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Signature of the staggered flux state around a superconducting vortex in underdoped cuprates
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Based on the S(2) lattice-gauge-theory formulation of thel model, we discuss a possible signature of the
unit-cell doubling associated with the staggered-fl8k) state in the lightly doped spin liquid. Although the
SF state appears only dynamically in a unifodawave superconducting state, a topological def&ti(2)
vortex| freezes the SF state inside the vortex core. Consequently, the unit-cell doubling shows up in the
hopping (v;;) and pairing @;) order parameters of physical electrons. We find that whereas the center in the
vortex core is a SF state, as one moves away from the core center, a correlated staggered modyjatiod of
Aj; becomes predominant. We predict that over the region outside the core and inside the internal gauge-field-
penetration depth around a vortex center, the local density of states exhibits a staggered pg&&&dip
structure inside the V-shaped profile when measured on the bonds. The SPD structure has its direct origin in the
unit-cell doubling associated with the SF core and the robust topological texture, which has little to do with the
symmetry of thed-wave order parameter. Therefore the structure may survive the tunneling-matrix-element
effects and easily be detected by the scanning-tunnel-microscope experiment.
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[. INTRODUCTION symmetries associated with the time reversal and the spatial
translation, which causes thanit-cell doubling and stag-
High-T, superconductors are doped Mott insulators. Soorgered orbital currentof the physical holes. Eventually the
after the discovery, Anderson proposed that the strong corresC phase is picked out as the MF solution out of a infinite
lation physics of the doped Mott insulator is well captured bynumber of degenerate states upon dopifi: However, it is
the t-J model. Taking account of competition between thestill quite natural to expect that the SF state is nearly degen-
hole kinetic energyxt and the spin-exchange enerdyhe  erate with the SC state in the lightly doped spin-liquid states.
proposed that the spin-liquid states formed out of the resoThat is to say, as far as we confine ourselves to the spin-
nating valence-bon¢(RVB) singlets are a good starting point liquid state, the S(2) gauge structure at zero doping may
to study this modet.A standard way of enforcing the con- still be usgful to d_escribe th_e I_ow-_energy states in_the under-
straint of no double occupancy in the] model is the slave doped regime, which are missing in thelfformulation. To
boson formalism where a physical electron operatgwith ~ Substantiate this |9ea, Wen and Le¥ introduced an S2)
spin o at the sitei is splintered into an auxiliary spifer-  P0son doubletff) = (bj;,b;;) and constructed an effective
mion f;,, and charge-1 bosoh;: ¢;,=f;,b/. One way to moqlel, which recovers I_ocal S2) symmetry even upon
describe the spin-liquid state is to start from mean-fisiéF) doping. I_:rom this viewpoint, the SF state plays a crucial role
Cola et . to describe the low-energy spectrum of the lightly doped
decouplm_gz, Ajj=(esstiofiz) and xij=(fi,fi,), which spin-liquid state. The question that we must consider next is
characterize the spin-liquid state formed out of the RVI?: SiNhow to detect a signature of the SF state contained in the
glets. The phases of;; and Aj; transform as the lattice |ow-energy excitation spectrurithe first step in this direc-
gauge fields under local(W) transformation, which naturally tijon was addressed by Ivanov, Lee, and Wemho found a
leads us to a (1) gauge theory:’ At zero doping, the-J  signature of the staggered current-current correlation by us-
model reduces to an antiferromagnetic Heisenberg modehg a Gutzwiller-projectedd-wave pairing wave function.
that has an exact local $2) gauge symmetr§.Then, the  This is naturally interpreted as a consequence of the quantum
translationally invariant solution can be described asfaux  fluctuations around the SC state toward the SF state. I*8ung
staté or ad-wave pairing statewith | x;;| =|A;;|. These ap- further sought for a signature of the SF state and found the
parently different mean-fieldAnsaze describe exactly the current-current correlation in thé-wave SC state by using
same MF state, since they are just(8lUgauge equivalent. exact diagonalization of thieJ model for a system with two
In the U(1) slave-boson formulation, however, the @J holes on a 32-site lattice.
symmetry is broken upon hole doping due to the appearance In the experimental side, structure of the low-energy ex-
of the boson-hopping term. Consequently, the&ave super-  citations in the underlying “normal” metallic phase is con-
conducting(SC) state and the flux state are no longer equivacealed by a phase transition to bulk superconductivity. One
lent. For small doping and smallt, the 7~-flux phase at zero promising way to escape from this situation is to introduce
doping is disfavored against the staggered-fl§%) phase the topological defect into the superconducting phase, i.e.,
with |Xij|>|Aij|.8‘1°The SF state, however, breaks physicalthe vortex. Inside the vortex core, low-energy properties of
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the normal metallic phase show up against the surroundingituation motivated us to look at the region outside the core.
superconducting phase. Remarkable progress in the lowA/e addressed this problem in our previous p&bemd found
temperature scanning tunnel microsco{@TM) technique that whereas the center in the vortex core is a SF state, as one
with atomic resolutioff has given us good opportunities to moves away from the core center, a correlated staggered
look into the electronic states around the superconductingrodulation of the hopping amplitudg; and pairing ampli-
vortex7-19 Recent STM experimen%lg on tudeA;; of the physicalelectrons becomes predominant. We
Bi,Sr,CaCy0g (BSCCO revealed the striking fact that the predicted that in this region, the local density of states
normal core-electronic state exhibits the “pseudogap” struc{LDOS) exhibits staggered modulation when measured on
ture characteristic of the normal-state pseudogap afgve the bonds, which may be directly detected by STM experi-
A description of a vortex core based on conventional BCSnents.

theory requires that the superconducting order parameter In this paper, we give a full account of the results sum-
vanishes inside the core, which is usually accompanied bjnarized in Ref. 29 and examine the LDOS around th¢25U
the vanishing of the energy gap. The experimental finding/ortex in detail. The outline is as follows. In Sec. II, we will
thus strongly suggests that the electronic structure of the vo@ive an overview of the S(2) lattice-gauge-theory formula-
tex core is qualitatively different from that given by conven- tion of thet-J model(Sec. Il A) and then discuss the topo-
tional picture. logical texture of the S(2) boson condensate based on the

The theoretical description of the normal core in the lightO(4) o model(Sec. 11 B.. We are mainly concerned with the
of the Strong correlation physiCS, however, remainsLDOS outside the core through which we detect the unit-cell
unresolved®=2° In the SU2) picture, since the SF state is doubling stabilized by the robust topological texture. For this
nearly degenerate with the SC state, it is naturally expecteBUrpose, a close study of the vortex-core state is not neces-
that by frustrating the SC state, the SF state will be revealegary. To take account of the phase winding, we will apply a
inside the core. Based on this idea, Lee and f/proposed ~ simple London model for a single vortex to the @Wvortex
a model of the vortex with a SF core, characterized by gnodel(Sec. I1Q. In Sec. lll, we discuss the hopping and
pseudogap and staggered orbital current. Quite recently, Ha#firing order parameters of thphysicalelectron around the
and co-workers found evidence of the SF order near the vonortex. For this purpose, we perform an appropriate local
tex core by using the Gutzwiller projected 1y slave-boson SU(2) gauge transformatiofSec. Ill A). Then, we argue in
mean-field wave functiof®?® These numerical results so detail that as one moves away from the core center, a corre-

fart4152528strongly suggest that the SF state is a key ingrelated staggered modulation gf; andA;; becomes predomi-

dient in thet-J model. nant(Sec. Il B). In Sec. IV, we evaluate the LDOS outside
The vortex with the SF corfSU(2) vortex] offers us an the core. Formulation of the LDOS at an arbitrary point on

opportunity to experimenta”y detect the SF state at low tethe lattice is given in Sec. IVA. It is demonstrated that the

peratures belowl ;, whereas it may be difficult to probe the LDOS exhibits a conspicuous staggered pattern only when

staggered current pattern in the zero-field uniform SC stat&neasured on the bonds. To obtain the LDOS, we compute

because of spatial and temporal fluctuations. Possible expef€ lattice propagator by using two complementary ap-

mental tests of the SF core were proposed as summarizdfoaches, which are presented in Secs. IVB and IV C. Fi-

below?” (1) Cyclotron resonance or Shubnikov-de Haas ex-nally, concluding remarks are given in Sec. V.

periments in a high-quality underdoped sampleHat H .,

can detect the small Fermi pockets aroundn/2, */2) Il. SU(2) VORTEX WITH THE STAGGERED FLUX CORE

points with non-uniformly spaced Landau levelg) Muon- ) ) ) .

spin resonance or neutron-scattering experiments can di- N this section, we recapitulate the &) lattice-gauge-

rectly detect the staggered currents that produce a small staffieory formulation of thet-J model and then discuss the

gered magnetic field of order 10 & Intensity of the signal >U(2) vortex model in some detail.

may increase upon increasihy since the increasingl ex-

cites more vortices with the core size being independent of A. SU(2) lattice-gauge-theory formulation of thet-J model

H. (3) Nuclear magnetic resonan¢dMR) experiments can

detect sidebands in théNMR line in Y,Ba,Cu,0,5 samples

with a splitting independent ol but with weight propor-

tional to H. For this purpose, ¥8a,Cu;0;5 may be ideal H=—t 2 (ciToc]-,,Jr H.c.)+J2 (3-3,——%ninj),

because there are asymmetric bilayers wherértioa sits in (Lo o 51

between, and it may be possible to have one plane of the 2.3

bilayer optimally doped while the other plarigext to the  \herec! andc;, are the projected electron operators with
dou_blg chain remains underdoped, i.e., the staggered magge constrainh,<1. In the SU2) slave-boson approadh’3
netic field at the¥ site does not cancel. a physical electron is represented as an(ZUsinglet

Now we are naturally led to the following question: is it t5rmed out of the “isospin” doublets of the fermiony(,)
possible to detect a signature of the unit-cell doubling assosznq poson i)

ciated with the SF core through the state-of-the-art STM

technique? It turned out that there is no effect inside the SF 1 1

core, because what is staggering in the SF state is the cur- Cio=—hlp,=— (bl fi,+ e bl f_T;) (2.2
rents, which does not show up in the charge density. This v2 V2 '

Thet-J model Hamiltonian is given by
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with respectively, whereA=\/y2+A2 and ®,=tan Y(Ay/xo).
Equation(2.8) describes fermions with-wave pairing order
" :( fiUT ) h:(bﬂ)_ 2.3 parameters, while Eq2.9) describes fermion hopping with

' \egefiz) T b2 flux +4®d, on alternating plaquetfsAt zero doping &

The physical hole densik&b;rlbiﬁ biszi2>=X is enforced by =0) there is no boson and these apparently different mean-

the chemical potentigk. We need to introduce the temporal field Ansaze describe exactly the same MF state, S”mff

component of the gauge fielly; to ensure the projection of 2nd USI,SgF e Just Sw2) gauge equwaleégt, I.e.Ujj
the Hilbert space onto the $B) singlet subspace =WiUiWw; [E({Uij})=E({wUjwj})=E({Uj})], where
(%l/fiTUﬂinUﬁL hithi)|Phys)=O, which is identical to that of the transformation is explicitly given by
the originalt-J model. The conventional (@) slave bosotb;
is now regarded as the $2) boson doublet having only its w:ex;{i(— 1)ix+iyz A
isospin “up” component: hi(o))T=(bi,0). The spin-liquid ' 4|
state is characterized by the order parameteyg _ q
=(€satiof; 2 and xi; :<fiTUfj(r>, which constitute a X2 Upon doping, however, thej; with the U(1) boson conden-
matrix sate i) T=(b;,0)=(yX,0) characterizes the physical
d-wave SC state, while the ;" with the U(1) boson conden-
sate f)"=(yx,0) characterizes the physical SF state.
These states are no longer physically equivalent because of
] ) ) ) _the presence of the boson condensﬁlé({uidj ,hoi})
By this decoupllng,fthe spin-exchange teim is replaced with, E({UiS'F:hOi})] and the SC phase is picked out as the MF
S-§—(3J/16)2 ;¢ Ujj ‘?Jo+(3‘]/16)T’[UiJUiJ]' We  solution?1° Accordingly, the “flux” ®y=tan Y(Ay/xo) de-
should stress here that in the presence oftti®0son,xi;  creases fron,= /4 (m-flux phase upon doping:°
and A;; cannot be interpreted as the hopping and pairing The advantage of the SF gauge is that it is apparent that
order parameters of physical electror{see Eq.(2.2]. The  he SU2) symmetry has been broken down to the residual
“_phassegoof Ujj is now interpreted as the $P) lattice-gauge U(1), which we denote as U(%) sinceUﬁF contains only
fields.” 7.3 The lattice-gauge fields); anda; become massive by
— . the Anderson-Higgs mechanism and can be ignored, while
Uij=Uij exd —1a;- 7], @9 aj} remains massless and is the important low-energy degree
where 7=(7',7%,7°) are Pauli matrices anda;  of freedom that should be included, i.e., we consider
=(ajj,a},a;) is the gauge field on every link. Now theJ
model is described by the fermion-boson system interactin T)SF_ _ a3 CO 1t 3 _i,3.3
with the SU2) Iattice-)g]auge fieltp3 describgd by the La- 9 U= -Artexi(— 1) hdorlexd —iajjr ].(2-1])
grangian:Lo=Lg§+L§+ (3/2)2 i, Tr U] Uy 1 with

(2.10

—Xi A

A xij

In this gauge, we can discuss a vortex structure under the
LF=1 180 4+30. 1 +1 tiag T gxternal magnetic field in a way quite similar to the conven-
0 2i,j2,(r Viol ;- i1 2% Viol i~ Tig tional BCS vortex where the gauge structure is characterized
(2.6) by only the electromagneti&M) U(1)gy . The difference is
that, in our problem, the gauge structure is characterized by

~— . U(1D)ey®U(1),es-
Lg:izj hiT[5ij(ar_M)+tUij]hj+2i hliag - 7h;, (Dem®U(Lres
(2.7 B. O (4) o-model description of the local boson condensate
whereJ=3J/8 andt=t/2. The mean-field solution is ob- In the presence of a magnetic field, the mean-field solu-

tained by integrating out the fermions and minimizing thetion contains vortices. The SP) vortex model” was dis-
mean-field energye({U;; ,h;}), which leads toU;; on the  cussed based on the(4) o-model description for a slowly
links and the bosom; on the sites. varying boson condensat® The basic idea is that at low
The SU2) gauge invariance is realized through the rela-temperatures the bosons are nearly condensed to the bottom

tion E({Uij ,hi}):E({WiUijoT Wih}) for any W, of the band and are slowly varying in space and time. The
€ SU(2). Thanks to the S(2) symmetry, we can choose a Ansdze (2.8 and(2.9) gives the one-boson dispersigfi=
convenient gauge fixing to describe the MF state in afZbU  —tA(cos k,+co k,+2 cos 2b, cosk, cosk,)¥2. Theb, and
invariant way. Convenient gauge choices in the underdopefd, bosons are then nearly condensed to the band bdtlom
regime are the 8-wave gauge” or the “staggered-fluSF)  0) and(, =), respectively’> On the other hand, the fermions

gauge” specified by are fluctuating over the lattice scale and can be integrated
g 3 .- N out, after choosing amy; field, which minimize the action
Uij=—xom"+ (= 1)y VAo, (28 Jocally. This vigw is in the spirit of the Born-Oppenheimer
] o approximation® In the SF gauge given by Eq2.9), the
UP = — A7 exfi(— 1) vdy7?], (2.9 Jocal boson condensateBC) can be written as
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—_ Zi1 with ¢, and c; being numerical constants of the order of

hiF=Vx _i(_l)ix+iyz_2)v (212 unity® This term describes energy cost associated with
] ' o small fluctuations of the LBC around the SC staté (

wherez;; andz;, [CP fields] are slowly varying in space = 7/2). Forcs<c,, thel vector prefers to lie in the,- 7

and time and are parametrized by plane (equatorial planeand the SC state is favored.
o o The conventional EM Maxwell term is given by
zj,=€'¢1 cosE', z,=€¢2 sinE', (2.13 1
_ _ o FA=8—J dr(VxA)2. (218
with the internal phases being given by m
The fourth termF,, the internal gauge-field kinetic term, is

Pru= i~ dil2, pri=ait $il2. (2.14 dynamically induced by integrating out the fermion degrees
We shall give some remarks on the expression(Bd.2) in of freedom although we have no such term initially at the
Appendix A. relevant highest-energy scales of the fermiong,J. We
The overall phase angleis associated with the U(&y. have
The internal SW2) gauge symmetry is broken down to .
U(1),.sand the angleg and # are interpreted as polar angles - 3 F 3 ]
of the manifold of the LBC: S(2)/U(1),.eS?. Topologi- Fa72 % wzzx,y A @ata), (219

cal stability of vortex formation is indicated by the nontrivial
topology, 7, SU(2)/U(1)ed = m1[U(1)edd =Z. The inter-
nal degrees of freedom of the LBC is visualized by the vec
tor

whereo=+/JA and the fermion polarization bubble originat-
ing from the coupling term of the Dirac fermion current and
gauge field is given by

Iizzfrzi=(sin 0, cosg; ,sind; sing; ,cosh,;), (2.15 HZV(Q):(5MV_ q_gqu)|q|_ (2.20

which has the meaning of the quantization axis for the . ,
fields, )T=(z1,z5). In the SF gauge, the uniforthwave We note that this goes not t'ake the EM Maxwgll form which
SC state and the uniform SF state are described; bym/2 is proportional tc_Jq and which consequently gives rise to a
and ¢,=0, , respectively. The angle, is associated with nenlocal kernel in real space,
the residual gauge symmetry U(d) which is further bro- o
ken down to{O} upon Bose condensation, which triggers the Fa:—f er' dr'k(r—r")h(r)-h(r’"). (2.20
superconducting phase transition. 2

The low-energy dynamics of the LBC is described by an,
anisotropic @4) o model coupled to the gauge fieltfsSince
we are only concerned with static configurations, we shall kq= 14, (2.22
ignore the time-dependent terms from now on. The free en- ) ,
ergy associated with this model is written in a fofag instead ofk,=1 in case of the conventional EM kernel.
=Fc+F, +F5t+F, explained below. In the S@) formula-

whereh(r)=Vxa3(r) andx(r—r')=34e "4, with

tion, only the boson can carry charge. Under the magnetic C. London model of a single SW2) vortex
field, the boson hopping-pairing matrix in E@.7) acquires In the model of the vortex proposed by Lee and Wen, both
an EM Peierls phase, « and ¢/2 wind by 7 and consequently give an appropriate
. hc/2e vortex for the EM gauge field\(r). This way of
U.%FHUE’FGXF{iEJ JA(r)~dr} winding is specified by
Ti
e
Taking a continuum limit, the kinetic part is written as Va=V§: 2—‘?, (2.23
FK:LJ dr| D72, (2.16 Whichllead tqu_>l=0 an.dV<p2=“e¢/.r, whereg, denptes
2m the azimuthal unit vector in the physical space. That is to say,

where we introduced the boson masg~ 1/t. The covariant only b, chgnges its phase, by 2m as we go around the
vortex, whileb; does not.

derivative is given byD.—_V+|a 7-3— |_§A, where Wg intro- The texture of the vector in the SF gauge is indicated in
duced the continuum limit of thejj field throughaj; = (r; Fig. 1a@. In the SC state outside the corel,

—ry)-a(ri/2+1,/2). _ _ - =(cosd¢;,sin¢;,0), while as we approach the cofb,| must
The anisotropy term is phenomenologically given in ayanish and the vortex center is represented by(0,0,1),
form which is just the SF state. THe vector tilts smoothly from

the equator to the north pole as the core is approached with a

length scale denoted Hy, which is identified with the core

size. To determine the 3P) vortex structure, we shall use
(2.17 the “London-model” prescription of a single vortex in ex-

x%J
FL:T dr

1
“ 24 = (12.12—12.]2)2
Cl|2122| 03(|le 1Z5]9)?],
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phase winding on the hopping and pairing order parameters
of the physical electrons around a single vortex. For this
purpose, it is best to work with the¢wave gauge after mak-
ing a local gauge transformation

gi=expi(—1)xty—=7t|ex iﬁr?’ . (3.1
2 2
The LBC is then transformed to
S VX
hS*—h{'=gh =€ ( 0 (3.2
(b) 4,&;»3 B i.e., thel vector points toward the north poéverywhere on

the lattice as shown in Fig. (b). We here consider only the
case of a single vortex. The great advantage ofdiveave
gauge is that the physical electron operator is simply written
as

1 )
cigzﬁhi‘” o=e @i x/2f,, (3.3

i.e., the fermions behave as physical electron. After the local
gauge transformation to theewave gauge, we find

FIG. 1. (a) The texture of thel vector in the SW2) vortex
configuration in the SF gauge. At the center of the vorteppints
toward the north pole corresponding to the SF state. The shaded
circle depicts the vortex core. The local gauge transformagion
transforms this configuration t) in the d-wave gauge, where the
internal phases of the bose condensate are gauged away.

6,— 0,
2

OSF_ 179 — o.1JSF ~
Ui = Uij=giUj] QJ'T:—Xij 7°cos

+(—1)xHy7? sine' > 0’}
treme type-ll BCS superconducttrA detailed account of 010
the analysis is given in App_end|>_< B. _ _Zij[i(_ 1)ixtly cog———
Although quantitative estimation df and\, is beyond
the present simple London-model analydis,presumably 0+ 0
extends over a fermion coherenpe length-v e /A, which —(—1)y*iyrtsin i 1}'(3_4)
may amount to a few lattice scales as suggested 2
numerically’> We here just remark that there are two kinds
of vortices, because thevector can also point toward the
south pole at the vortex cor@;= 7 in Eq. (2.13. This just
expresses the state with the staggered flux shifted by one unit
cell. If the center of the vortex is in the center of the
plaquette, the degeneracy between these two kinds of vorti-
ces is broken by the circulation of the EM superfluid current.and
This is the situation considered by Wang, Han, and’f &e
their numerical local 1) mean-field approach. On the other i~ 4
hand, if the center of the vortex is on a lattice site, the de- VijT T & 3.7
generacy remains and there is quantum-mechanical tunneling )
between the two states. The tunneling rate depends and ~ As an important consequence of the local gauge transforma-
is difficult to estimate. However, the dissipation due to quadion, the gauge-invariant quantity; enters Eq.(3.4). The
siparticles may suppress the tunneling rate due toathe quantity has a meaning of the fermion “superfluid velocity”
thogonality catastrophéNVhether the two states are degener-associated with the internal gauge fieftl which is circulat-
ate or not depends on short-distance physics, which i#1g around the vortex centgsee Eq(B4)]. For example, let

where
')?ij:ACOS(I)ij , Z”:AS"](D” y (35)

®jj=do+ (— 1) vy, (3.6

outside the domain of our long-wavelength theory. us consider,(r) along the linei,=3, assuming that the
vortex center sits at3, 3). The Fourier transform of Eq.
Ill. HOPPING AND PAIRING ORDER PARAMETERS (B10) gives
OF THE PHYSICAL ELECTRONS _
AROUND A SINGLE VORTEX o) = 11 f* qu(qlx) 3.9
y 2r 2 J)o 1+NQ° '

A. Gauge transformation of the local boson condensate

Now that the SW2) vortex model has been established, wherer=(i,,3). In Fig. 2, we show the spatial distribution
we shall discuss the effects of the unit-cell doubling and theof v,(r) by assuming the gauge field-penetration depth to be
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V) )= 39 VX v-di CSh (3.13
os)  T=(,1/2) Do) = Voo dim g, @
where we retained the lattice constary. The internal
gauge-field strength(r)=V x a3 is given by Eq.(B8). We
S€e Pgaugd ) <4Po~0(1) [for example,p(2¢,)=0.03 if
we takel ;= 10cy]. This situation just indicates the fact that
the net flux is dominated by the original staggered fldx;4
Thus, inside the core the staggered phase modulation be-
comes predominant)§j ~ — A7® exi(—1)x* b7,

The Uﬂ then breaks not only the translational symmetry
FIG. 2. Spatial distribution of the superfluid velocity(r) as-

d .7d A _ .
sociated with the internal gauge fiedd. We assumed the gauge (U‘j¢Ui+eMvJ+‘9_u’ Wheree{L with _'U“’ v=x,y denotes a_umt
field-penetration depth to be,= 10 with the lattice unit. The origin  Vector connecting the neighboring sitebut also the time-
should not be taken too literally, sineds defined in the continuum reversal symmetry with respect to the local bondl$ﬂ(

limit. #[U{]]%). Although we cannot explicitly analyze the elec-
tronic states inside the core, the time-reversal symmetry

Aa=10 with lattice unit. We see that,(r) decays over the preaking implies that the staggered fermion currents flow on

length scale\,, as is naturally expected for the superfluid the bonds just as in the case of a uniform SF state. Once the

0.6}

04}

0.2}

[ 3 5 7 9 i N R 2

velocity. bosons are condensed, the currents come up as the staggered
Let us WriteU,-dj in the form orbital currents of the physical hofé.
In this paper, we are concerned with the possibility of
- A detecting a signature of the unit-cell doubling through STM
vi=| g g (3.9 measurement. We immediately see that there is no hope in
! AJ* Xij the SF state, because what is staggering in the SF phase is

the on-bond currents caused by the staggered pfage
An essential point is that in thé-wave gaugey;; and Kij (3.1D]. Conseqqently, the peripd _doupling of the current
have the meaning of the hopping and pairing order param-"€ver shows up in the I__DO§.Th|s situation motivates us to
eters of the physical electrpsince the physical electron op- 00k at the region outside the core.
eratorc;,, is just proportional to the auxiliary fermion opera-
tor f;,, [Eq. (3.3)]. Below we discuss the meaning gf; and
Kij at different limits. We consider the region outside the SF core. We approxi-

mately set¢;~ 6;~ m/2, which gives

2. Outside the SF core

B. Hopping-pairing order parameters in the vicinity U8~ — % 34 (—1)iytiyR. A2 1
and outside of the vortex core Vi Xi ™+ (= DA 7 (314
1. Vicinity of the vortex center €.,
First, we consider the vicinity of the vortex center, where Xij = Xij » (3.19
6,~ 6;~0 and Eq.(3.9 becomes L
WL i i+ — — . .
UijN_ATS exdli(— 1)'X+'yq)ij ], (3.10 Recalling thaty;; andA;; are interpreted as the hopping and
, pairing amplitudes of physical electrons, we see thatre-
€., gion outside the SF core and inside the gauge-field-
o _ . penetration depthl ;=<r=M\, around the vortex, is charac-
Xij=Aexpi(—1)x"vdy], (3.1  terized by the staggered modulation of the hopping and
o pairing amplitudes Note that the amplitude of;; and Aj;
A;;=0. (3.12  are modulated in a correlated way according to Bop) to
preserve
Equation(3.12 indicates that the superconducting order pa- _
rameter is killed at the vortex center. In this region, as is S(izj+Ai2]-=const. (3.17)

directly seen from Eq(3.11), what is modulated is the phase . . L .
of the fermion hopping parameter, which is just regarded a%g Fig. 3, ;ve depict the situation given by Eq8.9), (3.19,
the electron-hopping parameter. We see that the sum of th 1_®d and(3.17. .

phase around an elementary plaquette yields modulated net Uij breaks the translational symmetry, but does not breaks
flux +4®g+ pgaedr) Wwith*signs alternating from the time-reversal symmetry with respect to the local bonds.
plaquette to plaguette. We here introduced a gauge flux peﬁiherefore,Ui"j does not cause local fermion current on the
etrating an elementary plaquette centered-a0, bonds[of course, even in this case, the external magnetic
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wherea, has an order okJ.

For the purpose of seeing a physical situation, we assume
the SF core size to blg=3 and a simple distribution of the
angle 6 as indicated in Fig. @). In Figs. 4b) and 4c),
respectively, we show the corresponding spatial variation of
Xij andZij on the link connectingi(,0) and {,,1) with the
lattice unit. We also assumed the gauge-field-penetration
depth to bex ,=10. NOWZ”— just represents pairing ampli-
tude of the physical electron and vanishes at the vortex cen-
ter as it should do. As we go away from the coyg,andA;;
acquire staggered modulation with the amplitude becoming
smaller, because the superfluid velocit{r), which is re-
sponsible for the appearance of the staggered modulation,
becomes smaller. In fact, the staggered modulatiog;ofs

h XU g just of an order of a few percent, while that &f; is rather
large. However, as we shall see shortheriod doubling
caused by this modulation gives rise to visible effects in
LDOS outside the coreWe should also remark that bogh;

field breaks time-reversal symmetry and causes globally cir@ndA;; contribute to the LDOS. The problem now reduces to
culating supercurrent given by E(B6)]. What is staggering the more familiar U1) mean-field theory, but witty;; and
in this region is not the local current but the local density ondij . Which vary in space. This is precisely the problem
the bonds. treated by Han, Wang, and L®8€°and it is gratifying that

The temporal component of the gauge fiejgi_” is deter- they found numerically the staggered current around the vor-

H 7
mined locally by the LBC. In the uniform case, the saddlel®X core as proposed in the 1) vortex modef. ,
point is purely imaginary. There, we can regard the LBC as !N Fig- 5, we schematically show the modulation pattern
almost uniform in the SC state outside the vortex coreOf Xij outside the core. The staggered modulation becomes

Therefore it may be legitimate to assum to be uniform ~ MOSt conspicuous when scanned along the straightiline

1 o1 H H 1
and parallel to the LBGpointing toward the north polen =2 O Iy=2, provided that the vortex center sits @ 2),

this region[this assumption is reliable as far as deviation ofP&cause on these bonds the circulatrfg) field becomes
g, from ~ /2 is small. From now on, we set parallel to the bond directions. Apparently, the bond-

modulation pattern reminds us of the spin-Peierls states.
However, this is not the case, since the MF expectation value

FIG. 3. Geometric relation gf;; andKiJ- . The angle®;; modu-
lates aroundb in a staggered manngsee Eq(3.6)].

iod i L
iag;=(0,0a0), (318 of spin-exchange energy on the bonds is given(8yS;)
(@ 0
A
1 3 5 7 9 11 13 is—
(b) va
1.04¢ |xl]|
1.02 FIG. 4. A simple distribution of thed indi-
. cated in @) leads to spatial variation dfb) x;;
N (2 and (c) Aj; on the link connecting i(,0) and
0.98¢ (ix,1) as indicated in the inset. The gauge-field-
0.961 ys penetration depth is assumed to)e=10.
x ; . ]
— 3 T
(C) 0.4: |AZ.7| 0 2 3 4 5 6 7 7
0.3}
0.2}
0.1r

3 5 7 9 11 13 15 tz
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g AnEnAEk tively valid even forr ~1, as long as we avoid the inside of
P < S the core.
%Illlllllﬁl "

H 3
Il
——

L

IV. LDOS OUTSIDE THE CORE

As we saw in the preceding section, the staggered modu-
lation of the hopping amplitudg;; and pairing amplitude
Aj; becomes predominant over the regieer<\,. The
presence of staggered modulation suggests that this may be
the best place to look for the unit-cell-doubling effect. In this
section, we consider the LDOS in this region.

)
ISR
LB

A. Formulation of LDOS

The local density of states at an arbitrary paimn lattice
is defined by

2
N(r1w):_;Imgphyirar;iw)hwﬁwJﬂ&i (41)

where the propagator for the physical electron is introduced
by GPVYr.r'iw)=—[Bdre' T (T.c,(r,”)cl(r)). To
. . . . model the tunneling current we assume that the electron tun-
FIG. 5. Schematic drawing of the amplitude-modulation pattern . . L )
of the hopping parametéy;; outside the SF core. Solid and dotted nel from the tip located at to a linear combination of Wan

bonds indicate enhanced and reduced amplitudes, respectiveger orbitals centered at lattice sites, i.e., the physical elec-

where thickness of the bonds qualitatively represents magnitude on operator at,c,(r), is related toc, as
the modulation. Circulation of the the fermion “superfluid velocity” ;

v(r) associated with the interna_ll gauge fieftlis indicated_by the C(r(r)ZE ai(r) exg — igJ’ dr’-A(r")
arrows. The staggered modulation becomes most conspicuous when i ri

scanned along the Iine'§:% or iy:%, provided that the vortex s . .
center sits at3, 3). Note that the boundary of the SF core region, where the EM gauge potential gives rise to the EM Peierls

inside which the staggered orbital currents flow, should not be takenhase' 'I:klure_ﬁ/r;v_elope functiopi(r)_ may be simulated by
literally. In reality, there is a crossover region aroundl, where ~ 2i(F) =€ "* in the bond directior{the Cu-O-Cu bond

the staggered current and the staggered amplitude modulatiohn€ qugth scalé can reaso_nably be set equalde 3 _With .
coexists. the lattice scale corresponding to the Cu-O separation. Since

the effects of the EM gauge fields are negligibly small in

~ _ strength as compared with the internal gauge potential, from
= —J(Yﬁ- +Ai2j):const and therefore the spin-Peierls ordernow on, we ignore the EM Peierls phase and examine the
parameter become(§-$+éﬂ—3~s,éﬂ>=0 with &, being effects of the staggered hopping and pairing amplitudes on
a unit vector connecting the neighboring sites. the LDOS. Noting Eq(3.3) in thed-wave gauge, Eq4.1) is

As we approach the core from the outside, thesctor in ~ Written as

the SF gauge gradually rises off from the equatorial plane «
[see Fig. 18)]. This may give rise to a crossover region N(r,w)z——lmz ai(r)aj(r)[gi':j(iw)]11|iw—>w+i5-
characterized by coexistence of the amplitude and phase T
modulation, where) dependence d.fJidj becomes significant. (4.3
It is expected that the staggered current begins to appedhe subscript 11 means the 11 component of the lat-
aroundr~I. and its strength becomes stronger as we aptice fermion propagator of a 22 matrix form, giFj(T)
proach the immediate center of the vortex. We give a sche= _ (1 _y. (7)y! ).
matic drawing of this circumstance in Fig. 5. To study the \ye here givje an intuitive demonstration that the LDOS
effects of@-dependenUi“j is, however, beyond the scope of exhibits a conspicuous staggered pattamty when measured
the present paper and we concentrate on the regiem on the bondsA more quantitative discussion will be given in
=\,. We should also remark that when the an@lédeviates the following sections. For example, we pick up the sites
from 6;= 6;= /2 as we approach the core, the directiign 1,2,...,6 indicated in Fig. 6 and consider the midpoints on the
begins to slightly deviate from the north pole, sirgis no  bondsB;, B, and the plaquette cente@s, C,. The LDOS
longer parallel to the vector due to small anisotropy. In the at C; and C, come fromEi,j:1,2,4ygiF- and Eiyj:2,3,5,£ﬁ ,
next section, we shall compute the LDOS in the SC stateespectively. We see, howevef,,~ Gt because the bonds
outside the core by setting = 6;= /2. Then,agi is given 12 and 56 are almost equivalent except the effects of negli-
by Eqg.(3.18 and is exactly parallel to thevector pointing  gibly small dependence of thefield on the spatial position
toward the north pole. We expect our results to be qualitar over the lattice scales. Similarlgys~ G5, and G~ Ghe.

Cigs (42)
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4 5 6 with = —Jxo[ cosk,+cosk,+1, cosk, cosk,+t5(cos X,
S — +cosX)]+a, and 7=+JAq(cosk—cosk). We have
taken account of the second and third nearest-neighbor hop-

~Cr G ping of the fermions to reproduce the real band structure. In
X ) X general, thed-wave nodes shift froni+ /2, +7/2). In the
case of t,=t3=0, the nodes are located at
1 - 24 . 3 (= cos Yay2Ixo], = cos Jag2Ixo]). For T,#0 and s
B: B2 #0, the nodes are located af*cos f(t,.t3,a0)],

. . . +cos [f(t,,13,0)]), where
FIG. 6. Points on lattice where we consider the LDOS. We have

four symmetrically distinct points: the plaquette cerite), site top
(@), and bond centefO). The site-top and bond-center points cor-
respond to the Cu and O sites, respectively.

~ o~ -1+ \/1+ (4?3""{2)(2?3"‘ a()/on)
f(tz,t3,@9)= :

4t5+1,

- (4.10
ThereforeN(rCl,w)~N(rcz,w). Similarly, the LDOS at the
lattice sites is almost uniform. On the other hand, the LDOSNe see that as far a;#0 the nodes shift from(= /2,
atB; andB, come froms,; ;_; ,.Gf; , and=; ;_, G , respec-  *m/2) even ifay=0. Furthermore, we note that location of
tively. Here, Gi, and G5, are clearly inequivalent because the nodes is independent of the gap magnitdge
they connect the bonds with alternating hopping-pairing am- Since the perturbation term causes period doubling, it is
plitudes. convenient to introduce the fermion operators on two sublat-

To computegipj(iw) in the SC state outside the core, we {ICES,

shall use the following two approaches that may be comple-
mentary to each othefi) a perturbative analysis using the ¢_:i S e (gt o)
gradient expansion ani) an exact diagonalization using Y - k= 7k+Ql
the “uniform v” approximation. In the former approach, we

4.1)

can take account of the circulating configuration of tife)

whereQ= (7, 7) andk e RZ meansk runs over the reduced

field, while in the latter approach, instead, we can obtain @rillouin zone [k,|+|k,|<. We have dropped the spin in-

nonperturbative aspect of the problem.

B. Perturbative analysis using the gradient expansion

First, we expand Eq(3.5 with respect tov;; up to the
first order as

Xij~ Xo— (= 1) Aquyy 4.9
Ajj~Ap+ (= 1) yyguyj (4.9
which give U} = U + 8U;; with
8Uji= (= 1) WA+ (= 1)y vyl . (4.6
Then, we treat the term
F J t
SHF =2 > wloUy 4.7)

()
as perturbation with respect td)f, whereay; is given by Eq.

(3.18. The free propagation is governed U)?J and the cor-
responding propagator becomes

Uy Vi
F H —
go(k’lw)_ iw—Ek+ iw+Ek’

4.9

dices. Thet+ and— signs are for the cases wherieelongs to
the A [ri=(ix,i,)=(even,even or (odd, odd] and B
[(ix,iy) = (even,odd or (odd, even] sublattice sites, respec-
tively. Then, as derived in Appendix C, the perturbation term
is written in momentum space as

SHF=— > > [$E+q/2+Qng(Q)¢k—(q/2)o+ H.c],

keRZ q,0
(4.12
whereCy(q) =AqC, () 7>+ xoCy (q) 7+ with
Ce(q)= "ji)‘a—m'[ sink, =g, sink, ]
R CEEES VT
(4.13

The momentum transfer should be small because we have
retained only slowly varyings field. The perturbation pro-
cesses cause unit-cell doubling and scatter the electron with
k in the reduced zone th+ Q in the second zone, and con-
sequently the mirror image of the reduced zone is formed in
the second zone, as indicated in Figa)7

Now, we consider the four distinct points on lattice indi-
cated in Fig. 6:(a) the center of the plaquett@laquette
centej, (b) the top of the sitegsite top, and(c) the center of
the bondgbond center The site-top and bond-center points

where the generalized coherence factors are introducesbrrespond to the Cu and the O sites, respectively, on the

by Ux=3[1+(w+nr)/E] and Vi=3[1— (%7
+ n7)/E,]. The one-particle spectrum is given by

Ex= V7t 7

4.9

CuG, plane. All the detail of derivation of the LDOS is left
to Appendix C. In any case, the LDOS is written in a form

N(r, »)/xa?=Ny(w) = SN(r, o), (4.14

064526-9
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() Born approximation, and thus, in EGt.15, we obtain

Im[gF(krkriw)]lllinw+i5

=Im[G5(K,i®) 111w wsis

Yk
1+E—k

T

© ) 2

|

FIG. 7. (a) The perturbation processes given by F4.7) con-
nect the electron wittk in the reduced zonéinner squargto k _ 1
+Q in the second zoné&shaded region and consequently the mir- ON(r,w)=——1Im E E M(k,q;r)
ror image of the reduced zone is formed in the second zone. The T g-smalkeRz
d-wave nodes inside the reduced zone and their mirror images are q
also indicated.(b) The scattering processes along the (0,0) +Q.k,—=,iw
—(ar,) direction whose matrix elements give the coherence fac- 2
tors L, and N, . At the energyo*, the Dirac cones around the
d-wave nodes touch the reduced zone boundary and resonance oc- +Q,iw
curs.(c) The level crossing at the reduced zone boundary would be
lifted and eventually the period doubling would cause gap opening
if we would go beyond the perturbative scheme. Note that situationd he matrix elementd (k,q;r) associated with each point
in (b) and (c) correspond to the case of a simple band structureare given by

without the next {,) and second nearests) fermion hopping.

aw

Sw—E+

Yk
l—E—k) S(w+Ey),

(4.19

, which just reproduces the LDOS profile in the uniform
d-wave SC state except overall reduction due to the matrix
/- elementM (k).

The staggered counterpart is given in a form

K+ 2

F
g 2

q q
Fl k— = =
+g(k 2,k+2

, (4.20

fo—w+id

11

Ox
Kyt —
where + and — signs alternate from plaquette to plaquette, plaquett Yy — e 2
site to site, or bond to bond for the cade$, (b), and(c), M tk.qir)=cogq-r)sin 2
respectively, andx represents magnitude of the envelope
function from the nearest cite. The uniform counterparts are VT AV .
. . y X y
given in a form s 2 ~ 2 2
sin——cos——cos——,
_ 1 - _ (4.21)
No(@) == —Im 2, Mo(K)[G (kK,i @) J1alia—w 10, |
Mk, q;r)=cogq-r), (4.22

(4.15

bon ) ket a2 ke—qy/2
where we introduced the generalized propagator MPoY K, q;r) =sin(q-r)sin 5> COS— ,
GF(kK' iw)=3 ’rjel(k-ri*k-rj)giﬁ(iw). The matrix ele- (4.23
mentsM (k) distinguishes different symmetries associated ,
with each point and are given by where r denotes the plaquette-center, site-top, and bond-
center points, respectively. Now we need to compgftek
+0/2+Q,k—g/2jw) and GF(k—q/2k+q/2+Q,iw). The

k k detail of computation is presented in Appendix C. We obtain

Mplaauctig ) — cos’-?X cosz7y, (4.16

q q.

F 2 2
[g k+2+Q,k 2,|a))
MS"(k)=1, (4.17) 4 q
F .
+g (k— E,k+ E"‘Q,I(D)
K Wip—w+is

MBEod k) =co§7x. (4.19

. + A+
=3 (@, +Eyi g2+ 0 Ex—q2)[AoCy (A)Li

for the casesa), (b), and(c), respectively. The perturbation

o
; o + xoCr (LY ]+ = - -
processes do not affect the uniform counterpart within the XoC (LT 1+ 5 000, =B g0~ Biad)
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[AoCe (L™ + xoC (LY ] MPlaaettk g;r) =% cogq-r)sink,sink,, (4.2

T
_56(wa+Ek+q/2+Q1_Ek7q/2) MSite(k'q;r):Coiq.r)' (427}

+ A+ - +
X [AoCy (ANR T+ XoCic ()N ] MR 1) = 3 in(q. 1 sink s
1 X .

o
+-d0(w,—E y+Ex_qg2) . .
2 krazeQ ko By noting the antisymmetry relatiaf] (q) = —C, (—q), we
X[ACr (DNR ™+ xoC (NX ], (4.24  immediately see thabN(r,) vanishes at the plaquette-
center and site-top points while it remains finite at the bond-
whered(w,X,y)=[(w—X)— d(w—Yy)]/(x—Yy). The coher-  center points. Thus, we confirm thiite staggered counter-

ence factors are given by part of the LDOS appears only when measured on the bonds
s Even in the cases of the plaquette center and the site top,
Lo =1+yey-=men-Ty Ty, SN(r,w) becomes finite if we retaig with respect tc, i.e.,
. taking account of the negligibly small dependence of the
L =xn 2 +yin_+tn.in, field on the spatial position over the lattice scales. How-
. ever, this effect is still invisibly small as compared with the
Ne =l—vy.y +ninp xy, Ty, case of the bond center. This result is fully consistent with an
intuitive discussion given in Sec. IV A.
N =%n.Fnp —yinp_—n.y_, (4.25 From now on, we concentrate on the bond-center points:
the midpoint of the bond connectirigandi+&, where u
where v, = Yt g2+ Q/Ex+gq2+qr ¥-=Yk-a2/Ek-q2: 7+  =x ory. Taking account of the envelope function, the mag-
= Mg+l Bxvqrigr andn_=ne g/ B gp- nitude of the LDOS may be reduced by a factor~0.1 as

To proceed with further analytical computation, we notecompared with the uniform counterpart of the LDOS at the

that the main contribution df integral comes from regions  site top. Using Eqe4.24) and(4.28), theq integration in Eq.
near the nodes in the vicinity dft=/2,>7/2), while g is (4,20 can be performed to yield

small. Thus, it is legitimate to ignorg with respect td in
Mo(k), M(k,q;r), and G"(k+qg/2+Q,k—q/2jw), while
we must retairg in C, (q). This approximation amounts to
ignoring ther dependence of the(r) field over the lattice
scales, and retaining only fermion fluctuations. On the other

hand, retainingy dependence o€ (q) amounts to taking X[Ly 8(w;Ex,Ex+q) +Li 8(w;—Ex,~Ex:q)
account of the long-distance decay of th&éeld. Under this + : - .
approximation. qu(.4.21), (4.22), ar{d(4.23 are simply re- Nic o(@: By, —Bie @)+ Nic 0(@; By, B ),
duced to (4.29

o -1 iy t+i
SN(r,0)= W#u#(r)kéz sirk,,

(a)

(b)

A\
FIG. 8. (a) LDOS profile in the case of,

=t3;=0, obtained by the perturbative analysis at

% the pointsA, B, C, andD mdl@ted in the inset.
~d-wave node\ The LDOS atB andD are justNg(w). The peaks

N\\\\\\\\ at ®=w/yJ=+0.38 are associated with the
X d-wave superconducting gap. The additional
peaks ato=+*0.41 are associated with the van
(©) Hove singularity located &0, =) and (=, 0).
Y The staggered structure arouid=0.05 comes
from resonant scattering between the fermions
with k andk+ Q, caused by the period doubling.
Eq = w* (b) The one-particle energy contour around the

d-wave node(c) The energy contour§, = w and
Ex+q=w touch ato=*+0.05.

=

Fk = w*

= N
o wXoJ w*=10.05 x,J
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-0.323

FIG. 9. (a) LDOS profile in the
case of the real band structure of
BSCCO, obtained by the perturba-
tive analysis at the point4, B, C,
and D indicated in the inset. The
LDOS atB andD are justNy(w).
The staggered structure arouid
=+0.179 andw=0.224 comes
from resonant scattering between
the fermions withk and k+Q
caused by the period doubling.
The small wiggles outside the
V-shaped profile come from nu-
merical fluctuations(b) The pro-
file over a wider energy window
than that of(a). The peaks aw
==*0.79 are ascribed to the van-
(c) (d) — + T (e) _+ 7 Hove singularity at(0, =) and

w= *0179%o] Y w=*0.224%oJ (xa, 0) points. (c) The one-

k particle energy contour around the
ErkiQ=w . EriQ=w d-wave node. The energy contours

w/X, 0J~

04

-1.0

Ex=w and Ey, o= w touch atw
=+0.179 and =0.224 as indi-
cated in(d) and (e), respectively.

§ Frk=w .‘: Ek= w

d-wave node\
Fl RRRRAR X T X T X
where the coherence factokg =AgLg ™+ xoL¥™ and Ni =+0.05. From now on, we refer to this structure as the

= AN =+ xoN¥™ represent the matrix element associated"staggered peak-digSPD” structure, since the peak and dip
with the scattering processes indicated in Fih)7As has  alternate from bond to bond in a staggered manner. The ad-
already been mentioned, the best paths to detect the sta@itional peaks ath=+0.41 come from the van Hove singu-
gered modulation of the LDOS are the lings-3 ori,=3 larity located af0, =) and(+, 0) points. The low-energy
provided that the vortex center sits @t2), because in this dispersion gives elliptic contours around tievave node as
case we can go through the bonds whose direct@nare indicated in Flg &), which touch the reduced zone bound-

parallel to the circulating/(r) field (see Fig. 5. ary at(w/2, 7/2) as the energy increases. The specific struc-
ture arounds=0.05 comes from resonant scattering between
1. The case of 4=t;=0 the fermions withk andk + Q. As w increases from zero, the

. . ) energy contour&, = w andE, , o= w touch at(s/2, #/2) on
First, we consider a toy band structure with=t3=0in  he reduced zone boundary’&alt(3 +0.05 as indicated in Fig.
E_q. (4.9, becaug;e this S|mple case provujes us with a Cleaé(c) [see also Fig. (b)] and resonance occurs. We note that
view on the perlod-doubzllng effects. In Fig(&, we show o moqulated structure inside the V-shaped profile is pre-

the profile of N(r,w)/xa” at the four bond-center points, qominant on the particle sidest0). This asymmetry is due
Alix,2), B(ix+2,0), Clix*+1;3), andD(ix+3,1) with iy  to the matrix-element effect:; vanishes atm/2, m/2).
=5 [see the inset of Fig.(8]. From now on, we fix the In any case of this toy band structure, it may be totally
parameters ag=0.05vJ, Ag/xo=0.2, and assume the hopeless to experimentally detect such tiny structures as in-
gauge-field-penetration depth to hg=10. This choice of dicated in Fig. 8a). We see in the following that the realistic
ao and A, is reasonable in the underdoped regithélote ~ band structure of BSCCO drastically changes this situation.
that atB andD, AN(r,w) almost vanishes and the LDOS is
just given byNy(w), because/(r) becomes almost perpen-
dicular to these bond directions. The modulation pattern at Next, we take account df,= —0.550 andtz=0.087 to
the other points can be read off from Fig. 5. reproduce the real band structure of BSCCO measured by
We see that inside the overall V-shaped profile with theangle-resolved photoemission spectroscipin Fig. %a),
sharp peaks atw=w/y,J=*0.38 associated with the Wwe show the profile oN(r,w)/xa? at the same points as in
d-wave superconducting gap, there appear additional pedkid- 8@). In this case, inside the overall V-shaped profile
and dip structures at sit€ and A, respectively, around  with the sharp peaks @ = w/y,J= *0.323 associated with

2. The case of real band structure
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(@ -0.56 (b)

FIG. 10. (8 LDOS profile for ag=0.03yxJ
andA,/xo=0.35, corresponding to lower doping
as compared with the case af=0.05yoJ. (b)
The one-particle energy contour around the
d-wave node. The energy contouE=w and
Ex+q=w touch ato=+0.2 as indicated irfc).

-0.75 -0.5 -0.25 025 0.5 0.75 r X

the d-wave superconducting gap, there appears a prominerbntours changes upon changifgas clearly seen by com-

SPD structure aroun@®=*0.179 andw=0.224. In Fig. paring Fig. 10b) with Fig. 9c). The contoursE,=w and

9(b), we show the same profile as in FigaPover a wider Ey,o=w touch on the reduced zone boundary onlywat

energy window. The peaks at= *=0.79 are ascribed to the +0.2[Fig. 10c)]. As already mentioned, however, location

van Hove singularity a0, =) and (=, 0) points®’ of the d-wave nodes is independent &f and always shifts
The SPD structure inside the V-shaped profile agaifrom (+n/2, +m/2) for finite T5, i.e., the resonance at

comes from resonant scattering between the fermionskvith (+ /2 +7/2) occurs at the energy

andk+ Q. As seen in Fig. &), the low-energy elliptic con-

tours in the case without, andt; [Fig. 8b)] bend around

the d-wave nodegbending of the Dirac coneConsequently, ®* =+ (2t3+a9/x0d). (4.30
as w increases from zero, the energy contoltis= » and
Ex+o=w first touch on the reduced zone boundarywat  |n this respectthe next-nearest-neighbor hopping pilays a

+0.179 as indicated in Fig.(8), and resonance occurs. crucial role in pushing the energy scales of the SPD struc-

Then, ato=+0.22 they touch again dtr/2, 7/2) as indi-  ture toward visibly finite energy scales

cated in Fig. &) and the second resonance occurs. The rea- In the perturbative picture presented here, the period-

son why the second resonance comes up only in the electrafpubled perturbation processes form the “mirror image” of

(w>0) side is again ascribed to the matrix-element effect aghe energy bands with respect to the reduced zone boundary

in the case of,=t;=0. We can say thatue to the real band [Fig. 7(a)]. The energy leveE, and its mirror imageEy ;o

structure (bending of the Dirac cones around the d-wavecross on the zone boundajig|+ |ky| =7, which causes the

nodes the staggered structure in the LDQiBofile becomes  resonant scattering at the corresponding enandy [Fig.

far more prominent as compared with the casetpefts  7(b)]. It is naturally expected that if we go beyond the per-

=0. turbative scheme the level crossing would be lifted and even-
We see that the SPD structure due to the period doublingually the period doubling may cause a gap opening in the

occurs only inside the V-shaped profilsee Fig. ®)]. In  fermion excitation spectrum as indicated in Figc)7 This

fact, the energy scale at which the SPD structure appeagsoint is confirmed through the exact diagonalization under

depends on the band-structure parametags:x, Aq/xo, uniform-v approximation as shown below.

t,, andt;). For a reasonable choice of parameters in the

underdoped regime, however, the resonance always occurs at _ L _ _—

the energy scales below that of the superconducting gap, i'e.,C. Exact diagonalization after the uniform-v approximation

the SPD structure always appears inside the V-shaped profile. Next we consider the case of uniforna field v,
To see a qualitative feature of the doping dependence, ir- (v, ,v0,), Which may locally capture the effects of the

Fig. 10@@) we show the LDOS profile foa,=0.03y,J and  circulatingv(r). From Egs.(3.9), (3.19, and(3.16, we see

Ao/ x0=0.35, corresponding to the case of a lower doping aghat uniformv, yields

compared with the case af=0.05y,J andA,/xo=0.2. We

see that the SPD structure remains robust, although the reso- Xii=Xij=Acod @o+(— 1) Iy(r;—r})-vo], (4.3D)

nance occurs only once @t=0.2. Smearing out of the sec-

ond resonance is due to change of the geometry of the Dirac _ o

cone around the-wave nodes. The shape of the low-energy Ajj=Aj=AsiM®o+(—1)xy(ri—r))-vol. (432
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The staggered counterparts at the plaguette-center and the

exactly diagonalize the corresponding fermion Hamiltoniansite-top points are given in a form

which can be written as

Pl

+
HO - 2k;{2 \I,k(er\I,ka' ’

(4.33

where @y,) "= ([¢xo]" [ ¥k+00]"). The 4xX4 matrix Ty is
given by

Vk+ak7'3 IWk

T=1 . , (4.34
““| iWikio  Visotaior

where V= — xod W+ AdZum  and  Wy=Agdn, 7™
+ Xoﬁﬁkrl, with %= Ccosvg, COSk,+COSsvg, COSK,, 77
= COSV( COSK,—COSv(, COSK, k= SiNvgysink,
+sinvgy sink,, 7= sinvg,sink—sinvg, sink,. Noting the

fact that the fields does not modulate the hopping amplitude
between the same sublattice sites, we take account of the

hopping parameters andt; by introducing

ay=ao— 1, Cosk, cosk, — t3(cos XK, +cos X,).
(4.395
The one-particle propagator in ax44 matrix form is given
by

Gr(kjiw)=[iwl-T,] % (4.36)

where 1l denotes a X4 unit matrix. As was inferred from

the perturbative analysis, the unit-cell doubling brings abou
the one-particle spectrum split into two branches in the re-

duced zone; E, and +E, , where
E =[ak+ ve+ et Mg+ pi
= 2{a (Vi N+ (it i) 2,
(4.37

- 1
oN(w)==—Im kZRZ M (K) X {[GF(K,iw)]13

6K i) Jatliowis: (4.40

where the matrix elementd (k) are given by
M Plaauetiele) = sink, sink, , (4.41)
MS(k)=1. (4.42

As shown in Appendix D, we have the following relation:
[GF(K,i®)]13= —[G"(K,iw)]51=[G"(k,iw)]3;. Therefore,
SN(w) exactly vanishes at the plaquette-center and site-top
points.

On the other hand, at the bond-center points we obtain

SN(w)=— %Im kERZ sink,,{i[GF(k,iw)]13

e

_i[G(kriw)]31}|iw~>w+i51 (443

which remains finite, where we considered the bond irefhe
direction. Thus, just as in the perturbative analysis, the
LDOS exhibits staggered pattern only when measured on the
bonds. Using an explicit form o™ given in Appendix D,

¥ve obtain

- K, _ _
No(w):; co§7Uk(w)[5(w—Ek )+ 8(w+Ey)
—8w—E))—8(w+EJ)], (4.44

5N(w)=kERZ MU (@)sink, [ 8(w—Ey )+ 8(w+Ey)

with ke RZ. To compute the LDOS, we need 11, 33, 13, and

31 components o6 (k,iw), which are explicitly given in
Appendix D.

—8w—Ey)—8(w+EJ)], (4.45

As in the perturbative analysis, we consider the LDOS awhere Uy(w)=[w?+ wAy—By—Cy/w]/2P, and Uy(w)

four distinct points on the latticéa) the plaquette-centeft)

=—[w+2a+Cy/w]/2P,, with P, ,A,... being given in

the site-top, andc) the bond-center points. Repeating an Appendix D.

analysis similar to that in Appendix C, we obtain the LDOS

in a form

N(w)/xa?=Ny(w)* SN(w), (4.38

where + and — signs are alternated plaquette to plaquette

site to site, or bond to bond for the cade$, (b), and(c),

respectively. The uniform counterpart gives exactly the sam

form as in the case of the perturbative analysis,

~ 1
No(@) == —1Im 2 Mo(k)[G (kio)]ulio-ois
(4.39

whereM (k) are given by Eqs(4.16—(4.18. We here used
the relation] GF(K,i ) ]33=[ G (k+Q,iw)];;, wWhich is ex-
plicitly shown in Appendix D.

1. The case of f=t;=0

First, we consider again a toy band structure vtk t;
=0 in Eq.(4.9). In Fig. 11(@), we show the profile o ()
andNy(w) = SN(w) for vo=(0,0.1), of which direction and
strength locally simulate(r) around the point8, D andA,
£ in the inset of Fig. 8), respectively. We used the same
parameter set as in the case of Figa)8In Fig. 11(b) is
indicated the energy contour of the lower bahgd with the
corresponding band structure &, being shown in Fig.
11(c). The uniformv, field breaks the original four fold sym-
metry and thed-wave nodes are located slightly off theM
line. The van Hove singularity on th¥-I' line is caused
solely by the superconducting gap and gives peaks -at
+0.38.
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0.41
(@) ; 0.38) @,
i { :
bl [
ik O.L) 012 }\ it
=. \ "
I |
,“\ _ _ {fﬁ ;, I FIG. 11. (a) Profile of Ng(w)
I *4 No(w)-oN@)it] 'k and Ny(w) = 6N(w) for the uni-
4 4 i form field vo=(0,0.1) in the case
J i I 7t of t,=t3=0. In the inset is shown
Vi \ Ji "\\\ /R fine structure ofNy(w) around®
7\ 0 // N7 0 P\ ~0.1, detected with higher nu-
N ’ - Y No(w) \ ’ N No(w) merical resolution(b) The energy
A ’ y 4 No(w)+6N(w) fi ~ contour of the lower ban#, and
N O'Iﬂ V. ¥ No(w)+6 N(w) (c) the dispersion oE; with v,
~ = =(0,0.1) along the pati’(0,0)
N J wlXoJ . w/XoJ —M(m/2,m/2)—Y(0,m)—T.Fine

Ek/XoJ

I',0)

r'©,0) M (:71/2, n)z) Y, n) I (0,0)

As expected from the perturbative analysis, the unit-cell

T (0,0)

band splitting on the reduced zone
boundary are magnified in the in-
set. (d) Profile of Ny(w) and
No(w) = 5N(w) for the uniform
field vo=(—0.1#2,0.1#2). In
the inset is shown fine structure of
No(w) around®~0.05, detected
with higher numerical resolution.
(e) The energy contour of the
lower bandE, and(f) the disper-
sion of E, with v,
=(—0.1~/2,0.1#2). Fine band
splittings on the reduced zone
boundary are magnified in
the inset.

In Fig. 11d), we show the LDOS profile forvg=

doubling causes the gap opening on the reduced zone boung@-0.142,0.142), where the strength of, is the same as in
ary betweertw=0.10 andw = 0.12. The van Hove singulari- the case of Fig. @), but its direction locally simulateg(r)
ties associated with this gap structure gives rise to the spen the 45° direction in Fig. 5. In Fig. 1&) is indicated the
cific structuie in the LDOS profile. The corresponding fineenergy contour of the lower barkg, with the corresponding
structure inNg(w) could be detected with much higher nu- band structure oE, being shown in Fig. 1f). The uniform

merical resolutiof 720X 720 meshes of the Brillouin zohe

Vo= (—0.1#¢2,0.1#72) field breaks the original fourfold sym-

as shown in the inset of Fig. (&. The van Hove singularity metry in a way different from the case v§=(0,0.1). Con-

at theY(0,7r) point is intrinsic to the normal-state dispersion sequently, the energy scales of the van Hove singularities
¥« and gives peaks a@=*0.41, just as in the case of responsible for the dip structure move downward. The quali-
Fig. 8a). tative feature of the profile, however, does not change much
We see that the staggered modulation profile shown ifor small magnitude of/, considered here.

Fig. 11(a), No(w) = N(w), is in remarkable agreement with
Fig. 8@ obtained by the perturbative analysis. However, a
striking difference is that the dip structure aroural
=0.105 is now intrinsic to the modified band structure with ~ Next, we turn to the real band structure of BSCCO. In
van Hove singularities associated with the gap opening ofrig. 12a), we show the profile ofNy(w) and No(w)
the reduced zone boundary and appears even in the uniforn_q(sﬂ(w) for vo=(0,0.1), of which direction and strength lo-
counterpariNg(o). cally simulatev(r) around the point®, D and A, C in the

2. The case of real band structure
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0.323

i

Mt
Y A
i A
! ,\'\'\M .
A No)y-6Nw) I

\ | i FIG. 12. (a) Profile of No(w)

. VAR \ NN and No(w) = N(w) for the uni-
3 BT ey form field vo=(0,0.1) in the case
U Row) N o1 N . Nolw) of the real band structure of
P o oy E ] BSCCO. In the inset is shown fine
NlerRoive) \ ,"’ structure of Ng(w) around @

; ’ ~0.2, detected with higher nu-
/'/’\/ merical resolution(b) The energy
2 w/)(oj contour of the lower ban#, and
(0) the dispersion oE; with v
=(0,0.1) along the patH’(0,0)
—M(7/2,7/12)—Y(0,7)—TI.Fine
band splitting on the reduced zone
boundary are magnified in the in-
set. (d) Profile of No(w) and
No(w) = SN(w) for the uniform
field vo=(—0.1#2,0.1#2). In
the inset is shown fine structure of
No(w) around ®~0.2 detected
with higher numerical resolution.
(e) The energy contour of the
lower band E, and (f) the
dispersion of Ep with vq
=(—0.1~¢2,0.1#2).

0.1

Ez
g
+
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2
&
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o | i ®) R
Fk J| |
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ExlxoJ : s B0 Nkt
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inset of Fig. 9a), respectively. We used the same parametef720x 720 meshes of the Brillouin zofieas shown in the

set as in the case of Fig(&. In Fig. 12Db) is indicated the inset of Fig. ZA). As perturbative analysis, the van Hove
energy contour of the lower bark], with the corresponding singularity at theY(0,7) point is pushed upward as com-
band structure of, being shown in Fig. 12). The van pared with the case of,=t;=0 and lies at the energy
Hove singularity on theY-I" line is caused solely by the &= +0.79 outside the energy window of Fig.(&2just as in
superconducting gap and gives peakswat +0.323. The  Fig. 9b).

uniform v, field breaks the original fourfold symmetry and  We see again that the profile in Fig. (&2 in particular,

the d-wave nodes are located slightly off theM line. The  the SPD structure inside the V-shaped profile, is in remark-
unit-cell doubling causes the gap opening on the reduceeble agreement with Fig.(8 obtained by the perturbative
zone boundary betwee=0.229 and®=0.265, corre- analysis. However, as in the case tgf=t;=0 a striking
sponding to the second resonance in the perturbative analysi#fference is that the SPD structure is now intrinsic to the
[the second touch of the energy contour indicated in Figmodified band structure with van Hove singularities associ-
9(d)]. In this case, due to the presencetgfandts, addi- ated with the gap opening on the reduced zone boundary and
tional van Hove singularity occurs &b=0.186 and®w  appears even in the uniform counterphig(w). This sug-
=0.216, corresponding to the first resonance in the perturbgyests that in reality the SPD structure may be detected not
tive analysigthe first touch of the energy contour indicated only on the bonds but also at sites.

in Fig. 9c)]. The corresponding fine structure Mo(w) In Fig. 12d), we show the LDOS profile forv,
could be detected with much higher numerical resolution=(—0.1#2,0.1#2), where the strength of; is the same as
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in the case of Fig. @), but its direction locally simulates (a) Yorex r=b eand
v(r) in the 45° direction in Fig. 5. In Fig. 18) is indicated :

the energy contour of the lower bark with the corre- X

sponding band structure d&, being shown in Fig. 1@). ; scan |
The qualitative features of the LDOS profile given in Figs. o 1 2 374 5 6 7

12(a) and 12d) are quite similar. Thus, we may say that the (b)
SPD structure is robust and detectable in all the directions
around the vortex center.

We note that in both perturbative and exact analysis, the
SPD structure in the LDOS is predominant on the particle
side (@>0). We can understand this asymmetry by first
turning off the superconductivity and consider the effect of
unit-cell doubling. Since we are doping with holes, the gaps
being opened by unit-cell doubling are on the empty side on
the Fermi surface. The matrix-element effect preserves this
particle-hole asymmetry even after we turn on the supercon-
ductivity.

V. SUMMARY AND CONCLUDING REMARKS

In this paper, we have concentrated on how to detect a
signature of the unit-cell doubling originated from the SF
state through STM measurement. Although the signature of
the SF state appears only dynamically in a uniform SC state,
a topological defectvortex) stabilizes static texture of the  FIG. 13. (a) The best scan path to test our effects is the path
boson condensate and the spatial component of the masslegsoted by “scan 1.1b) The expected LDOS profile measured on
internal gauge field®. We determined the texture associatedthe bond-center pointO sites on a Cu@plane around a single
with a single vortex based on a simple London model. A halfSU(2) vortex with the real band structure of BSCCO being taken
flux quantum of the EM gauge fieldl penetrates over a huge into account. For an illustration we assuniget 3 and\ ;= 10. The
regionr <\, as compared with a half flux quantum of the staggered peak-di{SPD) structure appears over thgsr =<\, and
internal gauge fielda®, which penetrates over a regian vanishes deep inside thibwave SC statere>\,). We expect al-
=<\,. Although the fermions do not couple to the EM gaugemost no effects along the scan path denoted by “scan 2.”

field, they still see the internal gauge flux tube associated
with a3. Due to this reason, the topological texture Shows Up The best scan path to test our effects is shown in Fig.
in the hopping f;;) and pairing Q;;) order parameters of 13 as “scan 1,” along which the LDOS on the bonds
the physical electrons and gives rise to the sta%gered modyxhibits specific peak and dip structure alternating from bond
Iat|0n_ of xij andA_iJ- throu_ghsthe gauge invariant “superfluid {5 pond in a staggered manner as indicated in Figh)13he
velocity” v associated wita” [see Eqs(3.5 and (3.6)]. LDOS shown here is obtained under the same setting as in
The most important formula in this paper IS EG.4), Fig. 9. The SPD structure appears over the regigsr
which directly tells us that whereas the center in the vortex_\ 4\ ichec deen inside thavave SC state. The core
core is a SF state, as one moves away from the core center, a 2 P :

correlated staggered modulation of the hopping amplitud izel. presumably extends over a fermion coherence length
- L L~ . ¢e~velAg, which may amount to a few lattice scaléand
Xij and pairing amplituded;; of the physicalelectrons be-

. ) > the energetics of a single vortex supports the fact that a large
comes predominant over the regibysr=<\,. Combining 9 g PP 9

the results obtained through the gradient expansion and ﬂi/alue OfAa/l¢ tends to be favored. Thus we are hopeful that

uniform-v approximation, we concluded that the signature ofﬁere Is certainly the regldlgsrs.)\a over which our effe_cts
the unit-cell doubling may be most prominently detected®'® dgtectable. Due to the Iatthe symmetry, the unit cell-
through the staggered peak-diSPD) structure inside the doubling effects on th.e LDOSlls detectable onl_y on the
\-shaped profile measured on the bonds. The real band struPonds. Thus, we have just a typical V-“shaped"profl!e of bulk
ture of BSCCO, in particular, the next-nearest-neighbor hopd-wave SC along the path denoted by “scan 2" in Fig(&3
pingt, plays a crucial role to push the energy scales of th Ithough th_e_ qualitative fe_atL_Jre of the LDOS proﬂle_ may not
SPD structure toward visibly finite-energy scales. The struc2€ SO ser_15|t|ve o the dopingn the underdoped regime, the
ture directly originates from unit-cell doubling, which is sta- fin€ détail of the SPD structure depends on the doping de-
bilized by the topological texturéphase windingunder the ~Pendencex, which controlsagxx andA,. In particular, ex-
external magnetic field. In this respect, our effects have littldSténce or absence of the second peak/dip depengsitev-

to do with thed-wave symmetry of the superconducting or- €rtheless, we have at least one resonaicea pair of van
der parameter. Our finding may be best summarizediove singularitieson the reduced zone boundary at the en-
in Fig. 13. ergy aroundo = *+ (2xJts+ag). [Eq. (4.30], which always

-0.4 -0.2 : 04
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lies inside the V-shaped profile for reasonable band-structure . R i
parameters of BSCCO. 9= exr{ —i(=1)XTy— . exr{ - 3

As for an experimental setup for BSCCO sample, the best
place to test our prediction is the O site around the vortexvhich we encounter in Sec. Ill Asee Eq.(3.1)] when we
center on the Cu@plane. The size of the Wannier function make a gauge transformation.
at the O sites on Cu-O-Cu bonds is presumably an order of
10% in magnitude as Compared with the nearest Cu sites. APPENDIX B: LONDON-MODEL ANALYSIS OF A
However, it is noteworthy that the STM tunneling into the O SINGLE SU(2) VORTEX
sites may take place directly via the STM tips, while the
tunneling into the Cu sites on the Cu@lane takes place ~ Here we apply the London-model prescripflorto a
indirectly through the Bi atom on the BiO lay&Thus, we single SU2) vortex. Plugging Eq.(2.13 into Eq. (2.16
are hopeful that the STM signal may more sensitively detecgivesFx=Fy+F,, where
the LDOS profile at the O sites than at the Cu sites. We stress
that the SPD structure is totally ascribable to unit-cell dou- F :LJ drv(r)? (B1)
bling and the robust topological texture. Therefore, we may v ’
safely say that the SPD structure survives any tunneling-

. (A5)

2m,

matrix-element effects and can directly be detected through X 5
the STM experiment. FUZHJ dro(r)s, (B2
b
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APPENDIX A: INTERNAL PHASE OF THE LOCAL _statlonallty cond|t|0r21 with res_pzect TA; 5(FVEJKAFA2/A5A_O’
BOSON CONDENSATE is reduced to V-H(r)—N_“H(r)=—(¢q /\)&5(r),
which gives the solution

V—1V eA—V eA B3
) b2 E =vVa E ) (B3)

The uniformd-wave SC state in thd-wave gauge is de-
scribed by M r
H(F)IﬁézKo<—>, (BS)
d_ 3 iyt AL A
Uij=—xom +(=1)v A7y, (A1)
whereK is the zero-order modified Bessel function of an
Jx imaginary argument. The London penetration depth is de-
0 ) (A2)  fined as \2=m,c?/4me’x. The EM unit flux is @5V
=hc/2e where we have retrieved the Planck constant. The
which is just equivalent to the () MF solution for the physical supercurrent associated withhecomes
d-wave SC state. Now, thanks to the @Usymmetry, the
same state can be described in the SF gauge via th2) SU
gauge transform:’:ltiorwiT given by Eg.(2.10. The gauge
transformation converts)fj andh§; to

hgi =

EM
c 0 C _ r
J(r)=—47_rV><H(r)=—87_r2)\3 e¢Kl<—)\L), (B6)
L

which globally circulates around the vortex center over the

USFowiudw = — A exdi(—1)ixvd,73], (A3 length scalex .
[ mexi{(=1) o] (A3) Taking account of Eq(2.21), the stationality condition

with respect toa®, §(F,+F,)/da®=0, is reduced to

hSF_wind = \/Z _ 1 ) (Ad) —2xtv(r)+ofdr'V,k(r—r’)Xh(r')=0. Taking the curl
or i ol 2\ —i(=D)Ty) of this equation and going to Fourier space, we obtain
where A= \/on+ AOZ and ®,=tan }(Aq/xy). Now, the low- ) S .
energy excitations around the SC state in the SF gauge are h(Q):ezl =87 , (B7)
+)\aqu +)\a|q|

obtained by fixingUﬁF and then rotating the boson conden-

sate in the internal S(@) space. The direction in the internal where we made use of Eq(2.22. The gauge-field-
SU(2) space is specified by the internal ang#eand ¢ as in ~ penetration depth and the unit flux associated with it are
Eqg. (2.12. We obtain this parameterization more directly given by A,=myo/x and ¢8*'9%=h/2, respectively. The
through transformingngi by Fouier transform of Eq(B7) gives
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16 To computeey,,qe We first take the curl of EqB4) and go
14 to the Fourier space to obtain
12 "
. OXE& AQ
6l H(’I‘)/((ﬁ(e)m/Zﬂ'li) and similarly
41 ~
. gxg 1
u 2 3 = — e —
2| hir) / (8857 =1 T (B1)
5 10 15 20 r Recallingx/2my= a/2\ ,, we have
FIG. 14. Spatial dependence ofi(r)/(¢5M2m\2) and 2o 1 1 7o N
h(r)/(¢3“99\2) assuming\, /A,=50 and A\,=10 with lattice fgauge:_z ——= In—=. (B12)
unit. Apparent divergence df(r) atr=0 should be taken as an 2 %G gltraa 2ha e
artifact of continuum limit. We thus have the energy cost associated with a single vortex,
$3%® IN, 7 r r _  Fai2ozz, 0T Na
h(r)= —)\az—ez T3 Ho )\—a —Nog )\—a , (BY) Evortex™ €core €gauge™ €M~ VIAIEXH 2N, In I
whereH(z) andNg(z) denote the Struve functidhand the + X |nﬂ_ (B13)
Bessel function of the second kind, respectively. We note that am, e

Na/N ~(1VX)(elc)<1, where we used = \m~ 1/\/m—b This result is consistent with a little bit more qualitative
(A, reaches-500 with lattice unit in BSCC® The essential discussiorf, i.e., a standartic/2e vortex is possible with the
point here is that we can reasonably assume that the EMF core, which does not cost too much energyx-as). The
gauge fieldH extends much broader than the internal gaugesF core sizé, would like to be as small as possible with the
field h. Under this circumstance, the effect of the EM gaugelower boundl .~x~ %2, while the size of the gauge-field dis-
potentialA is negligible as compared with the internal gaugetribution A ;= myo/x would like to be large.

potentiala®. That is to say, in our vortex model, a half flux

quantum of the EM gauge field penetrates over a huge APPENDIX C: COMPUTATION OF LDOS
regionr<\,_, as compared with a half flux quantum of the o
internal gauge fielda®, which penetrates over a region 1. Derivation of Eq. (4.14

=<A;. In Fig. 14, we show spatial decay of we startwith Eq(4.3. The LDOS at the plaquette-center,

H(r)/(pg"2m\2) and h(r)/(#3“9\2) assuming\, /N,  site-top, and bond-center points, as indicated in Fig. 6, are

=50 andA ;=10 with lattice unit. The apparent divergence given by

of h(r) atr=0 should be taken as an artifact of the con-

tinuum limit, since there is natural cutoff of an order of the .

inverse lattice scale. e Imi jzgz45[gﬁ("")]11|iw—>w+i5’
We shall now argue how, can become larger thdg in T (C1)

terms of energetics of a single vortex. The energy associated

with a single vortex consists of the following contribution: , 2X

the cost for the SF core formatiaf,, the electromagnetic N"(ry, 0)=— - IM[G5y(i0)]itlio—wiisr  (CD

contribution egyy=F\+F,, and the contribution of the in-

ternal gauge fieldeg,,q=F,+F4. The energy cost for the 2

2Xa
SF core formation is estimated?a% o~ Vaal 2x%2 which N*"rg,w) = = : Imi Zl ) (G5 (o) tlio—w+is.
favors smallett,. On the other hand, the core size cannot be e (C3)
smaller tharnx ™~ ¥/2 without costing too much kinetic energy. . S
Thus, we conclude that the SF core occupies a radius of respectively. The envelope function is simulated dayr)
~x~V2 at the MF level. In the present scheme, it is quite=¢€ ' "¢ (¢=3 with lattice unip in the bond direction.
reasonable to expect that as the dopirdpcreases, the core Tuning «;(r;)=1 at the site-top points, we put;(rc)

Xad

size becomes larger because the energy difference betwegrr2(rc)=as(rc)=as(rc)~e '=ac, and  a;(rg)
the SC and the SF state decreasez-a®. =ay(rg)=ag. Using Eq.(4.11), we obtain
The electromagnetic contribution comes frampy=Fy
+F,, which reduces tt Yttt s
_4 ik-r ke Ky Ky Ky
eEMzif ArTHZ+ NP (VX H)?] = o in L TVaER, & 7005 005y tkrsing sing i),
8 r>lq 4mb IC
(B9) (C4)
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2. Computation of the generalized propagators

1 )
gr=— 2 e My E o], (C5)

V2 KSRz Next we compute

Kk, G-

Ky
Yot l/’z— 5 (2, &7 Cos5 i sing g

k+ g+Q,k— gT) = _<Tr¢k+q/2+Q(T)l//l*q/2>’
(C10

(C6)
. a q
where — and + signs are for the cases where the site 1 9 | k= 5.k+5+Q,7

= (T th—q7) ¢l+q/2+Q>
belongs to theA and B sites, respectively. Constructing the

C1
propagators with these wave functions, we obtain a formula, (1D
Eq. (4.14, in a concrete form. For example, in BEE3) we  at the Born level. First, we rewrite the perturbation té#y)
obtan in momentum space,

S, G- Fraio o ra )
g =G (rg,iw)*86G"(rg,iw). (C? SHF=—i3J > > sin 5 |ox(k=K [l Aor
i J_ keRZ k’ERZ
1 _ gt 3 1
The uniform and staggered counterparts are computed as T X0T) P+ Y o(Bo™ F x0T ) ]
ky+ k!
> > sin( ~ y)vy(k—k')[lp;moé
gF(rB’Iw)_ 2 2 eI(k k’)-rg keRZ ' cRz
KeRZ K erz 1 t 2 1
—XoT) Ui+~ Pyso(Ao™ —xo™) ], (CL2)
ke Ky .
X COSECOSEQF(KK o) By replacingk—k’ and (+k’)/2 with q and k, respec-
tively, and recalling Eq.B10), we reach Eq.(4.12. The
ke kg . , ] first-order contribution oBHF to the propagator is obtained
+S|nEsm§g (k+Q,k'+Q,iw) as
_2 S’-ﬁ Fik.i cs q q i q
=2, cos5-Go(kiw) (C8) GFlk+ 5 +Qk—5.7 =->, e'mgg(k+§+Q,iw
and q .
><Ck+Q(Q)QS(k— > |w>,
3G (rg iw)=i > X &lk)re (€13
keRZ ' cRz .
ie.,
ke Ky .
X COS?SIH?QF(k,k’-FQ,Iw) q q q
G- k+§+Q,k—E,iw):—gg(k+§+Q,iw)Ck(q)
k ki,
—sin—cos= G (k+Q,k’,iw)
2 72 f.oa.
Xgo k—z,la) . (C19
T |
=3 S sing-rg)sin oS Similarly, we obtain
ke RZ g~small 2 2
q q q.
F _ 2 L _ _ F _ 1
x| G~ k—g;k+g+Q,iw) g (k 5kt 5+Qur|= Qo(k Zvlw)ck(Q)
q q XGE| k+ 9+Q iw
+gF k+§+Q,k—§,iw , (C9 0 2 <)
(C19
which give Egs.(4.15 and (4.20, respectively. At the last
step we replaced—k’ and k+k’)/2 with q andk, respec- Recalling Eq.(4.8), we explicitly write down perturbative
tively. corrections,
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Gr k—E,k+g+Q,iw +gF

q
k+ §+Q’k_§'lw
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1
U2k— [ (Ef)2—EfA+B+Cy/ES], (D8)

1 1
=— u,C u_+uU_C U 11
iw—E, io—E_ o E | «(a) @)U VZK:EP—k[—(E;)2+E;Ak+Bk—Ck/E;], (D9)
1
T TE TorE VOV +V CUaVL]  where
. P=(E )%= (E{ )%= —4\al(y2+ \2) + (mh i+ yiae)
k k k KUY Ak MMk T YMk) -
1 Similarly,
(C16) [GF(kaiw)]lB
where =[G (k,iw)]3;
E+=Eisqeqr E-=Ei qo, (€17 _ 4y (e reudotC
K D(K,iw)
:%[1+7t7'3+ 77t7'1]a ~ ~ ~ ~
) , ) Zin Uik Vik Uk Vak
=3ll-y:m=n.7], (C18 Kiw—E, iw+E, iw—E, iw+E;
with v, =Yg o/Brigrror ¥—= Ya—a2/Ek—qr2s 7+ (D12)
= Nk+q+Q/ Ex+qr+q, and - = ny_q2/Ex_qp. Taking the
11 component of Eq(C16) and then performing analytic where
continuation,jo— w+i4, we reach Eq(4.24).
Cr=ag— ve— N+ me— i+ 2vmeui /N, (D12)
APPENDIX D: EXPLICIT FORM OF G
By simply taking inverse of the matrixo1—T, with T T }
given by Eq.(4.34), we obtain an explicit form 06" (k,i w). Vu="35p [Ek+2ak+ck/Ek] (D13
The 11 and 33 components are given by
. . ~ 11 ~
[GF(K,iw)]11=[G(k+Q,iw)]z Vlkz—ip—k[—E[+2ak—Ck/E[], (D14)
iw)3+A(iw)>—Biw—C
_(l) k( ). k < (p1)
D(k,iw) - 11 ~
U2k:______[ Ek Za(_CK/E;], (Dla
U V U \%
T, Vi 2k++ 2k+, (D2)
iw—E, lTwt+E iTw—E, I1wt+E
Y - _ - - +_ e +
where  D(k,iw)=defio—T.]=(iw—EQ)(io+Eg)(iw Va=— 5 p [Bc—2atC/Bc]l. (D16

-Ei)(iw+E,), and

Ak==ak—-yk, (D3)
B= (@it 7102+ me+ N+ ui (D4)
Ci=(ax+ 7)(@F— Ye— Mo+ 1) + (a— ¥ 7+ 2 ke -

(DS)

The generalized coherence factors are given by

11
Ui=5 p [(EO)* E A= By Cu/E], (D)

11 _ _ -
Vi=3 5 [(EO*~E A B CUE] (D7)

Now, LDOS at the midpoint on the bond connecting
andr;+&, is given in the form of Eq(4.38 with

- k
No(w)=; COSZTM[Ulkﬁ(w—E[)+V1k5(w+ Ec)

+ Uy 8(w—ES)+Vaud(w+EQ)], (D17

N(w)= 2 Nsink,[Ugyd(w—Eg)+Vyd(w+Ey)
keRZ

+ U0 8(0—E)+Vyd(w+E;))] (D18

These equations further reduce to E@s44) and (4.45.
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