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Signature of the staggered flux state around a superconducting vortex in underdoped cuprates
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Based on the SU~2! lattice-gauge-theory formulation of thet-J model, we discuss a possible signature of the
unit-cell doubling associated with the staggered-flux~SF! state in the lightly doped spin liquid. Although the
SF state appears only dynamically in a uniformd-wave superconducting state, a topological defect@SU~2!
vortex# freezes the SF state inside the vortex core. Consequently, the unit-cell doubling shows up in the
hopping (x i j ) and pairing (D i j ) order parameters of physical electrons. We find that whereas the center in the
vortex core is a SF state, as one moves away from the core center, a correlated staggered modulation ofx i j and
D i j becomes predominant. We predict that over the region outside the core and inside the internal gauge-field-
penetration depth around a vortex center, the local density of states exhibits a staggered peak-dip~SPD!
structure inside the V-shaped profile when measured on the bonds. The SPD structure has its direct origin in the
unit-cell doubling associated with the SF core and the robust topological texture, which has little to do with the
symmetry of thed-wave order parameter. Therefore the structure may survive the tunneling-matrix-element
effects and easily be detected by the scanning-tunnel-microscope experiment.
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I. INTRODUCTION

High-Tc superconductors are doped Mott insulators. So
after the discovery, Anderson proposed that the strong co
lation physics of the doped Mott insulator is well captured
the t-J model. Taking account of competition between t
hole kinetic energyxt and the spin-exchange energyJ, he
proposed that the spin-liquid states formed out of the re
nating valence-bond~RVB! singlets are a good starting poin
to study this model.1 A standard way of enforcing the con
straint of no double occupancy in thet-J model is the slave
boson formalism where a physical electron operatorcis with
spin s at the sitei is splintered into an auxiliary spin-1

2 fer-
mion f is and charge-1 bosonbi : cis5 f isbi

† . One way to
describe the spin-liquid state is to start from mean-field~MF!
decoupling,2–4 D i j 5^ess̄ f is f i s̄& and x i j 5^ f is

† f is&, which
characterize the spin-liquid state formed out of the RVB s
glets. The phases ofx i j and D i j transform as the lattice
gauge fields under local U~1! transformation, which naturally
leads us to a U~1! gauge theory.5–7 At zero doping, thet-J
model reduces to an antiferromagnetic Heisenberg mo
that has an exact local SU~2! gauge symmetry.8 Then, the
translationally invariant solution can be described as ap-flux
state2 or a d-wave pairing state3 with ux i j u5uD i j u. These ap-
parently different mean-fieldAnsätze describe exactly the
same MF state, since they are just SU~2! gauge equivalent.

In the U~1! slave-boson formulation, however, the SU~2!
symmetry is broken upon hole doping due to the appeara
of the boson-hopping term. Consequently, thed-wave super-
conducting~SC! state and the flux state are no longer equi
lent. For small doping and smallJ/t, thep-flux phase at zero
doping is disfavored against the staggered-flux~SF! phase
with ux i j u.uD i j u.

8–10The SF state, however, breaks physic
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symmetries associated with the time reversal and the sp
translation, which causes theunit-cell doubling and stag-
gered orbital currentsof the physical holes. Eventually th
SC phase is picked out as the MF solution out of a infin
number of degenerate states upon doping.3,4,11However, it is
still quite natural to expect that the SF state is nearly deg
erate with the SC state in the lightly doped spin-liquid stat
That is to say, as far as we confine ourselves to the s
liquid state, the SU~2! gauge structure at zero doping ma
still be useful to describe the low-energy states in the und
doped regime, which are missing in the U~1! formulation. To
substantiate this idea, Wen and Lee12,13 introduced an SU~2!
boson doublet (hi)

T5(bi1 ,bi2) and constructed an effectiv
model, which recovers local SU~2! symmetry even upon
doping. From this viewpoint, the SF state plays a crucial r
to describe the low-energy spectrum of the lightly dop
spin-liquid state. The question that we must consider nex
how to detect a signature of the SF state contained in
low-energy excitation spectrum. The first step in this direc-
tion was addressed by Ivanov, Lee, and Wen14 who found a
signature of the staggered current-current correlation by
ing a Gutzwiller-projectedd-wave pairing wave function.
This is naturally interpreted as a consequence of the quan
fluctuations around the SC state toward the SF state. Leu15

further sought for a signature of the SF state and found
current-current correlation in thed-wave SC state by using
exact diagonalization of thet-J model for a system with two
holes on a 32-site lattice.

In the experimental side, structure of the low-energy e
citations in the underlying ‘‘normal’’ metallic phase is con
cealed by a phase transition to bulk superconductivity. O
promising way to escape from this situation is to introdu
the topological defect into the superconducting phase,
the vortex. Inside the vortex core, low-energy properties
©2002 The American Physical Society26-1
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the normal metallic phase show up against the surround
superconducting phase. Remarkable progress in the
temperature scanning tunnel microscope~STM! technique
with atomic resolution16 has given us good opportunities
look into the electronic states around the superconduc
vortex.17–19 Recent STM experiments18,19 on
Bi2Sr2CaCu2O8 ~BSCCO! revealed the striking fact that th
normal core-electronic state exhibits the ‘‘pseudogap’’ str
ture characteristic of the normal-state pseudogap aboveTc .
A description of a vortex core based on conventional B
theory requires that the superconducting order param
vanishes inside the core, which is usually accompanied
the vanishing of the energy gap. The experimental find
thus strongly suggests that the electronic structure of the
tex core is qualitatively different from that given by conve
tional picture.

The theoretical description of the normal core in the lig
of the strong correlation physics, however, rema
unresolved.20–26 In the SU~2! picture, since the SF state
nearly degenerate with the SC state, it is naturally expec
that by frustrating the SC state, the SF state will be revea
inside the core. Based on this idea, Lee and Wen27 proposed
a model of the vortex with a SF core, characterized b
pseudogap and staggered orbital current. Quite recently,
and co-workers found evidence of the SF order near the
tex core by using the Gutzwiller projected U~1! slave-boson
mean-field wave function.25,26 These numerical results s
far14,15,25,26strongly suggest that the SF state is a key ing
dient in thet-J model.

The vortex with the SF core@SU~2! vortex# offers us an
opportunity to experimentally detect the SF state at low te
peratures belowTc , whereas it may be difficult to probe th
staggered current pattern in the zero-field uniform SC s
because of spatial and temporal fluctuations. Possible ex
mental tests of the SF core were proposed as summa
below.27 ~1! Cyclotron resonance or Shubnikov-de Haas
periments in a high-quality underdoped sample atH.Hc2
can detect the small Fermi pockets around~6p/2, 6p/2!
points with non-uniformly spaced Landau levels.~2! Muon-
spin resonance or neutron-scattering experiments can
rectly detect the staggered currents that produce a small
gered magnetic field of order 10 G.28 Intensity of the signal
may increase upon increasingH, since the increasingH ex-
cites more vortices with the core size being independen
H. ~3! Nuclear magnetic resonance~NMR! experiments can
detect sidebands in theY NMR line in Y2Ba4Cu7O15 samples
with a splitting independent ofH but with weight propor-
tional to H. For this purpose, Y2Ba4Cu7O15 may be ideal
because there are asymmetric bilayers where theY ion sits in
between, and it may be possible to have one plane of
bilayer optimally doped while the other plane~next to the
double chain! remains underdoped, i.e., the staggered m
netic field at theY site does not cancel.

Now we are naturally led to the following question: is
possible to detect a signature of the unit-cell doubling as
ciated with the SF core through the state-of-the-art S
technique? It turned out that there is no effect inside the
core, because what is staggering in the SF state is the
rents, which does not show up in the charge density. T
06452
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situation motivated us to look at the region outside the co
We addressed this problem in our previous paper29 and found
that whereas the center in the vortex core is a SF state, as
moves away from the core center, a correlated stagge
modulation of the hopping amplitudex i j and pairing ampli-
tudeD i j of the physicalelectrons becomes predominant. W
predicted that in this region, the local density of sta
~LDOS! exhibits staggered modulation when measured
the bonds, which may be directly detected by STM expe
ments.

In this paper, we give a full account of the results su
marized in Ref. 29 and examine the LDOS around the SU~2!
vortex in detail. The outline is as follows. In Sec. II, we w
give an overview of the SU~2! lattice-gauge-theory formula
tion of the t-J model ~Sec. II A! and then discuss the topo
logical texture of the SU~2! boson condensate based on t
O~4! s model~Sec. II B!. We are mainly concerned with th
LDOS outside the core through which we detect the unit-c
doubling stabilized by the robust topological texture. For t
purpose, a close study of the vortex-core state is not ne
sary. To take account of the phase winding, we will apply
simple London model for a single vortex to the SU~2! vortex
model ~Sec. II C!. In Sec. III, we discuss the hopping an
pairing order parameters of thephysicalelectron around the
vortex. For this purpose, we perform an appropriate lo
SU~2! gauge transformation~Sec. III A!. Then, we argue in
detail that as one moves away from the core center, a co
lated staggered modulation ofx i j andD i j becomes predomi-
nant ~Sec. III B!. In Sec. IV, we evaluate the LDOS outsid
the core. Formulation of the LDOS at an arbitrary point
the lattice is given in Sec. IV A. It is demonstrated that t
LDOS exhibits a conspicuous staggered pattern only w
measured on the bonds. To obtain the LDOS, we comp
the lattice propagator by using two complementary a
proaches, which are presented in Secs. IV B and IV C.
nally, concluding remarks are given in Sec. V.

II. SU„2… VORTEX WITH THE STAGGERED FLUX CORE

In this section, we recapitulate the SU~2! lattice-gauge-
theory formulation of thet-J model and then discuss th
SU~2! vortex model in some detail.

A. SU„2… lattice-gauge-theory formulation of the t-J model

The t-J model Hamiltonian is given by

H52t (
^ i , j &,s

~cis
† cj s1H.c.!1J(

^ i , j &
~Si•Sj2

1
4 ninj !,

~2.1!

wherecis
† and cis are the projected electron operators w

the constraintni<1. In the SU~2! slave-boson approach,12,13

a physical electron is represented as an SU~2! singlet
formed out of the ‘‘isospin’’ doublets of the fermion (c is)
and boson (hi),

cis5
1

&
hi

†c is5
1

&
~bi1

† f is1ess̄ bi2
† f i s̄

† ! ~2.2!
6-2
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with

c is5S f is

ess̄ f i s̄
† D , hi5S bi1

bi2
D . ~2.3!

The physical hole densitŷbi1
† bi11bi2

† bi2&5x is enforced by
the chemical potentialm. We need to introduce the tempor
component of the gauge fielda0i to ensure the projection o
the Hilbert space onto the SU~2! singlet subspace

( 1
2 c is

† tc is1hi
†thi)uPhys&50, which is identical to that of

the originalt-J model. The conventional U~1! slave bosonbi
is now regarded as the SU~2! boson doublet having only its
isospin ‘‘up’’ component: (hi

(0))T5(bi ,0). The spin-liquid
state is characterized by the order parametersD i j

5^ess̄ f is f j ,s̄& and x i j 5^ f is
† f j s&, which constitute a 232

matrix

Ui j 5S 2x i j* D i j

D i j* x i j
D . ~2.4!

By this decoupling, the spin-exchange term is replaced w
Si•Sj→(3J/16)Ssc is

† Ui j c j s1(3J/16)Tr@Ui j
† Ui j #. We

should stress here that in the presence of theb2 boson,x i j
and D i j cannot be interpreted as the hopping and pair
order parameters of aphysical electron@see Eq.~2.2!#. The
‘‘phase’’ of Ui j is now interpreted as the SU~2! lattice-gauge
fields:8,30

Ū i j 5Ui j exp@2 iai j •t#, ~2.5!

where t5(t1,t2,t3) are Pauli matrices and ai j

5(ai j
1 ,ai j

2 ,ai j
3 ) is the gauge field on every link. Now thet-J

model is described by the fermion-boson system interac
with the SU~2! lattice-gauge field12,13 described by the La-
grangian:L05L0

F1L0
B1( J̃/2)S^ i j &Tr@Ū i j

† Ū i j # with

L0
F5 1

2 (
i , j ,s

c is
† @d i j ]t1 J̃Ū i j #c j s1 1

2 (
i ,s

c is
† ia0i•tc is ,

~2.6!

L0
B5(

i , j
hi

†@d i j ~]t2m!1 t̃ Ū i j #hj1(
i

hi
†ia0i•thi ,

~2.7!

where J̃53J/8 and t̃ 5t/2. The mean-field solution is ob
tained by integrating out the fermions and minimizing t
mean-field energyE($Ui j ,hi%), which leads toUi j on the
links and the bosonhi on the sites.

The SU~2! gauge invariance is realized through the re
tion E($Ū i j ,hi%)5E($WiŪi j Wj

† ,Wihi%) for any Wi

PSU~2!. Thanks to the SU~2! symmetry, we can choose
convenient gauge fixing to describe the MF state in an SU~2!
invariant way. Convenient gauge choices in the underdo
regime are the ‘‘d-wave gauge’’ or the ‘‘staggered-flux~SF!
gauge’’ specified by

Ui j
d 52x0t31~21! i y1 j yD0t1, ~2.8!

Ui j
SF52At3 exp@ i ~21! i x1 j yF0t3#, ~2.9!
06452
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respectively, whereA5Ax0
21D0

2 and F05tan21(D0 /x0).
Equation~2.8! describes fermions withd-wave pairing order
parameters, while Eq.~2.9! describes fermion hopping with
flux 64F0 on alternating plaquetts.2 At zero doping (x
50) there is no boson and these apparently different me
field Ansätze describe exactly the same MF state, sinceUi j

d

and Ui j
SF are just SU~2! gauge equivalent, i.e.,Ui j

d

5wiUi j
SFwj

† @E($Ui j
d %)5E($wiUi j

SFwj
†%)5E($Ui j

SF%)#, where
the transformation is explicitly given by

wi5expF i ~21! i x1 i y
p

4
t1G . ~2.10!

Upon doping, however, theUi j
d with the U~1! boson conden-

sate (h0i)
T5(bi ,0)5(Ax,0) characterizes the physica

d-wave SC state, while theUi j
SF with the U~1! boson conden-

sate (h0i)
T5(Ax,0) characterizes the physical SF sta

These states are no longer physically equivalent becaus
the presence of the boson condensate@E($Ui j

d ,h0i%)
ÞE($Ui j

SF,h0i%)# and the SC phase is picked out as the M
solution.9,10 Accordingly, the ‘‘flux’’ F05tan21(D0 /x0) de-
creases fromF05p/4 ~p-flux phase! upon doping.9,10

The advantage of the SF gauge is that it is apparent
the SU~2! symmetry has been broken down to the resid
U~1!, which we denote as U(1)res sinceUi j

SF contains only
t3.31 The lattice-gauge fieldsai j

1 andai j
2 become massive by

the Anderson-Higgs mechanism and can be ignored, w
ai j

3 remains massless and is the important low-energy de
of freedom that should be included, i.e., we consider

Ū i j
SF52At3 exp@ i ~21! i x1 j yF0t3#exp@2 iai j

3 t3#.
~2.11!

In this gauge, we can discuss a vortex structure under
external magnetic field in a way quite similar to the conve
tional BCS vortex where the gauge structure is character
by only the electromagnetic~EM! U(1)EM . The difference is
that, in our problem, the gauge structure is characterized
U(1)EM^ U(1)res.

B. O „4… s-model description of the local boson condensate

In the presence of a magnetic field, the mean-field so
tion contains vortices. The SU~2! vortex model27 was dis-
cussed based on the O~4! s-model description for a slowly
varying boson condensate.13 The basic idea is that at low
temperatures the bosons are nearly condensed to the bo
of the band and are slowly varying in space and time. T
Ansätze ~2.8! and ~2.9! gives the one-boson dispersionjk

B5

2 t̃ A(cos2 kx1cos2 ky12 cos 2F0 coskx cosky)
1/2. Theb1 and

b2 bosons are then nearly condensed to the band bottom~0,
0! and~p, p!, respectively.32 On the other hand, the fermion
are fluctuating over the lattice scale and can be integra
out, after choosing ana0i field, which minimize the action
locally. This view is in the spirit of the Born-Oppenheime
approximation.13 In the SF gauge given by Eq.~2.9!, the
local boson condensate~LBC! can be written as
6-3
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h̄i
SF5AxS zi1

2 i ~21! i x1 i yzi2
D , ~2.12!

wherezi1 and zi2 @CP1 fields# are slowly varying in space
and time and are parametrized by

zi15eiw1i cos
u i

2
, zi25eiw2i sin

u i

2
, ~2.13!

with the internal phases being given by

w1i5a i2f i /2, w2i5a i1f i /2. ~2.14!

We shall give some remarks on the expression Eq.~2.12! in
Appendix A.

The overall phase anglea is associated with the U(1)EM .
The internal SU~2! gauge symmetry is broken down t
U(1)resand the anglesf andu are interpreted as polar angle
of the manifold of the LBC: SU(2)/U(1)res.S2. Topologi-
cal stability of vortex formation is indicated by the nontrivi
topology, p2@SU(2)/U(1)res#5p1@U(1)res#5Z. The inter-
nal degrees of freedom of the LBC is visualized by the v
tor

I i5zi
†tzi5~sinu i cosf i ,sinu i sinf i ,cosu i !, ~2.15!

which has the meaning of the quantization axis for thez
fields, (zi)

T5(zi1 ,zi2). In the SF gauge, the uniformd-wave
SC state and the uniform SF state are described byu i5p/2
and u i50, p, respectively. The anglef i is associated with
the residual gauge symmetry U(1)res, which is further bro-
ken down to$0% upon Bose condensation, which triggers t
superconducting phase transition.

The low-energy dynamics of the LBC is described by
anisotropic O~4! s model coupled to the gauge fields.13 Since
we are only concerned with static configurations, we sh
ignore the time-dependent terms from now on. The free
ergy associated with this model is written in a formFeff
5FK1F'1FA1Fa explained below. In the SU~2! formula-
tion, only the boson can carry charge. Under the magn
field, the boson hopping-pairing matrix in Eq.~2.7! acquires
an EM Peierls phase,

Ū i j
SF→Ū i j

SFexpF i e
c E

r i

r j
A~r !•dr G

Taking a continuum limit, the kinetic part is written as

FK5
x

2mb
E dr uDzu2, ~2.16!

where we introduced the boson massmb;1/t. The covariant

derivative is given byD5“1 ia3t32 i e
c A, where we intro-

duced the continuum limit of theai j
3 field throughai j

3 5(r i

2r j )•a3(r i /21r j /2).
The anisotropy term is phenomenologically given in

form

F'5
x2J̃

2 E dr F 4

c1
uz1z2u21

1

c3
~ uz1u22uz2u2!2G ,

~2.17!
06452
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with c1 and c3 being numerical constants of the order
unity.13 This term describes energy cost associated w
small fluctuations of the LBC around the SC stateu
5p/2). For c3,c1 , the I vector prefers to lie in thet1-t2
plane~equatorial plane! and the SC state is favored.

The conventional EM Maxwell term is given by

FA5
1

8p E dr ~“3A!2. ~2.18!

The fourth termFa , the internal gauge-field kinetic term, i
dynamically induced by integrating out the fermion degre
of freedom although we have no such term initially at t
relevant highest-energy scales of the fermions;x0J. We
have

Fa5
s

2 (
q

(
m,n5x,y

am
3 ~q!Pmn

F ~q!an
3~q!, ~2.19!

wheres5AJ̃D and the fermion polarization bubble origina
ing from the coupling term of the Dirac fermion current an
gauge field is given by

Pmn
F ~q!5S dmn2

qmqn

q2 D uqu. ~2.20!

We note that this does not take the EM Maxwell form whi
is proportional toq2 and which consequently gives rise to
nonlocal kernel in real space,

Fa5
s

2 E drE dr 8k~r2r 8!h~r !•h~r 8!. ~2.21!

whereh(r )5“3a3(r ) andk(r2r 8)5(qe
2 iq•(r2r8)kq with

kq51/uqu, ~2.22!

instead ofkq51 in case of the conventional EM kernel.

C. London model of a single SU„2… vortex

In the model of the vortex proposed by Lee and Wen, b
a andf/2 wind by p and consequently give an appropria
hc/2e vortex for the EM gauge fieldA(r ). This way of
winding is specified by

“a5“

f

2
5

êf

2r
, ~2.23!

which lead to“w150 and“w25êf /r , where êf denotes
the azimuthal unit vector in the physical space. That is to s
only b2 changes its phasew2 by 2p as we go around the
vortex, whileb1 does not.

The texture of theI vector in the SF gauge is indicated
Fig. 1~a!. In the SC state outside the core,I i
5(cosfi ,sinfi,0), while as we approach the core,ub2u must
vanish and the vortex center is represented byI i5(0,0,1),
which is just the SF state. TheI i vector tilts smoothly from
the equator to the north pole as the core is approached w
length scale denoted byl c , which is identified with the core
size. To determine the SU~2! vortex structure, we shall us
the ‘‘London-model’’ prescription of a single vortex in ex
6-4
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treme type-II BCS superconductor.33 A detailed account of
the analysis is given in Appendix B.

Although quantitative estimation ofl c and la is beyond
the present simple London-model analysis,l c presumably
extends over a fermion coherence lengthjF;vF /D, which
may amount to a few lattice scales as sugges
numerically.25 We here just remark that there are two kin
of vortices, because theI vector can also point toward th
south pole at the vortex core:u i5p in Eq. ~2.13!. This just
expresses the state with the staggered flux shifted by one
cell. If the center of the vortex is in the center of th
plaquette, the degeneracy between these two kinds of v
ces is broken by the circulation of the EM superfluid curre
This is the situation considered by Wang, Han, and Lee26 in
their numerical local U~1! mean-field approach. On the oth
hand, if the center of the vortex is on a lattice site, the
generacy remains and there is quantum-mechanical tunn
between the two states. The tunneling rate depends onl c and
is difficult to estimate. However, the dissipation due to qu
siparticles may suppress the tunneling rate due to theor-
thogonality catastrophe. Whether the two states are degen
ate or not depends on short-distance physics, which
outside the domain of our long-wavelength theory.

III. HOPPING AND PAIRING ORDER PARAMETERS
OF THE PHYSICAL ELECTRONS

AROUND A SINGLE VORTEX

A. Gauge transformation of the local boson condensate

Now that the SU~2! vortex model has been establishe
we shall discuss the effects of the unit-cell doubling and

FIG. 1. ~a! The texture of theI vector in the SU~2! vortex
configuration in the SF gauge. At the center of the vortex,I i points
toward the north pole corresponding to the SF state. The sha
circle depicts the vortex core. The local gauge transformationgi

transforms this configuration to~b! in the d-wave gauge, where the
internal phases of the bose condensate are gauged away.
06452
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phase winding on the hopping and pairing order parame
of the physical electrons around a single vortex. For th
purpose, it is best to work with thed-wave gauge after mak
ing a local gauge transformation

gi5expF i ~21! i x1 i y
u i

2
t1GexpF i

f i

2
t3G . ~3.1!

The LBC is then transformed to

h̄SF→h̄i
d5gih̄i

SF5eia iSAx
0 D , ~3.2!

i.e., theI vector points toward the north poleeverywhere on
the lattice, as shown in Fig. 1~b!. We here consider only the
case of a single vortex. The great advantage of thed-wave
gauge is that the physical electron operator is simply writ
as

cis5
1

&
h̄i

d†c is5e2 ia iAx/2f is , ~3.3!

i.e., the fermions behave as physical electron. After the lo
gauge transformation to thed-wave gauge, we find

Ū i j
SF→Ū i j

d 5giŪ i j
SFgj

†52x̃ i j Ft3 cos
u i2u j

2

1~21! i x1 i yt2 sin
u i2u j

2 G
2D̃ i j F i ~21! i x1 j y cos

u i1u j

2

2~21! i y1 j yt1 sin
u i1u j

2 G , ~3.4!

where

x̃ i j 5A cosF i j , D̃ i j 5A sinF i j , ~3.5!

F i j 5F01~21! i x1 j yv i j , ~3.6!

and

v i j 5
f i2f j

2
2ai j

3 . ~3.7!

As an important consequence of the local gauge transfor
tion, the gauge-invariant quantityv i j enters Eq.~3.4!. The
quantity has a meaning of the fermion ‘‘superfluid velocity
associated with the internal gauge fielda3, which is circulat-
ing around the vortex center@see Eq.~B4!#. For example, let
us considervy(r ) along the linei y5 1

2 , assuming that the
vortex center sits at~1

2,
1
2!. The Fourier transform of Eq

~B10! gives

vy~r !5
1

2r
2

1

2 E0

`

dq
J1~qix!

11laq
, ~3.8!

wherer5( i x , 1
2 ). In Fig. 2, we show the spatial distributio

of vy(r ) by assuming the gauge field-penetration depth to

ed
6-5
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la510 with lattice unit. We see thatvy(r ) decays over the
length scalela , as is naturally expected for the superflu
velocity.

Let us writeŪ i j
d in the form

Ū i j
d 5S 2x̄ i j* D̄ i j

D̄ j* x̄ i j
D . ~3.9!

An essential point is that in thed-wave gaugex̄ i j and D̄ i j
have the meaning of the hopping and pairing order para
eters of the physical electron, since the physical electron op
eratorcis is just proportional to the auxiliary fermion opera
tor f is @Eq. ~3.3!#. Below we discuss the meaning ofx̄ i j and
D̄ i j at different limits.

B. Hopping-pairing order parameters in the vicinity
and outside of the vortex core

1. Vicinity of the vortex center

First, we consider the vicinity of the vortex center, whe
u i;u j;0 and Eq.~3.9! becomes

Ū i j
d ;2At3 exp@ i ~21! i x1 i yF i j t

3#, ~3.10!

i.e.,

x̄ i j 5A exp@ i ~21! i x1 j yF i j #, ~3.11!

D̄ i j 50. ~3.12!

Equation~3.12! indicates that the superconducting order p
rameter is killed at the vortex center. In this region, as
directly seen from Eq.~3.11!, what is modulated is the phas
of the fermion hopping parameter, which is just regarded
the electron-hopping parameter. We see that the sum o
phase around an elementary plaquette yields modulated
flux 64F01fgauge(r ) with6signs alternating from
plaquette to plaquette. We here introduced a gauge flux p
etrating an elementary plaquette centered atrÞ0,

FIG. 2. Spatial distribution of the superfluid velocityvy(r ) as-
sociated with the internal gauge fielda3. We assumed the gaug
field-penetration depth to bela510 with the lattice unit. The origin
should not be taken too literally, sincev is defined in the continuum
limit.
06452
-

-
s

s
he
et

n-

fgauge~r !5 R
h
“3y•dl;

c0
2

\
h~r !, ~3.13!

where we retained the lattice constantc0 . The internal
gauge-field strengthh(r )5“3a3 is given by Eq.~B8!. We
seefgauge(r )!4F0;O(1) @for example,f(2c0)50.03 if
we takela510c0#. This situation just indicates the fact tha
the net flux is dominated by the original staggered flux 4F0 .
Thus, inside the core the staggered phase modulation
comes predominant:Ū i j

d ;2At3 exp@i(21)ix1jyF0t
3#.

The Ū i j
d then breaks not only the translational symme

~Ū i j
d ÞŪ i 1êm , j 1ên

d , whereêm with m, n5x,y denotes a unit

vector connecting the neighboring sites!, but also the time-
reversal symmetry with respect to the local bonds (Ū i j

d

Þ@Ū i j
d #* ). Although we cannot explicitly analyze the ele

tronic states inside the core, the time-reversal symme
breaking implies that the staggered fermion currents flow
the bonds just as in the case of a uniform SF state. Once
bosons are condensed, the currents come up as the stag
orbital currents of the physical hole.27

In this paper, we are concerned with the possibility
detecting a signature of the unit-cell doubling through ST
measurement. We immediately see that there is no hop
the SF state, because what is staggering in the SF pha
the on-bond currents caused by the staggered phase@Eq.
~3.11!#. Consequently, the period doubling of the curre
never shows up in the LDOS.35 This situation motivates us to
look at the region outside the core.

2. Outside the SF core

We consider the region outside the SF core. We appro
mately setu i;u j;p/2, which gives

Ū i j
d ;2x̃ i j t

31~21! i y1 j yD̃ i j t
1, ~3.14!

i.e.,

x̄ i j 5x̃ i j , ~3.15!

D̄ i j 5D̃ i j . ~3.16!

Recalling thatx̄ i j andD̄ i j are interpreted as the hopping an
pairing amplitudes of physical electrons, we see thatthe re-
gion outside the SF core and inside the gauge-fie
penetration depth, l c&r &la around the vortex, is charac
terized by the staggered modulation of the hopping a

pairing amplitudes. Note that the amplitude ofx̄ i j and D̄ i j
are modulated in a correlated way according to Eq.~3.5! to
preserve

x̃ i j
2 1D̃ i j

2 5const. ~3.17!

In Fig. 3, we depict the situation given by Eqs.~3.5!, ~3.15!,
~3.16!, and~3.17!.

Ū i j
d breaks the translational symmetry, but does not bre

the time-reversal symmetry with respect to the local bon
Therefore,Ū i j

d does not cause local fermion current on t
bonds @of course, even in this case, the external magn
6-6
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SIGNATURE OF THE STAGGERED FLUX STATE . . . PHYSICAL REVIEW B 65 064526
field breaks time-reversal symmetry and causes globally
culating supercurrent given by Eq.~B6!#. What is staggering
in this region is not the local current but the local density
the bonds.

The temporal component of the gauge field,a0i

d , is deter-

mined locally by the LBC. In the uniform case, the sadd
point is purely imaginary. There, we can regard the LBC
almost uniform in the SC state outside the vortex co
Therefore it may be legitimate to assumea0i

d to be uniform
and parallel to the LBC~pointing toward the north pole! in
this region@this assumption is reliable as far as deviation
u i from ;p/2 is small#. From now on, we set

ia0i
d 5~0,0,a0!, ~3.18!

FIG. 3. Geometric relation ofx̃ i j andD̄ i j . The angleF i j modu-
lates aroundF0 in a staggered manner@see Eq.~3.6!#.
06452
ir-

s
.

f

wherea0 has an order ofxJ̃.
For the purpose of seeing a physical situation, we assu

the SF core size to bel c53 and a simple distribution of the
angle u as indicated in Fig. 4~a!. In Figs. 4~b! and 4~c!,
respectively, we show the corresponding spatial variation

x̃ i j andD̃ i j on the link connecting (i x,0) and (i x,1) with the
lattice unit. We also assumed the gauge-field-penetra

depth to bela510. Now D̃ i j just represents pairing ampli
tude of the physical electron and vanishes at the vortex c

ter as it should do. As we go away from the core,x̄ i j andD̄ i j

acquire staggered modulation with the amplitude becom
smaller, because the superfluid velocityv(r ), which is re-
sponsible for the appearance of the staggered modula
becomes smaller. In fact, the staggered modulation ofx̄ i j is

just of an order of a few percent, while that ofD̄ i j is rather
large. However, as we shall see shortly,period doubling
caused by this modulation gives rise to visible effects
LDOS outside the core. We should also remark that bothx̄ i j

andD̄ i j contribute to the LDOS. The problem now reduces
the more familiar U~1! mean-field theory, but withx i j and
D i j , which vary in space. This is precisely the proble
treated by Han, Wang, and Lee25,26 and it is gratifying that
they found numerically the staggered current around the v
tex core as proposed in the SU~2! vortex model.27

In Fig. 5, we schematically show the modulation patte
of x̄ i j outside the core. The staggered modulation becom
most conspicuous when scanned along the straight lini x
5 1

2 or i y5 1
2 , provided that the vortex center sits at~1

2,
1
2!,

because on these bonds the circulatingv(r ) field becomes
parallel to the bond directions. Apparently, the bon
modulation pattern reminds us of the spin-Peierls sta
However, this is not the case, since the MF expectation va
of spin-exchange energy on the bonds is given by^Si•Sj&
d-
FIG. 4. A simple distribution of theu indi-
cated in~a! leads to spatial variation of~b! x̄ i j

and ~c! D̄ i j on the link connecting (i x,0) and
( i x,1) as indicated in the inset. The gauge-fiel
penetration depth is assumed to bela510.
6-7
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52 J̃(x̄ i j
2 1D̄ i j

2 )5const and therefore the spin-Peierls ord
parameter becomeŝSi•Si 1êm

2Si•Si 2êm
&50 with êm being

a unit vector connecting the neighboring sites.
As we approach the core from the outside, theI vector in

the SF gauge gradually rises off from the equatorial pla
@see Fig. 1~a!#. This may give rise to a crossover regio
characterized by coexistence of the amplitude and ph
modulation, whereu dependence ofŪ i j

d becomes significant
It is expected that the staggered current begins to ap
around r; l c and its strength becomes stronger as we
proach the immediate center of the vortex. We give a sc
matic drawing of this circumstance in Fig. 5. To study t
effects ofu-dependentŪ i j

d is, however, beyond the scope
the present paper and we concentrate on the regionl c&r
&la . We should also remark that when the angleu deviates
from u i5u j5p/2 as we approach the core, the directiona0i

d

begins to slightly deviate from the north pole, sincea0i
d is no

longer parallel to theI vector due to small anisotropy. In th
next section, we shall compute the LDOS in the SC st
outside the core by settingu i5u j5p/2. Then,a0i

d is given
by Eq. ~3.18! and is exactly parallel to theI vector pointing
toward the north pole. We expect our results to be qual

FIG. 5. Schematic drawing of the amplitude-modulation patt
of the hopping parameterx̃ i j outside the SF core. Solid and dotte
bonds indicate enhanced and reduced amplitudes, respect
where thickness of the bonds qualitatively represents magnitud
the modulation. Circulation of the the fermion ‘‘superfluid velocity
v(r ) associated with the internal gauge fielda3 is indicated by the
arrows. The staggered modulation becomes most conspicuous
scanned along the linesi x5

1
2 or i y5

1
2 , provided that the vortex

center sits at~1
2,

1
2!. Note that the boundary of the SF core regio

inside which the staggered orbital currents flow, should not be ta
literally. In reality, there is a crossover region aroundr; l c where
the staggered current and the staggered amplitude modul
coexists.
06452
r
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tively valid even forr; l c as long as we avoid the inside o
the core.

IV. LDOS OUTSIDE THE CORE

As we saw in the preceding section, the staggered mo
lation of the hopping amplitudex̄ i j and pairing amplitude
D̄ i j becomes predominant over the regionl c&r &la . The
presence of staggered modulation suggests that this ma
the best place to look for the unit-cell-doubling effect. In th
section, we consider the LDOS in this region.

A. Formulation of LDOS

The local density of states at an arbitrary pointr on lattice
is defined by

N~r ,v!52
2

p
ImGphys~r ,r ; iv!u iv→v1 id , ~4.1!

where the propagator for the physical electron is introdu
by Gphys(r ,r 8,iv)52*0

bdt eivt ^Ttcs(r ,t)cs
†(r 8)&. To

model the tunneling current we assume that the electron
nel from the tip located atr to a linear combination of Wan
nier orbitals centered at lattice sites, i.e., the physical e
tron operator atr ,cs(r ), is related tocis as

cs~r !5(
i

a i~r ! expF2 i e
c E

r i

r
dr 8•A~r 8!Gcis , ~4.2!

where the EM gauge potentialA gives rise to the EM Peierls
phase. The envelope functiona i(r ) may be simulated by
a i(r )5e2ur2r i u/j in the bond direction~the Cu-O-Cu bond!.
The length scalej can reasonably be set equal toj5 1

2 with
the lattice scale corresponding to the Cu-O separation. S
the effects of the EM gauge fields are negligibly small
strength as compared with the internal gauge potential, fr
now on, we ignore the EM Peierls phase and examine
effects of the staggered hopping and pairing amplitudes
the LDOS. Noting Eq.~3.3! in thed-wave gauge, Eq.~4.1! is
written as

N~r ,v!52
x

p
Im (

i , j
a i~r !a j~r !@Gi j

F ~ iv!#11u iv→v1 id .

~4.3!

The subscript 11 means the 11 component of the
tice fermion propagator of a 232 matrix form, Gi j

F (t)
52^Ttc is(t)c j s

† &.
We here give an intuitive demonstration that the LDO

exhibits a conspicuous staggered patternonly when measured
on the bonds. A more quantitative discussion will be given i
the following sections. For example, we pick up the si
1,2,...,6 indicated in Fig. 6 and consider the midpoints on
bondsB1 , B2 and the plaquette centersC1 , C2 . The LDOS
at C1 and C2 come from( i , j 51,2,4,5Gi j

F and ( i , j 52,3,5,6Gi j
F ,

respectively. We see, however,G12
F ;G56

F because the bond
12 and 56 are almost equivalent except the effects of ne
gibly small dependence of thev field on the spatial position
r over the lattice scales. Similarly,G45

F ;G23
F and G14

F ;G36
F .
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of

en

,
n

on
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Therefore,N(rC1
,v);N(rC2

,v). Similarly, the LDOS at the
lattice sites is almost uniform. On the other hand, the LD
at B1 andB2 come from( i , j 51,2Gi j

F , and( i , j 52,3Gi j
F , respec-

tively. Here, G12
F and G23

F are clearly inequivalent becaus
they connect the bonds with alternating hopping-pairing a
plitudes.

To computeGi j
F ( iv) in the SC state outside the core, w

shall use the following two approaches that may be com
mentary to each other:~i! a perturbative analysis using th
gradient expansion and~ii ! an exact diagonalization usin
the ‘‘uniform v’’ approximation. In the former approach, w
can take account of the circulating configuration of thev(r )
field, while in the latter approach, instead, we can obtai
nonperturbative aspect of the problem.

B. Perturbative analysis using the gradient expansion

First, we expand Eq.~3.5! with respect tov i j up to the
first order as

x̃ i j ;x02~21! i x1 j yD0v i j , ~4.4!

D̃ i j ;D01~21! i x1 j yx0v i j , ~4.5!

which giveŪ i j
d 5Ui j

d 1dUi j with

dUi j 5~21! i x1 j y@D0t31~21! i y1 j yx0t1#v i j . ~4.6!

Then, we treat the term

dHF5
J̃

2 (
^ i , j &

c i
†dUi j c j ~4.7!

as perturbation with respect toH0
F wherea0i is given by Eq.

~3.18!. The free propagation is governed byUi j
d and the cor-

responding propagator becomes

G0
F~k,iv!5

Uk

iv2Ek
1

Vk

iv1Ek
, ~4.8!

where the generalized coherence factors are introdu
by Uk5 1

2 @11(gkt
31hkt

1)/Ek# and Vk5 1
2 @12(gkt

3

1hkt
1)/Ek#. The one-particle spectrum is given by

Ek5Agk
21hk

2; ~4.9!

FIG. 6. Points on lattice where we consider the LDOS. We h
four symmetrically distinct points: the plaquette center~3!, site top
~d!, and bond center~s!. The site-top and bond-center points co
respond to the Cu and O sites, respectively.
06452
S

-

-

a

ed

with gk52 J̃x0@coskx1cosky1 t̃2 coskx cosky1 t̃3(cos 2kx

1cos 2ky)#1a0 and hk51 J̃D0(coskx2cosky). We have
taken account of the second and third nearest-neighbor
ping of the fermions to reproduce the real band structure
general, thed-wave nodes shift from~6p/2, 6p/2!. In the
case of t25t350, the nodes are located a
(6cos21@a0/2J̃x0#,6cos21@a0/2J̃x0#). For t̃ 2Þ0 and t̃ 3

Þ0, the nodes are located at„6cos21@f( t̃2,t̃3,a0)#,
6cos21@f( t̃2,t̃3,a0)#…, where

f ~ t̃ 2 , t̃ 3 ,a0!5
211A11~4 t̃ 31 t̃ 2!~2 t̃ 31a0 / J̃x0!

4 t̃ 31 t̃ 2

.

~4.10!

We see that as far ast̃ 3Þ0 the nodes shift from~6p/2,
6p/2! even if a050. Furthermore, we note that location o
the nodes is independent of the gap magnitudeD0.

Since the perturbation term causes period doubling, i
convenient to introduce the fermion operators on two sub
tices,

c i5
1

&
(

kPRZ
eik•r i~ck6ck1Q!, ~4.11!

whereQ5(p,p) andkPRZ meansk runs over the reduced
Brillouin zone ukzu1ukyu<p. We have dropped the spin in
dices. The1 and2 signs are for the cases wherei belongs to
the A @r i5( i x ,i y)5~even,even! or ~odd, odd!# and B
@( i x ,i y)5~even,odd! or ~odd, even!# sublattice sites, respec
tively. Then, as derived in Appendix C, the perturbation te
is written in momentum space as

dHF52 (
kPRZ

(
q,s

@ck1q/21Qs
† Ck~q!ck2~q/2!s1H.c.#,

~4.12!

whereCk(q)5D0Ck
1(q)t31x0Ck

2(q)t1 with

Ck
6~q!5p J̃

1

uqu2
lauqu

11lauqu @qy sinkx6qx sinky#.

~4.13!

The momentum transferq should be small because we ha
retained only slowly varyingv field. The perturbation pro-
cesses cause unit-cell doubling and scatter the electron
k in the reduced zone tok1Q in the second zone, and con
sequently the mirror image of the reduced zone is formed
the second zone, as indicated in Fig. 7~a!.

Now, we consider the four distinct points on lattice ind
cated in Fig. 6:~a! the center of the plaquette~plaquette
center!, ~b! the top of the sites~site top!, and~c! the center of
the bonds~bond center!. The site-top and bond-center poin
correspond to the Cu and the O sites, respectively, on
CuO2 plane. All the detail of derivation of the LDOS is lef
to Appendix C. In any case, the LDOS is written in a form

N~r ,v!/xa25N̄0~v!6dN̄~r ,v!, ~4.14!

e
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where1 and 2 signs alternate from plaquette to plaquet
site to site, or bond to bond for the cases~a!, ~b!, and ~c!,
respectively, anda represents magnitude of the envelo
function from the nearest cite. The uniform counterparts
given in a form

N̄0~v!52
1

p
Im (

k
M0~k!@GF~k,k,iv!#11u iv→v1 id ,

~4.15!

where we introduced the generalized propaga
GF(k,k8,iv)5S r i ,r j

ei (k•r i2k•r j )Gi j
F ( iv). The matrix ele-

mentsM0(k) distinguishes different symmetries associa
with each point and are given by

M0
plaquctte~k!5cos2

kx

2
cos2

ky

2
, ~4.16!

M0
site~k!51, ~4.17!

M0
bond~k!5cos2

kx

2
. ~4.18!

for the cases~a!, ~b!, and~c!, respectively. The perturbatio
processes do not affect the uniform counterpart within

FIG. 7. ~a! The perturbation processes given by Eq.~4.7! con-
nect the electron withk in the reduced zone~inner square! to k
1Q in the second zone~shaded region!, and consequently the mir
ror image of the reduced zone is formed in the second zone.
d-wave nodes inside the reduced zone and their mirror images
also indicated. ~b! The scattering processes along the (0
→(p,p) direction whose matrix elements give the coherence f
tors Lk

6 and Nk
6 . At the energyv* , the Dirac cones around th

d-wave nodes touch the reduced zone boundary and resonanc
curs.~c! The level crossing at the reduced zone boundary would
lifted and eventually the period doubling would cause gap open
if we would go beyond the perturbative scheme. Note that situat
in ~b! and ~c! correspond to the case of a simple band struct

without the next (t̃ 2) and second nearest (t̃ 3) fermion hopping.
06452
,

e

r

d

e

Born approximation, and thus, in Eq.~4.15!, we obtain

Im@GF~k,k,iv!#11u iv→v1 id

5Im@G0
F~k,iv!#11u iv→v1 id

5
p

2 S 11
gk

Ek
D d~v2Ek!1

p

2 S 12
gk

Ek
D d~v1Ek!,

~4.19!

which just reproduces the LDOS profile in the unifor
d-wave SC state except overall reduction due to the ma
elementM0(k).

The staggered counterpart is given in a form

dN̄~r ,v!52
1

p
Im (

q;small
(

kPRZ
M ~k,q;r !FGFS k1

q

2

1Q,k,2
q

2
,iv D1GFS k2

q

2
,k1

q

2

1Q,iv D G
11
U

iv→v1 id

, ~4.20!

The matrix elementsM (k,q;r ) associated with each poin
are given by

Mplaquette~k,q;r !5cos~q•r !sin

kx1
qx

2

2

3sin

ky1
qy

2

2
cos

kx2
qx

2

2
cos

ky2
qy

2

2
,

~4.21!

M site~k,q;r !5cos~q•r !, ~4.22!

Mbond~k,q;r !5sin~q•r !sin
kx1 qx/2

2
cos

kx2 qx/2

2
,

~4.23!

where r denotes the plaquette-center, site-top, and bo
center points, respectively. Now we need to computeGF(k
1q/21Q,k2q/2,iv) and GF(k2q/2,k1q/21Q,iv). The
detail of computation is presented in Appendix C. We obt

FGFS k1
q

2
1Q,k2

q

2
,iv D

1GFS k2
q

2
,k1

q

2
1Q,iv D G

11
U

iv→v1 id

52
p

2
d~v,1Ek1q/21Q ,Ek2q/2!@D0Ck

1~q!Lk
D1

1x0Ck
2~q!Lk

x1#1
p

2
d~v,2Ek1q/21Q ,2Ek2q/2!

he
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)
-
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e
g
s

e
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@D0Ck
1~q!Lk

D21x0Ck
2~q!Lk

x2#

2
p

2
d~v,1Ek1q/21Q ,2Ek2q/2!

3@D0Ck
1~q!Nk

D11x0Ck
2~q!Nk

x1#

1
p

2
d~v,2Ek1q/21Q ,1Ek2q/2!

3@D0Ck
1~q!Nk

D21x0Ck
2~q!Nk

x2#, ~4.24!

whered(v,x,y)[@d(v2x)2d(v2y)#/(x2y). The coher-
ence factors are given by

Lk
D6511g1g22h1h26g16g2 ,

Lk
x656h16h21g1h21h1h2 ,

Nk
D6512g1g21h1h26g17g2 ,

Nk
x656h17h22g1h22h1g2 , ~4.25!

where g15gk1q/21Q /Ek1q/21Q , g25gk2q/2 /Ek2q/2 , h1

5hk1q/21Q /Ek1q/21Q , andh25hk2q/2 /Ek2q/2 .
To proceed with further analytical computation, we no

that the main contribution ofk integral comes from region
near the nodes in the vicinity of~6p/2,6p/2!, while q is
small. Thus, it is legitimate to ignoreq with respect tok in
M0(k), M (k,q;r ), and GF(k1q/21Q,k2q/2,iv), while
we must retainq in Ck

6(q). This approximation amounts t
ignoring ther dependence of thev(r ) field over the lattice
scales, and retaining only fermion fluctuations. On the ot
hand, retainingq dependence ofCk

6(q) amounts to taking
account of the long-distance decay of thev field. Under this
approximation. Eqs.~4.21!, ~4.22!, and~4.23! are simply re-
duced to
06452
r

Mplaquette~k,q;r !5 1
4 cos~q•r !sinkx sinky , ~4.26!

M site~k,q;r !5cos~q•r !, ~4.27!

Mbond~k,q;r !5 1
2 sin~q•r !sinkx . ~4.28!

By noting the antisymmetry relationCk
6(q)52Ck

6(2q), we

immediately see thatdN̄(r ,v) vanishes at the plaquette
center and site-top points while it remains finite at the bo
center points. Thus, we confirm thatthe staggered counter
part of the LDOS appears only when measured on the bo.
Even in the cases of the plaquette center and the site
dN̄(r ,v) becomes finite if we retainq with respect tok, i.e.,
taking account of the negligibly small dependence of thev
field on the spatial positionr over the lattice scales. How
ever, this effect is still invisibly small as compared with th
case of the bond center. This result is fully consistent with
intuitive discussion given in Sec. IV A.

From now on, we concentrate on the bond-center poi
the midpoint of the bond connectingi and i1êm where m
5x or y. Taking account of the envelope function, the ma
nitude of the LDOS may be reduced by a factore22;0.1 as
compared with the uniform counterpart of the LDOS at t
site top. Using Eqs.~4.24! and~4.28!, theq integration in Eq.
~4.20! can be performed to yield

dN̄~r ,v!5
~21! i x1 i y

4
vm~r ! (

kPRZ
sin2 km

3@Lk
1d~v;Ek ,Ek1Q!1Lk

2d~v;2Ek ,2Ek1Q!

1Nk
1d~v;Ek ,2Ek1Q!1Nk

2d~v;2Ek ,Ek1Q!#,

~4.29!
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FIG. 8. ~a! LDOS profile in the case oft2

5t350, obtained by the perturbative analysis
the pointsA, B, C, andD indicated in the inset.
The LDOS atB andD are justN̄0(v). The peaks

at ṽ5v/x0J̃560.38 are associated with th
d-wave superconducting gap. The addition
peaks atṽ560.41 are associated with the va
Hove singularity located at~0, 6p! and~6p, 0!.
The staggered structure aroundṽ50.05 comes
from resonant scattering between the fermio
with k andk1Q, caused by the period doubling
~b! The one-particle energy contour around t
d-wave node.~c! The energy contoursEk5v and
Ek1Q5v touch atṽ560.05.
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FIG. 9. ~a! LDOS profile in the
case of the real band structure o
BSCCO, obtained by the perturba
tive analysis at the pointsA, B, C,
and D indicated in the inset. The

LDOS atB andD are justÑ0(v).
The staggered structure aroundṽ
560.179 and ṽ50.224 comes
from resonant scattering betwee
the fermions with k and k1Q
caused by the period doubling
The small wiggles outside the
V-shaped profile come from nu
merical fluctuations.~b! The pro-
file over a wider energy window
than that of~a!. The peaks atṽ
560.79 are ascribed to the van
Hove singularity at~0, 6p! and
~6p, 0! points. ~c! The one-
particle energy contour around th
d-wave node. The energy contour
Ek5v and Ek1Q5v touch atṽ
560.179 and 60.224 as indi-
cated in~d! and ~e!, respectively.
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where the coherence factorsLk
65D0Lk

D61x0Lk
x6 and Nk

6

5D0Nk
D61x0Nk

x6 represent the matrix element associa
with the scattering processes indicated in Fig. 7~b!. As has
already been mentioned, the best paths to detect the
gered modulation of the LDOS are the linesi x5 1

2 or i y5 1
2

provided that the vortex center sits at~1
2,

1
2!, because in this

case we can go through the bonds whose directionsêm are
parallel to the circulatingv(r ) field ~see Fig. 5!.

1. The case of t2Ät3Ä0

First, we consider a toy band structure witht25t350 in
Eq. ~4.9!, because this simple case provides us with a c
view on the period-doubling effects. In Fig. 8~a!, we show
the profile of N(r ,v)/xa2 at the four bond-center points

A( i x , 1
2 ), B( i x1 1

2 ,0), C( i x11,1
2 ), and D( i x1 1

2 ,1) with i x

55 @see the inset of Fig. 8~a!#. From now on, we fix the
parameters a050.05x0J̃, D0 /x050.2, and assume th
gauge-field-penetration depth to bela510. This choice of
a0 and D0 is reasonable in the underdoped regime.12 Note
that atB andD, DN̄(r ,v) almost vanishes and the LDOS
just given byN̄0(v), becausev(r ) becomes almost perpen
dicular to these bond directions. The modulation pattern
the other points can be read off from Fig. 5.

We see that inside the overall V-shaped profile with
sharp peaks atṽ[v/x0J̃560.38 associated with the
d-wave superconducting gap, there appear additional p
and dip structures at siteC and A, respectively, aroundṽ
06452
d

ag-

ar

at

e

ak

510.05. From now on, we refer to this structure as t
‘‘staggered peak-dip~SPD!’’ structure, since the peak and di
alternate from bond to bond in a staggered manner. The
ditional peaks atṽ560.41 come from the van Hove singu
larity located at~0, 6p! and~6p, 0! points. The low-energy
dispersion gives elliptic contours around thed-wave node as
indicated in Fig. 8~b!, which touch the reduced zone boun
ary at ~p/2, p/2! as the energy increases. The specific str
ture aroundṽ50.05 comes from resonant scattering betwe
the fermions withk andk1Q. As v increases from zero, the
energy contoursEk5v andEk1Q5v touch at~p/2, p/2! on
the reduced zone boundary atṽ560.05 as indicated in Fig
8~c! @see also Fig. 7~b!# and resonance occurs. We note th
the modulated structure inside the V-shaped profile is p
dominant on the particle side (v.0). This asymmetry is due
to the matrix-element effect:Lk

2 vanishes at~p/2, p/2!.
In any case of this toy band structure, it may be tota

hopeless to experimentally detect such tiny structures as
dicated in Fig. 8~a!. We see in the following that the realisti
band structure of BSCCO drastically changes this situati

2. The case of real band structure

Next, we take account oft̃ 2520.550 andt̃ 350.087 to
reproduce the real band structure of BSCCO measured
angle-resolved photoemission spectroscopy.36 In Fig. 9~a!,
we show the profile ofN(r ,v)/xa2 at the same points as i
Fig. 8~a!. In this case, inside the overall V-shaped profi
with the sharp peaks atṽ[v/x0J̃560.323 associated with
6-12
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FIG. 10. ~a! LDOS profile for a050.03x0J̃
andD0 /x050.35, corresponding to lower dopin

as compared with the case ofa050.05x0J̃. ~b!
The one-particle energy contour around t
d-wave node. The energy contoursEk5v and
Ek1Q5v touch atṽ560.2 as indicated in~c!.
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the d-wave superconducting gap, there appears a promi
SPD structure aroundṽ560.179 andṽ50.224. In Fig.
9~b!, we show the same profile as in Fig. 9~a! over a wider
energy window. The peaks atṽ560.79 are ascribed to th
van Hove singularity at~0, 6p! and ~6p, 0! points.37

The SPD structure inside the V-shaped profile ag
comes from resonant scattering between the fermions wik
andk1Q. As seen in Fig. 9~c!, the low-energy elliptic con-
tours in the case withoutt2 and t3 @Fig. 8~b!# bend around
thed-wave nodes~bending of the Dirac cone!. Consequently,
as v increases from zero, the energy contoursEk5v and
Ek1Q5v first touch on the reduced zone boundary atṽ5
60.179 as indicated in Fig. 9~d!, and resonance occur
Then, atṽ560.22 they touch again at~p/2, p/2! as indi-
cated in Fig. 9~c! and the second resonance occurs. The r
son why the second resonance comes up only in the elec
(v.0) side is again ascribed to the matrix-element effec
in the case oft25t350. We can say thatdue to the real band
structure ~bending of the Dirac cones around the d-wa
nodes! the staggered structure in the LDOSprofile becomes
far more prominent as compared with the case oft25t3
50.

We see that the SPD structure due to the period doub
occurs only inside the V-shaped profile@see Fig. 9~b!#. In
fact, the energy scale at which the SPD structure app
depends on the band-structure parameters~a0}x, D0 /x0 ,
t2 , and t3!. For a reasonable choice of parameters in
underdoped regime, however, the resonance always occu
the energy scales below that of the superconducting gap,
the SPD structure always appears inside the V-shaped pro

To see a qualitative feature of the doping dependence
Fig. 10~a! we show the LDOS profile fora050.03x0J̃ and
D0 /x050.35, corresponding to the case of a lower doping
compared with the case ofa050.05x0J̃ andD0 /x050.2. We
see that the SPD structure remains robust, although the r
nance occurs only once atṽ50.2. Smearing out of the sec
ond resonance is due to change of the geometry of the D
cone around thed-wave nodes. The shape of the low-ener
06452
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contours changes upon changingD as clearly seen by com
paring Fig. 10~b! with Fig. 9~c!. The contoursEk5v and
Ek1Q5v touch on the reduced zone boundary only atṽ5
60.2 @Fig. 10~c!#. As already mentioned, however, locatio
of the d-wave nodes is independent ofD0 and always shifts
from ~6p/2, 6p/2! for finite t̃ 3 , i.e., the resonance a
~6p/2, 6p/2! occurs at the energy

ṽ* 56~2 t̃ 31a0 /x0J̃!. ~4.30!

In this respect,the next-nearest-neighbor hopping t˜
3 plays a

crucial role in pushing the energy scales of the SPD str
ture toward visibly finite energy scales.

In the perturbative picture presented here, the peri
doubled perturbation processes form the ‘‘mirror image’’
the energy bands with respect to the reduced zone boun
@Fig. 7~a!#. The energy levelEk and its mirror imageEk1Q
cross on the zone boundaryukxu1ukyu5p, which causes the
resonant scattering at the corresponding energyv* @Fig.
7~b!#. It is naturally expected that if we go beyond the pe
turbative scheme the level crossing would be lifted and ev
tually the period doubling may cause a gap opening in
fermion excitation spectrum as indicated in Fig. 7~c!. This
point is confirmed through the exact diagonalization un
uniform-v approximation as shown below.

C. Exact diagonalization after the uniform-v approximation

Next we consider the case of uniformv field v0
5(v0x ,v0y), which may locally capture the effects of th
circulatingv(r ). From Eqs.~3.5!, ~3.15!, and~3.16!, we see
that uniformv0 yields

x̄ i j 5x̃ i j 5A cos@F01~21! i x1 j y~r i2r j !•v0#, ~4.31!

D̄ i j 5D̃ i j 5A sin@F01~21! i x1 j y~r i2r j !•v0#. ~4.32!
6-13
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An advantage of the uniform-v approximation is that we can
exactly diagonalize the corresponding fermion Hamiltoni
which can be written as

H0
F5

1

2 (
kPRZ

Cks
† TkCks , ~4.33!

where (Cks)T5(@cks#T,@ck1Qs#T). The 434 matrix Tk is
given by

Tk5S Vk1akt
3 iWk

iWk1Q Vk1Q1ak1Qt3D , ~4.34!

where Vk52x0J̃g̃kt
31D0J̃m̃kt

1 and Wk5D0J̃l̃kt
3

1x0J̃m̃kt
1, with g̃k5cosv0x coskx1cosv0y cosky , h̃k

5cosv0x coskx2cosv0y cosky , l̃k5sinv0x sinkx
1sinv0y sinky , m̃k5sinv0x sinkx2sinv0y sinky . Noting the
fact that the fieldv does not modulate the hopping amplitu
between the same sublattice sites, we take account of
hopping parameterst2 and t3 by introducing

ak5a02 t̃ 2 coskx cosky2 t̃ 3~cos 2kx1cos 2ky!.
~4.35!

The one-particle propagator in a 434 matrix form is given
by

GF~k,iv!5@ iv12Tk#21, ~4.36!

where1 denotes a 434 unit matrix. As was inferred from
the perturbative analysis, the unit-cell doubling brings ab
the one-particle spectrum split into two branches in the
duced zone,6Ek

1 and6Ek
2 , where

Ek
65@ak

21gk
21hk

21lk
21mk

2

62$ak
2~gk

21lk
2!1~hklk1gkmk!2%1/2#1/2,

~4.37!

with kPRZ. To compute the LDOS, we need 11, 33, 13, a
31 components ofGF(k,iv), which are explicitly given in
Appendix D.

As in the perturbative analysis, we consider the LDOS
four distinct points on the lattice:~a! the plaquette-center,~b!
the site-top, and~c! the bond-center points. Repeating
analysis similar to that in Appendix C, we obtain the LDO
in a form

N~v!/xa25Ñ0~v!6dÑ~v!, ~4.38!

where1 and 2 signs are alternated plaquette to plaque
site to site, or bond to bond for the cases~a!, ~b!, and ~c!,
respectively. The uniform counterpart gives exactly the sa
form as in the case of the perturbative analysis,

Ñ0~v!52
1

p
Im (

k
M0~k!@GF~k,iv!#11u iv→v1 id ,

~4.39!

whereM0(k) are given by Eqs.~4.16!–~4.18!. We here used
the relation@GF(k,iv)#335@GF(k1Q,iv)#11, which is ex-
plicitly shown in Appendix D.
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The staggered counterparts at the plaquette-center an
site-top points are given in a form

dÑ~v!52
1

p
Im (

kPRZ
M ~k!3$@GF~k,iv!#13

1@G~k,iv!#31%u iv→v1 id , ~4.40!

where the matrix elementsM (k) are given by

Mplaquette~k!5sinkx sinky , ~4.41!

M site~k!51. ~4.42!

As shown in Appendix D, we have the following relation
@GF(k,iv)#1352@GF(k,iv)#315@GF(k,iv)#31* . Therefore,

dÑ(v) exactly vanishes at the plaquette-center and site
points.

On the other hand, at the bond-center points we obtai

dÑ~v!52
1

p
Im (

kPRZ
sinkm$ i @GF~k,iv!#13

2 i @G~k,iv!#31%u iv→v1 id , ~4.43!

which remains finite, where we considered the bond in theem
direction. Thus, just as in the perturbative analysis,
LDOS exhibits staggered pattern only when measured on
bonds. Using an explicit form ofGF given in Appendix D,
we obtain

Ñ0~v!5(
k

cos2
kz

2
Uk~v!@d~v2Ek

2!1d~v1Ek
2!

2d~v2Ek
1!2d~v1Ek

1!#, ~4.44!

dÑ~v!5 (
kPRZ

lkŨk~v!sinkm@d~v2Ek
2!1d~v1Ek

2!

2d~v2Ek
1!2d~v1Ek

1!#, ~4.45!

where Uk(v)5@v21vAk2Bk2Ck /v#/2Pk and Ũk(v)
52@v12ak1C̃k /v#/2Pk , with Pk ,Ak ,... being given in
Appendix D.

1. The case of t2Ät3Ä0

First, we consider again a toy band structure witht25t3

50 in Eq.~4.9!. In Fig. 11~a!, we show the profile ofÑ0(v)
andÑ0(v)6dÑ(v) for v05(0,0.1), of which direction and
strength locally simulatev(r ) around the pointsB, D andA,
C in the inset of Fig. 8~a!, respectively. We used the sam
parameter set as in the case of Fig. 8~a!. In Fig. 11~b! is
indicated the energy contour of the lower bandEk

2 with the
corresponding band structure ofEk

6 being shown in Fig.
11~c!. The uniformv0 field breaks the original four fold sym
metry and thed-wave nodes are located slightly off theG-M
line. The van Hove singularity on theY-G line is caused
solely by the superconducting gap and gives peaks atṽ5
60.38.
6-14
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FIG. 11. ~a! Profile of Ñ0(v)

and Ñ0(v)6dÑ(v) for the uni-
form field v05(0,0.1) in the case
of t25t350. In the inset is shown

fine structure ofÑ0(v) aroundṽ
;0.1, detected with higher nu
merical resolution.~b! The energy
contour of the lower bandEk

2 and
~c! the dispersion ofEk

6 with v0

5(0,0.1) along the pathG(0,0)
→M (p/2,p/2)→Y(0,p)→G.Fine
band splitting on the reduced zon
boundary are magnified in the in

set. ~d! Profile of Ñ0(v) and

Ñ0(v)6dÑ(v) for the uniform
field v05(20.1/&,0.1/&). In
the inset is shown fine structure o

Ñ0(v) around ṽ;0.05, detected
with higher numerical resolution
~e! The energy contour of the
lower bandEk

2 and~f! the disper-
sion of Ek

6 with v0

5(20.1/&,0.1/&). Fine band
splittings on the reduced zon
boundary are magnified in
the inset.
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As expected from the perturbative analysis, the unit-c
doubling causes the gap opening on the reduced zone bo
ary betweenṽ50.10 andṽ50.12. The van Hove singulari
ties associated with this gap structure gives rise to the
cific structure in the LDOS profile. The corresponding fi
structure inÑ0(v) could be detected with much higher n
merical resolution@7203720 meshes of the Brillouin zone#,
as shown in the inset of Fig. 11~a!. The van Hove singularity
at theY(0,p) point is intrinsic to the normal-state dispersio
gk and gives peaks atṽ560.41, just as in the case o
Fig. 8~a!.

We see that the staggered modulation profile shown
Fig. 11~a!, Ñ0(v)6dÑ(v), is in remarkable agreement wit
Fig. 8~a! obtained by the perturbative analysis. However
striking difference is that the dip structure aroundṽ
50.105 is now intrinsic to the modified band structure w
van Hove singularities associated with the gap opening
the reduced zone boundary and appears even in the uni
counterpartÑ0(v).
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In Fig. 11~d!, we show the LDOS profile forv05
(20.1/&,0.1/&), where the strength ofv0 is the same as in
the case of Fig. 8~a!, but its direction locally simulatesv(r )
in the 45° direction in Fig. 5. In Fig. 11~c! is indicated the
energy contour of the lower bandEk

2 with the corresponding
band structure ofEk

6 being shown in Fig. 11~f!. The uniform
v05(20.1/&,0.1/&) field breaks the original fourfold sym
metry in a way different from the case ofv05(0,0.1). Con-
sequently, the energy scales of the van Hove singulari
responsible for the dip structure move downward. The qu
tative feature of the profile, however, does not change m
for small magnitude ofv0 considered here.

2. The case of real band structure

Next, we turn to the real band structure of BSCCO.
Fig. 12~a!, we show the profile ofÑ0(v) and Ñ0(v)
6dÑ(v) for v05(0,0.1), of which direction and strength lo
cally simulatev(r ) around the pointsB, D and A, C in the
6-15
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FIG. 12. ~a! Profile of Ñ0(v)

and Ñ0(v)6dÑ(v) for the uni-
form field v05(0,0.1) in the case
of the real band structure o
BSCCO. In the inset is shown fine

structure of Ñ0(v) around ṽ
;0.2, detected with higher nu
merical resolution.~b! The energy
contour of the lower bandEk

2 and
~c! the dispersion ofEk

6 with v0

5(0,0.1) along the pathG(0,0)
→M (p/2,p/2)→Y(0,p)→G.Fine
band splitting on the reduced zon
boundary are magnified in the in

set. ~d! Profile of Ñ0(v) and

Ñ0(v)6dÑ(v) for the uniform
field v05(20.1/&,0.1/&). In
the inset is shown fine structure o

Ñ0(v) around ṽ;0.2 detected
with higher numerical resolution
~e! The energy contour of the
lower band Ek

2 and ~f! the
dispersion of Ek

6 with v0

5(20.1/&,0.1/&).
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inset of Fig. 9~a!, respectively. We used the same parame
set as in the case of Fig. 9~a!. In Fig. 12~b! is indicated the
energy contour of the lower bandEk

2 with the corresponding
band structure ofEk

6 being shown in Fig. 12~c!. The van
Hove singularity on theY-G line is caused solely by the
superconducting gap and gives peaks atṽ560.323. The
uniform v0 field breaks the original fourfold symmetry an
the d-wave nodes are located slightly off theG-M line. The
unit-cell doubling causes the gap opening on the redu
zone boundary betweenṽ50.229 and ṽ50.265, corre-
sponding to the second resonance in the perturbative ana
@the second touch of the energy contour indicated in F
9~d!#. In this case, due to the presence oft2 and t3 , addi-
tional van Hove singularity occurs atṽ50.186 and ṽ
50.216, corresponding to the first resonance in the pertu
tive analysis@the first touch of the energy contour indicate
in Fig. 9~c!#. The corresponding fine structure inÑ0(v)
could be detected with much higher numerical resolut
06452
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@7203720 meshes of the Brillouin zone#, as shown in the
inset of Fig. 2~A!. As perturbative analysis, the van Hov
singularity at theY(0,p) point is pushed upward as com
pared with the case oft25t350 and lies at the energy
ṽ560.79 outside the energy window of Fig. 12~a! just as in
Fig. 9~b!.

We see again that the profile in Fig. 12~a!, in particular,
the SPD structure inside the V-shaped profile, is in rema
able agreement with Fig. 9~a! obtained by the perturbative
analysis. However, as in the case oft25t350 a striking
difference is that the SPD structure is now intrinsic to t
modified band structure with van Hove singularities asso
ated with the gap opening on the reduced zone boundary
appears even in the uniform counterpartÑ0(v). This sug-
gests that in reality the SPD structure may be detected
only on the bonds but also at sites.

In Fig. 12~d!, we show the LDOS profile forv0
5(20.1/&,0.1/&), where the strength ofv0 is the same as
6-16
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in the case of Fig. 9~a!, but its direction locally simulates
v(r ) in the 45° direction in Fig. 5. In Fig. 12~e! is indicated
the energy contour of the lower bandEk

2 with the corre-
sponding band structure ofEk

6 being shown in Fig. 12~f!.
The qualitative features of the LDOS profile given in Fig
12~a! and 12~d! are quite similar. Thus, we may say that t
SPD structure is robust and detectable in all the directi
around the vortex center.

We note that in both perturbative and exact analysis,
SPD structure in the LDOS is predominant on the parti
side (v.0). We can understand this asymmetry by fi
turning off the superconductivity and consider the effect
unit-cell doubling. Since we are doping with holes, the ga
being opened by unit-cell doubling are on the empty side
the Fermi surface. The matrix-element effect preserves
particle-hole asymmetry even after we turn on the superc
ductivity.

V. SUMMARY AND CONCLUDING REMARKS

In this paper, we have concentrated on how to dete
signature of the unit-cell doubling originated from the S
state through STM measurement. Although the signatur
the SF state appears only dynamically in a uniform SC st
a topological defect~vortex! stabilizes static texture of th
boson condensate and the spatial component of the mas
internal gauge fielda3. We determined the texture associat
with a single vortex based on a simple London model. A h
flux quantum of the EM gauge fieldA penetrates over a hug
region r &lL , as compared with a half flux quantum of th
internal gauge fielda3, which penetrates over a regionr
&la . Although the fermions do not couple to the EM gau
field, they still see the internal gauge flux tube associa
with a3. Due to this reason, the topological texture shows
in the hopping (x i j ) and pairing (D i j ) order parameters o
the physical electrons and gives rise to the staggered m
lation of x i j andD i j through the gauge invariant ‘‘superflui
velocity’’ v associated witha3 @see Eqs.~3.5! and ~3.6!#.

The most important formula in this paper is Eq.~3.4!,
which directly tells us that whereas the center in the vor
core is a SF state, as one moves away from the core cen
correlated staggered modulation of the hopping amplit
x̃ i j and pairing amplitudeD̃ i j of the physicalelectrons be-
comes predominant over the regionl c&r &la . Combining
the results obtained through the gradient expansion and
uniform-v approximation, we concluded that the signature
the unit-cell doubling may be most prominently detect
through the staggered peak-dip~SPD! structure inside the
V-shaped profile measured on the bonds. The real band s
ture of BSCCO, in particular, the next-nearest-neighbor h
ping t̃ 3 , plays a crucial role to push the energy scales of
SPD structure toward visibly finite-energy scales. The str
ture directly originates from unit-cell doubling, which is st
bilized by the topological texture~phase winding! under the
external magnetic field. In this respect, our effects have li
to do with thed-wave symmetry of the superconducting o
der parameter. Our finding may be best summari
in Fig. 13.
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The best scan path to test our effects is shown in F
13~a! as ‘‘scan 1,’’ along which the LDOS on the bond
exhibits specific peak and dip structure alternating from bo
to bond in a staggered manner as indicated in Fig. 13~b! ~the
LDOS shown here is obtained under the same setting a
Fig. 9!. The SPD structure appears over the regionl c&r
&la and vanishes deep inside thed-wave SC state. The cor
size l c presumably extends over a fermion coherence len
jF;vF /D0 , which may amount to a few lattice scales25 and
the energetics of a single vortex supports the fact that a la
value ofla / l c tends to be favored. Thus we are hopeful th
there is certainly the regionl c&r &la over which our effects
are detectable. Due to the lattice symmetry, the unit c
doubling effects on the LDOS is detectable only on t
bonds. Thus, we have just a typical V-shaped profile of b
d-wave SC along the path denoted by ‘‘scan 2’’ in Fig. 13~a!.
Although the qualitative feature of the LDOS profile may n
be so sensitive to the dopingx in the underdoped regime, th
fine detail of the SPD structure depends on the doping
pendencex, which controlsa0}x andD0 . In particular, ex-
istence or absence of the second peak/dip depends onx. Nev-
ertheless, we have at least one resonance~or a pair of van
Hove singularities! on the reduced zone boundary at the e
ergy aroundv56(2x0J̃ t̃ 31a0). @Eq. ~4.30!#, which always

FIG. 13. ~a! The best scan path to test our effects is the p
denoted by ‘‘scan 1.’’~b! The expected LDOS profile measured o
the bond-center points~O sites on a CuO2 plane! around a single
SU~2! vortex with the real band structure of BSCCO being tak
into account. For an illustration we assumedl c53 andla510. The
staggered peak-dip~SPD! structure appears over thel c&r &la and
vanishes deep inside thed-wave SC state (r @la). We expect al-
most no effects along the scan path denoted by ‘‘scan 2.’’
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lies inside the V-shaped profile for reasonable band-struc
parameters of BSCCO.

As for an experimental setup for BSCCO sample, the b
place to test our prediction is the O site around the vor
center on the CuO2 plane. The size of the Wannier functio
at the O sites on Cu-O-Cu bonds is presumably an orde
10% in magnitude as compared with the nearest Cu s
However, it is noteworthy that the STM tunneling into the
sites may take place directly via the STM tips, while t
tunneling into the Cu sites on the CuO2 plane takes place
indirectly through the Bi atom on the BiO layer.38 Thus, we
are hopeful that the STM signal may more sensitively de
the LDOS profile at the O sites than at the Cu sites. We st
that the SPD structure is totally ascribable to unit-cell do
bling and the robust topological texture. Therefore, we m
safely say that the SPD structure survives any tunnel
matrix-element effects and can directly be detected thro
the STM experiment.
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APPENDIX A: INTERNAL PHASE OF THE LOCAL
BOSON CONDENSATE

The uniformd-wave SC state in thed-wave gauge is de
scribed by

Ui j
d 52x0t31~21! i y1 j yD0t1 , ~A1!

h0i
d 5SAx

0 D , ~A2!

which is just equivalent to the U~1! MF solution for the
d-wave SC state. Now, thanks to the SU~2! symmetry, the
same state can be described in the SF gauge via the S~2!
gauge transformationwi

† given by Eq. ~2.10!. The gauge
transformation convertsUi j

d andh0i
d to

Ui j
SF→wi

†Ui j
d wj52At3 exp@ i ~21! i x1 j yF0t3#, ~A3!

h0i
SF→wi

†h0i
d 5Ax

2 S 1
2 i ~21! i x1 i yD , ~A4!

whereA5Ax0
21D0

2 and F05tan21(D0 /x0). Now, the low-
energy excitations around the SC state in the SF gauge
obtained by fixingUi j

SF and then rotating the boson conde
sate in the internal SU~2! space. The direction in the interna
SU~2! space is specified by the internal anglesf andu as in
Eq. ~2.12!. We obtain this parameterization more direc
through transformingh0i

d by
06452
re

st
x

of
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ct
ss
-
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-
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or
-
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e

re

gi
†5expF2 i ~21! i x1 i y

u i

2
t1GexpF2 i

f i

2
t3G , ~A5!

which we encounter in Sec. III A@see Eq.~3.1!# when we
make a gauge transformation.

APPENDIX B: LONDON-MODEL ANALYSIS OF A
SINGLE SU„2… VORTEX

Here we apply the London-model prescription33 to a
single SU~2! vortex. Plugging Eq.~2.13! into Eq. ~2.16!
givesFK5FV1Fv , where

FV5
x

2mb
E dr V ~r !2, ~B1!

Fv5
x

2mb
E dr v~r !2, ~B2!

with

V5
1

2
“w22

e

c
A5“a2

e

c
A, ~B3!

v5 1
2“w22a35 1

2“f2a3, ~B4!

being the superfluid velocities associated withA and a3

fields, respectively. This decomposition indicates thatA and
a3 gauge fields are decoupled at the mean-field level. T
stationality condition with respect toA, d(FV1FA)/dA50,
is reduced to “

2H(r )2lL
22H(r )52(f0

EM/lL
2)êzd(r ),

which gives the solution

H~r !5
f0

EM

2plL
2 êzK0S r

lL
D , ~B5!

whereK0 is the zero-order modified Bessel function of a
imaginary argument. The London penetration depth is
fined as lL

25mbc2/4pe2x. The EM unit flux is f0
EM

5hc/2e where we have retrieved the Planck constant. T
physical supercurrent associated withA becomes

J~r !5
c

4p
“3H~r !5

f0
EMc

8p2lL
3 êfK1S r

lL
D , ~B6!

which globally circulates around the vortex center over
length scalelL .

Taking account of Eq.~2.21!, the stationality condition
with respect to a3, d(Fv1Fa)/da350, is reduced to
22xtv(r )1s*dr 8“ rk(r2r 8)3h(r 8)50. Taking the curl
of this equation and going to Fourier space, we obtain

h~q!5êz

f0
gauge

11lakqq
2 5êz

f0
gauge

11lauqu
, ~B7!

where we made use of Eq.~2.22!. The gauge-field-
penetration depth and the unit flux associated with it
given by la5mbs/x and f0

gauge5h/2, respectively. The
Fouier transform of Eq.~B7! gives
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h~r !5
f0

gauge

la
2 êzFla

r
2

p

2 H H0S r

la
D2N0S r

la
D J G , ~B8!

whereH0(z) andN0(z) denote the Struve function34 and the
Bessel function of the second kind, respectively. We note

la /lL;(1/Ax)(e/c)!1, where we useds5AJ̃D;1/Amb
~lL reaches;500 with lattice unit in BSCCO!. The essential
point here is that we can reasonably assume that the
gauge fieldH extends much broader than the internal gau
field h. Under this circumstance, the effect of the EM gau
potentialA is negligible as compared with the internal gau
potentiala3. That is to say, in our vortex model, a half flu
quantum of the EM gauge fieldA penetrates over a hug
region r &lL , as compared with a half flux quantum of th
internal gauge fielda3, which penetrates over a regionr
&la . In Fig. 14, we show spatial decay o
H(r )/(f0

EM/2plL
2) and h(r )/(f0

gauge/la
2) assuminglL /la

550 andla510 with lattice unit. The apparent divergenc
of h(r ) at r 50 should be taken as an artifact of the co
tinuum limit, since there is natural cutoff of an order of th
inverse lattice scale.

We shall now argue howla can become larger thanl c in
terms of energetics of a single vortex. The energy associ
with a single vortex consists of the following contributio
the cost for the SF core formationecore, the electromagnetic
contributioneEM5FV1FA , and the contribution of the in
ternal gauge fieldegauge5Fv1Fa . The energy cost for the

SF core formation is estimated as27 ecore;AJ̃D l c
2x3/2, which

favors smallerl c . On the other hand, the core size cannot
smaller thanx21/2 without costing too much kinetic energy
Thus, we conclude that the SF core occupies a radius ol c
;x21/2 at the MF level. In the present scheme, it is qu
reasonable to expect that as the dopingx decreases, the cor
size becomes larger because the energy difference bet
the SC and the SF state decreases asx→0.

The electromagnetic contribution comes fromeEM5FV
1FA , which reduces to33

eEM5
1

8p E
r . l c

dr @H21lL
2~“3H!2#5

px

4mb
ln

lL

l c
.

~B9!

FIG. 14. Spatial dependence ofH(r )/(f0
EM/2plL

2) and
h(r )/(f0

gauge/la
2) assuminglL /la550 and la510 with lattice

unit. Apparent divergence ofh(r ) at r 50 should be taken as a
artifact of continuum limit.
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To computeegauge, we first take the curl of Eq.~B4! and go
to the Fourier space to obtain

v~q!52 ip
q3êz

q2

laq

11laq
, ~B10!

and similarly

a3~q!52 ip
q3êz

q2

1

11laq
~B11!

Recallingx/2mb5s/2la , we have

egauge5
p2s

2 (
q

1

q

1

11laq
5

ps

2la
ln

la

l c
. ~B12!

We thus have the energy cost associated with a single vo

evortex5ecore1egauge1eEM;AJ̃D l c
2x3/21

sp

2la
ln

la

l c

1
px

4mb
ln

lL

l c
. ~B13!

This result is consistent with a little bit more qualitativ
discussion,27 i.e., a standardhc/2e vortex is possible with the
SF core, which does not cost too much energy asx→0. The
SF core sizel c would like to be as small as possible with th
lower boundl c;x21/2, while the size of the gauge-field dis
tribution la5mbs/x would like to be large.

APPENDIX C: COMPUTATION OF LDOS

1. Derivation of Eq. „4.14…

We start with Eq.~4.3!. The LDOS at the plaquette-cente
site-top, and bond-center points, as indicated in Fig. 6,
given by

Nplaquette~rC ,v!52
2xaC

2

p
Im (

i , j 51,2,4,5
@Gi j

F ~ iv!#11u iv→v1 id ,

~C1!

Nsite~r1 ,v!52
2x

p
Im@G11

F ~ iv!#11u iv→v1 id , ~C2!

Nbond~rB ,v!52
2xaB

2

p
Im (

i , j 51,2
@Gi j

F ~ iv!#11u iv→v1 id ,

~C3!

respectively. The envelope function is simulated bya i(r )
5e2ur2r i u/j ~j5 1

2 with lattice unit! in the bond direction.
Tuning a i(r i)51 at the site-top points, we puta1(rC)
5a2(rC)5a4(rC)5a5(rC);e21[aC , and a1(rB)
5a2(rB)[aB . Using Eq.~4.11!, we obtain

c11c21c41c5

5
4

&
(

kPRZ
eik•rCFcos

kx

2
cos

ky

2
ck6sin

kx

2
sin

ky

2
ck1QG ,

~C4!
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c15
1

&
(

kPRZ
eik•r1@ck6ck1Q#, ~C5!

c11c25
2

&
(

kPRZ
eik•rBFcos

kx

2
ck6 i sin

kx

2
ck1QG

~C6!

where 2 and 1 signs are for the cases where the site
belongs to theA and B sites, respectively. Constructing th
propagators with these wave functions, we obtain a form
Eq. ~4.14!, in a concrete form. For example, in Eq.~C3! we
obtan

(
i , j 51,2

Gi j
F 5GF~rB ,iv!6dGF~rB ,iv!. ~C7!

The uniform and staggered counterparts are computed a

GF~rB ,iv!5 (
kPRZ

(
k8PRZ

ei ~k2k8!•rB

3Fcos
kx

2
cos

kx8

2
GF~k,k8,iv!

1sin
kx

2
sin

kx8

2
GF~k1Q,k81Q,iv!G

5(
k

cos2
kx

2
G0

F~k,iv! ~C8!

and

dGF~rB ,iv!5 i (
kPRZ

(
k8PRZ

ei ~k2k8!•rB

3Fcos
kx

2
sin

kx8

2
GF~k,k81Q,iv!

2sin
kx

2
cos

kx8

2
GF~k1Q,k8,iv!G

5 (
kPRZ

(
q;small

sin~q•rB!sin

kx1
qx

2

2
cos

kx2
qx

2

2

3FGFS k2
q

2
;k1

q

2
1Q,iv D

1GFS k1
q

2
1Q,k2

q

2
,iv D G , ~C9!

which give Eqs.~4.15! and ~4.20!, respectively. At the las
step we replacedk2k8 and (k1k8)/2 with q andk, respec-
tively.
06452
a,

2. Computation of the generalized propagators

Next we compute

GFS k1
q

2
1Q,k2

q

2
,t D52^Trck1q/21Q~t!ck2q/2

† &,

~C10!

GFS k2
q

2
,k1

q

2
1Q,t D52^Trck2q/2~t!ck1q/21Q

† &

~C11!

at the Born level. First, we rewrite the perturbation term~4.7!
in momentum space,

dHF52 i J̃ (
kPRZ

(
k8PRZ

sinS kx1kx8

2 D vx~k2k8!@ck
†~D0t3

1x0t1!ck81Q2ck1Q
† ~D0t31x0t1!ck8#

1 iJ (
kPRZ

(
k8PRZ

sinS ky1ky8

2 D vy~k2k8!@ck
†~D0t3

2x0t1!ck81Q2ck1Q
† ~D0t22x0t1!ck8#. ~C12!

By replacing k2k8 and (k1k8)/2 with q and k, respec-
tively, and recalling Eq.~B10!, we reach Eq.~4.12!. The
first-order contribution ofdHF to the propagator is obtaine
as

GFS k1
q

2
1Q,k2

q

2
,t D52(

v
eivtG0

FS k1
q

2
1Q,iv D

3Ck1Q~q!G0
FS k2

q

2
, iv D ,

~C13!

i.e.,

GFS k1
q

2
1Q,k2

q

2
,iv D52G0

FS k1
q

2
1Q,iv DCk~q!

3G0
FS k2

q

2
,iv D . ~C14!

Similarly, we obtain

GFS k2
q

2
,k1

q

2
1Q,t D52G0

FS k2
q

2
,iv DCk~q!

3G0
FS k1

q

2
1Q,iv D .

~C15!

Recalling Eq.~4.8!, we explicitly write down perturbative
corrections,
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GFS k2
q

2
,k1

q

2
1Q,iv D1GFS k1

q

2
1Q,k2

q

2
,iv D

52
1

iv2E1

1

iv2E2
@U1Ck~q!U21U2Ck~q!U1#

2
1

iv1E1

1

iv1E2
@V1Ck~q!V21V2Ck~q!V1#

2
1

iv2E1

1

iv1E2
@U1Ck~q!V21V2Ck~q!U1#

2
1

iv1E1

1

iv2E1
@V1Ck~q!U21U2Ck~q!V1#,

~C16!

where

E15Ek1q/21Q , E25Ek2q/2 , ~C17!

U65 1
2 @11g6t31h6t1#,

V65 1
2 @12g6t32h6t1#, ~C18!

with g15gk1q/21Q /Ek1q/21Q , g25gk2q/2 /Ek2q/2 , h1

5hk1q1Q /Ek1q/21Q , and h25hk2q/2 /Ek2q/2 . Taking the
11 component of Eq.~C16! and then performing analytic
continuation,iv→v1 id, we reach Eq.~4.24!.

APPENDIX D: EXPLICIT FORM OF G F

By simply taking inverse of the matrixiv12Tk with Tk
given by Eq.~4.34!, we obtain an explicit form ofGF(k,iv).
The 11 and 33 components are given by

@GF~k,iv!#115@G~k1Q,iv!#33

5
~ iv!31Ak~ iv!22Bkiv2Ck

D~k,iv!
~D1!

5
U1k

iv2Ek
2 1

V1k

iv1Ek
2 1

U2k

iv2Ek
1 1

V2k

iv1Ek
1 , ~D2!

where D(k,iv)5det@iv2Tk#5( iv2Ek
2)( iv1Ek

2)( iv
2Ek

1)( iv1Ek
1), and

Ak5ak2gk , ~D3!

Bk5~ak1gk!21hk
21lk

21mk
2 ~D4!

Ck5~ak1gk!~ak
22gk

22lk
21mk

2!1~ak2gk!hk
212hklkmk .

~D5!

The generalized coherence factors are given by

U1k5
1

2

1

Pk
@~Ek

2!21Ek
2Ak2B1k2C1k /Ek

2#, ~D6!

V1k5
1

2

1

Pk
@~Ek

2!22Ek
2Ak2Bk1Ck /Ek

2#, ~D7!
06452
U2k5
1

2

1

Pk
@2~Ek

1!22Ek
1Ak1Bk1Ck /Ek

1#, ~D8!

V2k5
1

2

1

Pk
@2~Ek

1!21Ek
1Ak1Bk2Ck /Ek

1#, ~D9!

where

Pk[~Ek
2!22~Ek

1!2524Aak
2~gk

21lk
2!1~hklk1gkmk!2.

~D10!

Similarly,

@GF~k,iv!#13

5@GF~k,iv!#31*

52 ilk

~ iv!212ukiv1C̃k

D~k,iv!

52 ilkF Ũ1k

iv2Ek
2 1

Ṽ1k

iv1Ek
2 1

Ũ2k

iv2Ek
1 1

Ṽ2k

iv1Ek
1G ,

~D11!

where

C̃k5ak
22gk

22lk
21hk

22mk
212gkhkmk /lk , ~D12!

Ũ1k52
1

2

1

Pk
@Ek

212ak1C̃k /Ek
2#, ~D13!

Ṽ1k52
1

2

1

Pk
@2Ek

212ak2C̃k /Ek
2#, ~D14!

Ũ2k52
1

2

1

Pk
@2Ek

122ak2C̃k /Ek
1#, ~D15!

Ṽ2k52
1

2

1

Pk
@Ek

122ak1C̃k /Ek
1#. ~D16!

Now, LDOS at the midpoint on the bond connectingr i
and r i1êm is given in the form of Eq.~4.38! with

Ñ0~v!5(
k

cos2
km

2
@U1kd~v2Ek

2!1V1kd~v1Ek
2!

1U2kd~v2Ek
1!1V2kd~v1Ek

1!#, ~D17!

dÑ~v!5 (
kPRZ

lk sinkm@Ũ1kd~v2Ek
2!1Ṽ1kd~v1Ek

2!

1Ũ2kd~v2Ek
1!1Ṽ2kd~v1Ek

1!# ~D18!

These equations further reduce to Eqs.~4.44! and ~4.45!.
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