

η̃
(j,jd)
2 gjd

(yn)),

Y
(k(j),j)
4 =

√
hgj(yn − 1

4γ

m∑
jd=1
jd 6=j

η̃
(j,jd)
2 gjd

(yn)).

Now, the necessary intermediate stage values for yn+1 in (1) are only Y
(k(j),j)
3

and Y
(k(j),j)
4 in addition to Y

(0,0)
i and Y

(j,j)
i (1 ≤ i ≤ 4), whereas the Y

(j,l)
i ’s

are necessary in [3].
Finally, in order to show the computational advantages of our method,

we deal with the last example in [5]. That is, we transform (38) in [5] into
the Stratonovich form and apply numerical schemes to it. Here, note that
(39) in [5] is incorrect and its correct expression is given by

E [(X(t))4] = (74342479604283 + 1749302625065840et

− 24798885546415218e2t − 263952793100784216e3t

+1531088033542529311e4t) / (124416 × 1013) .

Using the Mersenne twister [6], we simulate 256×106 independent trajectories
for a given h. The results are indicated in Fig. 1. Solid, dash or dotted
lines mean our efficient scheme for γ = 1, the NON scheme [3] or the RS1
scheme [4], respectively. In addition, Sa stands for the sum of the number of
evaluations on the drift or diffusion coefficients and the number of generated
pseudo random numbers. We can see that the efficient scheme and the NON
scheme are almost the same in the relative errors, but the efficient scheme is
superior in the computational costs.
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Figure 1: Relative errors about the 4th moment at t = 1.
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