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Abstract: In our previous research, the intensity of singular stress at the end of interface for bonded plate 

was discussed under arbitrary material combinations. Also, it was found that the bonded strength of butt 
joint can be evaluated in terms of the singular stress in good accuracy. In this study, the intensity of singular 
stress for bonded pipe is newly discussed in comparison with the one of bonded plate. The finite element 
method is applied to calculate the intensity of singular stress with varying the material combination 
systematically. This method focuses on the result of first node, which locates on the end of the interface. 
Since few studies are available for bonded pipe, in this study, first, the singular stress field at the end of the 
interface of the bonded pipe is investigated under several boundary conditions. Next, the effect of the 
material combination on the intensity of singular stress is discussed. This investigation may contribute to a 
better understanding of the debonding strength and initial interfacial cracks of bonded pipe. 
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1 INTRODUCTION 

The adhesive pipe joints have been widely used in offshore, space and aviation engineering recent years 
since it has number of advantages over the traditional pipe joint, such as no welding residual stress, 
lightweight, lower costs, easy to process and corrosion-resistant. With the rapid growth in the use of 
adhesive pipe joint, many research works have been done to establish the evaluation criteria of this kind of 
pipe joint [1-7]. 

However, the improper selection of material combination will cause stress singularity at the end of interface, 
which may result in the failure of the joint. Thus a rational selection of material combination is crucial to the 
strength of the adhesive pipe joint. Noda et al. have investigated the intensity of stress singularity for 
arbitrary material combination in a boned strip [8]. So far only few researches have considered the stress 
intensity of adhesive pipe joint, and no result of arbitrary material combination has been obtained.  

In order to obtain the stress intensity near the corner interface, a basic result is necessary. Teranishi and 
Nisitani proposed a highly accurate numerical method named the zero element method to determine the 
stress intensity factor of a homogenous plate [9]. Anyway, this method cannot be used directly into the 
problem of adhesive pipe since there are non singular terms in stress components. In this research, the 
stress intensity will be evaluated by using an extended method proposed by Oda et al. FEM is also 
employed in this paper. 
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                        (a)  Bonded pipe                     (b) Plate 

Fig. 1 Structure of bonded pipe and reference problem 

There are many kinds of adhesive pipe joints; the most commonly used joining methods for pipes are 
adhesive-bonded socket joints, tubular lap joints, heat-activated coupling joints, and flanged joints. In this 
research, the basic adhesive bonded pipe shown in Fig.1 is studied. Figure 1(a) shows the structure of pipe 
joint, and Fig. 1(b) shows the structure of the bonded strip under plain strain condition, which is the 
reference problem of this research. This research focuses on the intensity of singular stress of arbitrary 
material combination in a bonded pipe. For the sake of universality, the inner radius of the pipe is chosen 
as infinite. In this study we assume Ri=10

5
. 

2     PROBLEM DESCRIPTIONS 

The plain strain problem shown in Fig. 1(b) is used as the reference problem, in which the stress near the 
end of interface can be expressed as  

( )1 1
, , , xyi

PLTPLT

PLT PLT

i xy

KK
i x y z

R R

τσ

λ λ
σ τ

− −
= = =                                 (1) 

Here R is the distance from the end of interface. This problem has been analyzed by Chen-Nisitani and 
Noda et al., and the intensity of singular stress was accurately calculated by using body force method 
(shown in Fig. 2) [10]. 

Fig. 2 F� for a boned strip in Fig. 1(b) 
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F� is the dimensionless of intensity of singular stress defined by 
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While the stress in the unknown problem shown in Fig. 1(a) is expressed as: 
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This research focuses on the intensity of singular stress of arbitrary material combination in a bonded pipe. 
To obtain the intensity of singular stress, the zero element method is used. However, according to this 

method, the stress ratio �ij
PIPE/�ij

PLT should be consistent with each other and independent of element size 

when FEM is employed. Table 1 is the results for plate and butt joint. The ratios of all stress components 
show very good consistent with each other. However the non singular terms in equation (3) can lead 
uncertainty for the ratio of bonded pipe and plate. Table 2 shows the results of this ratio if we directly apply 

the zero element method to our new problem. As we can see in Table 1, the ratios of �z0,FEM and � 0,FEM are 

quite different from that of �r0,FEM and �rz,FEM. 

Table 1 Ratio of 
0, 0,

PLT BJ

ij FEM ij FEMσ σ ( )1 1 2 21000, 0.25548042, 113.79748, 0.20656946E Eν ν= = = =

Table 2 Ratio of 
0, 0,

PIPE PLT

ij FEM ij FEMσ σ ( )1 1 2 21000, 0.25548042, 113.79748, 0.20656946E Eν ν= = = =

Therefore the zero element method can not be employed directly. It is necessary to eliminate the affect of 
these non singular terms in Eq.(3) for the use of zero element method. Then next chapter will mainly focus 
on how to make the zero element method suitable for the new unknown problem shown in Fig. 1(a). 

3     NUMERICAL METHOD FOR THE ANALYSIS OF THE STRESS INTENSITY FOR BONDED PIPE 

At the end of interface, the second terms in equation (3) have the expressions as 

( ) ( ) ( ) ( )
mat1 mat1 mat1 mat1

0 0 0, , ,PIPE PIPE PIPE PIPE

r z rzθσ σ σ τ� � � �  in material 1; 

( ) ( ) ( ) ( )
mat2 mat2 mat2 mat2

0 0 0, , ,PIPE PIPE PIPE PIPE

r z rzθσ σ σ τ� � � �  in material 2. 

These 8 stress components should meet the boundary conditions of bonded interface and free edge of the 
outer surface. And the compatibility of deformation should also be satisfied. As a result, these components 
should conform to the following equations. 

( ) ( ) ( ) ( )
mat1 mat2 mat1 mat2
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r r rz rzσ σ τ τ= = = =� � � �                                       (4) 
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Transpose Eq. (6), and substitute Eq. (4), (5) into it gives 
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Similarly, for Eq. (7), there is  
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From Eq. (8) and Eq. (9) we can obtain 
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and 
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For axis symmetric problem under cylindrical coordinate system, there is   
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Recall Eq.(6) we can obtain:  
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Substituting Eq. (13) into Eq. (10), (11) gives 
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And recall Eq. (4) 
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( ) ( ) ( ) ( )
mat1 mat2 mat1 mat2
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r r rz rzσ σ τ τ= = = =� � � �                                                                                      (16) 

So far, all the eight non singular terms in Eq. (3) have been solved and can be eliminated from the singular 
stress calculated by FEM, so that the first element method can be applied to this new unknown problem.

4     NUMERICAL RESULTS AND DISCUSSION 

Figure 3 shows one of the FEM model for the bonded pipe. There are two models in this research with the 
minimum element sizes 2

-13
 and 2

-17
 respectively. 

Fig. 3 FEM model 

Since the non singular terms have been expressed as shown in Eq.(13)-(16), the ratio �ij
PIPE/�ij

PLT should be 

independent of element size when using FEM.  

Next we will introduce the results in Eq.(13)-(16) to eliminate the non singular terms. When emin=2
-13

, the 
displacement of the first node locating on the end of interface (outer surface) is  

73.7971190230ru = −

And outer radius Ri+W=100001, thus 

473.7971190230
-7.3797 10

100001
ru

r
θε −−

= = = ×

Submit θε  into Eqs.(13)-(15), we can get a perfect result of �ij
PIPE/�ij

PLT, which have at least 4 significant 

digits (See Table 3). 

Table 3 Ratio �ij
PIPE/�ij

PLT excluding non singular terms when emin=2
-13

emin=2
-13

0, 0,
PIPE PLT

r FEM x FEMσ σ 0, 0,
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PIPE PIPE

FEM FEM
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θ θσ σ
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z FEM z FEM
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σ σ
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− �

0, 0,
PIPE PLT

rz FEM xy FEMτ τ

Material Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2

Average 1.0207 1.0207 1.0207 1.0207 

Separate 1.0207 1.0207 1.0207 1.0207 1.0207 1.0207 1.0206 1.0207

emin
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Table 4 Ratio �ij
PIPE/�ij

PLT excluding non singular terms when emin=2
-17

emin=2
-17

0, 0,
PIPE PLT

r FEM x FEMσ σ 0, 0,

0,

PIPE PIPE

FEM FEM
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z FEM

θ θσ σ

σ

− � 0, 0,

0,

PIPE PIPE

z FEM z FEM

PLT

y FEM

σ σ

σ

− �

0, 0,
PIPE PLT

rz FEM xy FEMτ τ

Material Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2

Average 1.0204 1.0204 1.0203 1.0203 

Separate 1.0204 1.0204 1.0204 1.0204 1.0204 1.0204 1.0204 1.0204

The result when emin=2
-17

 (see Table 4) also shows the same good consistency as shown in Table 1. It is 
also found that the ratios are almost independent of element size; the accuracy is up to 4 decimal places. 
Therefore the zero element method is available for the problem in this research. And the intensity of 

singular stress in bonded pipe 
PIPEFσ can be expressed as the multiple of

,
PLT

ij FEMσ , which has already been 

solved accurately. 

,

,

PIPE

ij FEMPIPE PLT

PLT

ij FEM

F Fσ σ

σ

σ
=

So in this research we mainly consider the ratio
0, 0,

PIPE PLT

z FEM y FEMσ σ when �, � are fixed. For plane strain 

problems, the Dunder’s parameter � and � can fully control the intensity of singular stress near the end of 
interface, however, for the bonded pipe (axis symmetric problem), the intensity of singular stress can’t be 

totally dominated by these parameters. Figure 4 is the result when �=0.5, �=0.2. Fig. 4 (a) shows that�2

varies from 0.1177 to 0.3182 while�1 varies from 0 to 0.5; Fig. 4 (b) shows that E2/ E1 varies from 0.3284 to 

0.3994 while �1 varies from 0 to 0.5. Fig. 4 (c) shows that �z
PIPE/�y

PLT varies from 0.9532 to 1.3796 with the 

variation range of 42.64%. 

(a)                       (b)                        (c) 

Fig. 4 �z
PIPE/�y

PLT varies when � and � are fixed as (0.5, 0.2) 

Therefore in this study only the maximum and minimum value of 
0, 0,

PIPE PLT

z FEM y FEMσ σ  are considered. Figure 5 

shows this result. In this research, only the results for ��0 in �-� space have been investigated since 
switching material 1 and 2 (mat. 1�mat. 2) will only reverse the sings of � and � ((�, �)�(-�, -�)). So it is 
unnecessary to draw full map about � and �. When �<0, the result is the same as that when � is positive. 
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Fig. 5 Maximum and minimum value of �z
PIPE/�y

PLT

5     CONCLUSIONS 

In this study the intensity of singular stress for bonded pipe is newly discussed in comparison with the one 
of bonded plate. First, the non singular terms in stress components of bonded pipe were derived and 
eliminated so that the proportional method can be applied. This method focuses on the result of first node, 
which locates on the end of the interface. Then, finite element method is applied to calculate the intensity of 
singular stress with varying the material combination systematically. And finally the following conclusions 
can be obtained. 

1) The numerical results showed very good consistency among all the ratios of stress components, 
verifying the rightness of the previous derivation of non singular terms.  

2) It is found that the minimum value of stress ratio between axis symmetric problem and plane strain 
problem is always less than 1, while the maximum value varies from 0.8 to nearly 1.4. The stress 
ratio for all material combinations converge to 1 if the material combination can reach �=1 or �=-1. 

3) Notably, the maximum value keeps constant to 1 when �=0. This result can provide a basic 
understanding of the intensity of singular stress near the end of interface on a bonded pipe. 

4) This investigation may contribute to a better understanding of the debonding strength and provide a 
better choice of material combination for bonded pipe.  
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