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Chapter 1 

GENERAL INTRODUCTION 

          Cement-type biomaterials own intrinsic characteristics of conventional cements used in 

industry: transformation from the pastes into hardened masses. The coherent structure and 

deformable capacity during this curing process make them become perfect option in adapting 

to the complex inner construction of human body, therefore cement-type biomaterials are 

widely used as the filler and binder in the field of implantation and reconstructive procedures. 

As the filler, the mechanical properties need to be paid attention to ensure the biomaterials 

satisfy basic requirements of the implant regions; as the binder, now available mechanical 

interlocking between biocements and bone is unable to maintain a long-term stabilization, the 

fixation must be improved by modification. 

1.    Glass ionomer cement 

1.1.   Definition of Glass ionomer cement (GIC) 

          The first generation of glass ionomer cement (GIC) products, ASPA (alumino-silicate-

poly-acrylate), introduced in the 1970s by Wilson and Kent [1], was applied as a tooth colored 

material. Over 3 decades of development, its application is not only limited on dentistry, but 

also extended to the implant and reconstructive surgical procedures [2]. The definition of glass 

ionomer cement can be summarized as follows: one kind of cement that consists of acid 

decomposable glass powders and a water soluble acidic polymer, which can be set by the 

neutralization reaction between both components, the final structure is partly degraded glass 

particles surrounded by a siliceous hydrogel bound together with a polyanions matrix [3]. 

Compared with other dental water-based cements, GIC presents ease of molding, no obvious 

shrinkage, no significant increase in temperature, better biocompatibility without inflammatory 

response in mouth [4]. 
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1.2.   Chemical composition of GIC 

           GIC is generally divided into powder and liquid system. The powder system used in 

GIC formulation is aluminosilicate glasses containing calcium compounds or fluorides. The 

composition of original glasses with ion release ability is based on SiO2-Al2O3 or SiO2-Al2O3-

CaO (CaF2) to which other components such as Na2O, Na3AlF6, AlPO4, AlF3 or P2O5 can be 

added. One representative composition in commercial product is 41.9 SiO2, 28.6 Al2O3, 1.6 

AlF3, 15.7 CaF2, 9.3 NaF, 3.8 AlPO4, in mass% [5]. There are two synthetic methods in 

processing of glass powders: melt quench route and sol–gel process. The mixture of Al2O3, 

SiO2, metal oxides, metal fluorides and phosphates is melted at higher temperature in the range 

of 1100 to 1500 °C. After fusion, the molten glass is quenched into water, the generated coarse 

fit is further ground by dry milling, until the particles can pass through a 45 μm or 15 μm mesh 

sieves for the application of restorative and luting cements, respectively [6]. Although melt 

quench route is well established for producing glass fillers, there are problems exposed in 

respects of the feasibility of melting, variation in the final glass composition especially the loss 

of fluorine during melting and cooling [7]. The sol–gel process enables to produce glass 

powders at low temperature with high homogeneity and purity. Bertolini et al. [8-10] 

synthesized powder of niobium fluoride silicate by sol–gel method. The method allowed 

sintering temperature down to 600~700 °C. And the obtained glass powders with a crystalline 

phase still could react with the solution of poly(acrylate acid) (PAA). Cestari et al. [11,12] 

employed nonhydrolytic sol–gel method to prepare calcium and sodium fluoroaluminosilicate 

glasses, these synthesized powders exhibited a potential required for the acid-base reaction 

with PAA solution. The liquid component of GIC is the aqueous solution of acidic polymer 

with carboxylic groups. The most common acidic polymers are homopolymer of acrylic acid, 

derivative copolymers of acrylic and itaconic acids (poly(AA–co–IA)) [13], or acrylic and 

maleic acid (poly(AA–co–MA)) [14]. The addition of itaconic acid or maleic acid is for 

lowering the gelation tendency of polymer solutions [15]. The liquid also contains about 5 to 
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15% m/m (mass per mass) (+) tartaric acid effective for control in setting reaction [16]. Its role 

has been proved in improving handling characteristics and sharpening set [17].  

 

1.3.   Chemistry of setting 

          General formula in setting reaction of cement may be written as follows: 

                                   H2A + MOx·SiO2  x SiO2 + MA + H2O                                       (1-1) 

          In the above equation, M represents the forming cation in cement and MOx·SiO2 acts as 

the proton accepter, while A represents the forming anion and H2A acts as the proton donor. 

xSiO2 + MA is viewed as formed salt-gel matrix. The setting reaction can be divided into 3 

overlapping stages:  

(1) dissolution, Al3+, Ca2+, Na+ and F+ ions are released from the surface of glass particles by 

acid attack then leached into the aqueous medium, siliceous hydrogel layers surrounded on the 

unreacted particles are also formed.  

(2) gelation, initially Ca2+, and later, Al3+ ions bind with the polyanion chains via carboxyl 

groups to precipitate a hard polycarboxylic salts gel [18]. The initial set is achieved by cross 

linking of Ca2+ ions, the polycarboxylic salts of Al form the dominate component with respect 

to mechanical strength.  

(3) hydration, the maturation phase is a progressive hydration of the matrix salts, leading to 

sharp improvement in physical properties [19], and the reaction step is depicted in Figure 1-1.  

 

1.4.   Challenges in clinical application  

          Glass ionomer cement still faces some challenges in clinical application. Because water 

plays an important role as the medium of setting reaction and the hydrates of reaction procedure, 

initial setting stage needs the relative humidity (R. H.) of operating environment being kept at 

a high level (above 90%), the condition which failed to match this condition caused a decline 

in physical strength of set cements [20]. In addition, there are too many factors of affecting the 
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mechanical strength of GIC over timing. Variations are derived from the variability in 

composition, size and distribution of glass powders [21], molecular weight of acidic polymer 

and its concentration in liquid [22], P/L ratio [23] as well as testing conditions such as specimen 

dimension, storage media [24, 25]. Biocompatibility of GIC depends on the applied position: 

in tooth, the chemical bonding is accomplished by developing an ion enriched layer due to the 

reaction occur between carboxyl group (-COOH) of PAA and calcium from the dentine or 

enamel [3]. When implanted into body, the bonding between cement and bone is attributed to 

the mechanical interlocking rather than a bioactive mineralized layer. Kamitakahara et al. [26] 

revealed that the existence of PAA even in ppm grade inhibited the apatite formation on GIC 

surface, which meant that any PAA-containing GIC would lose bioactivity in body 

environment. But a novel GIC based on calcium zinc silicate glasses (0.14 CaO, 0.29 ZnO, 

0.57 SiO2, in mol%) prepared by Boyd et al. [27] owned a potential to induce the nucleation 

of amorphous calcium phosphate after soaking in simulated body fluid (SBF), which indicated 

that PAA might not be the main reason responsible for bioactivity loss. Deeper reason need to 

be studied. 

 

1.5.   Modification to improve the properties of GIC 

          Due to the drawbacks mentioned above, it is necessary to enhance the properties of GIC 

to satisfy new application requirements in the craniofacial reconstruction and orthopaedic use. 

Modification strategies are listed as: (1) choosing an alternative polymer, for example: 

poly(vinyl phosphonic acid) (PVPA), stronger acid than PAA, is more reactive and 

hydrolytically more stable in cement formation. The PVPA-based cement with excellent initial 

water resistance owned a low fluoride release and increased flexural strength over 90 days [28]; 

Poly(γ-glutamic acid) (γ-PGA), a water soluble biodegradable polymer, shows nontoxicity to 

humans and environmentally benign. FT-IR spectra and elemental analyses proved its 

feasibility in cement formation, the maximum compressive strength of 130 MPa was 
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comparable to that of PAA-based product [29]. (2) adding functional powder, powder selection 

is determined by the purpose of reinforcement: the addition of silver-tin alloy [30] or stainless 

steel [31] to glass-ionomer system was succeed to sharpen the mechanical strength of set 

cement; bioglass S53P4 [32], TiO2 nanoparticles [33] incorporated in GIC improved the 

antimicrobial effects. Choi et al. [34] added a sol–gel derived bioactive glass (25 CaO, 5 P2O5, 

70 SiO2, in mol%) into commercial GIC product (GC, Fuji I). The complex induced the apatite 

deposition, showing in vitro bone bioactivity. (3) upgrading to resin-modified cement, the 

conventional acid-base components are modified with monomers and photopolymerization 

initiators. In this system, parts of the carboxylic groups in PAA are replaced with cross-linkable 

bifunctional compounds containing vinyl groups [35]. The addition of 2-hydroxyethyl 

methacrylate (HEMA) is necessary to retain all the components in a single phase. This resin-

modified cement showed longer working and setting time but lower compressive strength 

compared to glass ionomer only [36]. Xie et al. [37] developed a novel bioactive glass-ionomer 

cement modified with resin, which exhibited biomedical function of dentin capping 

mineralization. In the system, the synthesized star-shape PAA was used as a liquid, while Fuji 

II LC filler and bioactive glass S53P4 as a filler. As a result, the cement system not only showed 

mechanical strength similar to original Fuji II LC cement clinically utilized but also induced 

the apatite precipitation in SBF environment.  

 

2.    Polymethylmethacrylate (PMMA) cement 

2.1.   Development of polymethylmethacrylate (PMMA) cement 

          Thesis about the polymerization of methyl methyacrylate (MMA) published by Otto 

Röhm in 1901 created available and basic sources for bone cement [38]. Afterwards, the 

commercial manufactures brought a rapid development on this new polymer. Namely, the first 

cold-curing cement developed by the company Degussa was used to fill the defects of the 

skeleton and to produce cranial plates in 1943 [39]. In 1960, Sir John Charnley first succeeded 
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fixation of artificial hip joints in the femur by using self-setting cement [40], both established 

the feasibility of PMMA cement in orthopaedics. The function of PMMA cement is filling 

space between the artificial joints and bone, serving as the medium to bond both. Due to its 

intrinsic strength, PMMA cement can share the elastic impact and transfer the load on the 

prosthesis to bone as possible, which is beneficial to the long-term stability after implantation. 

Besides that, PMMA bone cement acts as the carriers of antibiotics [41]. 

 

2.2.   Compositions of polymethylmethacrylate (PMMA) cement 

          PMMA bone cement is normally composed of PMMA powder and MMA liquid. Its 

powder: liquid mass ratio is usually 2: 1. The powder component comprises microspheres of 

ground PMMA or copolymer which contribute 83 to 99% in the proportion of powder, the 

remaining components include benzoyl peroxide (BPO) for initiating the cement curing, 

barium sulfate (BaSO4) or zirconium dioxide (ZrO2) as the radiopacifier for the cement 

visibility in radiographs. Optionally an antibiotic or a dye for coloring of the powder are also 

present. Basic ingredients of the liquid are monomer MMA and N,N-dimethyl-p-toluidine 

(DmpT) at a weight ratio of 0.4 to 2.8%. PPM-grade hydroquinone is added to stabilize MMA 

in preventing premature polymerization during storage.  

 

2.3.   Reaction mechanism 

          It shall be noted that the radiopacifier, antibiotics and dye do not involve in the 

polymerization reaction. The transformation from MMA to PMMA relies on the initiator 

(BPO)/accelerator (DmpT) system. The reaction process is depicted in Figure 1-2. After 

mixing, DmpT leads to the decomposition of BPO under a reduction/oxidation reaction based 

on electron transfer, which generates benzoyl radicals and benzoate anions. The free radicals 

can initiate the polymerization via inducing an immediate formation of chains by adding 

themselves to the C=C double bond of MMA, and a high number of radicals bring rapid 
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formation of polymer chains. When two reactive radical-chain ends meet, they react to form 

non-reactive completed polymer chains. As a result of this termination in chains, the 

polymerization comes to a standstill and no radicals remain. The whole polymerization of 

MMA is an exothermic reaction and the heating release causes an increase in temperature 

during the curing stage [42].  

 

2.4.   Viscosity and handling properties in curing 

          The chemical composition and powder/liquid ratio determines the viscosity of PMMA 

cement. Viscosity affects handling characteristics of PMMA cement, and an appropriate 

viscosity helps cement penetrate the bone for good attachment in quality and longevity. Two 

basic requirements for the cement viscosity are listed as: (1) it should be sufficiently low to 

make sure that the cement dough can be delivered from the syringe to the defect sites, (2) the 

penetration should reach to the interstices of bone [43]. The type (low, medium and high) of 

PMMA bone cement is categorized with regards to its viscosity. Low viscosity cement owns a 

long lasting liquid to low viscosity wetting phase and remains sticky state longer than medium 

or high viscosity cement. Medium viscosity cement is considered to be dual phase between low 

and high in viscosity, the mixing of powder and liquid is easy and homogeneous due to the low 

viscosity state in prime. High viscosity cement has shortest wetting phase and loses the 

stickiness very fast, therefore it is hard to determine the end of working phase because the 

viscosity in this type remains almost unchanged.  

          The increase in viscosity over time changes the low-viscosity mass into the dough further 

converts into the solid matrix. The polymerization process can be divided into four phases [44]:  

(1) mixing; mixing phase (up to 1 minute) starts immediately after the addition of liquid to the 

powder, and this state ends when the dough becomes homogenous and hard to be stirred. The 

liquid can wet the surface of prepolymerized beads even make them dissolve completely, which 

consequently leads to increase in viscosity of the mixture.  
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(2) waiting; a period allows further swelling of the beads and permits persistent polymerization 

which leads to an increase in viscosity, and it ends when the sticky dough reaches a non-sticky 

state.  

(3) working; sufficiently low viscosity enables the dough can be reshaped in operation. The 

viscosity continues to increase by continuous polymerization, and heat generation in the cement 

occurs by the exothermic reaction, meanwhile, volume shrinkage is occurred as the monomer 

converts into the polymer with higher density. 

(4) hardening; in the last period the temperature reaches its peak that represents the termination 

of polymerization, the cement finally becomes a hard consistency.  

 

2.5.   Limitations on clinical application 

          The polymerization of MMA is an exothermic reaction, one mole MMA can release 

heating of 57 kJ, which leads to an increase in temperature over curing process. The maximum 

temperature measured in vitro is approximately 60 to 80 ºC. This can be also affected by cement 

composition, powder/liquid ratio, and the radiopacifier [45]. This short-term temperature rising 

is regarded as the main reason for aseptic loosening of the prostheses caused by heat necrosis 

[39]. Expect that, PMMA cement is considerably more brittle than bone [46] and its tensile 

stress is comparatively low [47]. The weakness can be ascribed to the replacement of 

radiopacifier BaSO4 or ZrO2, which increases the risk of loosening [48]. Stabilization of 

PMMA matrix can improve the transfer of load across the interface between cement and 

prosthesis, and reduce the possibility of crack formation in cement. One more limitation on 

PMMA bone cement is that the connection to bone relies on an intrinsic mechanical 

interlocking rather than directly chemical bonding due to the cement itself is a bioinert material 

[49]. The low biological affinity may induce a fibrous tissue capsule surrounding on cement 

further leads to the loosening of implant after a long period. Consequently micromotion is 
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occurred by the loosening at the interface between cement and bone to cause fixation failure of 

the implant [50].  

 

2.6.   Modification to improve the properties of PMMA cement 

          Various additives such as carbon fibers [51], titanium fibers [52] and glass fibers [53] 

have been developed to improve the mechanical strength. Vallo et al. [54] used cross-linked 

PMMA beads to replace 30 mass% of the PMMA powder, the flexural strength increased by 

22.4%. Hydroxyapatite (Ca10(PO4)6(OH)2) modified PMMA bone cement exhibited a linear 

increase in compression strength (98 to 111 MPa) and a linear decrease in tensile strength (27 

to 21 MPa) [55]. Jin et al. [56] developed composite cements based on multi-walled carbon 

nanotubes and PMMA fabricated by melting blending, and revealed that the incorporated 

nanotubes were well dispersed in the polymer matrix and the storage moduli of all composite 

cements were increased.  

          It is essential to develop biocompatible and bone-bonding PMMA bone cement to 

prevent the loosening of implant. The modification to achieve this aim can be divided into two 

directions. One is mixing of bioactive ceramic fillers to the cement. It has been previously 

reported that bioactive ceramics such as hydroxyapatite [57], glass-ceramics A-W [58] and 

titanium dioxide [59] which were added to the powder of PMMA cement succeed in inducing 

the apatite precipitation on sample surface in simulated body environment. Tan et al. [60] 

developed a new PMMA cement loaded with a derivative chitosan named as quaternized 

hydroxypropyltrimethyl ammonium chloride chitosan (HACC). The results showed that 

HACC modification can lower polymerization temperature, prolong setting time, and induce 

enhanced apatite formation on the surface after soaking in SBF compared to other PMMA 

cements. The obtained novel type of anti-infective bone cement improved physical properties 

and activity of bone formation, leading to enhanced osteointegration of the cement in clinical 

use. Lopes et al. [61] processed a new poly(methylmethacrylate)-co-(ethylhexylacrylate) 
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(PMMA-co-EHA) composites filled with 0, 30, 40 and 50 mass% of Ca3(PO4)2-MgO-SiO2 

glasses. The obtained results showed that: a hydroxyapatite (HA)-like layer was found on the 

surface of prepared composites, the formation of HA-like layer was accelerated by increasing 

the content of glasses. When the cement contained 40 or 50 mass% of glasses, it only took 7 

days immersion in SBF to make apatite completely cover on their surfaces.  

          Another direction is inspired by the studies [62] focusing on the formation mechanism 

of apatite on bioactive materials in simulated body environment: some functional groups such 

as Si-OH [63], -COOH [64] or PO4H2 [65] owns the potential to attract apatite nucleation and 

Ca2+ ions released from biomaterials will accelerate the growth of apatite. The findings suggest 

the combinations of functional groups and Ca2+ ions can provide PMMA bone cement with 

apatite-forming ability. Methacryloxypropyltrimethoxysilane (MPS) containing Si-OH groups 

added in liquid and various calcium salts added in powder were first proposed by Mori et al. 

[66], the results showed that MPS combined with calcium chloride, calcium acetate, calcium 

hydroxide or calcium methacrylate successfully induced the formation of apatite on cement 

surface, and the cement modified with calcium acetate owned appropriate setting time and 

compressive strength. Based on the same functional groups (Si-OH), Sugino et al. [67] found 

that the decreasing in bending strength of modified cements was ascribed to the generation of 

pores in the matrix through the release of Ca2+ ions after soaking in SBF, and the pores filled 

with the newly formed apatite was able to prevent deeper deterioration of mechanical strength. 

Miyazaki et al. [68] optimized the contents of both additives in balancing the apatite-forming 

ability and other physical properties required by ISO 5833, the hardened cement containing 20 

mass% of CaCl2 in powder and 20 mass% of MPS in liquid was more osteoconductive to living 

bone after implantation in rabbit tibia than the unmodified cement.  
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3.    Apatite formation in body environment 

          Ca2+, Na+, or K+ ions released from representative bioactive ceramics, such as Bioglass®, 

HA, and glass-ceramic A-W are capable of forming Si-OH or Ti-OH groups on ceramics 

surface via an ion exchange with H3O+ ions [69]. The Si-OH and Ti-OH groups own the 

potential to induce the nucleation of apatite, and the released ions mentioned above boost the 

ionic activity product of apatite [70], which leads to an acceleration in apatite nucleation [71]. 

The growth of apatite nuclei counts on the continuous consumption of Ca2+ ions and PO4
3- ions 

in the surrounding fluid [72]. 

          Except Si-OH and Ti-OH groups, the catalytic effect of Zr-OH and Ta-OH groups for 

apatite nucleation have been proved [73, 74]. Self-assembled monolayers (SAMs) on Au 

substrate indicated that -COOH and PO4H2 groups are also helpful for apatite nucleation [65, 

66]. The functional groups own the ability to attract Ca2+ ions to the surfaces, the accumulation 

of the positively charged Ca2+ ions creates a positively charged surface, then the surface will 

combine with PO4
3- ions (negatively charged) to form amorphous calcium phosphate. This 

calcium phosphate spontaneously transforms into the apatite due to its stability in body 

environment. In addition, the formation period can be accelerated by releasing Ca2+ ions from 

biomaterials themselves into the surrounding fluid to increase the degree of supersaturation of 

apatite, the nucleation process is described in Figure 1-3. 

 

4.    Purpose of this research 

           The main research purpose in this thesis is that: utilizing various modifications to 

provide cement-type materials with forming ability of bioactive minerals after soaking in 

simulated body fluid, and optimizing physical properties to insure these biocements own 

potential clinical applications. 

           In chapter 2, a microbial acidic polymer poly(-glutamic acid) (γ-PGA) was adopted to 

develop new-type glass ionomer cement with bioactivity and satisfied mechanical property. 
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The feasibility of cement forming based on glass compositions and γ-PGA was explored and 

discussed. Besides the bioactivity evaluation, the preparation parameters including the 

powder/liquid ratio and the concentration of γ-PGA in improving the diametral tensile strength 

of cements were also optimized.  

          In chapter 3, incorporation of phosphate (PO4H2) groups containing monomer 

phosphoric acid 2-hydroxyethyl methacrylate ester (Pa2hme) and calcium acetate into PMMA 

bone cement was attempted to induce apatite deposition on modified cement surface in 

simulated body environment. Efforts of the combinations of different contents of calcium 

acetate and Pa2hme on apatite-forming period, setting time and compressive strength were 

investigated. According to the pH tendencies and the concentrations of Ca and P in SBF over 

designed soaking intervals, the influences of both additives on apatite formation were also 

discussed.  

          In chapter 4, another phosphate-containing monomer Bis [2-(methacryloyloxy) ethyl] 

phosphate (BisP) combined with calcium acetate was employed to further improve the apatite 

forming and physical properties of PMMA bone cement based on the experiences from chapter 

3. The same investigation and discussion mentioned in chapter 3 were also conducted. Besides 

that, the role of each additive on apatite formation was examined, the optimization related to 

the contents of both additives was explored by taking apatite-forming ability and practical 

standard ISO 5833 into consideration. The performances of BisP and Pa2hme on apatite 

formation, setting and mechanical strength were compared.  
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Figure 1-1. Setting reaction of glass ionomer cement. 
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Figure 1-2.  Steps in the polymerization of methyl methacrylate (MMA). 
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 Polymer chains grow.  Chain ends meet causes  
polymerization termination. 

 C=C double bonds broken.  New C single bonds form. 
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Figure 1-3. Nucleation mechanism of apatite on the surface of biomaterials incorporated 

with calcium source in simulated body environment. 
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Chapter 2 

THE INVESTGATION OF BIOACTIVITY AND MECHANICAL PROPORTIES OF 
GLASS-IONOMER CEMENT PREPARED BY SIO2-AL2O3-CAO SYSTEM AND 
POLY(-GLUTAMIC ACID)  
 

1.    Introduction 

          Glass ionomer cement (GIC) has been successfully used in dental restoration for more 

than thirty years [1]. Recently, the application is extended to implant fixation and 

reconstructive surgical procedures [2]. Their biological functions in dental role include direct 

adhesion to tooth mineral and release of fluoride ions to defend against dental caries [3]. In 

comparison with other restorative cements, GIC exhibits attractive features such as ease of 

molding, no obvious shrinkage, no significant increase in temperature, better biocompatibility 

without inflammatory response in mouth [4].  

          Commercial products for cement preparation consist of SiO2-Al2O3-CaO (CaF2) glass 

fillers and about 40~50% m/m poly(acrylic acid) (PAA) solution. GIC can bond chemically to 

the tooth structure by developing an ion enriched layer due to the reaction occur between 

carboxyl group (-COOH) of PAA and calcium from the dentine or enamel [5]. When implanted 

into the body, although their specific structures with negative charge of Si-OH groups on the 

surface of glass particles and -COOH groups from PAA can attract Ca2+ ions easily [6]. The 

bonding between cements and bone is attributed to mechanical interlocking rather than a 

bioactive mineralized layer. Kamitakahara et al. revealed that the existence of PAA even in 

ppm order inhibited the apatite formation on GIC surface in SBF, meaning that any PAA-

containing GIC might lack bioactivity in body environment [7]. If such cements are intended 

for orthopaedic use, a new substitution of polyalkenoic acid must be developed.    

          In order to provide GIC with bioactivity, a microbial poly(γ-glutamic acid) (γ-PGA) will 

be adopted as an alternative acidic polymer to prepare cements. γ-PGA is a polypeptide in 

which the repetitive units of D- and L-glutamic acids are copolymerized through the chemical 
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bond between the amino and the carboxylic groups to give the chemical structure shown in 

Figure 2-1. The polymer comes from a natural component of Japanese soybean Natto, owns 

water solubility and non-toxicity to human beings and environment. Due to its rich –COOH 

groups, the γ-PGA hydrogels modified with Ca2+ ions to induce the formation of apatite in SBF 

has been reported [8]. And it has also been used in the preparation of GIC [9], but the 

information related to the bioactivity of cement is not reported yet. 

          In the present study, the aim was to build bioactive glass ionomer cement with satisfied 

mechanical strength. Besides the bioactivity testing, the preparation parameters in improving 

the mechanical properties of cements were also optimized.  

 

2.    Experimental 

2.1.   Poly(-glutamic acid) 

          Poly(-glutamic acid) used in this study was a food grade polymer supplied by Meiji 

Seika Kaisha, Japan. The range of molecular mass was from 800,000 to 1,200,000, and the 

concentrations (m/m) of -PGA solutions were set as 10%, 20%, 30% and 40%, respectively. 

 

2.2.   Glass powders synthesis 

          Glass G550 with the basic composition of 50 SiO2, 50 Al2O3, in mass% and glass G532 

with the basic composition of 50 SiO2, 30 Al2O3, 20 CaO, in mass% were synthesized by sol–

gel method [10]. The molar ratios of raw materials Si(OC2H5)4 (Nacalai tesque, Inc., Kyoto, 

Japan), C2H5OH (Wako Pure Chemical Industries, Osaka, Japan), distilled water and 

hydrochloric acid (HCl, Nacalai tesque, Inc., Kyoto, Japan) as a catalyst were maintained at 1: 

10: 50: 0.02. Addition amounts of Al(NO3)3•9H2O and Ca(NO3)2•4H2O (Wako Pure Chemical 

Industries, Osaka, Japan) was based on the glass compositions (seen in Table 2-I). The initial 

sol solutions were divided into two parts: Solution A was the mixture of 1M HCl solution, half 

of the C2H5OH, Al(NO3)3•9H2O and Ca(NO3)2•4H2O dissolved in the distilled water. Solution 
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B containing Si(OC2H5)4 and the remaining C2H5OH was stirred for 1 h at ambient temperature. 

Then, solution A was added by dropwise to continuous stirring solution B, the totally mixed 

solution was stirred for another hour then moved into a 85 ºC drying oven standing for 3 days. 

The gel was grinded and sintered in an electrically heated furnace in an air atmosphere at 800 

ºC for 2 h, where the heating rate was controlled at 5 ºC /min. The final powders passed through 

a 45 m mesh sieve were voted as the filler of cement preparation. 

 

2.3.   Cement preparation 

           Cement pastes were obtained by homogeneous mixing of glass fillers and different 

concentrations of -PGA solutions containing 10% m/m (+) tartaric acid (Wako Pure Chemical 

Industries, Osaka, Japan) on a glass slab with a spatula. The mixing ratios of powder/liquid 

(P/L, g/g) were increased from l: l to 2: 1, 0.25 as an interval. The pastes packed into cylindrical 

poly(meth acrylic) molds were allowed to set and aged at 37 ºC in an incubator with a relative 

humidity (R.H.) of 98%. 

 

2.4.   pH measurement of glass powders and mixed pastes 

          The glass powders weighed at 1 g were dropped into 19 mL H2O (concentration marked 

as 5, in mass%) and stirred for 1 h, the measured pH in aquatic medium was identified as the 

pH of glass powders. 1 g homogeneous mixed pastes were incubated for designed periods, then 

immersed in 5 mL pure water to measure the pH which was regarded as the pH of pastes. 

 

2.5.   Mechanical strength measurement 

          The mechanical strength of cements was assessed by the diametral tensile strength (DTS). 

Samples removed from the mold (8 mm in diameter, 4 mm in height) were applied to DTS 

measurement after 3 days of aging. Before DTS testing, the diameter and length of each 

specimen need to be re-measured with a micrometer. All samples were crushed in diametrical 
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direction at a crosshead speed of 1 mm/min using a computer-controlled Universal Testing 

Machine (Autograph AG-1, Shimadzu Co., Kyoto, Japan). DTS values can be calculated by an 

equation listed below:  

                                                          DTS = 2P/DL                                                             (2-1) 

where P is the maximum applied load recorded at the fracture, D and L is the diameter and 

length of sample, respectively. DTS shown in the figure were average values of 10 specimens, 

and the bars represented standard deviation (SD). 

 

2.6.   Incubation in simulated body fluid 

          Simulated body fluid (SBF) was prepared by dissolving reagents of NaCl, NaHCO3, KCl, 

K2HPO4•3H2O, MgCl2•6H2O, CaCl2 and Na2SO4 in ultrapure water with constantly stirring and 

buffering at pH 7.40 with tris(hydroxymethyl)aminomethane ((CH2OH)3CNH2) and an 

appropriate volume of 1M HCl solution, all reagents were supplied by Nacalai tesque, Inc., 

Kyoto, Japan and the details of SBF preparation were described in literature [11]. The 

constituents in SBF were 142.0 Na+, 5.0 K+, 1.5 Mg2+, 2.5 Ca2+, 147.8 Cl-, 4.2 HCO3
-, 1.0 

HPO4
2-, 0.5 SO4

2-, in mM, which was nearly equal to those of human blood plasma [12]. 

          Aged cements with highest mechanical strength prepared by each -PGA solution were 

chosen for SBF trial to evaluate bioactivity in terms of the changes on surface structure and 

morphology. The cylindrical specimens with dimensions of 8  4 mm3 stored in the plastic 

containers filled with 30 mL SBF were incubated at 37 ºC for 7 days. After that, the samples 

were removed, rinsed with distilled water, dried at room temperature. 

 

2.7.   Characterization 

          The phases and morphologies of glass G550 and G532 were surveyed by X-ray 

diffractometer (XRD; MXP3V, MAC Science Ltd., Yokohama, Japan) and scanning electron 

microscope (SEM; S-3500N, Hitachi High-Technologies, Tokyo, Japan). pH meter (F-23IIC, 
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Horiba Ltd., Kyoto, Japan) was employed to detect pH of glass powders and mixed pastes. 

Fourier-transformed-infrared spectrometer (FT-IR; FT/IR6100, Jasco Analytical Instruments, 

Tokyo, Japan) was introduced to investigate the interior components of cements. Surface 

changes in the structure and morphology of cements were performed by thin-film X-ray 

diffractometer and scanning electron microscope combined with the energy-dispersive X-ray 

microanalyzer (EDX; EMAX Energy, Horiba Ltd., Kyoto, Japan). Glass samples were scanned 

from 10 to 60º in 2(where  is the Bragg angle), cement samples were scanned from 20 to 

60º. SEM observation required sputter coating a thin film of gold on specimens. Wavenumber 

of FT-IR spectra was set from 500 to 4000 cm-1. 

 

3.    Results 

          Figure 2-2 exhibits the XRD patterns and SEM images of glass powders G550 and G532. 

No Crystalline peaks except a broad band centered at 2= 22.8º were observed on the G550 

pattern, once parts of Al2O3 was replaced by CaO, the center of broad band shifted to 26.3º, 

both broad bands were identified as the characteristic of amorphous SiO2, meaning that glass 

fillers G550 and G532 maintained non-crystalline structure. There were no obvious differences 

in the morphology and size between G550 and G532. Most of the particles were irregular. 

Namely, larger ones just passed through the 45 µm mesh sieve, while smaller ones was down 

to 10 µm below. 

          It was important to note that the pastes mixed by G532 powders and -PGA solution 

could not turn into hardened cements after 3 days aging, even after adjusting P/L ratios or 

concentrations of -PGA. Other cements prepared by G550 powders stable in SBF were 

obtained from 10 to 30% of -PGA. When the concentration was increased up to 40%, a 

tendency to gelation was found in this -PGA solution, and high viscosity created difficulties 

in the stage of measuring the amount of liquid phase and mixing the cement paste. 
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          Figure 2-3 displays the FT-IR spectra of G550 glass filler, pure -PGA and cements 

prepared by -PGA with the concentration (m/m) of 10 to 30% at P/L ratio of 1: 1. The peak at 

about 1050 cm-1 on the spectra of G550 glass filler was determined to the stretching of polarized 

Si-O band, which was also found on all cement samples. The peak at around 1560 cm-1 on pure 

-PGA spectra was identified as the stretching of C=O double bonding. On the spectra of 

cements, two peaks appearing at 1458 cm-1 and 1613 cm-1 regardless of the concentrations of 

-PGA, were assigned to the C-O symmetric/asymmetric stretching of the aluminum polysalts, 

respectively. Aluminum polysalts was one kind of polycarbonxylic salt precipitates formed by 

binding of Al3+ ions with the polyanion chains via carboxyl groups. Its existence indicated that 

the connection between glass powders and -PGA was successfully constructed by acid attack. 

          Figure 2-4 summaries the DTS values of cement specimens using P/L ratio from 1: 1 to 

2: 1 and -PGA concentration (m/m) of 10 to 30% after aging for 3 days. The highest strength 

(11.88 ± 1.43 MPa) was obtained under the P/L ratio of 1: 1 and the 30% m/m -PGA solution. 

It was clearly found that these two preparation parameters produced significant variations on 

DTS. The deterioration of DTS was following the increase of P/L ratio, and this change trend 

was consistent at each concentration of -PGA solutions. In addition, the increase in 

concentration of -PGA brought about apparent increase in DTS even under the same P/L ratio. 

Figure 2-5 shows 3 representative DTS-strain curves of glass ionomer cements prepared under 

various preparation parameters (P/L ratio = 1: 1 or 2: 1; the concentration (m/m) of -PGA 

solution was 30% or 10%), the dashed lines and equations were corresponding to the fitting 

results of each curves. The slopes of linear equations reflected the resistance ability of glass 

ionomer cements under being deformed elastically, thus increasing the concentrations of -

PGA solution or decreasing P/L ratios made the cements sustain higher tension (produce larger 

strain) at the same strain (tension). In addition, the maximum strain (3.25%) at fracture was 

small, this G550 glass/γ-PGA type cement was assumed as brittle material. 
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          Figure 2-6 shows SEM micrographs combined with EDX spectra of the SBF-unsoaked 

cement surface and the deposits precipitating on the surfaces of cements prepared by P/L ratio 

of 1: 1 under various concentration (m/m) of -PGA, after soaking in SBF for 7 days. Except 

the elements of cement itself, no other substances were detected on SBF-unsoaked cement 

surface based on EDX spectra. These deposits looked like spherical particles, the size range 

was beyond 0.5 μm, most of them agglomerated with each other into larger particles and 

precipitated on cement surface, which was more clearly shown on the cement prepared by 20% 

(m/m) γ-PGA solution. The Ca peaks were detected in EDX spectra, it was an evidence that 

the deposits were calcium-containing compound.  

          TF-XRD patterns of the surfaces of cements prepared by different concentration of -

PGA solution using P/L ratio of 1: 1, before and after soaking in SBF for 7 days are depicted 

in Figure 2-7. No crystalline peaks were detected on the TF-XRD pattern of SBF-unsoaked 

cement, which indicated that no change in structure was created during the setting and aging 

process. The peaks appearing at about 23.1º, 29.5º, 36.0º, 39.4º, 43.1º, 47.7º and 48.6º in 2 on 

the diffraction pattern of cements surfaces were assigned to a diffraction envelope of (102), 

(104), (110), (113), (202), (018) and (116) that resulted from the calcite (CaCO3, JCPDS Card 

No. 05-0586). Besides the calcite as main phase, the peaks assigned to the low-crystalline silica 

(JCPDS Card No. 33-1161) were also detected. The rest peaks were still unknown. The patterns 

of cements have illustrated that: calcite was deposited on cement surfaces irrespective of the 

concentration of γ-PGA after 7 days soaking in SBF.  

           Table 2-II shows pH values of glass powders measured in aqueous medium with a 

calculated concentration of 5 mass% and the pH of γ-PGA aqueous solution under various 

concentrations. The pH of G550 was 5.43, with an increase of CaO proportion in SiO2-Al2O3-

CaO system, pH of the glasses rapidly increased, G532 owned the pH of 9.97. Increase in 

concentration of γ-PGA caused a slight increase in pH. Figure 2-8 depicted two pH tendencies 

in the initial period of the pastes mixed by G532 powders and 10% m/m γ-PGA at P/L ratio 2: 
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1 and 1: 1 measured in 5 ml pure water. Initial pH of the pastes mixed at P/L ratios of 2: 1 and 

1: 1 was 7.18 and 8.55, respectively, both increased over time. The initial pH environment was 

far beyond the precipitation condition in setting, led to the failure in bonding between the 

polyanion chains of -PGA and metal ions. 

 

4.    Discussions 

          In SiO2-Al2O3-CaO system, it has been reported that glasses in the composition regions 

of gehlenite or anorthite owned cement forming possibility [13]. The composition regions of 

gehlenite and anorthite was limited on the atomic ratio: Ca: Al < 1:2, Al: Si > 1:1 and Ca: Al 

≥ 1: 2, Al: Si ≤ 1: 1, respectively. In our study, the atomic ratio of Al: Si in glass G550 was 

1.18, and glass G532 exhibited Ca: Al = 0.58 and Al: Si = 0.71, both glasses were considered 

as ion-leachable glass and suitable for cement preparation.  

          When glass powders were mixed with the liquid, metal ions Ca2+ first then Al3+ were 

released from the surface of glass particles by acid attack then leached into the aqueous medium. 

The leached ions bound with the polyanion chains via the carboxyl groups to precipitate a hard 

polycarboxylic salts [14-16]. In this acid-base reaction, pH environment determined by the 

combination of glass and acid solution was important for the precipitation of polycarboxylic 

salts. The pH ranges of -PGA solutions were comparable to glass G550, which made it 

possible to bound with Al3+ ions and precipitate the polycarboxylic salts although the 

precipitation took a long time. But the acidity (reflected on pH) of -PGA was not strong 

enough to neutralize glass G532, which resulted in high initial pH, and the polycarboxylic salts 

couldn’t be precipitated under such condition. The pH tendency shown in Figure 2-8 was 

accordance with the result published by Ho et al [17], meaning that the calcium in the -PGA 

solution was in ionized state. The failure in precipitation stage interrupted the progressive 

hydration of the matrix salts, so the pastes mixed by glass G532 and -PGA solution did not 

transform into the maturation phase. 
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          The set cement consisted of unreacted glass particles with a surrounding siliceous 

hydrogel bound together by a matrix of polyanions cross-linked by ionic bridges (seen in 

Figure 2-9). In the cement components, the hydrated matrix composed of metal ions and 

polymer were the dominant phase in determining the mechanical strength. Enhancement of 

physical properties could be attributed to the increase in the amount of ionic cross-links 

between mental ions and polymer chains [18]. In G550 glass/γ-PGA cement, increasing the 

concentration of γ-PGA manifested an increase in the amount of polymer chains. In addition, 

boosting the acidity of liquid forced more Al3+ ions being released from particles. The increased 

polymer chains and Al3+ ions were sources of ionic cross-links, which implied more aluminum 

polymer salts could be formed to improve the mechanical properties. Similarly, in the case of 

a limited content of liquid, excessive powders did not produce more ionic cross-links. 

Consequently, they brought about a decline in the proportion of polymer salts which resulted 

in the deterioration of mechanical strength, as shown in the results of DTS. The discussion 

about DTS variation on preparation parameters could be used to explain the changes on DTS-

strain curves. Except that, considering the intrinsic properties of two raw materials in preparing 

cements, increasing the contents of brittle glass eventually brought brittleness to the cements, 

this material was more prone to be fractured; while the soft polymer γ-PGA was attributed to 

increase the flexibility of cements, which enhanced the deforming resistance at the breakage. 

          Although measured maximum DTS of the present G550 glass/γ-PGA cements achieved 

about 70% of the commercially available GIC [19], it paid the expense of setting. Due to the 

absence of calcium oxides, glass G550 increased the resistance to acid attack; and strong 

bonding in Al-O-Si bridges delayed the generation of Al polysalts, both prolonged the setting. 

Even the cement prepared by the γ-PGA concentration (m/m) of 30% at P/L ratio (g/g) of 1: 1 

spent more than 1 h to change into hard shape since timing started from the mixing. 

          The bioactive materials achieve the osteoconduction which is considered as a chemical 

attaching to bone by the formation of a biologically active apatite layer on their surfaces via 
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chemical reactions with the surrounding body fluid [20]. The nucleation of the apatite layer is 

initialed by specific functional groups [21] (Si-OH, Ti-OH, or -COOH) combined with Ca2+ 

ions. In this study, Si-OH groups were the main constituents of a siliceous hydrogel surrounded 

on the glass particles, carboxyl groups may come from the unreacted γ-PGA; both of them 

might induce the Ca2+ ions precipitating on the surface of the cements.  

          However, unlike the commercial bioactive ceramics, the precipitates were assigned as 

calcite instead of apatite. The possible reason was ascribed to the combination of glass with -

PGA might produce preferable condition for the precipitation of calcite. It is known that -PGA 

has high potential to adsorb Ca2+. It is therefore assumed that mixture of -PGA and other 

components in cements may adsorb a lot of Ca2+ to produce the surface able to favorably 

deposit calcite, unlike the pure -PGA able to deposit the calcium phosphate.  

          Calcite is also considered as bioresorbable material applied in drug delivery [22]. In 

addition, it has reported that not only apatite but also calcite can bond with rabbit tibia [23]. 

On the basis of this report, the prepared GIC may also exhibit bioactivity.  

 

5.    Conclusions 

          Glass ionomer cements have been successfully attempted by using glass powders with a 

composition of 50 SiO2 50 Al2O3 in mass% mixed with γ-PGA solution. Increasing the 

concentration of γ-PGA or decreasing the P/L ratio can enhance the cross linking degree of 

acidic polymers and the proportion of aluminum polysalts in cements, both are key roles in 

determining the mechanical properties. The cement prepared by the P/L ratio (g/g) of 1: 1 and 

the γ-PGA concentration (m/m) of 30% exhibited the highest diametral tensile strength (11.88 

± 1.43 MPa) after aging for 3 days. Calcite phase was deposited on cement surface after 7 days 

soaking in SBF, meaning that this SiO2-Al2O3 glass/γ-PGA cement may own the bioactivity. 

Based on the diametral tensile strength and bioactivity evaluation, γ-PGA can be chosen as 

another alternative polyalkenoic acid in the preparation of glass ionomer cement. 
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Tables and Figures 
 

 

 

Table 2-I. Mixing ratios of raw materials for sol–gel synthesis of SiO2-Al2O3-CaO 

powders.  

 

 

 

Table 2-II. pH values of glass powders in aqueous solution and -PGA aqueous solutions 

under different concentrations. 

 

 

 

 

 

 

 

 

 

 

  

 

Raw materials (molar ratio) Composition of  
target product 

TEOS Al(NO3)3•9H2O Ca(NO3)2•4H2O C2H5OH H2O HCl SiO2: Al2O3: CaO 
(w/w/w) 

1 1.178 0 10 50 0.02 G550, 5: 5: 0  

1 0.707 0.429 10 50 0.02 G532, 5: 3: 2  

SiO2-Al2O3-CaO 5-5-0 
system 

5-4.5-0.5 
system 

5-3-2 
system 

pH value 5.43 8.28 9.97 

-PGA solution 10% (m/m)  20% (m/m)  30% (m/m) 

pH value 5.41 5.32 5.24 
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Figure 2-1. Chemical structure of poly(-glutamic acid) (γ-PGA) 
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 Figure 2-2. SEM micrographs (upper) and XRD patterns (lower) of glass powders 

G532 and G550.  

 

G550 

G532 
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Figure 2-3. FT-IR spectra of G550 powders, pure -PGA and the cements prepared by 

-PGA solutions with the concentrations (m/m) of 10 to 30% at P/L ratio of 1: 1. 
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 Figure 2-4.  Diametral tensile strength as a function of the -PGA concentration and 

mixing P/L ratio. 

 
Figure 2-5.  Representative DTS-strain curves of glass ionomer cements under various 

preparation parameters. 
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Figure 2-6. SEM micrographs and EDX spectra of SBF-unsoaked cement surface, the 

deposits precipitating on the surfaces of cements prepared by the P/L ratio of 1: 1 under 

various concentrations (m/m) of -PGA solution, after soaking in SBF for 7 days. 

 

 

 

unsoaked cement 10% m/m -PGA 

20% m/m -PGA 30% m/m -PGA 
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Figure 2-7. TF-XRD patterns of the surfaces of cements prepared by different 

concentrations (m/m) of -PGA using P/L ratio of 1: 1, before and after soaked in SBF.

 

 

          
Figure 2-8. pH tendencies in initial periods of the pastes mixed by G532 powders and 

10% m/m γ-PGA solution at P/L ratio of 2: 1 and 1: 1, tested in 5 ml pure water. 
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Figure 2-9.  Interior structure of glass ionomer cement [24].  
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Chapter 3  

MODIFICATION WITH CALCIUM ACETATE AND PHOSPHORIC ACID 
2-HYDROXYETHYL METHACRYLATE ESTER TO PROVIDE PMMA 
BONE CEMENT WITH BIOACTIVITY IN SIMULATED BODY 
ENVIRONMENT  
 

1.    Introduction 

          As one kind of clinical material used for anchoring artificial hip joints to contiguous bone, 

polymethylmethacrylate (PMMA) bone cement has been paid much attention in orthopedic field 

due to its better performance at early recovery stage [1]. However, one significant problem is that 

this type bone cement lacks of a chemical bonding ability to bone. Intrinsic mechanical 

interlocking [2] is insufficient to sustain long-term stable implantation, so loosening between bone 

cement and the implant is liable to occur [3].  

          It is essential to develop a biocompatible and adhesive PMMA bone cement for implantation 

without loosening. Some bioactive materials such as bioglass 45S5 [4, 5] or glass-ceramic A-W 

[6, 7] can generate a physiological active bone-like substance that creates a tight contact to living 

bone after implanted into body environment. Incorporating such fillers into PMMA cement by 

mechanical mixing has also achieved the purpose of improved bone bonding [8]. However, in 

some cases, this method still faces challenges in its detail: for example, the formation of apatite 

was restricted to spots where bioactive particles could be exposed to body fluid, and acquiring a 

better performance on osteoconductivity and affinity required an increase in the content of glass 

beads to 70 mass% [9]. The addition of massive amounts of bioactive powders may limit the 

physical properties of PMMA cement. Therefore, an alternative design for the fabrication of 

bioactive PMMA bone cement needs to be developed.  

          It has been revealed that simulated body fluid (SBF), whose composition is nearly equal to 

that of human blood plasma, has a similar ability to body fluid for the production of bone mineral 
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apatite [10]. Therefore, studies [11] related to the reaction mechanism between bioactive materials 

and SBF could be viewed as the evidence to understand the formation process of apatite: some 

functional groups such as Si-OH [12,13], -COOH [14,15] or PO4H2 [16] played an important role 

in attracting apatite nucleation and Ca2+ ions released into SBF accelerated the growth of apatite. 

The finding suggests that utilization of combinations of functional groups and Ca2+ ions can 

possibly equip PMMA bone cement with apatite-forming ability. A previous research [17] 

recommended calcium acetate as the ideal source of Ca2+ ions, due to its appropriate solubility and 

satisfied performance on setting time and compressive strength among all selected calcium salts. 

On the other hand, Tanahashi [16] discovered that the potentials of functional groups differed from 

one another in the aspect of inducing apatite nucleation, as the nucleation rate decreased in the 

order of PO4H2 > -COOH >> -CONH2 ≈ -OH > -NH2, thus phosphate groups (PO4H2) were 

considered as the optimal option. 

          In this study, phosphoric acid 2-hydroxyethyl methacrylate ester (Pa2hme) was employed 

to supply phosphate (PO4H2) groups, its chemical structure was shown in Figure 3-1. The primary 

target is to develop a bioactive PMMA bone cement by modification with the combinations of 

various amounts of calcium acetate and Pa2hme. The effects of both additives on other cement 

properties were also investigated. Bioactivity was estimated by the formation of apatite in an SBF 

environment, and setting time and compressive strength were examined as the workability and 

mechanical properties, respectively. The contents of calcium acetate and Pa2hme were also 

optimized for practical application in clinic.  

 

2.    Experimental 

          All chemical reagents used for the preparation and analysis in our study were of reagent 

grade without further purification. PMMA powders with a molecular weight about 70,000 and 

average grain size of 4 um were supplied by Sekisui Plastics Industries, Tokyo, Japan. The calcium 
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acetate was produced by sintering calcium acetate monohydrate (Ca(CH3COO)2•H2O, Wako 

Chemical Industries, Osaka, Japan) at 220 ºC for 2 h and sieved to a particle size <44 μm, then 

stored at 120 ºC before cement preparation.   

2.1.   Preparation of the modified PMMA cements  

          The preparation of PMMA cement relies on the mixing of a powder and a liquid phase. The 

powder phase was composed of a mixture of PMMA beads, pre-heated Ca(CH3COO)2 and benzoyl 

peroxide (BPO, Wako Chemical Industries, Osaka, Japan) as a polymerization initiator. The 

mixing was required at least for 1 min. The liquid phase was prepared by blending MMA monomer 

(Wako Chemical industries, Osaka, Japan) with Phosphoric acid 2-hydroxyethyl methacrylate 

ester (Pa2hme, Aldrich, Tokyo, USA) and a polymerization accelerator N,N-dimethyl-p-toluidine 

(DmpT, Wako Chemical Industries, Osaka, Japan). The contents of additives and detailed 

composition in the powder and liquid phase are shown in Table 3-I-a and Table 3-I-b, and the 

amounts of BPO and Dmpt remained constant. One sample (viewed as the reference) prepared 

with P00 + L00 owned the same composition of commercially available PMMA bone cement 

offered by CMW® 1, Debuy International Ltd., England. Every paste was obtained by mixing the 

powder with the liquid phase at a powder/liquid (P/L) mass ratio of 1: 0.5 at ambient temperature. 

 

2.2.   Measurement of setting time and maximum temperature 

          Setting times of cements were measured according to the ISO 5833 [18]. Mixed pastes 

packed into cylindrical poly(meth acrylic) molds were allowed to polymerization under the 

prescribed conditions of 23 ± 2 ºC and 40~60% relative humidity. The rise in temperature with 

curing time was sensed by using a thermocouple probe (Plamic 100 penetrated into the center 

of each mold, a thermo record (TR-81, T&D corp., Matsumoto-shi, Japan) connected to the probe 

was in charge of data storage (sampling rate: 1 s) until the temperature reached its peak (maximum). 

The determination of setting time started from the beginning of mixing, ended with the value 
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corresponding to the halfway between prescribed and peak temperature on the exothermic 

temperature/time curve. The measurements for each combination of Pa2hme and Ca(CH3COO)2 

were carried out four times and all setting times and maximum temperatures were expressed as 

mean ± SD (standard deviation). 

 

2.3.   Bioactivity evaluation in simulated body fluid 

          In our study, cements with bioactivity in vitro were assessed by the formation of bone-like 

apatite on their surfaces in an SBF environment. SBF owns nearly equal constituents compared to 

those of human blood plasma [19], ion concentrations are 142.0 Na+, 5.0 K+, 1.5 Mg2+, 2.5 Ca2+, 

147.8 Cl-, 4.2 HCO3
-, 1.0 HPO4

2-, 0.5 SO4
2-, in mol/m3, the preparation of SBF was following the 

publication proposed by Professor Kokubo [10]. Prepared cements polished by 1000# SiC paper 

were cut into a rectangular pieces with dimensions of 10  15 1mm3 then stored in the plastic 

containers filled with 35mL SBF at 37 ºC. After soaking for designed intervals (1, 3, 7 and 14 

days), all cements were removed, rinsed and dried at room temperature. 

 

2.4.   Compressive strength evaluation 

          For the compressive strength measurement, mixed pastes were shaped into the cylindrical 

objects with 6 mm in diameter and 12 mm in height recommended by ISO 5833 [20]. The 

incubation for all specimens was achieved in SBF, molded cements before completely cured were 

left in SBF at 37 ºC for 7 days. The compressive load was applied at cross-head speed of 20 

mm/min using an Universal Testing Machine (Autograph AG-1, Shimadzu Co., Kyoto, Japan) 

until fracture occurred. The compressive strength was calculated from fracture load and geometric 

area of the specimen. 10 specimens were measured for each combination to figure out the averages 

and standard deviations.  

 



 

- 49 - 
 

2.5.   Characterization 

          Thin-film X-ray diffractometer (TF-XRD; MXP3V, MAC Science Ltd., Yokohama, Japan), 

scanning electron microscope (SEM; S-3500N, Hitachi High-Technologies, Tokyo, Japan) 

combined with energy-dispersive X-ray microanalyzer (EDX; EMAX Energy, Horiba Ltd., Kyoto, 

Japan) and Fourier-transformed-infrared spectrometer (FT-IR; FT/IR6100, Jasco Analytical 

Instruments, Tokyo, Japan) were employed to investigate the surface changes in structure and 

morphology of all cements. TF-XRD patterns were performed by using a step scanning mode at 

0.02º steps per second with CuKradiation, all samples were scanned from 20 to 40º in 2 (where 

 is the Bragg angle). A thin film of carbon was sputter-coated on all specimens for SEM 

observation and the range of wavenumber in FT-IR measurement was set from 500 to 2000 cm-1. 

pH meter (F-23IIC, Horiba Ltd., Kyoto, Japan) was introduced to detect pH values of remaining 

SBF used for bioactivity evaluation under designed periods, the concentrations of Ca and P in the 

SBF under the same periods were also measured by Inductively Coupled Plasma-optical Emission 

Spectrometry (ICP-OES; Optima 4300 DV, PerkinElmer, Inc., America).  

 

3.    Results 

 

3.1.   Setting behavior 

          It should be note that Pa2hme only beyond 30 mass% could be completely dissolved in 

MMA liquid. No heating release were detected from the modified cements “P00” (without 

Ca(CH3COO)2), “Pa2hme30# + CA5%”, “Pa2hme50# + CA5%” and “Pa2hme50# + CA20%”, 

they still remained a dough state after standing for at least 2 h, which made them only suitable for 

bioactivity examination. 

          Table 3-II-a and Table 3-II-b lists the setting times and maximum temperatures of all 

cements prepared by the combinations of Ca(CH3COO)2 and Pa2hme under various contents, 
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respectively. The combinations of Ca(CH3COO)2 and Pa2hme led to an acceleration of setting 

compared to the reference sample. Comparison among all the modified cements, under the same 

content of Pa2hme, the shortest setting times were obtained from the samples whose mass ratios 

of Ca(CH3COO)2/Pa2hme were close to the mixing ratio (2: 1) of powder/liquid, increasing or 

decreasing the amounts of Ca(CH3COO)2 prolonged the setting based on this ratio. The same 

tendency can be also found from the variations in maximum temperature. Moreover, it could be 

found that Ca(CH3COO)2 didn’t produce obvious influence on setting time and maximum 

temperature, but the content of Pa2hme increased to 50 mass% produced drastic decline in 

maximum temperature. 

 

3.2.   Characterization of apatite formation 

          Figure 3-2 shows the original surface morphologies of reference cement “L00 + P00” and 

modified sample “Pa2hme30# + P00” observed by SEM, EDX spectra of cements prepared by L00 

+ P00, Pa2hme30# and Pa2hme50# combined with various contents of Ca(CH3COO)2 before 

soaking in SBF (0 day). On SEM photographs, scratches created by the polish of SiC paper were 

found on reference cement; except scratches, holes brought from the mixing were also detected on 

modified sample, and the surface features of other modified cements were similar to that of 

“Pa2hme30# + P00”. No redundant elements were detected on pure PMMA cement, while the Ca 

and P elements detected the surfaces of modified cements indicated that the additives 

Ca(CH3COO)2 and Pa2hme had been successfully merged into the cement, and the intensities of 

Ca were enhanced following the increasing content of Ca(CH3COO)2. 

          SEM photographs shown in Figure 3-3 are the surface morphologies of cements prepared 

by Pa2hme30# and Pa2hme50# combined with various contents of Ca(CH3COO)2 after soaking 

in SBF for 14 days, respectively. Layered deposition composed of individual spherical particles 

was covering the whole surfaces of Pa2hme30# series cements modified with CA35% and CA50%, 
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and no deposition was observed on Pa2hme50# series cements regardless of the content of 

Ca(CH3COO)2, surface features were almost unchanged compared to initial cements shown in 

Figure 3-2.  

          Figure 3-4 shows the FT-IR spectra of all cements prepared by the combination of Pa2hme 

and Ca(CH3COO)2 with various contents after soaking in SBF for 14 days. The functional groups 

listed in Table 3-III are corresponding to those number-marked peaks appearing on the FT-IR 

spectra, these groups are considered to be the characteristics of PMMA. While the intrinsic peaks 

belong to phosphate-containing Pa2hme and Ca(CH3COO)2 are hard to be confirmed on all 

modified samples due to the overlapping of peaks. Moreover, the tendency in FT-IR spectra were 

in accordance with that of SEM observation, the layered deposition on cement surfaces changed 

the spectra, a new series of peaks appearing at around 600 to 1050 cm-1 were ascribed to P‒O 

stretching (550 and 600 cm-1: PO4
3- ν4 vibration; 950 cm-1: PO4

3- ν1 vibration; 1020 cm-1: PO4
3- ν3 

vibration), which indicated that the deposited microspheres contained phosphate radical (PO4
3-), 

might belong to calcium phosphate salt [21]. 

          Figure 3-5-a displays the TF-XRD patterns of cements prepared by (a) Pa2hme30# and (b) 

Pa2hme50# with different contents of Ca(CH3COO)2 after soaking in SBF for 14 days, and Figure 

3-5-b shows the TF-XRD patterns of Pa2hme30# series cements modified with (c) CA35% and 

(d) CA50% after soaking in SBF for designed periods. No peaks were detected on Pa2hme50# 

series cements regardless of Ca(CH3COO)2 contents; these cements still maintained the initial state 

(0 day) even after soaking in SBF for 14 days, while high contents of Ca(CH3COO)2 such as 35 

mass% and 50 mass% changed the patterns of Pa2hme30# series cements: the peaks with low 

crystallinity appearing at about 26º, 32º, and 34º in 2 were assigned to the diffractions of 

hydroxyapatite on the basis of JCPDS Card No. 09-0432, and the first emergences of apatite peaks 

for CA35% and CA50% were after 14 days and 3 days of soaking in SBF, respectively, which was 
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accordance with the SEM observation, the spherical deposits were identified as low-crystalline 

apatite.  

          The apatite-forming ability of the cements containing various content of both additives in 

SBF environment is judged by TF-XRD results, the evaluation is summed up on Table 3-IV. The 

apatite forming period varied from 3 to 14 days depending on the combinations of Ca(CH3COO)2 

and Pa2hme. Namely increases in the amount of Ca(CH3COO)2 accelerated the formation rate of 

apatite, while the same change trend on Pa2hme brought an opposite result. 

 

3.3.   Variation in compressive strength 

          The compressive strength of cements modified with various contents of both additives after 

7 days soaking in SBF is summarized in Figure 3-6. The highest compressive strength was 71.6 ± 

1.4 MPa provided by sample “Pa2hme30# + CA20%”, just exceeded the lower limit of ISO 5833 

[20], and still lower than that (96.9 ± 7.2 MPa) of the SBF-soaked reference. It was clearly seen 

that all additives produced a decline in compressive strength, the decay was following the increase 

of both additives. 

 

3.4.   Changes in the ionic concentrations of Ca and P and corresponding pH in SBF 

           Figure 3-7 exhibits the changes of concentrations of Ca and P in remaining SBF and Figure 

3-8 exhibits the corresponding pH values of the same SBF measured at 37 ºC under various 

intervals after cements soaking. Rapid release of Ca2+ ions (represented by Ca in figure 3-7) was 

finished within 3 days of soaking in Pa2hme30# series cements and within 1 day of soaking in 

Pa2hme50# series cements. More Ca(CH3COO)2 added into cements led to enhanced releases of 

Ca2+ ions in SBF irrespective of the deposition of apatite. Rapid release of PO4H2 groups 

(represented by P in figure 3-7) was finished within 1 day of soaking in both cements series. It 

should be noted that P concentration of SBF soaked by sample “Pa2hme30# + CA35%” started to 
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drop after 7 days, and the concentration of P in sample “Pa2hme30# + CA50%” soaked SBF 

showed almost the same as that of initial SBF since the apatite began to deposit, the reduced portion 

of P was considered as the consumption for apatite formation, supported by XRD results. The pH 

of remaining SBF decreased with the increase in soaking time and the contents of Ca(CH3COO)2, 

its drop became more obvious in Pa2hme50# series samples.  

 

4.    Discussions 

          Setting behavior of all modified cements implied that adding Pa2hme alone may inhibit the 

radical polymerization, and successful polymerization depended on the combination of 

Ca(CH3COO)2 and Pa2hme under a controllable range on amounts. Considering the corresponding 

relationship between the mass ratio of Ca(CH3COO)2/monomer and the shortest times, one 

reasonable explanation was that the efforts from both sides had counteracted with each other on a 

critical ratio which was close to the mixing ratio (2: 1). Therefore, the initiator/accelerator 

BPO/DmpT only worked on the rest of PMMA/MMA, which accelerated the setting. Comparison 

in both additives, Pa2hme was the dominant role in affecting the setting behavior of modified 

cements. In our research, the acceleration of setting was consistent with the result of the 

modification of PMMA cement with phosphorylated hydroxyethylmethacrylate (HEMA-P) [22].   

          Modification with Ca(CH3COO)2 and phosphate (PO4H2) groups containing Pa2hme in a 

suitable contents provided the PMMA bone cement with bioactivity in terms of the apatite 

formation, the generation of a bioactive surface consisting of sphere apatite particles was attributed 

to the coaction of the phosphate (PO4H2) groups in the structure of Pa2hme and Ca2+ ions. 

Phosphate (PO4H2) groups shared the same role as Si-OH groups [23]. Those incorporated onto 

the cement surface could initiate the heterogeneous nucleation of apatite, and continuous release 

of Ca2+ ions from water-soluble calcium acetate led to an increase in supersaturation degree with 

respect to apatite. It was clear to see that increasing in content of Ca(CH3COO)2 could shorten the 
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apatite-forming period from Table 3-IV, but increasing in content of Pa2hme did not provide 

cements with apatite-forming ability. The possible reason could be concluded from initial surface 

changes caused by the changes in pH with soaking periods and concentration variations of Ca and 

P in SBF (seen in Figure 3-2, Figure 3-7 and Figure 3-8). High contents of Ca and P detected on 

cement surface were liable to release into SBF, the dissolution of Ca(CH3COO)2 brought acetate 

ions (CH3COO-) into SBF, and the increase in P concentration of SBF implied that phosphate 

(PO4H2) groups were also discharged into SBF, both acidic species were attributed to the drop of 

pH of SBF. The drastic decreases of pH were finished within 1 days due to the rapid release of 

both additives, and the increase in the both additives contents brought more serious decrease. Low 

pH environment was not an ideal environment for apatite precipitation, because it led to low 

supersaturation degree of apatite. Besides that, the increase of P content indicated that cement 

surface had lost PO4H2 functional groups for attracting the nucleation of apatite, the possibility to 

induce apatite nucleation only relied on the plenty of Ca2+ ions on cement surface to rise the 

supersaturation degree of apatite. For Pa2hme50# series cements, although the amount of 

Ca(CH3COO)2 increased to 50 mass%, a sustained declining pH of SBF combined with the ions 

(Ca2+ or PO4
3-) on the surface was no longer suitable for the deposition of apatite. For bioactive 

PMMA cement, although pH did not offer a satisfied condition, abundant Ca2+ ions released into 

SBF enhanced the supersaturation degree of apatite and further prompted the apatite deposition. 

The results suggested that apatite-forming ability of the cements modified with calcium acetate 

and Pa2hme was not only controlled by the contents of both additives, the surface compositions, 

the changes of pH and concentrations of Ca and P in SBF also showed influences on that. 

          Unlike bioactive glasses or glass-ceramics [24], Ca(CH3COO)2 and Pa2hme were soft 

additives, incorporation of them was incapable to make up the loss of compressive strength from 

the replaced parts of cements, thus more additives led to greater deterioration in mechanical 

strengths; the hydrolysis and release of Ca(CH3COO)2 and Pa2hme (expressed by the way of Ca 
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and P concentrations shown in Figure 3-7) created pores on the surface of modified cements, 

which made a further loss of strength after exposure to the SBF [25]. Even if the bioactive PMMA 

cements could induce the deposition of apatite on surfaces, tiny amounts of apatite was unable to 

enhance the strength of cements.  

          Consequently, taking apatite-forming ability, setting time and compressive strength into 

consideration, the optimal content was 30 mass% of Pa2hme in liquid and 35 mass% of 

Ca(CH3COO)2 in powder. However the obtained cement still failed to satisfy the practical standard 

ISO5833 due to its poor mechanical performance (far behind the lower limit: 70MPa). The 

effective way to enhance the physical properties of modified cements was reducing Pa2hme 

content in liquid phase based on the tendency shown in Figure 3-6, but Pa2hme was separated 

from MMA matrix at a lower content. So, a better solution is to search a new phosphate-containing 

monomer which can be mixed with MMA at lower proportion to replace Pa2hme.  

 

5.    Conclusions 

          The combinations of Ca(CH3COO)2 and phosphate (PO4H2) groups containing Pa2hme can 

equip PMMA bone cement with apatite-forming ability in simulated body environment. Increasing 

the content of Ca(CH3COO)2 significantly shortened the formation period of apatite; while high 

ratios of both additives in modified cements result in the deterioration of compressive strength. 

Bioactive cements with highest compressive strength still failed to satisfy the practical standard 

ISO 5833 because of the Pa2hme itself. It is necessary to adopt new monomer to enhance the 

physical properties for clinic application. 
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Tables and Figures 
 

 

 

 

Table 3-I-a. Detailed constituents in powder phase 

 
 
 
 
 
 
 
 
 
 

CA: pre-heated calcium acetate Ca(CH3COO)2; 

BPO: benzoyl peroxide; 

 

 

 

Table 3-I-b. Detailed constituents in liquid phase 

 

 

 

 

 
 
 
Pa2hme: Phosphoric acid 2-hydroxyethyl methacrylate ester; 

DmpT: N,N-dimethyl-p-toluidine; 
 

 

 

CA 
CA

PMMA+ CA
 

Powder phase (mass ratio) 

PMMA CA BPO 

P00 0.00 0.971 0 0.029 

5% 0.05 0.922 0.049 0.029 

20% 0.20 0.777 0.194 0.029 

35% 0.35 0.631 0.340 0.029 

50% 0.50 0.486 0.485 0.029 

Pa2hme Pa2hme

MMA + Pa2hme
 

Liquid phase (mass ratio) 

MMA Pa2hme DmpT 

L00 0.00 0.496 0 0.004 

30# 0.30 0.347 0.149 0.004 

50# 0.50 0.248 0.248 0.004 



 

- 60 - 
 

 

 

 

 

Table 3-II-a. Setting time of the cements containing various contents of Pa2hme and 

Ca(CH3COO)2 

 
 
 
 
 
 
the reference sample “L00 + P00”: 361 ± 25 (s); 

∞: no heat release can be detected, viewed as an unset cement; 

 

 

 

 

 

Table 3-II-b. Maximum temperature of the cements containing various contents of Pa2hme 

and Ca(CH3COO)2 

 
 
 
 
 
 
the reference sample “L00 + P00”: 82.5 ± 2.4 ºC; 

: no heat release can be detected from the thermo record; 

 

 

 

 

 

Cement 
composition 

Setting time (s) 

P00 CA5% CA20% CA35% CA50% 

Pa2hme30# ∞ ∞ 215 ± 18 183 ± 16 200 ± 7 

Pa2hme50# ∞ ∞ ∞ 247 ± 6 192 ± 17 

Cement 
composition 

Max. temperature (ºC) 

P00 CA5% CA20% CA35% CA50% 

Pa2hme30#   75.2 ± 2.3 78.6 ± 2.7 75.6 ± 1.5 

Pa2hme50#    58.1 ± 3.0 60.6 ± 4.1 
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Table 3-III. Functional groups presented in the spectra shown in Figure 3-4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3-IV. Apatite-forming ability of PMMA cements modified with various combinations 

of Pa2hme and Ca(CH3COO)2 in SBF environment, based on the XRD results# of designed 

soaking periods. 

 

 

 

 

 
#–: Apatite was not found after 14 days; 

 +: apatite was formed within 14 days; 

 ++: apatite was formed within 3 days; 

 

 

 

 Wavenumber (cm-1) Combination Functional groups 

1 1723 C=O Carbonyl C=O 

2 1483 C-H -methyl (CH3) 

3 1280 C-H -methyl (CH3) 

4 1244 C-O -O-C=O 

5 1205 C-H CH chains 

6 1143 C-C C(CH2)n chains 

7 1060 C-O -O-CH3 

8 984 C=C RHC=CH2 

9 843 C=O RC=OOCH3 

10 752 C-H -(CH2)-  

Cement 
composition 

Apatite-forming period (d) 

P00 CA5% CA20% CA35% CA50% 

Pa2hme30# – –  + ++ 

Pa2hme50# – – – – – 
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Figure 3-1. Chemical structure of Phosphoric acid 2-hydroxyethyl methacrylate ester 

(Pa2hme). 
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Figure 3-2. Representative SEM images of the sample: L00 + P00 and Pa2hme30# + P00; 

EDX spectra of the cements prepared by L00 + P00, Pa2hme30# and Pa2hme50# with 

various contents of Ca(CH3COO)2 before SBF soaking.  

L00 + P00 

Pa2hme30# Pa2hme50# 

L00 + P00 Pa2hme30# + P00 
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Pa2hme30# 

CA50% 

P00 CA5% 

CA35% CA20% 
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Figure 3-3. Surface SEM images of the cements prepared by Pa2hme30# and Pa2hme50# 

with various contents of Ca(CH3COO)2 after soaking in SBF for 14 days. 

CA50% 
 

Pa2hme50# 

CA20% CA35% 

CA50% 

P00 CA5% 
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Figure 3-4. FT-IR spectra of the cements prepared by (a) Pa2hme30# and (b) Pa2hme50# 

with various contents of Ca(CH3COO)2 after soaking in SBF for 14 days. 

(a) 

(b) 
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Figure 3-5-a. TF-XRD patterns of the surfaces of the cements prepared by (a) Pa2hme30# 

and (b) Pa2hme50# with different contents of Ca(CH3COO)2 after 14 days soaking in SBF. 

              
Figure 3-5-b. TF-XRD patterns of the surfaces of Pa2hme30# series cements combined with 

(c) CA35% and (d) CA50% after soaking in SBF for designed intervals.  

Black circle (): Apatite. 

CA50% 
 

CA50% 
 

CA35% 
 

CA50% 
 

(a) (b) 

(c) (d) 
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the reference sample “L00 + P00”: 96.9 ± 7.2 MPa; 

Figure 3-6. Variations in compressive strength of the cements as a function of the contents 

of Ca(CH3COO)2 and Pa2hme after soaking in SBF for 7days. 
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Figure 3-7. Concentrations of Ca and P in remaining SBF after soaking the modified cements over the designed intervals. Left 

and right parts are Pa2hme30# series cements and Pa2hme50# series cements, respectively.

Pa2hme30# Pa2hme50# 
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Figure 3-8. pH values of SBF measured at 37 ºC, after soaking the cements prepared by (a) 

Pa2hme30# and (b) Pa2hme50# combined with various contents of Ca(CH3COO)2 over the 

designed intervals.  

(a) 

(b) 
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Chapter 4 

MODIFICATION OF CALCIUM ACETATE AND BIS [2-
(METHACRYLOYLOXY) ETHYL] PHOSPHATE TO PROVIDE PMMA 
BONE CEMENT WITH BIOACTIVITY IN SIMULATED BODY 
ENVIRONMENT  
 

1.    Introduction 

          Bone cement prepared by polymethylmethacrylate (PMMA) powder and methylacrylate 

(MMA) liquid has been utilized as one kind of artifacts to anchor joint replacements to bone [1]. 

However, the cement itself lacks the capability of directly bonding to the living bone, once 

implanted into bone defects, PMMA cement will be encapsulated by fibrous tissue due to the 

normal physiological reaction to protect human body from foreign substance [2], and the isolation 

from surrounding bone may make bone cement lose its fixation function after long-term 

implantation [3]. To overcome this problem, it is necessary to equip PMMA bone cement with 

bone-bonding ability, i.e. bioactivity [4]. 

          Successful adhesion to bone through generating apatite layer on their surfaces has been 

found on so-called “bioactive ceramics” [5], so incorporation such biomaterials like Bioglass [6], 

sintered hydroxyapatite (Ca10(PO4)6(OH)2) [7, 8] or wollastonite (CaSiO3) [9] into PMMA 

cements has gained a fixed connection with bone after implanted into body environment. In 

addition, apatite nucleation process on bioactive materials in simulated body fluid disclosed that: 

the functional groups such as Si-OH [10], Ti-OH [11], -COOH [12, 13], and PO4H2 [14] plus Ca2+ 

ions could induce the apatite formation. In bone cement case, apatite deposited on cement surface 

has been realized by the modification of Si-OH groups and calcium chloride [15], now 

incorporation of phosphate (PO4H2) groups and calcium acetate has been under research.            
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          In chapter 3, modification with calcium acetate and phosphoric acid 2-hydroxyethyl 

methacrylate ester (Pa2hme) has equipped PMMA cement with apatite-forming ability in 

simulated body fluid (SBF), but the deterioration in compressive strength caused bioactive PMMA 

cement failed to meet the standard of clinic application, and the strength was unable to be enhanced 

by reducing the amount of Pa2hme due to its dissolution limitation in MMA. 

          In this study, formation of a bioactive surface on PMMA cement was attempted by the 

modification of a new phosphate (PO4H2) groups containing additive Bis [2-(methacryloyloxy) 

ethyl] phosphate (BisP) combined with calcium acetate. BisP could be mixed with MMA at a low 

proportion, which created a possibility to enhance the properties required by ISO5833, its chemical 

structure was shown in Figure 4-1. Except the same investigations in chapter 3, the role of each 

additive on apatite formation was examined, the optimization related to the contents of both 

additives was explored and the performances of BisP and Pa2hme on apatite formation, setting 

and mechanical strength were compared.  

 

2.    Experimental 

          PMMA powders and pre-treatment to calcium acetate monohydrate (Ca(CH3COO)2•H2O) 

was the same as described in chapter 3.   

2.1.   Preparation of PMMA cements  

          The sources for PMMA cement preparation were divided into two parts: the powder source, 

PMMA powders were mixed with the pre-treated Ca(CH3COO)2 powders combined with a 

polymerization initiator benzoyl peroxide (BPO, Wako Chemical Industries, Osaka, Japan); the 

liquid source, a mixture consisted of MMA liquid (Wako Chemical industries, Osaka, Japan), the 

monomer BisP (Aldrich, Tokyo, USA) and N,N-dimethyl-p-toluidine (DmpT, Wako Chemical 

Industries, Osaka, Japan) as a polymerization accelerator. All details about the powder and liquid 
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sources were listed in Table 4-I-a and Table 4-I-b, respectively. The mixing ratio of 

powder/liquid (P/L) was 1: 0.5, g/g; and the preparation process was maintained at 23 ± 2 ºC. 

 

2.2.   Measurement of setting time and maximum temperature 

         The mixed paste was used for the determination of setting time and maximum temperature. 

A thermocouple probe (plamic 100 ) connecting to the thermo record (TR-81, T&D corp., 

Matsumoto-shi, Japan) was installed into the center of the paste to test the curing temperature per 

second, until the temperature reached its peak. Setting time was defined as the time corresponding 

to (Tmax + Tstart.)/2 (Tmax: Maximum temperature, Tstart: Temperature at starting of mixing) on the 

temperature/time curve according to ISO 5833. The tests were repeated four times for each 

combination. All the setting times and maximum temperatures are presented as mean ± SD 

(Standard Deviation).  

 

 2.3.   Bioactivity evaluation in simulated body fluid 

Bioactivity could be evaluated by the formation of apatite on cement surface in simulated 

body environment. The cements polished by #1000 SiC paper were cut into a rectangular pieces 

with dimensions of 10  15 1mm3 then stored in the plastic containers filled with 35mL SBF at 

37 ºC. After soaking for designed intervals (1, 3, 7 and 14 days), all cements were removed, rinsed 

and dried at room temperature.  

 

2.4.   Mechanical measurement 

         Cylindrical samples with 6 mm in diameter and 12 mm in height were utilized for 

compressive strength measurement. All specimens before completely hardened were immersed in 

SBF at 37 ºC for 7 days and subsequently compressed by a compressive load with a crosshead 

speed of 20 mm/min controlled by an Universal Testing Machine (Autograph AG-1, Shimadzu 
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Co., Kyoto, Japan) until fracture happened. Compressive strength was calculated by the fracture 

load and sample’s cross-sectional area. The averages and their standard deviations were collected 

from ten specimens for each combination.  

 

2.5.   Characterization  

          Surface morphological changes of cements before and after immersion in SBF were 

examined by scanning electron microscope (SEM; S-3500N, Hitachi High-Technologies, Tokyo, 

Japan) combined with energy-dispersive X-ray microanalyzer (EDX; EMAX Energy, Horiba Ltd., 

Kyoto, Japan) after sputter coating a thin film of carbon on them. Thin-film X-ray diffractometer 

(TF-XRD; MXP3V, MAC Science Ltd., Yokohama, Japan) and Fourier-transformed-infrared 

spectrometer (FT-IR; FT/IR6100, Jasco Analytical Instruments, Tokyo, Japan) were employed to 

examine structural changes on cement surfaces, all samples were scanned from 20 to 40º in 2 and 

wavenumber was ranged from 500 to 2000 cm-1. pH meter (F-23IIC, Horiba Ltd., Kyoto, Japan) 

was introduced to detect pH values of the SBF after soaking cements for designed periods, the 

concentrations of Ca and P in SBF under the same periods were also measured by Inductively 

Coupled Plasma-optical Emission Spectrometry (ICP-OES; Optima 4300 DV, PerkinElmer, Inc., 

America). 

 

3.    Results 

3.1.   Setting behavior 

           It should be noted that the sample “BisP50 + P00” failed to become a paste state at mixing 

stage. In the combination of BisP and Ca(CH3COO)2, samples without heating release were 

restricted to the ones of “P00” (without Ca(CH3COO)2), “BisP30# + CA5%” and “BisP50# + 

CA5%”, they were only suitable for bioactivity evaluation.  



 

- 75 - 
 

          Table 4-II-a and Table 4-II-b lists setting times and maximum temperatures of all cements 

modified with both additives under various contents, respectively. It is clear to see that adding 

Ca(CH3COO)2 alone delayed the setting, and adding BisP alone delayed the polymerization 

reaction to the extreme level just like Pa2hme. Except the sample “Bis10# + CA35%” and “Bis10# 

+ CA50%”, the combinations of Ca(CH3COO)2 and BisP led to an accelerated setting compared 

to the reference “L00 + P00”. Once the mass ratios of Ca(CH3COO)2/BisP were close to the 

powder/liquid ratio (2: 1), the corresponding cements owned the shortest times, and these shortest 

setting times decreased with the increase of both additives. Both increases or decreases in the 

amounts of Ca(CH3COO)2 prolonged the setting based on this ratio under the same contents of 

BisP, which was consistent with results obtained from the Pa2hme-modified cements. The 

combination of Ca(CH3COO)2 and BisP led to a more complicated results on maximum 

temperatures, expect Bis30# series, the samples modified with Ca(CH3COO)2 and BisP whose 

mass ratios were closed to the mixing ratio (2: 1) still acquired the highest temperatures, the highest 

temperatures decreased following the increase of both additives.  

 

3.2.   Characterization of apatite formation 

          Figure 4-2 displays the typical morphologies and elements distribution on the surfaces of 

cements modified with the combination of Ca(CH3COO)2 and BisP under various contents before 

soaking in SBF by SEM observation combined with EDX spectra. Except the holes (created by 

mixing) and scratches, nothing was observed on SEM images. And the element Ca and P detected 

on EDX spectra indicated that Ca(CH3COO)2 and BisP had been prosperously incorporated into 

the cements. Their peak intensities were increased with increase in both additive contents. This 

tendency was more obviously perceived in element Ca than P. 

         The SEM photographs shown in Figure 4-3 are the surface morphologies of cements 

prepared by (a) L00; (b) BisP10#; (c) BisP20#; (d) BisP30# and (e) BisP50# with various contents 
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of Ca(CH3COO)2 after soaking in SBF for 14 days, respectively. The possibility to observe the 

deposition of spherical particles on cement surfaces was based on the additives in various amounts 

of combination, only adding BisP without any Ca(CH3COO)2 had no potential to induce the 

particles deposited on cement surfaces, increasing BisP contents delayed the precipitation period 

under the same content of Ca(CH3COO)2, BisP50# series cements  maintained the same 

morphology features as the original ones even after soaking for 14 days. In contract, although 

adding Ca(CH3COO)2 alone could make the particles depositing, the deposits agglomerated into 

larger particles instead of individual spherical particle due to lacking of the effect of BisP. This 

was supported by the comparison between samples “L00 + CA20%” and “BisP20# + CA20%”. 

Namely, increases in the content of Ca(CH3COO)2 shortened the precipitation period under the 

same content of BisP, and high content such as 50 mass% of Ca(CH3COO)2 caused  an obvious 

decrease in diameter of these deposited particles.  

          Figure 4-4 shows the FT-IR spectra of all specimens modified with the combinations of 

Ca(CH3COO)2 and BisP under various contents after soaking in SBF for 14 days. The 

wavenumbers and corresponding functional groups of these characteristic peaks marked with 

numbers were referred from Table 3-III in chapter 3, the overlapping of peaks caused the 

characteristic peaks of BisP and Ca(CH3COO)2 were hard to be detected on all modified samples, 

all number-marked peaks were identified as the characteristics of PMMA. In addition, the peaks 

marked by triangular symbol at around 550, 600, 950 and 1020 cm-1 were determined to P‒O 

stretching in the mode of ν4, ν1, and ν3 vibration, based on the results and findings of FT-IR spectra 

in chapter 3, phosphate radical (PO4
3-) derived from the deposited microspheres supplied these 

triangular symbol marked peaks. In BisP case, the FT-IR spectra showed different results 

compared with the SEM observation, for example: although the deposited particles were found on 

the surface of cement “BisP10% + CA5%”, the FT-TR peaks belonging to these particles weren’t 
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detected on corresponding spectra. Moreover, FT-IR spectra of sample “L00 + CA5%” showed an 

intermediate state containing both peaks from the original cements (0 day) and the deposition.  

          Figure 4-5 displays TF-XRD patterns of the cements prepared by (a) L00; (b) BisP10#; (c) 

BisP20# and (d) BisP30# with various contents of Ca(CH3COO)2 after soaking in SBF for 

designed periods (since 3 days), BisP50# series cements after soaking in SBF for 14 days. The 

peaks with low crystallinity appearing at about 26º, 32º, and 34º in 2 were attributed to the 

diffractions of apatite according to the JCPDS Card No. 09-0432, so those spherical particles 

deposited on cement surface were identified as low-crystalline apatite. While the apatite deposition 

was failed on BisP50# series cements irrespective of Ca(CH3COO)2 contents, they still sustained 

the amorphous state even after soaking in SBF for 14 days. 

          On the basis of TF-XRD results, the judgment with regard to apatite-forming ability of all 

cements modified with Ca(CH3COO)2 and BisP is listed on Table 4-III. It could be noted that 

apatite forming period varied from 1 to 14 days depending on the combinations of Ca(CH3COO)2 

and BisP. Increase in amount of Ca(CH3COO)2 accelerated the formation rate of apatite. On the 

other hand, BisP shared the same role as Pa2hme. Namely, increase in its content rather prolonged 

the induction period of apatite formation.  

 

3.3.   Variation in compressive strength 

         The compressive strengths of cements modified with various contents of BisP and 

Ca(CH3COO)2 after soaking in SBF for 7 days is summarized in Figure 4-6. Under the same 

content of Ca(CH3COO)2, BisP10# series cements owned the highest compressive strengths 

among all cements. On the other hand, under the same content of BisP, adding 5 mass% of 

Ca(CH3COO)2 provided the highest strengths than other additive amounts. The maximum value 

was 108.5 ± 2.7 MPa (sample “BisP10# + CA5%”) exceeded that of SBF-soaked reference. 

Starting from the highest strengths, any increases in both contents of additives produced a decline 
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in compressive strength, when the amount of Ca(CH3COO)2 was increased to 50 mass%, all 

cements failed to meet the lower limit of ISO 5833. 

 

3.4.   Changes in the concentrations of Ca and P and corresponding pH in cement-soaked SBF 

          Figure 4-7 exhibits the pH of SBF measured at 37 ºC after all modified cements immersion 

under various intervals. The corresponding changes in the concentrations of Ca and P of the same 

SBF are shown in Figure 4-8. In most cases, extending the soaking period led to the continuous 

drop of pH, but in the low contents of BisP (0 mass% or 10 mass%), appropriate Ca(CH3COO)2 

(5 mass% or 20 mass%) boosted the pH within 3 days of soaking. It was assumed that hydrolysis 

of acetate ions (CH3COO-) provided OH-. Higher contents of both additives brought deeper drop 

of pH in the first soaking period. Among all modified cements, the increase of Ca concentration 

was continues irrespective of the formation of apatite, and Ca content and released speed were 

enhanced with the increases in Ca(CH3COO)2 contents, as seen in the cements prepared by CA35% 

and CA50%. In L00 series cements, without any addition of phosphate-containing BisP, the 

concentrations of P decreased with the increase in soaking period. The decline in P content was 

ascribed to the consumption on apatite deposition, and its drop tendencies were accordance with 

the formation timing of apatite observed on SEM photographs. Even if apatite was not formed on 

cement surface after 14 days of soaking, the concentration of P was increased, and the rapid 

increase was finished within 3 days.  

           

4.    Discussions 

          Setting behavior of all modified cements showed the following tendency. Compared with 

the reference “P00 + L00”, addition of Ca(CH3COO)2 without any BisP prolonged the setting, and 

adding BisP alone also delayed the radical polymerization to an extreme level similar to Pa2hme. 

On the contrary, it is noted that adding both of them led to the acceleration of setting in most 
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specimens (except sample “BisP10# + CA35%” and “BisP10# + CA50%”). In particular, the 

shortest setting time were obtained under each liquid phase when the mass ratios of 

Ca(CH3COO)2/BisP were close to the powder/liquid mixing ratio (2: 1).  

          Based on the results summarized above, one possible explanation was that the delay effort 

brought by both sides had counteracted with each other on this critical mass ratio, the 

initiator/accelerator BPO/DmpT only worked on the rest of PMMA/MMA. Therefore the setting 

times of the cements prepared under this critical mass ratio of Ca(CH3COO)2/BisP became more 

and more shorter when the contents of both additives were increased. Comparison between both 

additives, no heating release could be captured from the modification combination of BisP with 

high content (50#) and Ca(CH3COO)2 with low content (5 mass% or 20 mass%). This implied that 

BisP showed deeper influence than Ca(CH3COO)2 in affecting the setting behavior of modified 

cements.  

          PMMA bone cement modified with Ca(CH3COO)2 and phosphate group-containing BisP 

owned the apatite-forming ability in simulated body environment. Incorporation of Ca(CH3COO)2 

alone could induce the apatite nucleation on cement surface, but the nucleation were restricted to 

sites where Ca(CH3COO)2 could be exposed to SBF, meanwhile, the apatite deposits agglomerated 

into larger particles and grew along the longitudinal direction, while apatite deposits appeared on 

the surface of cement modified with BisP were individual spherical particles. So the generation of 

a bioactive layer consisting of individual spherical apatite relied on the coaction of the phosphate 

(PO4H2) groups in the structure of BisP and calcium acetate. The function of phosphate (PO4H2) 

groups was the same as that of Si-OH groups described in chapter 3. The incorporated functional 

groups on cement surface were beneficial to initiate heterogeneous nucleation of apatite, and the 

increase in BisP content might prompt more phosphate groups (PO4H2) exposed to the cement 

surface. Continuous hydrolysis of Ca(CH3COO)2 boosted the amounts of Ca2+ ions upon cement 

surface, leading to an increased supersaturation degree with respect to apatite, which resulted in 
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the apatite precipitation. Therefore, more Ca2+ ions released from modified cement shortened the 

apatite-forming period, which could be confirmed from Table 4-III. In contrast, more BisP 

incorporated into cements didn’t improve the apatite-forming ability.  

           Based on the surface composition of initial cement (0 day), pH values and the 

concentrations of Ca and P in SBF environment under designed periods, the possible reason to 

discuss the variation of apatite-forming period based on various contents of combinations of 

Ca(CH3COO)2 and BisP could be concluded as follows: Ca(CH3COO)2 or BisP incorporated into 

the cement evoked a damage to the dense structure of PMMA cement, both additives were liable 

to release into SBF, but their release rate varied. Taking BisP10# series cements as the example, 

the rapid increase of Ca concentration was finished within 7 days even in the samples with 35 mass% 

or 50 mass% of Ca(CH3COO)2, while the rapid increase of P concentration was finished within 1 

day (seen the sample prepared by P00 or CA5%). The rapid rising of P content meant that plenty 

of PO4H2 groups stepped into SBF, cement surface without functional groups was hard to attract 

Ca2+ ions from SBF, only relied on the Ca2+ ions released from the dissolution of Ca(CH3COO)2 

to achieve the formation of apatite in terms of increasing the supersaturation of apatite. Therefore, 

at low contents of BisP (10#), apatite could be deposited on the specimen modified with low 

contents (5 mass%) of Ca(CH3COO)2, but when BisP contents were increased to 30 mass% or 50 

mass%, increased amount of PO4
3- created more difficult situation to attract Ca2+ ions, therefore 

low release amount of Ca2+ ions from CA5% failed to induce the precipitation of apatite. In 

addition, except the issue of BisP leaking, the drop of pH was also responsible for the failure in 

inducing apatite formation.  

          Based on the relationship of the variation in the concentrations of Ca and P and pH values, 

the rapid release stage of both ions was in accordance with the period of drastic decrease in pH. It 

is speculated that the drop of pH rooted from acetate ions (CH3COO-) and phosphate (PO4H2) 

groups discharging into SBF, and increasing the contents of BisP and Ca(CH3COO)2 brought more 
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serious decrease in pH especially in 1 day of soaking. For BisP50# series cements, the possibility 

to obtain apatite deposition relied on high contents of Ca(CH3COO)2 such as 35 mass% or 50 

mass%, but abundant release of both additives produced a low pH environment, and a sustained 

decline of pH further lowered the condition for apatite precipitation. For example, in the cement 

“BisP50# + CA35%”, the concentration of P showed almost the same as the initial SBF, and no 

apatite was found on cement surface even after 14 days soaking. One possibility for this 

phenomenon is that although the release of PO4H2 groups in BisP structure was balanced with the 

consumption part on apatite formation, apatite was deposited on the inner wall instead of the 

cement surface. 

           The tendency of apatite-forming ability in the combination of BisP and Ca(CH3COO)2 

suggested that: the extension in BisP content delayed the apatite-forming period. And the SEM 

micrographs manifested that phosphate-containing BisP distributed on cement surface were 

beneficial to initiate heterogeneous nucleation of apatite. A better bonding to living bone required 

apatite grew into a layer without redundant invalid space. In my research, incorporating BisP into 

PMMA cement could obtain apatite layer consisting of individual spherical particles, but its 

contents should be adjusted to a lower range (10 mass% or 20 mass%) to shorten the apatite-

forming period.  

           The decline law on compressive strength could be also found from the cement modified 

with BisP and Ca(CH3COO)2. In view of the discussion in chapter 3, one method to improve the 

mechanical strength is decreasing the contents of both additives, low contents modification not 

only reduced the strength loss from the replaced part of PMMA, but also decreased the release 

from both additives during soaking period. Unlike Pa2hme, BisP could be successfully mixed with 

MMA at the low contents (10# or 20#), and combining with low contents (5 mass% or 20 mass%) 

of Ca(CH3COO)2 didn’t interrupt the setting process, therefore, the loss on compressive strength 

was improved, even the compressive strength of some specimens, for example “BisP10# and 
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CA5%” or “BisP10# and CA20%” exceeded that of the reference (P00 and L00), the enhancement 

were attributed to utilization rate of BPO/Dmpt to rest of PMMA/MMA and the decrease of 

bubbles generated at the mixing stage. 

          Consequently, when the tendency on apatite-forming period, the variations in compressive 

strength and the law in setting times were taken into consideration, the optimized modification 

plan in the combination of BisP and Ca(CH3COO)2 for PMMA bone cement was 10 mass% of 

BisP in liquid combined with 20 mass% of Ca(CH3COO)2 in powder, under this condition, the 

modified cement owned 314 ± 4 s of setting time and 99.1 ± 3.5 MPa of compressive strength, 

both exceeded the lower limit of ISO 5833, and the deposition of apatite on cement surface could 

be observed within 3 days soaking in SBF.  

 

5.    Conclusions 

          Modification with phosphate-containing BisP and Ca(CH3COO)2 can equip PMMA bone 

cement with bioactivity via the deposition of apatite on the cement surface in a simulated body 

environment: adding Ca(CH3COO)2 alone could prompt the formation of apatite, phosphate 

(PO4H2) groups distributed on cement surface were beneficial to the heterogeneous nucleation of 

apatite. Increasing the content of Ca(CH3COO)2 shortened the formation period of apatite, 

increasing the content of BisP led to an opposite result. Because fast setting was achieved at a ratio 

close to the mixing ratio of the powder/liquid (2: 1), prolonging the setting time could be realized 

by reducing the contents of both additives and avoiding this ratio mentioned above. The cement 

prepared by Bis10# and CA5% owned the top compressive strengths (108.5 ± 2.7 MPa), and the 

strength declined from this top value with the increase of both additives. In view of balancing 

apatite-forming period and other properties required by ISO 5833, the optimal modification is a 

combination of 10 mass% of BisP and 20 mass% of Ca(CH3COO)2. 
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Tables and Figures 
 

 

Table 4-I-a. Detailed in powder components 

 

 

 

 

 

 

 

 
CA: pre-heated calcium acetate Ca(CH3COO)2; 

BPO: benzoyl peroxide; 

 

 

 

Table 4-I-a. Details in liquid components 

 

 

 

 

 

 

 

 

BisP: Bis [2-(methacryloyloxy) ethyl] phosphate; 

DmpT: N, N-dimethyl-p-toluidine;       

CA CA

PMMA+ CA
 

Powder components (mass ratio) 

PMMA BPO CA 

P00 0.00 0.971 0.029 0 

5% 0.05 0.922 0.029 0.049 

20% 0.20 0.777 0.029 0.194 

35% 0.35 0.631 0.029 0.340 

50% 0.50 0.486 0.029 0.485 

BisP 
BisP

MMA+ BisP
 

Liquid components (mass ratio) 

MMA DmpT BisP 

L00 0.00 0.496 0.004 0 

10# 0.10 0.446 0.004 0.050 

20# 0.20 0.397 0.004 0.099 

30# 0.30 0.347 0.004 0.149 

50# 0.50 0.248 0.004 0.248 
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Table 4-II-a. Setting time of the cements prepared by various combinations of 

Ca(CH3COO)2 and BisP under various contents 

 

 

 

 

 

 

 

 
Supplementary sample “Bis10# + CA10%”:  266 ± 14 s; 

∞: no heat release can be detected, viewed as an unset cement; 

: not tested, failed in the mixing stage; 

 
 
Table 4-II-b. Maximum temperature of the cements prepared by various combinations of 

Ca(CH3COO)2 and BisP under various contents 

 

 

 

 

 

 

 

 
Supplementary sample “Bis10# + CA10%”: 81.8 ± 2.0 ºC; 
∞: no heat release can be captured from the thermo record; 

: not tested, failed in the mixing stage;  

 

 

Cement 
composition 

Setting time (s) 

P00 CA5% CA20% CA35% CA50% 

L00 361 ± 25 386 ± 30 431 ± 29 631 ± 25 826 ± 35 

BisP10# ∞ 294 ± 7 314 ± 4 365 ± 14 453 ± 5 

BisP20# ∞ 308 ± 10 194 ± 3 226 ± 8 287 ± 7 

BisP30# ∞ ∞ 185 ± 8 159 ± 3 168 ± 3 

BisP50#  ∞ 210 ± 10 135 ± 7 120 ± 10 

Cement 
composition 

Max. temperature (ºC) 

P00 CA5% CA20% CA35% CA50% 

L00 82.5 ± 2.4 79.2 ± 2.7 76.5 ± 1.8 67.8 ± 2.2 56.0 ± 6.6 

BisP10# ∞ 79.3 ± 2.0 79.9 ± 1.4 76.9 ± 1.3 68.0 ± 1.7 

BisP20# ∞ 71.6 ± 2.1 80.6 ± 1.5 69.6 ± 2.1 56.7 ± 3.0 

BisP30# ∞ ∞ 78.4 ± 2.8 77.2 ± 4.4 75.0 ± 1.8 

BisP50#  ∞ 61.0 ± 2.9 65.9 ± 1.9 71.4 ± 2.5 
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Table 4-III. Apatite-forming ability of PMMA cements modified with the combinations of 

various amounts of Ca(CH3COO)2 and Pa2hme in SBF environment, based on the XRD 

results# of designed soaking periods 

 

 

 

 

 

 

 

 

 

 
#–; Apatite was not found after 14 days; 

 +; apatite was formed within 14 days; 

 ++; apatite was formed within 7 days; 

+++; apatite was formed within 3 days 

++++; apatite was formed within 1 days 

 

 

 

 

 

 

 

 

Cement 
composition 

Apatite-forming period (d) 

P00 CA5% CA20% CA35% CA50% 

L00 – + +++ ++++ ++++ 

BisP10# – – +++ ++++ ++++ 

BisP20# – – ++ ++++ ++++ 

BisP30# – – + +++ ++++ 

BisP50# – – – – – 
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Figure 4-1. Chemical structure of Bis [2-(methacryloyloxy) ethyl] phosphate (BisP) 
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Figure 4-2. Typical SEM images and EDX spectra of original cements modified with the 

combinations of BisP and Ca(CH3COO)2 under various contents before SBF soaking. 
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Figure 4-3. SEM photographs of the surfaces of cements prepared by (a) L00; (b) BisP10#; 

(c) BisP20#; (d) BisP30# and (e) BisP50# with various amounts of Ca(CH3COO)2 after 

soaking in SBF for 14 days. 

(e) BisP50# 

CA5% CA20% 

CA35% CA50% 
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Figure 4-4. FT-IR spectra of the cements prepared by (a) L00; (b) BisP10#; (c) BisP20#; (d) 

BisP30# and (e) BisP50# with various contents of Ca(CH3COO)2 after 14 days soaking in 

SBF. 

(e) BisP50# 
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Figure 4-5. TF-XRD patterns of the surfaces of cements prepared by (a) L00; (b) BisP10#; 

(c) BisP20# and (d) BisP30# with various contents of Ca(CH3COO)2 after soaking in SBF 

for designed periods, BisP50# series cements after soaking in SBF for 14 days.  

Black circle (): Apatite. 
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Figure 4-6. Variations in compressive strength of the cements as a function of the contents 

of Ca(CH3COO)2 and BisP after 7days soaking in SBF. 
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Figure 4-7. pH values of SBF measured at 37 ºC, after soaking the cements prepared by (a) 

L00; (b) BisP10#; (c) BisP20#; (d) BisP30# and (e) BisP50# combined with various contents 

of Ca(CH3COO)2 over the designed intervals.  
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Figure 4-8. Concentration of Ca and P in remaining SBF after soaking the modified 

cements prepared by (a) L00; (b) BisP10#; (c) BisP20#; (d) BisP30#; (e) BisP50# combined 

with various contents of Ca(CH3COO)2 over the designed soaking intervals, respectively. 

(e) BisP50# 
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Chapter 5 

GENERAL CONCLUSIONS 
 

          This thesis has studied the possibility of equipping various cement-type materials such 

as dental glass ionomer cements and orthopedic PMMA cements with the bioactivity in terms 

of inducing bioactive minerals depositing on surfaces in simulated body fluid via incorporation 

of modifiers with special functions and has investigated the influences of the contents of 

modifiers on other properties of cements. 

          In chapter 2, the mixture of -PGA solution containing 10% m/m (+) tartaric acid and 

sol-gel synthesized glass powders G550 (50 SiO2, 50 Al2O3, in mass%) or glass 532 (50 SiO2, 

30 Al2O3, 20 CaO, in mass%) were used to prepare glass ionomer cements. FT-IR spectra 

indicated that GIC was successfully obtained by glass G550 combined with the mixture. 

Increase in γ-PGA concentration or decrease in powder/liquid mixing ratio improved the 

diametral tensile strength by increasing the cross linking degree of acidic polymers and the 

proportion of aluminum polymer salts in cements. The cement prepared by the P/L ratio (g/g) 

of 1: 1 and the γ-PGA concentration (m/m) of 30% exhibited the highest strength (11.88 ± 1.43 

MPa) after 3 days of aging. Calcite phase was deposited on the surface after 7 days immersion 

in SBF, meaning that this SiO2-Al2O3 glass/γ-PGA cement might own the bioactivity.  

          In chapter 3, phosphate (PO4H2) groups containing phosphoric acid 2-hydroxyethyl 

methacrylate ester (Pa2hme) was added in liquid phase, and Ca(CH3COO)2 was incorporated 

into powder phase. The combination of Pa2hme and Ca(CH3COO)2 has induced the deposition 

of apatite layer on PMMA cement surface in simulated body environment. Increases in the 

content of Ca(CH3COO)2 shortened apatite forming period, while no apatite was detected when 

Pa2hme content was increased to 50 mass% regardless of the contents of calcium acetate. One 

possible reason was low pH environment created by the release of Ca(CH3COO)2 and Pa2hme. 

The shorter setting times were found when the mass ratios of Ca(CH3COO)2/Pa2hme were 
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close to the powder/liquid ratio (2: 1), while increase or decrease in the amounts of 

Ca(CH3COO)2 prolonged the setting based on this. High contents of both additives caused the 

deterioration in compressive strength. The cement with apatite-forming ability failed to meet 

the compressive strength requirement of ISO 5833, which was ascribed to the limitation of 

Pa2hme dissolved in MMA.  

          In chapter 4, modification with Bis [2-(methacryloyloxy) ethyl] phosphate (BisP) and 

Ca(CH3COO)2 also prompted apatite formed on the surface of PMMA cement in simulated 

body environment. Increasing the content of Ca(CH3COO)2 shortened apatite formation period, 

and phosphate (PO4H2) groups distributed on the cement surface were beneficial to the 

heterogeneous nucleation of apatite. The addition of Ca(CH3COO)2 or BisP alone prolonged 

the setting. On the other hand, the combination of Ca(CH3COO)2 and BisP generated a faster 

setting when their mass ratios were close to the powder/liquid (2: 1). Additionally, the faster 

setting was further accelerated with increase in both additives under this ratio. Lower contents 

of additives (CA5%, L00 or BisP10#) enhanced the strength, and the top compressive strengths 

(108.5 ± 2.7 MPa) declined following the increase of both additives. In view of balancing 

apatite-forming period and other properties required by ISO 5833, it is concluded that the 

optimal modification is a combination of 10 mass% of BisP and 20 mass% of Ca(CH3COO)2, 

the modified PMMA cement owned 314 ± 4 s of setting time and 99.1 ± 3.5 MPa of 

compressive strength, the formation of apatite was finished within 3 days soaking in SBF.  

          Under the same contents in all additives, BisP showed a better performance than Pa2hme 

on mechanical strength and apatite-forming ability of PMMA bone cement.  

          On the basis of these results, essential designs and optimization for developing bioactive 

cement-type materials with practical potentials have been achieved in terms of cement 

composition. These cement biomaterials should be further improved in future in order to be 

utilized in dental and orthopedic fields. 
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