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Abstract 
 
 

Current world population has reached 7.3 billion. With this huge population, demand of 

energy is rapidly increased. The standard of living is also growing, which increases demand 

of energy in near future. Fossil fuels are currently the main resource to provide energy which 

are not unlimited. Problems on fossil fuels energy are not only lack of resource but also 

creating the environmental problems. Oil based energy waste such as carbon monoxide (CO) 

and carbon dioxide (CO2) block heat in atmosphere and accelerate earth surface temperature 

to trigger global warming. From this point of view, we need a suitable energy substitute as 

soon as possible. 

Dye sensitized solar cell (DSSC) using the principle of natural photosynthesis are now 

currently at the verge of commercialization having similar photoconversion efficiency as 

compared to amorphous silicon solar cells. DSSCs or well known as Grätzel cells, consist of 

n-type semiconductor such as titanium dioxide (TiO2), tungsten oxide (WO3), zinc oxide 

(ZnO) or tin dioxide (SnO2), with the light absorber. The structure is different from all solar 

cell mentioned above where light is being absorbed by the semiconductor materials itself. 

Relatively low cost and easy manufacturing process make DSSCs one of candidates for 

future solar energy resources. DSSCs reached up to 13% of efficiency in recent days. There 

are several barriers in DSSCs commercialization, for instance, utilization of only visible 

region of solar spectra, high cost of transparent conductive Oxide (TCO) glass, and so on. 

Our final goals are to extend the photo sensitivity of DSSCs to far-red and NIR area, to 

change the structure of DSSCs into back-contact DSSC in order to totally remove the TCO 

parts, and to fabricated cylindrical structure for harvesting more light in a day and decreasing 

wind resistance. 

Chapter 1 deals with our research motivation, kinds of renewable energy, review about 

photovoltaics cell and propose of our present work. In chapter 2, the detail about the structure 

and working principle of DSSCs are discussed. The main components in DSSCs are 

explained in details and barriers of DSSCs commercialization also are discussed. In chapter 

3, the DSSCs characteristics and cells performance calculation are deliberated. All 

experiments conducted in this thesis are described in this chapter. 

Chapter 4 described the new dyes. Phosphorus-phthalocyanine dye was used to cover IR 
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region. Without conventional anchoring groups such as carboxylic acid (-COOH), phosporus-

phthalocyanine dyes could be attached onto titania surface with P-O-Ti linkage. Furthermore, 

modification of the side chain at α-position of the sensitizer was done to optimize the 

HOMO-LUMO level. 

In chapter 5, novel DSSC structure are discussed. Titanium sheet with micro holes (FTS-

MH) was utilized as photo-anode and as counter electrode to completely eliminate TCO from 

DSSCs in flat as well as in cylinder structure. In flat back-contact DSSC, hydrogen peroxide 

treatment was used to modifu the titanium surface to make TiO2 nanosheets, which leads to 

enhancement of short circuit current and open circuit voltage. Reduction of electrolytic gap 

was carried out to optimize IPCE in 300-400 nm wavelength region. In cylindrical structure, 

TCO-less cylinder DSSCs ware fabricated by folding the FTS-MH sheet and Ti-based 

counter electrode and inserted into heat shrinkable tubes. It was proved that the process 

enhanced the photovoltaic performance to the cylinder DSSC. 

In last chapter we discuss about results and further optimizations prospect from current 

works and hopefully help researcher and industry to accelerate commercialization of DSSCs 

in near future.  

 

Azwar Hayat 
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1 Introduction 

1.1  Global Energy Consumption 
  
 The governments in many countries have realized the energy problems to be 

faced if they did not manage and reserve their energy resources wisely. Energy 

regulations related to energy consumption and energy management have been more and 

more strictly applied to ensure energy availability1). Rising of global population and 

increasing of standard of living makes energy demand doubled within 40 years2). Figure 

1.1 shows world energy supply in 2012. Almost half of our global consumptions still 

relay on oil and within 40 years the utilizations of other types of fuels also increase to 

support high energy demand.  

 

 

Figure 1.1 World total energy supply in 2012.   

According to US Informational Administration, world annual energy demand has 

exceed 524 quadrillion Btu (1 Btu: 1055.05 joules) in 20123). In another report in 

international energy outlook in 2014, global energy consumption is predicted to increase 

56% from 520 quadrillion in 2010 step up to 820 quadrillion Btu in 20144). The strong 
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demand comes from non-OECD (non-Organization for Economic Cooperation and 

Development) countries including China, India and Brazil. Emerging economics of 

China and India will stimulate oil demand in next 30 years while other countries 

incorporated in OECD will well-established since the oil markets seems have peaked.    

 

Figure 1.2 Energy-related carbon dioxide emissions, 1990-2013. 

 

Among fossil fuels, the main global consumption still relay on Oil. Oil is the 

main players to provide energy which are limited in supply showing a declining trend 

against the current global demand. Oil not only lack of resource but also one of the 

trigger for generating the environmental problems, which needs an appropriate substitute 

as soon as possible. Burning Oil to create energy will produce waste product such as 

carbon monoxide (CO) and carbon dioxide (CO2). These gases will trap the heat on earth 

and consequently will rise earth surface temperature to trigger greenhouse effect or 

global warming. Figure 1.2 shows number of carbon dioxide from 1990 ton 20135). CO2 

emission increased 2.5% from 5.267 million metric tons (MMmt) in 2012 to 5.396 

MMmt in 2013. It was found that earth temperature heated up 18.5% in 2013 versus 

2012. Regardless of the rise in 2012, emissions in 2013 were still 10% lower than CO2 
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emissions level in 2005. With the growth of global energy demand and human 

population in recent year, CO2 concentration level will continuously increase6).   

 

1.2 Renewable energy sources 

Fossil fuels based energy is still main resource for our energy demand. Therefore, 

the effect triggered by this choice will lead us to environmental damage for us now and 

for our future generations. In 1997, The Tokyo Protocol had been signed (and extended 

with Doha Amendment) as an effort to reduce the greenhouse. The next step is to reduce 

dependence at fossil based fuel, particularly oil, and escalation of renewable energy form 

usage. The sources of energy such as wind, biomass and bioenergy, hydropower, nuclear 

and sun are some of our alternative choices. The wind based energy potential power is 

vast which is 20 times of human population needs. The wind turbines could extract 

kinetic energy at a rate of at least 400 TW, whereas high-altitude places wind power 

could create more than 1,800 TW7). Therefore, the wind power`s cost-effectiveness is 

still a matter of argument and the other problems for example is noise problem and 

unpredictable availability makes wind power still hardly apply in wide scale. Biomass 

and bioenergy are self-renewing energy that can be understood as regenerative organic 

material. Biomass is recycling energy stored in organic matter such as wood products, 

corps, manure, dried vegetation and aquatic plants. Using biomass as energy sources can 

reduce greenhouse gas emissions. Burning biomass and fossil fuel will release the same 

amount of carbon dioxide. Therefore, burning fossil fuel will release “new” greenhouse 

gas. Biomass fuels like methanol from corn grain8) and biodiesel from soybeans9) can be 

used to substitute current vehicle fuels. However, biomass is still expensive and 

inefficient as compared with fossil fuels. It also consumes more fuel in the process to 

convert the organic matter into the energy form.  

Hydropower uses water to generate electricity. Water cycle is endless processes 

from evaporating from lakes and oceans, creating clouds, falling down as rain or snow, 

flowing back to the ocean. This makes hydropower consider as renewable energy. Large 

hydropower has capacity more than 30 megawatts10). Small hydropower produces 100 
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kilowatts to 30 megawatts11) and micro hydropower has capability up to 100 kilowatts 

for home or farm12).  On the other hand, limitation of use and expensive installation and 

maintenance cost makes hydropower still rarely use as main energy sources for now.   

 

Figure 1.3 Top nuclear power producer in 2013. 

Nuclear power is the primary choice to generate massive energy. It is forms by 

splitting atoms of certain elements. In 1940s, nuclear power initially were developed as 

weapons in World War II by splitting certain isotopes of either plutonium or uranium. 

The first commercial nuclear power station in the world was operated in 1950s. Today, 

31 countries operate more than 430 commercials nuclear reactors including USA, Russia, 

China and Japan13). USA, France and Japan (in 2010 before tsunami disaster) are the top 

nuclear power producer in the world. In Japan, first commercial nuclear power was 

operated in mid-1966 and now more than 50 reactors support 30 % of country`s 

electricity needs. It is predicted to increase at least 40% by 201714). Large power-

generating capacity and low carbon dioxide make it a prominent alternative to fossil 

based fuel, however, safety concern such as controlling the radiation and maintaining 

radioactive waste still make this kind of energy form get resistant from society. Tsunami 
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struck in Japan in 2011 made one of its nuclear power plants in Fukushima broke down. 

Learning from this disaster event, we need safer energy form to fulfill our needs.     

 

1.3 Photovoltaic 

Sun is the main energy source for all the living being on this planet Earth. It 

contains massive amount of energy and transports through hundreds of kilometers to 

earth. Energy from sunlight is utilized by plant for photosynthesis process. Except the 

nuclear power, all the different forms of energy such as coal, oil, natural gas, biomass, 

hydropower and wind eventually originate from the sun. Learning from nature about 

application of sunlight to harvest energy in plants via the photosynthesis process, solar 

cells realize direct conversion of solar energy into usable electric power. Beyond that 

benefit, solar cells work without creating additional greenhouse gas emission. There are 

various different types of solar cells available at this time, such as mono-crystalline, 

polycrystalline, thin film, dye sensitized solar cell, organic photovoltaic (OPV), and 

perovskite solar cells are among the most popular.  

Mono-Crystalline Silicon cells are produced by growing high purity of single 

crystal Si rods. To make a single crystal wafer cells is not cheap and it require high 

energetic resource for purification. They are cut from cylindrical ingots and the wafers 

do not completely cover a square solar cells module. The efficiency of mono-crystalline 

silicon cells remains around 22-25% depend on the purity level15). Poly-crystalline 

silicon cells are made from sawing a cast block of silicon into bars and then into thin 

wafers. This technology is also known as Multi crystalline technology16). Poly-Si cells 

are less expensive than single crystal silicon cells. Poly-Si solar cells are manufactured 

with efficiency more than 18 %17). Cadmium telluride (CdTe) solar cell is an efficient 

light-absorbing material for thin-film cells. The layer can be very thin in micrometer 

order. CdTe is easier to deposit and more suitable for large-scale production compared 

with other thin-film materials. It requires less resource to produce and manufacture 

technology significantly refined over the past few years18). On the downside, Cadmium 
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is a toxic heavy metal which make some environmental groups concern about it safety 

for long term usage.  

Heterojuction solar cells are uniquely capable of producing low-cost modules, 

high-volume and affordable solar electricity. III-V heterojunctions are appropriate for 

fabrication of single junction solar cells, Aluminum-Gallium-Arsenide/Gallium-

Arsenide (AlGaAs/GaAs) heterostructures have been found for solar cells application 

due to the well-matched lattice parameters of Gallium-Arsenide (GaAs) and Aluminum-

Arsenide (AlAs), and on the other hand, GaAs has an optimal band gap for effective 

sunlight conversion. In AlGaAs/GaAs heterojunctions, the basic narrow band gap 

material was GaAs. A wide band gap window was made of AlGaAs close in the 

composition to AlAs, which is almost completely transparent to sunlight, making solar 

cells very sensitive in the short wavelength range of the sun spectrum19).  Another type 

of solar cells is Copper Indium Gallium Selenide (CIGS). CIGS technology has achieved 

efficiency levels of 20% in the laboratory20).  

Learning from photosynthesis process, Dye sensitized solar cell (DSSC) is one of 

promising low cost solar cells. DSSCs research came in light when M. Grätzel and 

O`Regan reported a record photo-conversion efficiency of 7.1% using 10 µm thick 

nanoporous titanium dioxide (TiO2) electrode in 199121) and currently DSSCs are also 

being popularly known as Grätzel Cell. Later invention of N3, N719 and Black dye 

sensitizer pushed the external power conversion efficiency well over 10%22,23). Using 

Ruthenium based novel sensitizers and cobalt electrolyte, 13 % of efficiency had been 

achieved24). The detail about DSSCs will be present in next chapter. The new golden 

boy in photovoltaic is Perovskite solar cell. Perovskite solar cells originally from DSSCs 

field when Prof. Miyasaka from Japan proposed it with liquid redox couple iodine as 

electrolyte in 200925). Perovskite got its momentum when liquid electrolyte was replaced 

with solid state holes transport materials (Spiro-OMeTAD) that boost the efficiency26). 

Prof. Shuzi Hayase et al also succeed to extend perovskite solar cell coverage up to 

1000nm27). Perovskite now reached 20% of efficiency28) and this result reached within 

short time makes the golden boy one of the best candidate for future low cost solar cell. 

However, Perovskite is still prone to be damaged by moisture (water) and efficiency 
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depend on how we measured the cells (the hysteresis)29). This make it still long way to 

mass production.  

 

1.4 Outline of the thesis 

In chapter 2, the detail about structure and working principle of DSSCs are 

discussed. The main components in DSSCs are explained in details and barriers of 

DSSCs commercialization are also discussed.  

In chapter 3, the DSSCs characteristics and cells performance calculation is 

deliberated. All experiment conducted in this thesis are presented in this chapter. Chapter 

2 and 3 are based on knowledge from literature and recent publications. My research is 

presented in following chapters. 

Axial ligation of phosphorous-phtalocyanine dyes as far red sensitizer for DSSCs 

application is studied in chapter 4. Without conventional anchoring groups such as 

carboxylic acid (-COOH), phosporus-phthalocyanine dyes could be attached onto titania 

surface with P-O-Ti linkage. Furthermore, modification of side chain at α-position of 

sensitizer moves the HOMO-LUMO level of dye to optimize electron injection and dye 

regeneration. 

Device architecture modifications into transparent conductive-less (TCO-less) is 

discussed in chapter 5. TCO-less DSSCs using flat titanium sheet with micro holes (FTS-

MH) employed as base for photo-anode is studied. In flat back-contact DSSC, flat 

titanium sheet sputtered with platinum (Pt) as counter electrode is compared with 

standard fluorine doped tin oxide (FTO) sputtered Pt. Hydrogen peroxide treatment also 

used to modified titanium surface from TiOx into TiO2 nanosheets. Reduction of 

electrolytic gap also carried out to optimize IPCE in 300-400 nm wavelength region. In 

cylindrical structure, TCO-less DSSCs was carried out by folding the FTS-MH and Ti-

based counter electrode to 360 degree and inserted into heat shrinkable tube led to high 

efficiency cylindrical TCO-less DSSCs. 
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Chapter 6 gives brief summary of the thesis and future optimization possibilities 

in this field.      
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Chapter 2 Dye sensitized solar cells 

2.1 A brief history of DSSCs 

In 1839, Becquerel laid the foundation of the application of photochemistry when 

he observed the first photovoltaic effect. He found that current passing between two 

platinum electrodes when they immersed in electrolyte contain metal halide in the 

present of sunlight1). Almost at the same time Louis Daguerre, a French artist and 

photographer, with mirror-polished of silver halide particles he made first photographic 

image. Silver halide based photography is the major application of photosensitization 

effect in industry until digital photography appears. Silver halide particles are not 

photoactive for wavelength longer than 460 nm since it band gap ranging from 2.7 to 

3.3 eV. A substantial development happened when Hermann Wilhelm Vogel, a German 

photo-chemist, in 1873 discovered dye sensitized silver halide emulsions for rendering 

first black and white photographic films2,3). 

In 1972, Honda and Fujishima reported water splitting by illumination of TiO2. This 

opened explanation about electron injection from photo-exited state into conduction 

band of TiO2
4). However, efficiency obtained was low due to narrow absorption range 

of TiO2 which was limited to ultraviolet region only. With the purpose to enhance the 

photon harvesting, Tsubomura reported a structure of a working dye-sensitized solar cell 

with porous zinc oxide (ZnO) photocell along with a platinum counter electrode and an 

iodide/tri-iodide redox couple with ruthenium dye as sensitizer5). Dye sensitized solar 

cells (DSSCs), are utilizing n-type semiconductor for instance tin dioxide (SnO2), 

titanium dioxide (TiO2), tungsten oxide (WO3) and zinc oxide (ZnO) as photo anodes, 

with the light absorber attached onto it which is different with all solar cell mentioned 

before, where light was being absorbed by the semiconductor materials itself. 

Desilvestro (1985) proposed the ruthenium complex sensitizer with rough TiO2 

electrode to enhance photovoltaic performance6). DSSCs research gain its momentum 

when M. Grätzel and O`Regan reported a breakthrough with photo-conversion 

efficiency of 7.1% through 10 µm thick nanoporous TiO2 photo anode and DSSCs are 

also being popularly known as Grätzel Cell7). This field started to gain more interaction 
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from researches. Invention of ruthenium dye family of sensitizer such as N3, N719 and 

Black dye bumped the external power conversion efficiency (PCE) up to 10%8-11). 

DSSCs with TiO2 photo anodes with ruthenium based novel sensitizers have reached 

PCE between 10-13 %12-15).  

All researchers in the world are working on not only to enhance the efficiency but 

the recent trends of DSSCs now are heading in the direction of the development of new 

flexible and light weight structure16-18), cylindrical structure for optimum light 

harvesting19,20) and type of hybrid or multi junction cells (tandem)21-23). There are some 

limitations of ruthenium for example, its absorption limited to visible rang and the dyes 

high production cost. Researchers seek for alternative sensitizer with metal free organic 

sensitizers which are cheaper and easy to synthesize24-26). Some research groups 

proposed dyes with absorption beyond visible range to far red and near infrared dyes27-

30). TCO-less DSSCs for lower production cost applications31-35) and flexible indoor 

applications36-38) are also currently being actively tracked. Furthermore, solidification of 

DSSCs with hole transport material (HTM) to address leaking problems of liquid 

electrolyte and extend the DSSCs life time endurance39-41).  

Dye sensitized solar cells had currently initiated in mass commercialization stage. 

For example, G24i has stated the commercial production of solar back packs and iPad 

case based on DSSCs42,43). 

 

2.2 Structure of Dye sensitized Solar Cell. 

A DSSC is fundamentally a thin-layer solar cell formed with sandwich structure of 

working electrode (photo anode) and counter electrode, with redox couple mediator 

containing electrolytes to fill the gap between these two electrodes. Figure 2.1 shows the 

detailed structure of DSSCs. First part is working electrode made of 10-15 micrometer 

thick  n-type semiconductor such as TiO2, SnO2, ZnO etc., coated on the top of TCO 

glass like Fluorine-doped tin oxide (FTO) or Indium-doped tin oxide (ITO). Light 

absorbing materials (sensitizing dyes) which are coated on nanoporous TiO2 to construct 
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the photo anode. Mostly common dyes utilized till date for high efficiency are the 

ruthenium based dye sensitizer.  

 

 

Figure 2.1 Dye sensitized solar cells schematic illustrations. 

To sustain power regeneration on DSSCs systems, redox couple (iodide/tri-iodide) 

electrolyte in organic solvent is needed. Electron regeneration takes place from counter 

electrode back to the oxidized dye (hole) created after the photo excitation of the dye. 

The counter electrode is typically made by FTO sputtered with platinum or thin layer of 

carbon for low cost cells. To control gap between working and counter electrodes a 

spacer is placed. It also functions to determine volume of the electrolyte. Without spacer, 

direct contact between working electrode and counter electrode will lead to short-circuit 

or failure of the system. 

 

2.3 Working principle of DSSCs 

DSSCs like others type of solar cells is functioning to directly convert photon 

into electricity. The main process of DSSCs can be divided into three basic steps which 
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are light absorption, charge separations and charge collections. For more clear view 

about these three processes see Figure 2.2. First process is light absorption, i.e. dye 

molecules are photoexcited to form Dye* (Eq. 2.1).  

𝐷𝑦𝑒 + ℎ𝑣 → 𝐷𝑦𝑒∗ (Photoexcitation)   (2.1) 

The photo-excited dye molecules can decay back to the ground state (Eq. 2.2) or 

inject the electron into TiO2 conduction band creating the oxidized dye molecules (dye 

cation or hole) (Eq. 2.3).  

   𝐷𝑦𝑒∗ → Dye + ℎ𝑣′ (𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛)   (2.2) 

 𝐷𝑦𝑒∗ + TiO2 → 𝐷𝑦𝑒∗ +  TiO2(𝑒−)(𝑇𝑖𝑂2 𝑐ℎ𝑎𝑟𝑔𝑒 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛) (2.3) 

Charge separation takes place at the semiconductor/dye/electrolyte interface 

when electron is located in TiO2 conduction band and hole is located on the oxidized 

dye molecules. The injected electrons percolate through porous nanocrystalline TiO2 to 

the conductive glass where charge collection occurs. Injected electron travels through 

TiO2 interface flow to external circuit and collected at the counter electrode. At counter 

electrode, electrons are rapidly transferred to triiodide ion in electrolyte changing I3
- into 

iodide (Eq. 2.4). The sequence gets finally closed by reduction of the oxidized dye to the 

ground state using iodide ion (Eq. 2.5).  

      𝐼3
− + 2𝑒− → 3𝐼− (𝑟𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐼−)   (2.4) 

    2𝐷𝑦𝑒∗ + 3𝐼− → 2Dye + 𝐼3
− (𝑟𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐷𝑦𝑒)  (2.5)

  

Redox reaction in equation 2.4 and 2.5 has to be unmistakably understood. Triiodide 

ions diffuse to counter electrode to receive electron and are converted into iodide ion. 

Iodide ion then returns back to filling the hole of oxidized dyes. Charge recombination 

takes place between electrons in TiO2 oxidized dye leading to any photocurrent (Eq. 2.6). 

𝐷𝑦𝑒∗ +  𝑒−(TiO2) → 𝐷𝑦𝑒 (𝑟𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛)  (2.6)
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Figure 2.2 Electron transport process in DSSCs. 

 

2.4 Component of DSSCs    

2.4.1 Working Electrode 

A. Substrates for DSSCs 

DSSCs consist of two TCO substrates. TCO should be highly transparent in the 

visible region and maintain low sheet resistance after 450-500 OC for TiO2 calcination. 

The sheet resistance commonly used as TCO is 5-15 Ω/square. The cost of TCO is nearly 

a quarter of total cost of the solar cell. Conductive oxide layer can be deposited in various 

types of substrates like plastic coated with conductive layer, and this makes make DSSCs 

lightweight and flexible. However, Plastics substrates are limited to low temperature 

process and its sheet resistance is relatively high (60 Ω/square for ITO-PET). Another 
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alternative is thin metal sheet or foils such as titanium or stainless steel. These metal 

substrates have higher temperature tolerance.             

 

B. Semiconductors for photo-electrode 

Working electrode also known as photo anode of the DSSCs consists of n-type 

semiconductor material. Due to the variety in band gap of the semiconductors, care must 

be taken for the thoughtful combination of semiconductor band gap and light absorption 

edge. Band gap energy, Eg, and threshold wavelength, g, relationship between bandgap 

energy (Eg) and threshold wavelength is given by equation 2.7. 

     g = 1240/Eg (eV)    (2.7) 

Wide band gap semiconductor with Eg > 3 are highly desired to make the stable and 

efficient DSSCs. The most widely used semiconductor material in the DSSCs research 

community is anatase form of titanium dioxide (TiO2). It is abundantly available 

material, non-toxic and widely used in paint, sunscreens and food with the band gap and 

an absorption edge (390 nm) make the TiO2 the most useful n-type material. Apart 

from the TiO2, other n-type wide gap semiconducting materials such as zinc oxide 

(ZnO)44,45), tin dioxide (SnO2)46,47), and tungsten oxide (WO3) 48,49) have also been used 

for the preparation of  DSSCs.  

Doctor-blade, screen printing and spray methods are most widely used 

techniques for coating TCO glass with nanoparticle based mesoporous TiO2. Metal 

masks are used as a pattern on the top of transparent conductive glass. Suitable thickness 

of the nanoporous TiO2 layer depends on the nature of the paste, its particle size and 

viscosity. Most suitable thickness of nanoporous TiO2 layer for DSSCs has been found 

to be less than 15 m. In order to make inter-particle connectivity or necking of TiO2 

layer, its calcination at high temperatures about 450-500oC is required. Highly porous 

TiO2 sizes are about 20-30 nm in diameters for light absorber, 200-400 nm for scattering 



DYE SENSITIZED SOLAR CELLS 

CHAPTER 2  16 | P a g e  
 

layers and 10-18 nm for transparent applications. In 10 m thickness of TiO2, 50-70 % 

porosity is appropriate for high efficiency DSSCs. 

 

2.4.2 Sensitizing Dye 

Dye plays a very important role in DSSCs. It makes DSSCs essentially different 

from most of the solar cells. In the conservative solar cell, light absorber is the 

semiconducting material itself while in DSSCs light absorption is achieved by additional 

dye molecules anchored on the semiconducting surface. This process is analogous with 

the phenomenon of natural photosynthesis. Research on sensitizing dyes is the one of 

main concerns in this field. Thousands of dyes have been intensively studied as 

prospective candidates to boost efficiency. Designing a dye requires several criteria. 

Highest occupied molecular orbital (HOMO) and Lowest unoccupied molecular orbitals 

(LUMO) of dye should match with the energy level of photo anode semiconductor and 

redox couple used to ensure optimum electron injection and dye regeneration. It also 

should have good chemical and thermal stability, good solubility in organic solvent and 

appropriate anchoring ligand.    

The role of the dye in DSSC is a molecular electron pump. It absorbs light and 

pushes an electron into the semiconductor, and then, accepts an electron from the redox 

couple in the electrolyte. Ruthenium (Ru) based dyes attached on TiO2 are still the 

preferred choice for achieving the best performance till date.  In 1993, Nazeeruddin and 

co-worker are the pioneer in Ru-type dyes. They introduced the N3 dye or usually called 

“red” dye, at that time and could reach 10% of efficiency. Later N71941) and 749 “black” 

dye from the same group was introduced with efficiency above 10%. Now, these three 

dyes become benchmark for developing others dyes or components in DSSCs.  Ru dye 

with longer alkyl chain coded Z-907 was also proposed to counter instability problem 

due to water content on oxide layers50).  

Another important factor in designing a dye is anchoring groups. Ru-based dyes 

(N3, N719 and Black dye) showing high performance use carboxylic group (-COOH) to 
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attach on TiO2 surface. Anchoring method without inserting carboxylic group is also 

intensively studied since inserting COOH ring is not easy. In chapter 4, attaching dye 

without conventional anchoring groups is discussed. 

 

Figure 2.3 Structure of sensitizing dye N3 (left), N719 (middle) and Black dye (right). 

 

 

 

Figure 2.4 Anchoring of dye on TiO2 nanoparticle through ester linkage. 

 

As mentioned before, Ruthenium based sensitizer is expensive and difficult to synthesize. 

Organic dye is one of alternatives to Ru based dyes. Remarkable photovoltaic 

performance with 8-10% efficiency has been reported51-53). The concern for the metal 

free organic dyes lies in the fact that they do not use rare metals and that their light 

absorption property can be synthetically tailored. Organic dyes usually have higher 
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extinction coefficient, resulting into narrow absorption bands as compared to metal 

based dyes. High extinction coefficients of organic dyes allowing us to fabricate DSSCs 

with thinner photo anode while the light harvesting.  

In order to enhance DSSCs efficiency, panchromatic photon harvesting from 

visible to near infra-red (NIR) region is highly required for enhancing the PCE. 

Phthalocyanines have intense light absorption and high thermal stability. This makes 

them one of the potential candidates amongst the NIR sensitizers54-57). Details about 

phthalocyanine dyes will be deliberated in Chapter 4.   
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Figure 2.5 Structure of the some efficient organic dye 

 

2. 4. 3 Redox Mediators 

Redox mediators enable the charge transport between working electrode and 

counter electrode. Electrons are collected at counter electrode and distribute them to hole 

on oxidized dye. Redox mediators for liquid DSSCs also known as electrolyte consist of 

redox couple iodide (I-) and triiodide (I3
-) in solvent such as acetonitrile. I- concentration 

is usually a few millimolar and that of I3
- is ten times higher. Since I-/I3

- absorb visible 

light (in 360 nm wavelength), they are better combine with low-viscosity solvent such 
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as acetonitrile in order to keep their concentrations low. Although I-/I3
- electrolyte with 

acetonitrile already gives high efficiency, but there are some demerit such as 

corrosiveness, leakages, and low boiling point. New type redox mediators are needed to 

fulfill the requirement of industrial standard for future mass production.  

Another liquid type electrolyte that gain more attentions is Cobalt complex 

(Co(II)/Co(III)) having deeper HOMO energy level than I-/I3
- redox couple. This allows 

to get higher open circuit voltage (Voc)58,59). Cobalt electrolyte combine with porphyrin 

dye has realizes DSSC`s highest efficiency of 13% with more than 0.9 V of Voc. Ionic 

liquid (IL) also has been proposed by some researchers including our group60-62) which 

have many advantages over liquid electrolyte, for instance, chemical stability and high 

thermal stability. However, IL still need more improvement on issues such as high 

viscosity, mass transport limitation etc.  

 

Figure 2.6 Charge balancing in Solid State DSSCs 

 

For solid state DSSCs, redox mediator are not employed. Instead of this, Hole 

transport material (HTM). HTMs are contacted on porous TiO2/dye layer. Electron 

transport in solid state is directly from dye to the hole transporter. This electrons diffuse 

by hopping in the HTM layer from counter electrode back to oxidized dye (see Figure 

2.6). The most well-known HTM is spiro-OMeTAD molecule (2,2’,7,7’-tetrakis(N,N-

di-p-methaoxypheny-amine)-9,9’-spirobi-fluorene) proposed by M.Grätzel63) in 2005. 
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The advantages using Spiro-OMeTAD as redox mediator are higher open circuit voltage 

(due to deeper HOMO). However, Spiro-OMeTAD also have limitation on charge 

carrier mobility, higher price and poor pore filling. The future challenge is to find best 

redox mediator to increase stability and enhance DSSCs performance.     

 

2. 4. 4 Counter Electrode 

Widely used material for counter electrode in DSSCs is Platinum (Pt). In earlier 

publication, Pt counter electrode was prepared using thermal deposition of H2PtCl6
55). 

In recent years, Pt can be prepared using Paste. Solaronix made Pt-catalyst T/SP, a 

transparent and activated Pt, prepared with screen printing method. At present, a layer 

of platinum coated on TCO substrate is commonly used as counter electrode in DSSCs. 

CE is usually made by coating a few µg/cm2 of Platinum (Pt) on FTO glass. Pt layer 

preparation is done by sputtering process.  

The other alternative materials as counter electrode are carbon black64,65), carbon 

nanotubes66,67) and conductive polymer PEDOT-PSS68,69). Graphene is another 

candidate for the counter electrode.      

 

2.5 Main problems for decrease in the DSSCs efficiency  

Electron transport of DSSCs systems is schematically illustrated in Figure 2.7. 

Among them, charge recombination process should be suppressed. After electrons are 

injected from dyes to TiO2 conduction band, electron will diffuse in TiO2 layer to 

conductive glass. Sometime electrons get trapped or recombine with hole on sensitizing 

dye. Charge recombination between electrons in TiO2 and oxidized sensitizer, and that 

between electrons in TiO2 and I3
- have to be suppressed. In order to do that, fabrication 

of trap free material and interface is needed. 
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Figure 2.7 Illustration of DSSCs electron transport process 
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Chapter 3 Experiment and Measurements 
3.1 Device Characterizations 

3.1.1 I-V characteristics 

As mentioned in the introduction, DSSCs and all other kinds of solar cells 

convert solar irradiance directly into electricity. The characteristics of a typical 

current-voltage (I-V) curve at certain temperature and illumination have been shown 

in Figure 3.1. 

 

Figure 3.1 A typical I-V Curve for a solar cell  

Short circuit current density (Jsc) is the maximum current under illumination, 

while at the open circuit voltage (Voc) there is no flow of the current. Point where 

maximum power obtained is known as the maximum power point (MPP). Another 

important parameter for DSSCs is fill factor (FF) and can be written as equation below. 

    FF =
VMPP∙JMPP

VOC∙JSC
     (3.1) 

Using fill factor, the maximum power can be written as, 

    PMAX = VOC · JSC · FF    (3.2) 

With I-V characteristic curve, DSSCs can be compared with each other based 

on open circuit voltage, short circuit current density and fill factors. The efficiency of 

solar cells depends on temperature and illumination. Therefore it is needed to make 

standards for measurement condition. Efficiency is given by equation 3.3. 
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     η =
PMAX

Plight
     (3.3) 

PMAX: maximum power, Plight: power of incident light. 

 

A. Short Circuit current density (Jsc) 

Jsc is expressed by Eq. 3.4, 

   𝐽𝑠𝑐 =
ℎ𝑐

𝑞
∫

𝑃𝑠𝑢𝑛()∙𝐸𝑄𝐸()


𝑑    (3.4) 

 

where, h is the Planck’s constant, c the speed of light, q the elementary charge, and 

Psun the solar irradiance. 

 

B. Open circuit voltage (Voc) 

As explained before, Voc is one of the main factors to control the photovoltaic 

efficiency of dye sensitized solar cells. There are a number of sensitizing dyes 

exhibiting very high Jsc but the overall power conversion efficiency is low which 

could be attributed to its low Voc. Theoretically, Voc is determined by the energy gap 

between n-type semiconductor conduction band and redox potential of the redox 

couple under investigation. Since in this thesis TiO2 is employed as n-type 

semiconductor having conduction band edge at -4.0 eV and using iodide/triiodide (-

4.9 eV) as the redox mediator, the maximum theoretical open circuit voltage should 

be 0.9 V as shown in the Figure 3.2.   

The actual Voc in DSSCs is generally lower than 0.9V due to the recombination 

losses occurring in the system.  
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Figure 3.2 Energy band diagram for DSSC to define the Voc 

 

C. Fill Factor (FF) 

Fill factor means the squareness of the I-V curve. FF is directly affected by carrier 

mobility, balanced charge transport and planar polymer structure for molecular 

packing in the organic photovoltaic devices. In addition, the active layer/cathode 

interface can play a major role in determining fill factor.  

The shape of FF is also important. It is dependent on series and shunt resistances. The 

influence of increasing series resistance, Rs, and decreasing shunt resistance, Rsh on 

the current-voltage characteristic will affect the FF. To gain high fill factors, Rs has 

to be as small as possible while Rsh needs to be as high as possible. 

 

3.1.2 Incident Photon-to-current efficiency   

 Incident photon-to-current efficiency (IPCE) or Quantum efficiency (QE) 

show the effectiveness of device converting the incident light or photon into 

electrical energy at certain wavelength. There are two types of QE; Internal 

Quantum Efficiency (IQE) and External Quantum Efficiency (EQE). IQE is the 

ratio of the number of collected carriers devided by the number of all absorbed 
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photon. EQE is the ratio of the number of collected carrier devided by the number 

of incident photon. IQE is always higher than EQE. In order to measure IQE, one 

first gets EQE value and then measures its transmission and reflectance and then 

finally combines them to get the IQE. Fig. 3.3 show the IPCE curves for DSSC. 

 

Figure 3.3 Example of IPCE spectrum of N719 dye. 

 

IPCE measurement is also beneficial for studying degradation properties of devices. 

The change of the IPCE curve may indicate degradation of specific layers.  

 

3.2 Solar simulator and spectro-radiometer 

The spectrum at the Earth's surface horizontal with sun zenit is called AM1 (Air Mass 

1) as shown in Fig. 3.4. AM 1.5 spectrum (1kW/m2) is used for the standard light for 

measuring PV performance. The AM1.5 is defined as shown in Fig. 3.4. In order to 

simulate AM1.5 solar spectrum, the solar simulator is calibrated with LS-100 spectro-

radiometer. The intensity of the lamp and the mounting position of the cell are set by 
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matching these two graphs. This calibration is very important factor to eliminate over 

estimation and miscalculation of devices photovoltaic performance. 

 

Figure 3.4 Air Mass represents on earth. 

 

3.3 Thickness Measurement  

  Dektak 6M Stylus profiler from Veeco was used to measure thickness profile. 

The thickness was measured by moving the sample under a diamond-tipped stylus. 

The length, speed and stylus force pressure are adjustable via user-programed. The 

stylus is mechanically coupled to the core of an LVDT (Linear Variable Differential 

Transformer). As the stage moves the sample, the stylus runs over the sample surface.  

Surface variations cause the stylus to move vertically. Electrical signals 

corresponding to stylus movement are produced as the core position of the LVDT 

changes. The LVDT scales an AC reference signal relative to the position change, 

which in turn is conditioned and transformed to a digital format through a high 

precision, integrating, analog-to-digital converter. The digitized signals from printing 

AM1 
(On horizontal surface with sun in zenith) 

AM0 
(At entry point of atmosphere) 

AM1.5 
(On tilted surface with zenith angle  = 48o) 

 
Atmosphere 
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a single scan are stored in computer memory for display, manipulation, measurement, 

and printing.  

 

 
 

Figure 3.5 Dektak 6M Stylus Profiler 

 

3.4 UV-Visible spectroscopy 

UV-Visible Spectrophotometer is an instrument used to measure absorbance in 

ultraviolet light (200-400nm) and visible light (400-750nm) wavelength regions. 

Light sources in UV-Vis spectrometers are deuterium lamp for UV region and 

tungsten lamp for visible light wavelengths. In UV region, absorbance is measured 

from transitions of electrons from ground state to excited state when molecule absorbs 

light energy. Absorbance in visible region is measured directly from electromagnetic 

spectrum absorptions. The molecule will only absorb a photon which carries 

sufficient energy which is greater than the band gap of the molecule under 

investigation.  
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Using the UV-visible spectrophotometry, it is possible to determine the 

concentration of desired molecule using well known Beer-Lambert law as shown in 

Fig. 3.6. This law relates the absorption of light to the properties of the material 

through which the light is traveling. The Beer-Lambert law determines the absorbance 

of a solution directly and is proportional to the concentration of absorbing species and 

the path length. Mathematically it can represented as   

    A = −log (
Io

I
) = - cL    (3.5) 

where A is absorbance, Io is intensity of incident light before entering, I is transmitted 

intensity after absorption, c is concentration, L is path length through the sample and 

 is constant for molar absorptivity. Negative (-) sign in the equation because of 

decrease in intensity of the light so the value in always positive. 

UV-Vis spectrophotometers can be used to determine the concentration of 

absorber in solution.  

 

Figure 3.6 Illustration of light absorption/transmission in UV-Vis spectrophotometer 

 

3.5 Fluorescence lifetime 

As shown in Figure 3.7, the fluorescence lifetime, t, is the time at which the intensity 

has decayed to 1/e of the original value. The decay of the intensity as a function of 

time is given by equation below.  

 

      It = α e-t/τ    (3.6) 
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where, It is the intensity at time t, α is a normalization term (the pre-exponential 

factor) and τ is the lifetime. Information of the excited state lifetime of a fluorophore 

is important for quantitative understandings of numerous fluorescence measurements 

such as quenching, polarization and fluorescence resonance energy transfer (FRET). 

 

 
Figure 3.7 Intensity decay for Fluorescence lifetime 

 

3.6 Electrochemical impedance spectroscopy  

Electrochemical Impedance Spectroscopy (EIS) is a very useful diagnostic tool that 

can be used to characterize and improve the performance of solar cells. There are 

three fundamental sources of voltage loss in solar cells: kinetic losses, ohmic losses, 

and mass transfer losses.  

  Among other factors, EIS is an experimental technique that can be used to 

separate and quantify these sources of polarization. The equivalent circuit models a 

network of resistors, capacitors and inductors. This can extract qualitative and 

quantitative information regarding the sources of impedance within the cell. EIS is 

useful for research and development of new materials and electrode structures, as well 

as for product verification and quality assurance in manufacturing operations. EIS 

data for electrochemical cells such as solar cells are most often characterized in 

Nyquist (cole-cole) plot and Bode plots as shown in Figure 3.8. Bode plots refer to 
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illustration of the impedance magnitude in this case for the real or imaginary 

components of the impedance and phase angle as a function of frequency. 

 

 
Figure 3.8 Nyquist plot (left) and Bode plots (right) 

 

3.7  X-ray Photoelectron Spectroscopy   

X-ray photoelectron spectroscopy (XPS) is a surface investigation technique, which 

is based upon the photoelectric effect. Photoelectric effect concept was proposed by 

Einstein and received Nobel Prize for this works in 1921. This concept was developed 

by Kai Seigbahn into useful measurement method, namely for Photoemission as an 

analytical tool. 

Every single atom in the surface has core electron with the representative to binding 

energy that is theoretically equal to the ionization energy of electron. In order to 

measure the binding energy, an X-ray beam point towards to the sample. The energy 

of the X-ray photon is adsorbed completely by the core electron of an atom. However, 

if the photon energy, h, is high enough, the core electron will then escape from the 

atom and emit out of the surface. The emitted electron with the kinetic energy of Ek 

from this process is referred to as the photoelectron. The binding energy (Eb) of the 

core electron is given by the Einstein relationship:  
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    Eb = hv – Ek -     (3.7) 

where, h is the X-ray photon energy; Ek is the kinetic energy of photoelectron, which 

can be measured by the energy analyzer; and Φ is the work function induced by the 

analyzer. 
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Chapter 4 DSSCs based on axially ligated phosphorus-

phthalocyanine dyes 
 

  Dye-sensitized solar cells with axially anchored phosphorous-phthalocyanine 

dyes were fabricated for the first time. Although the phosphorus-phthalocyanine dyes do 

not have a conventional anchoring group (–COOH), these dyes could be absorbed on a 

TiO2 semiconductor surface. After the optimization of energy levels, a 24% incident 

photon-to-current efficiency (IPCE) was observed at 710 nm with an IPCE curve edge 

of 800 nm. The efficiency was 2.67%, which was higher than those of previously 

reported dye-sensitized solar cells with axially anchored phthalocyanine dyes (less than 

1%). 

 

4.1  Introduction 

  Dye-sensitized solar cells (DSSCs) are attracting attention owing to their high 

efficiency and low cost of production1). The most widely employed dyes in DSSCs are 

ruthenium (Ru) dyes2). Previous Ru dyes cover only the area of the visible region up to 

800 nm. Recently, Segawa and colleagues have reported Ru dyes covering a wide range 

of wavelengths from 400 to 1000 nm3). Panchromatic photon harvesting from visible-

to-near-infrared (NIR) region is ideal; however, dyes with both high incident photon-to-

current efficiency (IPCE) in the IR region and high open circuit voltage (Voc) have not 

yet been realized. Recently, metal-free dyes having nearly quantitative photon harvesting 

in the visible light region have been reported4). However, NIR dyes with high 

photoconversion quantum efficiency have not been reported so far. Macrocyclic dyes 

such as phthalocyanines having intense light absorption are one of the candidates for 

NIR dyes5–7). Some phthalocyanine derivatives have absorption in IR regions8). In the 

course of study, we accidentally found that phthalocyanine dyes without conventional 

anchoring groups such as carboxylic acid are adsorbed on porous titania layers and show 

photovoltaic properties. Macor et al. have already reported on the carboxylic moiety-

free silicon naphthalocyanine NIR dye adsorbed on a nanoporous titania layer, where 

the dye was linked with the titania surface by Ti–O–Si lingkage, which is substituted at 

the axial position of the naphthalocyanine ring. The efficiency was about 0.1%9). 
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Recently, we have reported that axially anchored Sn naphthalocyanine was adsorbed on 

porous tin oxide layers by a Sn–O–Sn bond and showed photovoltaic performance, 

where electrons are injected from the naphthalocyanine ring to tin oxide through the 

narrow space between them10). The advantage of the axially anchored phthalocyanine on 

TiO2 is that symmetrical phthalocyanine derivatives can be used. They can be prepared 

much more easily than unsymmetrical phthalocyanine derivatives, and a variety of 

symmetrical cyclic structures can be applied to DSSCs. In this report, the photovoltaic 

performance of DSSCs with axially anchored phosphorous(III)phthalocyanine (PPc) 

adsorbed on porous titania layers is described. 

 

4.2 Experimental detail 

4.2.1 Materials 

  A working electrode was fabricated by coating paste containing titania 

nanoparticles (Solaronix D paste) on a fluorine-doped tin oxide layered glass (FTO glass, 

Asahi Glass). The sample was baked at 450°C for 30 min to obtain a 12-µm-thick porous 

titania layer, and was immersed in a 40 mM TiCl4 solution in distilled water for 30 min 

at 80°C, followed by heating this at 500°C for 30 min. The sample was immersed in a 

0.2 mM solution of PPc in ethanol at 60°C to enhance the adsorption of the dye on the 

porous titania layer.  

  A Pt-sputtered FTO layered glass working as a counter electrode was coupled 

with the working electrode using a spacer (Solaronix Meltonix 1170-25F, thickness: 25 

µm). Three dyes (PPc-1, PPc-2, and Ref-Pc-1) with a symmetrical ring structure shown 

in Fig. 4.1 were synthesized by the method described in our earlier publication.11,12) 

Electrolyte (E1) was injected into the gap between the two electrodes consisting of 500 

mM lithium iodide (LiI), 50 mM iodine (I2), 600 mM ethylmethylimidazolium 

dicyanoimide (MeEtIm-DCA), and 580 mM 4-tert-butylpyridine (TBP) in acetonitrile.  
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Figure 4.1 Chemical structures of phosphorous-phthalocyanine dyes and its attachment 

on nanoporus TiO2 layer. 

 

 

4.2.2 Cell Fabrication and Measurement 

A. Working electrode 

  Figure 4.2 shows photo-electrodes prepared for conventional type DSSCs. FTO 

glass (Asahi Glass), used as working electrodes, cut with diamond cutter into desired 

size. FTO glass was cleaned with ultrasonic cleaner in distilled water, isopropanol and 

acetone for 15 minutes in each process. After drying with blower, FTO glass was cleaned 

again with UV-Ozone cleaner for 20 minutes. TiO2 paste (Solaronix D paste) was screen 

printed into FTO glass using metal mask (thickness: 30µm) and dried in open air for 10 

minutes. After drying, FTO coated with TiO2 was baked at 450oC for 30 minutes. After 

cooling down into room temperature, TiO2 paste was coated and baked again until 

desired thickness was achieved. In this work, the optimum thickness was 12µm which 

was measured with Dektak 6M Stylus Profiler.  
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Figure 4.2 Bare TiO2 (left), TiO2 coated PPc-1 (middle) and TiO2 coated PPc-2 (right). 

 

 

 
 

Figure 4.3 Flowchart for fabrication of TiO2 electrodes of DSSCs 

 

 

Cut FTO glass into desired size 

Clean with ultrasonic cleaner distilled water 
In distilled water, isopropanol and acetone 

Screen print TiO2 on FTO using 30µm metal mask  
and dried at room temperature for 10 minutes 

Clean the surface with UV-Ozone cleaner 

Bake at 450oC for 30 minutes 

X Several time
s 

Immerse in 40 mM TiCl4 solution at 80oC for 30 min 

Bake at 500oC for 30 minutes 

Dip in dye at 60oC 
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Sintered TiO2 was dipped in 40 mM TiCl4 solution at 80oC for 30 minutes, rinsed with 

distilled water and ethanol and dried again at 500oC for 30 minutes. After temperature 

was down to 80oC, TiCl4 treated TiO2 was immersed in 0.2 mM PPc-1 and PPc-2 (in 

ethanol solution) while maintaining the dye solution temperature at 60oC with coil heater. 

This was then dipped for 24 hours for attaching the dyes on TiO2 surface. Dipped photo 

anode was finally rinsed with ethanol to remove excess dyes. Flowchart for fabrication 

of photo anode is shown in Figure 4.3. 

 

B. Counter electrode 

  Counter electrode prepared by cutting and cleaning FTO glass in distilled water, 

isopropanol and acetone with ultrasonic cleaner for 15 minutes. FTO glass was cleaned 

again with UV-Ozone cleaner. Platinum target used for sputtering Pt on top of cleaned 

FTO glass by radio frequency magnetron sputtering machine (Shibaura, I-Miller, CFS-

4EF-LL). The optimized conditions are in argon atmosphere (99.99%) with a base of 

plasma chamber of 4x10-4 Pa and working pressure of 2x10-1 Pa. 

 

C. Dye Absorption on Titania film 

  Dye absorption measurement on Titania film was done by following steps. Slide 

glass was cut and cleaned with ultrasonic cleaner in distilled water, isopropanol and 

acetone for 15 minutes, respectively. After drying, glass surface was cleaned again with 

UV-Ozone cleaner for 20 minutes. Cleaned glass coated with transparent TiO2 paste 

(Solaronix HT/SP) using 50µm thick metal mask and dried at 450oC for 30 minutes. One 

layer of TiO2 was 5µm which is enough for absorption measurement. Glass coated TiO2 

was dipped in dye solution for 24 hours at 60oC. Figure 4.4 shows the adsorption of PPc-

1 and PPc-1 on HT/SP. Finally, absorption spectrum was measured with UV-VIS 

spectrophotometers using Jusco V-670. LUMO level of dyes was also determined by its 

absorption edge which was obtained from this graph. 
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Figure 4.4 PPc-1 and PPc-2 absorption on Titania film.  

 

D. DSSCs assembling  

 

Figure 4.5 DSSCs assembly  
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Working electrode and counter electrode ware assembled into sandwich structure 

with 25µm thick spacer as a gap. To stick these both electrodes, hotplate at 120oC was 

used to melt the spacer while applying a pressure on the sandwich structure. Electrolyte 

(E1) inserted into the gap between spacer. Finally, four sides of device is sealed with UV 

resin and solidified with UV-light. In order to have a good electrical contact, silver paste 

was applied on both poles.  Preparation and assembly process can be seen on Figure 4.5. 

 

E. HOMO-LUMO 

 The lowest unoccupied molecular orbital (LUMO) level was estimated by adding 

the energy gap calculated from the absorption spectrum edge to the HOMO energy level. 

Figure 4.6 shows HOMO level measured from dye powder of PPc-1 and PPc-2 with 

Photo-Electron Spectroscopy in Air (PESA) AC-3 Riken. HOMO level of PPc-1 and 

PPc-2 are 5.28eV and 4.95eV, respectively. The absorption edge values acquire from 

UV-Vis spectrophotometer measurement mentioned above.   

 

 
 

Figure 4.6 HOMO level for PPc-1 and PPc-2 

 

F. Emission lifetime 

Emission lifetime was measured using the fluorescence lifetime spectrometer 

Quantaurus-Tau C11367 and was analyzed with the fluorescence lifetime measurement 

software Hamamatsu Photonics U11487. Emission lifetime of phtalocyanine dyes ware 

measured in ethanol solution, on titania film and on zirconia film. 
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G. Impedance spectra 

  Impedance spectra were measured by Z-View Software (Solarton Analytical) 

with a frequency response analyzer (Solarton Analytical 1255B) connected to a 

potentiostat (Solarton Analytical 1287) under illumination (Yamashita Denso YSS-50A) 

at 1mA constant current. 
 

H. Dye loading   

 

 
  

Figure 4.7 Calibration curves and desorbed dye absorptions for PPc-1 and PPc-2. 
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Dye loading of dye measured and calculated by comparing the desorption of dyes with 

calibration curve from known concentration of dye and divided by the total area of titania 

layer. Dye solutions with certain concentration was measured with UV-vis spectroscopy 

and plotted to determine the equation for calibration curve. The mixture of NaOH 

(0.1mM), ethanol, t-butyl alcohol and acetonitrile (vol 1:1:1:1) was used to desorbed the 

dyes from titania surface. Desorption dye solution is taken and calculated with 

calibration curve of knowing concentration. At last, the concentration of desorbed dyes 

divided by the active area. For example, PPc-1 has absorption peak for desorbed dye of 

0.83, which corresponds to concentration of 53.48 μM. Since the concentration was 10 

ml, the concentration of dye desorbed was 534.8 nmole. The active area of titania is 4 

cm2, gave final dye loading for PPc-1 was 133.7 nmole/cm2. Same method was done for 

PPc-2. PPc-2 has absorption peak for desorbed dye of 0.48, which corresponds to 

concentration of 29.40 μM. Since the concentration was 10 ml, the concentration of dye 

desorbed was 294 nmole. The active area of titania was 4 cm2, gave final dye loading 

for PPc-2 was 73.5 nmole/cm2.      

 

4.3 Result and discussion 

  It has been reported that the absorption spectrum edge shifts to the longer 

wavelength region (900 nm) by substituting the α-position of the phthalocyanine rings 

with ether or thioether groups13). Kobayashi et al. have reported on phosphorus-

phthalocyanine covering up to 1000nm14). However, the LUMO was −5.8 eV, which was 

deeper than that of the TiO2 conduction band (-4.0 eV). Since electron injection does not 

occur from the dye to titania, we were not able to expect photovoltaic performance. The 

reason for the low LUMO level is associated with the phosphorous (V) cation located at 

the center of the phthalocyanine ring. Therefore, we focused on PPc. It is known that the 

absorption spectrum peak of Ref-Pc-1 is 680nm (Q-band) with the 700nm absorption 

edge. The coverage of the spectrum area by Ref-Pc-1 is not sufficiently wide. In addition, 

the HOMO of Ref-Pc-1 was -4.80 eV, which was shallower than that of I −/I3
− (−4.9 eV). 

Therefore, the oxided Ref-Pc-1 is not reduced by I−. In order to cover the wide range of 

wavelengths, an ether or thioether group was introduced into the α-position of the 

phthalocyanine ring, as shown in Figure 4.1.  
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Figure 4.8 Electronic absorption spectra of phosphorus-phthalocyanine dyes in 

solution and in solid state (TiO2 surface) 

 

  The electronic absorption spectra of these dyes in solution and on a porous titania 

layer are shown in Fig. 4.7 PPc-1 has absorption peaks at 710 and 507 nm (in solution), 

assigned to the Q and Soret bands, respectively. The Q band of Ref-Pc-1 in solution 

shifted from 680 to 710 nm with the introduction of –O–CH2–CH2–CH2–CF3(TFB) at 

the α-position of phthalocyanine rings. When the substituent (TFB) was replaced with –

S-Ph (SPh), the absorption peak in solution was shifted to a longer wavelength (724 nm), 

suggesting that the electronic properties of the phthalocyanine ring are affected by the 

substituents. The full widths at half maximum (FWHMs) in solution were 39 nm for 

PPc-1 and 119 nm for PPc-2.  The larger FWHM for PPc-2 is probably due to some 

aggregations in the solvent15). It has been reported that dye aggregation makes the dye 

excited state lifetime shorter and degrades the solar cell performance16). From the 

viewpoint of dye aggregation, PPc-1 may have some advantages over PPc-2. After a 

glass substrate with a porous titania layer was dipped in the dye solution, the substrate 

became coloured even without COOH anchoring groups.  
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  In Figure 4.7 also shows the spectra of dyes that are adsorbed on the porous 

titania layer. The absorption peak of PPc-1 shifted from 710 nm in solution to 719 nm 

on titania. On the other hand, that of PPc-2 shifted from 725 nm in solution to 706 nm 

in titania. The shift of PPc-1 after adsorption was opposite to that of PPc-2. The FWHMs 

of PPc-1 and PPc-2 became larger from 39 nm (solution) to 82 nm (on TiO2) and from 

119 nm (solution) to 175 nm (on TiO2), respectively, after these dyes were adsorbed on 

the porous titania layer, suggesting that these dyes were bonded to the surface of titania 

and the motions on the porous titania layer were restricted more than those in the 

solutions. PPc-1 and PPc-2 do not have a conventional anchoring group such as 

carboxylic moieties; however, adsorption actually occurred. The adsorption by the P–

OH group probably occurs at the center of the phthalocyanine ring to make the P–O–Ti 

(porous titania) linkage (TiO2/PP in Fig. 4.1).  

 

 
 

Figure 4.9 Shift of binding energy on TiO2 as reference and after stained with PPc-1 

dye. 

 

The binding energy of O 1s of the porous TiO2 film was shifted from 530.1 to 530.5 eV, 

after the porous TiO2 layer was stained by PPc-1, as shown in Figure 4.8. Unfortunately, 

P was not detected probably because of the low P density of the titania surface. It has 
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been reported that the binding energies of O 1s for Ti–OH and Ti–O–P are 529.3 and 

529.7 eV, respectively17). After P was introduced, the binding energy of O 1s increased 

by 0.4 eV. The trend of the shift was the same as that in this experiment. The results 

strongly support the presence of the Ti–O–P linkage.  

Table 4.1 shows the emission lifetimes of PPc-1 and PPc-2 in ethanol solution on the 

ZrO2 and TiO2 substrates (details are shown in Figure 4.9 and 4.10, respectively). ZrO2 

was employed for measuring the emission of the adsorbed dye. Since ZrO2 has a shallow 

conduction band energy level, emission from adsorbed dyes is observed without being 

affected by electron injection. When the dye is adsorbed on porous TiO2, emission 

competes with electron injection and the emission lifetime is not compared with those 

in ethanol solution. The emission lifetime of PPc-1 in solution is 1.93 ns, which is longer 

than that of PPc-2 (1.57 ns) in solution. PPc-1 on ZrO2 has a longer emission lifetime 

(1.02 ns) than PPc-2 (0.42 ns).  

 

Table 4.1 Excitation life time 

 PPc-1 
(Ethanol) 

PPc-2 
(Ethanol) 

PPc-1 
(Zirconia) 

PPc-2 
(Zirconia) 

PPc-1 
(Titania) 

PPc-2 
(Titania) 

Excitation 
life time 1.93 nsec 1.57 nsec 1.02 nsec 0.42 nsec 0.71 nsec 0.15 nsec 

 

 
Figure 4.10 Emission life time in ethanol solution and zirconia film. 
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Figure 4.11 Emission life time in ethanol solution and titania film. 

 

In addition, a lifetime component longer than 15 ns for PPc-1 on ZrO2 remains. These 

results suggest that PPc-1 on ZrO2 is less aggregated than PPc-2 on ZrO2, in agreement 

with the FWHM results. The emission lifetimes of PPc-1/TiO2 (0.71 ns) and PPc-2/TiO2 

(0.15 ns) are shorter than those of PPc-1/ZrO2 (1.02 ns) and PPc-2/ZrO2 (0.42ns). 

Therefore, in both cases, injection from the dye to TiO2 occurs (Figure 4.11).  

 

  Figure 4.12 shows the energy band diagrams for PPc-1 and PPc-2. The HOMO 

of the previously reported phosphorous phthalocyanine is more negative than that of the 

I−/I3
− redox potential and does not match the requirement of the energy level diagram 

needed for DSSC. The introduction of electron withdrawing groups at the position of the 

phthalocyanine ring decreases the HOMO level, which matches the requirement of 

DSSCs. The LUMO levels of PPc-1 and PPc-2 are −3.67 and −3.44 eV, respectively. 

These LUMO energy levels are shallower than that of the TiO2 conduction band (−4.0 

eV), suggesting that the electron injection from these LUMOs to the TiO2 conduction 

band is possible. The HOMO energy levels of PPc-1 and PPc-2 are −5.28 and −4.95 eV, 

respectively. Since the I−/I3
− redox potential is −4.9 eV, electron injection from the I−/I3

− 

redox level to the HOMO of PPc-1 is possible (dye regeneration). However, electron 

injection to the HOMO of PPc-2 may be difficult because of the small energy level 

difference (0.05 eV) between the I−/I3
− redox level and the HOMO of PPc-2. 
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Figure 4.12 Energy level diagrams for phosphorus phthalocyanines along with the 

energy levels of TiO2 and I−/I3
− redox couple. 

 

    

  Table 4.2 and Figure 4.13 shows the current–voltage (I–V) characteristics of 

DSSCs. The Voc, Jsc, FF, and power conversion efficiency (PCE) of DSSC-PPc-1 are 

0.566 V, 6.879 mA/cm2, 0.686, and 2.67%, respectively. PPc-2 has a lower efficiency 

with 0.573 V, 3.748 mA/cm2, 0.731 and 1.57%, respectively. In both cases, Voc is almost 

the same, but the large difference in efficiency between them is brought about by that of 

Jsc. The lower Jsc of PPc-2 can be explained by the small energy gaps between the I−/I3
− 

redox potential and the HOMO level of PPc-2 (0.05 eV). In addition, this may be 

explained by the fact that the    PPc-1 density on porous TiO2 is higher than the PPc-2 

density, because the absorbance of PPc-1 on porous TiO2 is higher than that of PPc-2 

with the same thickness, as shown in Fig. 4.8 and from dye loading measurement. In 

solution, the Soret band absorbances of both are between 1.2 and 1.6. However, on the 

porous titania layer, the Soret band absorbance of PPc-2 (0.25) is much smaller than that 

of PPc-1 (0.35). Since flexible fluoroalkyl groups (PPc-1) do not disturb the adsorption 
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of the phthalocyanine rings on porous titania through Ti–O–P (axial adsorption), the 

PPc-1 dye density on porous titania is larger than the PPc-2 dye density.  

 

Table 4.2. I-V Characteristic of DSSCs with Dyes under investigation. 
 

Dye Jsc (mA/cm2) Voc (V) FF  (%) 
PPc-1 6.879 0.566 0.686 2.67 
PPc-2 3.748 0.573 0.731 1.57 

 
 
 

 
 
Figure 4.13 I–V characteristics dark current for DSSCs stained with PPc-1 and PPc-2. 
 
   

  Figure 4.14 shows IPCE curves of DSSCs. IPCE of DSSC-PPc-1 and DSSC-

PPc-2 have two peaks (510 and 710 nm, and 430 and 710 nm, respectively), which are 

associated with the electronic absorption spectra of PPc-1 and PPc-2 adsorbed on the 

porous TiO2 layer. The higher IPCE of PPc-1 is consistent with the higher Jsc of PPc-1. 

The IPCE curve edge reaches 800 nm.  

-2.0

0.0

2.0

4.0

6.0

8.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6

C
ur

re
nt

 D
en

si
ty

 [m
A

/c
m

2]

Voltage [V]

IV PPc-1 IV PPc-2

Dark PPc-1 Dark PPc-2



DSSCS BASED ON AXIALLY LIGATED PHOSPHORUS-PHTHALOCYANINE DYE 

CHAPTER 4  52 | P a g e  
 

 
 

Figure 4.14 IPCE spectra of DSSCs stained with PPc-1 and PPc-2 
 

 
Figure 4.15 Electrical impedance spectroscopic plot for PPc-1 and PPc-2. a) Cole-

cole plot and b) Bode plot.  

   

0

0.1

0.2

0.3

0.4

400 500 600 700 800

IP
C

E

Wavelength [nm]

IPCE PPc-1
IPCE PPc-2



DSSCS BASED ON AXIALLY LIGATED PHOSPHORUS-PHTHALOCYANINE DYE 

CHAPTER 4  53 | P a g e  
 

  Figure 4.15 shows electrical impedance spectra (EIS) of DSSC-PPc-1 and 

DSSC-PPc-2. The curves are divided into three parts.  A semi-circle observed at higher 

frequency, middle frequency and lower frequency are associated with resistance of 

interface at Pt/electrolyte of the counter electrode, TiO2/Dye/electrolyte and 

FTO/(Dye)/electrolyte interfaces, and diffusion of I-/I3
- redox in the electrolyte18). The 

second semi-circle in DSSC-PPc-1 was a little smaller than that of DSSC-PPc-2. This 

may be explained by the fact that PPc-1 density on porous TiO2 is a little larger than 

PPc-2 as was described in the previous section. It has been reported that there are a lot 

of surface traps on the porous TiO2 and the surface traps become centers for charge 

recombination19). In addition, the surface traps are passivated by adsorption of dye 

molecules20).  The larger amount of PPc-2 adsorbed on the porous TiO2 layer passivates 

the surface trap of porous TiO2 layers and electron diffusions in porous TiO2 layers 

would increase. Electron life time was measured by EIS, according to the following 

equation21). 

τ =
1

2𝜋𝑓𝑚𝑖𝑛𝑖𝑚𝑢𝑚
    (4.1) 

The electron life time of DSSC-PPc-1was 15.9 ms which was longer than 13.2 ms of 

DSSC-PPc-2, also supporting the explanation that surface of porous titania of DSSC-

PPc-1 is passivated more than that of DSSC-PPc-2. 

  4-tert-butylpyridine (TBP) is one of additive commonly used in electrolyte 

configurations.  It have been reported that presence of TBP in DDSCs system will 

suppress the recombination of the injected electron and I3
- ions22,23). TBP adsorbed on 

the TiO2 surface not covered by the dye. Arakawa and his group reported that TBP was 

slightly adsorbed on bare titania surface and dramatically increased in the presence of 

LiI for titania coated with dye24). This phenomena indicated that TBP molecules interact 

with LiI cations especially on the TiO2 surface area that not covered with dyes. TBP also 

reported shifting TiO2 conduction band to higher level and observed slightly lower Jsc 

in presence of TBP as additive25). It also been reported that the shifting of TiO2 

conduction band in use of TBP as additive was also found on Cobalt-based electrolyte26). 

In order to get optimum injection, it is required sufficient energy difference between 

LUMO energy level and TiO2 conduction band. At least 0.4-0.5 eV gap between them 

is required to ensure optimal electron injection. The gap between PPc-1 LUMO level (-
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3.67 eV) and TiO2 conduction band (-4.0 eV) were 0.33eV and in order to increase the 

energetic gap we try to remove TBP from the systems. However, the improvement of Jsc 

after removing the TBP hampered Voc more than 50% led to very low over all 

photovoltaic performance.  

  Figure 4.16 shows IPCE spectra and I-V characteristics from PPc-1 dye 

fabricated with TBP and without TBP. Jsc, Voc, FF and PCE for device without TBP are 

9.77 mA/cm2, 0.26 V, 0.38 and 0.95 %, respectively.  Electron recombination was very 

high due to higher amount of surface traps on titania surface. The nature of axial ligation 

need more space occupy for dye-adsorption and leaves more un-passivated surface traps.   

 

  
 

Figure 4.16 IPCE spectra and I–V characteristics for DSSCs for PPc-1 with TBP and 

PPc-1 without TBP. 

 

 

4.4 Conclusion 

In summary, it was found that phosphorous phthalocyanine without the 

conventional anchoring group (–COOH) can be well adsorbed on TiO2 with Ti–O–P 

linkages. The higher efficiency of DSSC-PPc-1 can be explained by the longer excitation 

lifetime, higher dye concentration on a porous TiO2 layer, sufficient energy level 

difference between the LUMO of PPc-1 and the TiO2 conduction band, and that between 

the HOMO of PPc-1 and the I-/I3
- redox level. Higher Jsc could be achieved by removing 

TBP from electrolyte configurations. However, in absence of TBP, more surface trap 
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were left on titania surface and hampered Voc. We propose an approach to stain the TiO2 

surface with symmetrical phthalocyanine, which can be synthesized much easier than 

unsymmetrical phthalocyanine with carboxylic anchoring groups. This will provide a 

direction to photoconversion in IR regions where the synthesis of unsymmetrical 

phthalocyanine with carboxylic acids is much harder. 
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Chapter 5 TCO free Dye sensitized solar cell using flat 

Titanium sheet. 
 

Structure modifications are commomnly done by engineers in order to improve the 

performance of the devices. For DSSCs, the structure modification to remove 

expensive parts on the standard structure are done in order to achieved lower 

manufacturing cost. TCO in DSSCs taking 24% of total production cost of DSSCs 

and the nature of rigid glass used as TCO parts make DSSCs application limited to 

flat architecture. In this chapter, we succesfully replaced TCO with flat titanium sheet 

as working and counter electrodes. The titanium sheets are also allow us to make 

cylindrical structure of DSSCs with high efficiency.   

 

5.1 TCO-less back-contact DSSCs  

Flat titanium sheet with micro holes (FTS-MH) was used to fabricate transparent-

conductive oxide less dye-sensitized solar cells (TCO-less DSSCs) with back contact 

electrodes. FTS-MH allows us to fabricate solar cells with ease and simple, compared 

to TCO-less DSSCs reported before. Hydrogen peroxide (H2O2) treatments on FTS-

MH were important factors to enhance the efficiency. H2O2 treatment changed the 

surface morphology of FTS-MH and created nanostructures on the surface that 

increase surface contact between FTS-MH and titanium dioxide (TiO2) working as a 

photo anode. This surface change also hamper electron recombination resulting in 

increment of both short circuit current and open circuit voltage. Overall photo-

conversion efficiency could reach up to 7.25 % under simulated solar irradiation. 

 

5.1.1 Introduction 

Dye sensitized solar cell (DSSCs) was reported for the first time in 1991 after Grätzel 

and his group demonstrated the potentials of this type of solar cells with relat ively 

low cost to make1). DSSCs have achieved relatively high efficiency over 13% with 

porphyrin dye and cobalt electrolyte configuration2). Replacing glass substrate of 
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DSSCs with more flexible materials is desired for portability and easy-to-use. The 

rigid structure of DSSC is mainly due to utilization of transparent conductive oxide 

layered glasses (TCO glass). DSSCs utilize two TCO glasses, working as photo 

anodes and counter electrodes. Fluorine doped tin oxide coated glasses (FTO glass) 

have been most widely used to fabricate DSSCs. There are some reports to replace 

glass based TCO electrodes with polymer based TCO3). Unfortunately, 

semiconductor photo anode used for DSSCs, titanium dioxide (TiO2), required 

calcination at around 450oC, which makes polymer based TCO unssuitable. Low 

temperature processes had been intensively proposed, such as low temperature 

sintering4), hydrothermal treatment5), chemical vapor deposition with UV 

irradiation6), spray coating7) etc. However, low necking (interconnection) between 

TiO2 particles by low temperature process made it difficult to achieve the same 

results as high temperature calcination. Back-contact structure with metallic 

materials is strong candidate to replace the TCO in DSSCs8,9).  

  Titanium is one of best candidates among metallic materials for TCO-less 

DSSCs application. Titanium is strong, light weight, non-reactive against electrolyte, 

which makes it easy to apply with various DSSC structures such as flexible and 

cylindrical solar cell. Fan et al have reported TCO-less DSSCs consisting of 150 µm 

thick titanium wire having overall efficiency of 1.49 %10). Recently, we have reported 

TCO-less DSSC by replacing the FTO on anode side with Ti sputtered Stainless Steel 

(Ti/SUS) metal mesh working as the supporter for the mesoporous TiO2 and back 

contact conducting grid. It has been demonstrated that it needs the sputtering of thin 

titanium on the SUS in order to protect the surface and reduce electron recombination 

between electrons in metal electrode and redox species to enhance the photo-

conversion efficiency11).  

  Our group has also demonstrated that all metal type TCO-less DSSC with 

porous titanium directly sputtered onto TiO2 surface leads to 7.4 % efficiency which 

was comparable with the corresponding TCO based DSSCs fabricated in a similar 

experimental condition12). Meanwhile, in order to reduce high energy and high cost 

processes, sputtering and thermal evaporation are some of the bottle-necks towards 

the commercialization of DSSCs13). Since the thickness of mesh (minimum diameter: 
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50µm) affected the diffusion length of electrolytes, we used 20µm thin Ti sheets with 

micro holes (FTS-MH) towards the fabrication of back contacted TCO-less DSSCs. 

 

5.1.2 Experimental Detail 

5.1.2.1 Materials 

The sample of flat titanium sheet with micro holes (FTS-MH) was received from 

Ushio Inc., Japan. The FTS-MH (20μm) was much thinner than conventional 

titanium wire mesh (thickness: 150μm)10). In this experiment, FTS-MH treated with 

H2O2 was used as well as FTS-MH without the treatment. The hole diameter was 

100µm and distance between these hole centers were about 150µm as shown in 

Figure 5.1. Titanium dioxide (TiO2) PST-400C and PST-30NRD were purchased 

from Catalysts and Chemical Ltd in Japan. For sensitizer dye, Ruthenizer 535-

bisTBA (OPV-N719; Di-tetrabutyl-ammoniumcis-bis(isothiocyanato)bis(2,2'-

bipyridyl-4,4'-dicarboxylato)ruthenium(II)) from OPV Tech is utilized. Glass paper 

with 30µm thick used as spacer between photo anode and counter electrode was 

employed for this experiment. 

 

 
 

Figure 5.1 Image of flat titanium sheet with micro holes (FTS-MH) used for back-

contact electrode. 
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5.1.2.2 Cell Fabrication and Measurement 

A. Photo-anode 

  Photo-electrodes prepared for TCO-less DSSCs are different with 

conventional DSSCs. As a replacement of FTO glass, we used as FTS-MH as photo 

anode supporter. FTS-MH was cleaned with ultrasonic cleaner in acetone for 15 

minutes. After drying with blower, untreated FTS-MH was directly coated with TiO2. 

For treated FTS-MH, hydrogen peroxide (H2O2) treatment was applied on it. 

  

 
 

Figure 5.2 Fabrication of Photo-anode for TCO-less DSSCs   

 

 

Cut FTS-MH into desired size 

Clean with ultrasonic cleaner in acetone for 15 minutes 

Screen print larger size TiO2 and dried at 120oC for 6 minutes 

Untreated FTS-MH 

Bake at 450oC for 30 minutes 

X Several times 

Baked at 450oC for 30 min 

Bake at 450oC for 30 minutes 

Dip in dye at room temperature 

Treated with H2O2 at 95oC for 30 minutes 

Screen print smaller size TiO2  
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H2O2 30 % (w/w) in H2O was directly used. The solution was put in a beaker along 

with FTS-MH and heated at 95oC for 30 minutes. After treatment, FTS-MH was 

rinsed with ethanol and dried with blower. To finish the treatment, calcination at 

450oC for 30 min were needed.  

 

 
 

Figure 5.3 DSSCs TCO-less structures and their abbreviations 

 

After cooling down to room temperature, TiO2 paste with larger particle size (PST-

400C paste) was screen printed onto both treated and untreated FTS-MH using metal 

mask (thickness: 40µm) while putting polytetrtafluoroethylene (PTFE) mesh above 
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the FTS-MH to hold the TiO2. FTS-MH was dried at 125oC for 6 minutes and PTFE 

was removed after cooled down to room temperature and baked again at 450oC for 

30 minutes. Above of larger size TiO2, smaller size TiO2 (PST-30NRD) was coated 

with same method mentioned above for several times to create 18µm thick of TiO2. 

Finally, FTS-MH coated with TiO2 immersed in 0.3 mM N719 dye. The flowchart 

for fabrication of photo anode is shown in Figure 5.2.  

 

B. Counter electrode 

Two type of substrates were used for preparing the counter electrode (CE). First is 

standard FTO glass and the other is titanium foil. The counter electrodes was 

prepared with same method mentioned in Chapter 4. Therefore, Titanium foil was 

cleaned only with acetone in ultrasonic cleaner without further cleaning with UV-

Ozone cleaner.  

 

C. Device Fabrications 

  Four types of solar cells were prepared as shown in Figure 5.3. One is TCO-

less  DSSCs  with FTO glasses (FTO-CE)  as  the  counter  electrode  (Device 1), 

consisting of Glass/porous  TiO2 layer stained with N719/FTS-MH/electrolyte 

layer/FTOglass  with  Pt working as the  counter electrode. The second cell is TCO-

less DSSC with Ti sheet as the counter electrode (Device 3), consisting of 

Glass/porous TiO2 layer stained with N719/FTS-MH/electrolyte layer/Ti sheet with 

Pt (Ti-CE) working as the counter electrode.  The third one has an adhesive plastic 

sheet layer between a glass and porous TiO2 as shown in Device 2, consisting of 

glass/plastic layer/ porous TiO2 layer stained with N719/FTS-MH/electrolyte 

layer/FTO with Pt working as the counter electrode. The fourth is Device 4, which 

is similar to Device 2 except Device 4 used Ti sheet sputtered Pt as counter electrode. 

 

  Device 4 consisting of H2O2-treated FTS-MH is abbreviated as Device 4-

H2O2. The H2O2 treatment was done by dipping the FTS-MH in 30% aq. hydrogen 

peroxide solution (Wako) at 95oC for 30 minutes. After rinsed in ethanol, the FTS-

MH was baked at 450oC for 30 min for cleaning the surface of Ti and fabricating 
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porous structures on the Ti surface. The working electrode has Ti-TiO2 layer 

structures. The working electrode was fabricated by screen printing of 400 nm size 

of TiO2 (PST-400C) on the FTS-MH (both untreated and H2O2 treated) and the 

sample was heated at 450oC for 30 min. Second layer of porous titania was fabricated 

by coating 30 nm size of TiO2 (PST-30NRD) on the top of the first layer. The sample 

was baked at 450oC for 30 minutes to make porous titania layer with total thickness 

of 18µm. The sample was dipped in Ruthenizer 535-bis TBA solution in tert-

buthanol/Acetonitrile (1:1 vol) for 24 hours at room temperature. Then, the FTS-MH 

was rinsed with solvent to remove the excess dye.  

 

  The photoactive area was 0.25 cm2. Solaronix plastic sheet (Solaronix 

Meltonix 1170-25) (C in Fig. 5.3) was placed between the bare glass (A) and photo 

anode (B + C) and the sample was heated to 120oC while they were pressed to stick 

them together. The plastic sheet removes gap between the cover-glass and the photo 

anode. A glass (A in Fig. 5.3)/plastic films/a photo anode consisting of porous titania 

layer (B) and FTS-MH (D), a glass mesh paper (30µm thick) working as a supporter 

of electrolyte (E), and a counter electrode (F) were piled up consecutively for 

preparing the solar cell. Electrolyte (E1) was injected to the glass paper and the space 

of the glass paper was filled with E1. The electrolyte composition (E1) is as follows: 

0.05 M Iodine (I2), 0.1 M Lithium Iodine (LiI), 0.5 M 4-tert-Butylpyridine and 0.6 

M 1,2-dimethyl-3 propylimidazolium iodine in acetonitrile. The glass mesh paper 

holds the electrolyte E1 and prevents the cell from short circuit. Finally, epoxy resin 

was used to seal the cell. Device 2- H2O2 was prepared in the method similar to the 

Device 4- H2O2 except that the counter Pt/Ti electrode was replaced with a Pt/FTO 

glass. 

 

5.1.3 Result and discussion 

A. Hydrogen Peroxide Treatment 

It has been reported that by H2O2 treatment of titanium mesh nanosheets of TiO2 on 

titanium mesh surface are grown14). Figure 5.4 shows the Scanning Electron 
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Microscopy (SEM) pictures of untreated (A) and H2O2 treated (B) FTS-MH sheet. 

The formation of nanosheets were clearly observed after the H2O2 treatment of the 

titanium surface (see Figure 5.4 for magnification up to nanoscale for untreated (C) 

and H2O2 treated (D)). We expected that these nanosheets increased surface contacts 

between the FTS-MH and TiO2 porous layer and lead to better electron transport 

between Ti FTS-MH and the porous titania layer. In photo anode, the first layer of 

TiO2 with 400nm particles size served as base layer and to cover 100µm holes in 

FTS-MH. Without the first layer, uniform coating was difficult to achieve and TiO2 

layers tended to crack after annealing process due to weak contact between them. 

This layer also works as light scattering layers to enhance light absorption inside the 

photo-anode. Second layer of TiO2, 30nm particles size, serve as dye adsorption 

layer. 

  Table 5.1 and Figure 5.5 (A) shows the I-V characteristics of DSSCs with 

untreated FTS-MH and H2O2 treated FTS-MH with FTO counter electrode (Device 

1) and DSSCs with untreated FTS-MH and H2O2 treated FTS-MH with Ti counter 

electrode (Device 3). Titanium sheet sputtered with platinum (Ti-CE) was used as 

the counter electrode along with FTO based counter electrode, since Ti Sheet has 

lower resistance compared with TCO glasses15). Untreated FTS-MH shows hampered 

PCE compared with treated one for both of Device 1 and Device 3. Efficiency, Jsc, 

Voc and fill factor were 4.94 %, 10.18 mA/cm2, 0.67 V and 0.73, for untreated FTS-

MH with Ti-CE (Device 3-W/O), respectively. TCO-less DSSC with untreated FTS-

MH and FTO-CE (Device 1-W/O) had photovoltaic performances of PCE 4.68 %, 

Jsc 9.72 mA/cm2, Voc 0.66 V and fill factor 0.73. Devices treated with hydrogen 

peroxide gave better results. Efficiency, Jsc, Voc and fill factor ware 6.33%, 11.92 

mA/cm2, 0.71 V and 0.75, for H2O2 treated FTS-MH with Ti-CE (Device 3- H2O2), 

respectively. TCO-less DSSC with H2O2 treated FTS-MH and FTO-CE (Device 1- 

H2O2) had slightly lower photovoltaic performances of PCE 6.05 %, Jsc 11.15 

mA/cm2, Voc 0.73 V and fill factor 0.75.  
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Figure 5.4 SEM pictures of untreated FTS-MH (left) and H2O2 treated FTS-MH 

(right) 

 

Table 5.1 I-V Characteristics for untreated and H2O2 treated cells 

 

Ti-Pt 
Counter electrode 

FTO-Pt 
Counter electrode 

H2O2 Treated 
FTS-ME 

untreated 
FTS-ME 

H2O2 Treated 
FTS-ME 

untreated 
FTS-ME 

Jsc (mA/cm2) 11.92 10.18 11.15 9.72 

Voc (V) 0.71 0.67 0.73 0.66 
FF 0.75 0.73 0.75 0.73 

 (%) 6.33 4.94 6.05 4.68 
 

 

The increase in the Jsc is explained by the lower interfacial resistance between H2O2 

treated FTS-MH and porous titania. Another benefit from H2O2 treatment was the 

suppression of charge recombination between electrons in FTS-MH and I3
- of 

electrolyte. It has been already known that titanium has oxidized overlayer on its 
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surface. The chemical reaction of FTS-MH surface by H2O2 further enhances the 

formation of TiOx layer, leading to suppress the charge recombination of electrons 

in FTS-MH and I3
- of the electrolyte.  

 

 

Figure 5.5 I-V (A) and IPCE (B) characteristics for Device 1 and Device 3 before 
and after H2O2 treatment of FTS-MH. Device 3-H2O2: Device 3 consisting of H2O2 
treated FTS-MH, Device 1-H2O2: Device 1 consisting of H2O2 treated FTS-MH, 
Device 3-W/O: Device 3 consisting of untreated FTS-MH, Device 1-W/O: Device 1 
consisting of untreated FTS-MH. 
 
 
The enhancement of open circuit voltage (Voc)16) is explained by the formation of 

charge recombination blocking layer. IPCE of TCO-less DSSC with FTS-MH treated 

with H2O2 was higher than that without H2O2 treatment for both of Device 1 and 

Device 3. However, the shape of the IPCE curve for the former was similar to that 

for the latter, suggesting that H2O2 treatment does not affect light scattering issue. 

 

(A) 

(B) 
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Figure 5.6 Cole-cole plot for Device 1 and Device 3 before and after H2O2 treatment 
of FTS-MH. 

 

Electrochemical Impedance Spectroscopy (EIS) of TCO-less DSSCs with untreated 

FTS-MH and H2O2 treated FTS-MH for both of Device 1 and Device 3 are shown in 

Figure 5.6. A semi-circle observed at higher frequency, middle frequency and lower 

frequency are associated with resistance of interface at Pt/electrolyte of the counter 

electrode, TiO2/Dye/electrolyte and FTO/(Dye)/electrolyte interfaces, and diffusion 

of I-/I3
- redox in the electrolyte. Treated FTS-MH showed lower series resistance and 

smaller semi-circle compared to the untreated FTS-MH for both of Device 1 and 

Device 3. The lower series resistance is attributed to the porous structure fabricated 

on the Ti sheet as shown in Figure 5.4, where the contact areas between FTS-MH 

and porous titania layer increase. In midde and high frequency, treated FTS-MH also 

gave lower semi-circle assosiated with lower resistance on TiO2/Dye/electrolyte and 

FTO/(Dye)/electrolyte interfaces due to transformation of TiOx layer into TiO2 

nanosheets.   

In order to obtain more informations about the reason behind higher the Jsc on treated 

FTS-MH, dye loading measurement was done by same method in previous chapter. 

Dye loading was measured and calculated by comparing the desorption of N719 dyes 

with calibration curve from known concentration of dye and divided by the total area 

of titania layer. Dye solutions with certain concentration was measured with UV-vis 

spectroscopy and plotted to determine the equation for calibration curve. In order to 

desorbed the dyes from titania surface, the mixture of NaOH (0.1mM), ethanol, t -

butyl alcohol and acetonitrile (vol 1:1:1:1) was used. Desorption dye solution was 
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taken and calculated with calibration curve of knowing concentration. At last, the 

concentration of desorbed dyes from unterated and treated FTS-MH were divided by 

the active area.     

 

  

 

Figure 5.7 Calibration curves and UV-VIS spectra desorbed dye for treated and 

untreated FTS-MH. 

 

Treated FTS-MH had absorption peak for desorbed dye of 0.81, which corresponds to 

concentration of 67.27 μM. Since the concentration taken in 5 ml, the concentration of 

dye desorbed was 336.35 nmole. The active area of titania is 1 cm2, gave final dye 

loading for H2O2 treated is 336.35 nmole/cm2. The same method was done for untreated 

FTS-MH. It had absorption peak for desorbed dye of 0.74, which corresponds to 

concentration of 61.71 μM. Since 5 ml of the solution was taken, the concentration of 

dye desorbed was 308.55 nmole. The active area of titania is 1 cm2, gave final dye 

loading for untreated FTS-MH is 308.55 nmole/cm2. 
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B. Reduction of electrolytic gap 

  In conventional DSSC with TCO layers, TiO2 layer is prepared directly on 

the FTO-surface, therefore, there is almost no gap between them. However, in Device 

1 and Device 3, a photo anode floats between a top cover glass and a counter 

electrode. Therefore, there is gap (C in Fig 5.3) between a top cover glass and the 

photo anode, where electrolyte with redox couple is filled. Redox electrolyte couple 

I-/I3
- used in the system has absorption peak at 360 nm, which decreases the photon 

density reaching the photo anode. To suppress this phenomenon, we put a plastic 

spacer (C in Fig. 5.3) to reduce the gap between the photo anode (B) and the top 

cover glass (A).  

 

Table 5.2 I-V Characteristics for H2O2 treated cells with plastic spacer. 

 

 

 

 

 

 

 

 

In Figure 5.8, IPCE at 300–400nm region for both of Device 4 and Device 2 

structures increased to 30% which is higher than cells fabricated without plastic 

spacer (Device 1 and Device 3). Photovoltaic parameters and I-V characteristic 

shown in Table 5.2, shows Jsc enhancement from 11.15 mA/cm2 (Device 1- H2O2) 

to 12.34 mA/cm2 with PCE 6.43 % in FTO-CE (Device 2- H2O2) and from 11.92 

mA/cm2 (Device 3- H2O2) to 13.46 mA/cm2 with overall PCE 7.25 % in case of Ti-

CE (Device 4- H2O2) after the plastic sheet insertion. 

 
H2O2 Treated FTS-ME 

With plastic spacer 
Ti-Pt CE FTO-Pt CE 

Jsc (mA/cm2) 13.46 12.34 

Voc (V) 0.73 0.74 
FF 0.73 0.71 

 (%) 7.25 6.43 
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Figure 5.8 IPCE characteristic for devices with plastic spacer (Device 2 and Device 
4). Device 2-H2O2: Device 2 consisting of H2O2 treated FTS-MH. Device 4-H2O2: 
Device 4 consisting of H2O2 treated FTS-MH. Inset; I-V graph. 

 

 

5.1.4 Conclusion 

In summary, TCO-less DSSCs consisting of FTS-MH treated with H2O2 gave better 

PCE compared to those with untreated one. Due to formation of the nano-titania on 

the sheets, the contact between FTS-MH and nanoporous TiO2 layer were improved 

and enhancement of Jsc was observed. PCE of Device 3 was enhanced from 4.94% 

to 6.33% after the H2O2 treatment. Removing electrolytic gap in device (Fig. 5.3) 

increased IPCE in 300 – 400 nm wavelength region up to 30 % and overall efficiency 

of 7.25 % was observed for Device 4.  
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5.2 Cylinder TCO-less DSSCs  

Flat titanium sheet with micro holes (FTS-MH) was successfully applied to fabricate 

cylinder transparent-conductive oxide less dye-sensitized solar cells (TCO-less 

DSSCs) with back contact electrodes. FTS-MH allows us to fabricate cylinder solar 

cells with ease and simplicily, compared to cylinder based TCO-less DSSCs reported 

before. FTS-MH allowed us to create flexible electrodes due to flexible nature of 

titanium sheet. FTS-MH utilized as working and counter electrodes with 20µm thick 

is bendable to 360 degrees without changing the structure. Overall photo-conversion 

efficiency could reach up to 8.5 % under simulated solar irradiation, making it among 

highest efficiency for cylinder TCO-less DSSCs structure. 

5.2.1 Introduction 

Nowadays, research on solar cells not only limited to materials research but also  

taking another step to strcutural design. Researchers have demanded to develop solar 

panels which is inexpensive and more efficient than conventional solar panels. The 

new technique consists of cylindrical solar cells which are made of thin-film 

semiconductor material that is deposited on a glass tube had already been carried on 

in past few years by Solyndra17). However, in september 2011 the company filled for 

bankruptcy due to decline of silicon price, which made them unable to compete with 

conventional crystalline silicon solar cells18,19). DSSCs itself is a low cost solar cells 

compared with silicon based solar cell20). With this predominance, cylindical DSSCs 

is expected to compete with silicon solar cell. Cylinderical structure has many 

advantages, compared to conventional flat structures. Cylindrical solar panels which 

absorb more light in a day, which means can produce more power. Besides generating 

more electricity, the cylindrical solar panels offer less wind resistance. These kinds 

of solar cells do not need to be secured or reinforced like conventional solar panels. 

The space between the tubes in cylindrical solar cell allow wind to past trough. At 

any point in a day, the sun will hit a part of the solar cells. Conventional flat solar 

panels need tracking systems that will change the photovoltaic cells facing the sun21). 

However, they are costly, difficult to maintain, cannot withstand heavy winds, and 

they consume a lot of space where solar panel can be intalled instead. Tachan and 
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his group reported the effectiveness of cylindrical architecture on sealing area which 

can be reduced up to one-third in similar area of flat solar cells22). Our group has 

been also working in cylindrical DSSCs in past 5 years. Learning from TCO-less 

structure, cylindrical TCO-less DSSCs with SUS mesh as photo anode supporter can 

produce 11.94 mA/cm2 of Jsc with 5.58 % of PCE under AM1.5 simulated solar 

irradiation23). Nevertheless, SUS mesh required a blocking protection with sputtering 

Ti over it. Without the Ti protection, electron recombination will be much 

higher24,25). Our group also reported coil type of cylindrical DSSCs (CC-DSSCs) 

with titanium wire to subtitute SUS mesh in previous report26). Titanium is strong, 

light in weight and do not react with electrolyte, which makes it better choice than 

other metallic materials. However, coating methode on the top of wraped coil in CC-

DSSCs is still not effective. In this report, we used flat titanium mesh with micro 

holes (FTS-MH) as photo anode supporter to replace SUS mesh and titanium wire in 

CC-DSSCs. FTS-MH (20µm thick) is flexible and strong material which is durable 

enough to bend 360 degree without damaging the photo anodes. FTS-MH has holes 

with 100µm diameter, allowing electrolyte to freely move between photo anode and 

counter electrodes.  

 

 

5.2.2 Experimental detail 

5.2.2.1 Materials 

Flat titanium sheet with micro holes (FTS-MH) was received from Ushio Inc., Japan. 

In this experiment, untreated FTS-MH and one treated with H2O2 were used as photo-

electrodes. Titanium dioxide (TiO2) PST-400C and PST-30NRD were purchased 

from Catalysts and Chemical Co. Ltd Japan. Ruthenizer 535-bis TBA (OPV-N719; 

Di-tetrabutylammoniumcis-bis (isothiocyanato) bis (2,2'-bipyridyl-4,4'-

dicarboxylato) ruthenium(II)) from OPV Tech was employed for this experiment. 

Glass paper with 50µm thickness as spacer between photo anode and counter 

electrode was used. Heat shrinkable tube (NF070, FEP) was purchased from 

JUNFLON Junkosha Inc. Japan. 
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5.2.2.2 Cell Fabrication 

 

 
 

Figure 5.9 Device fabrication process for cylindical TCO-less DSSC with FTS-MH 

 

Cylindrical glass was wrapped with Titanium foils sputtered with Pt. To stick them 

together, plastic spacer was used as a glue. Titanium foil/plastic spacer/cylinder glass 

was heated at 120oC on a hotplate to melt the spacer while applying a pressure on the 

sandwich structure (A in Fig. 5.8). Photo-electrodes for cylinder TCO-less DSSCs 

was prepared with the method same as that to flat TCO-less DSSCs mentioned above. 

Glass paper as a spacer and FTS-MH coated TiO2 and dye was bent at 360 degree to 

wrap the counter electrode (B in Fig. 5.8). After all were wrapped together, its then 

inserted to heat shrinkable tube and heated at 120oC for 30 seconds (C in Fig. 5.8). 

This heat shrinkable tube will reduce the gap between photo anodes and counter 

Glass Tube (A) Glass Tube

Pt sputtered on 
Titan sheet 

FTS-MH 
FTS-MH coated 

with TiO2 
Dye Adsorption 

50 µm thick 
Glass paper 

(C) 

(B) 

Shrinkable 

Tube 

Heated at 120oC Seal bottom side Inject electrolyte Seal top side 
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electrodes and held the structure tightly. One side of the cylinder was sealed with 

UV-resin and solidified with UV-light. Electrolyte (E1) was inserted into the glass 

paper gap. Finally, the other sides of device was sealed with UV resin. Silver paste 

was applied on both poles. Preparation and assembly process are shown in Figure 

5.9. 

 

5.2.3 Result and discussion 

 
  Figure 5.10 shows the I-V characteristics of cylinder TCO-less DSSCs with 

untreated FTS-MH and H2O2 treated FTS-MH with Ti counter electrode. Titanium 

sheet sputtered with platinum (Ti-CE) was used as the counter electrode not only 

because Ti Sheet has lower resistance compared with TCO glasses but also that Ti 

sheet has flexibility, allowing us to bend it up to 360 degree.  

 

  Device fabricated with untreated FTS-MH showed lower PCE compared with 

treated one. Efficiency, Jsc, Voc and fill factor were 5.76 %, 10.79 mA/cm2, 0.74 V 

and 0.72, for untreated FTS-MH, respectively. Devices treated with hydrogen 

peroxide gave better results. Efficiency, Jsc, Voc and fill factor were 8.59%, 16.19 

mA/cm2, 0.76 V and 0.70, for H2O2 treated FTS-MH, respectively. 

 
 
Figure 5.10 I-V characteristics for device before and after H2O2 treatment of FTS-
MH.  
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Figure 5.10 IPCE characteristics for devices with and without H2O2 treatment on 
FTS-MH of Cylinder TCO-less DSSCs.  
 

 

 

The H2O2 treatment plays important role to enhance the PCE. The nanosheets were 

created by chemical etching process between titanium surface and hydrogen peroxide 

as shown in Figure 5.4. The enhancement of open circuit voltage (Voc) is explained 

by the formation of charge recombination blocking layer. Nanosheets on treated FTS-

MH suppress the charge recombination of electrons in FTS-MH and I3
- in the 

electrolyte. IPCE of TCO-less DSSC with FTS-MH treated with H2O2 was higher 

than that without H2O2 treatment because of enhancement of electron injections 

clarified by the lower interfacial resistance between H2O2 treated FTS-MH and 

porous titania.   

 

 

5.2.4 Conclusion 
In conclusion, cylindrical TCO-less DSSCs have been successfully fabricated with 

high efficiency. Formation of the nano-titania on the titanium sheets made the contact 

between FTS-MH and nanoporous TiO2 layer better, which led to enhancement of 
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Jsc. Suppression of electron recombination leading to improvement Voc. PCE was 

enhanced from 5.76% to 8.59% after the H2O2 treatment. According to our 

knowledge, this result is highest PCE for TCO-less DSSCs with cylindrical structure.  
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Chapter 6 Conclusion and Future Prospects 
 
6. 1 Conclusions 

In this work, we studied the axially anchored Phosphorus-Phthalocyanine dye on 

TiO2 surface without special anchoring groups and utilization of flat titanium sheet with 

micro holes for TCO-less application on flat and cylindrical structures.  

We found that phosphorous-phthalocyanine without the conventional anchoring 

group (–COOH) can be well adsorbed on TiO2 with Ti–O–P linkages. XPS measurement 

showed shifted binding energy on TiO2 surface after the introduction of PPc dyes. The 

higher efficiency of DSSC-PPc-1 can be explained by the longer excitation lifetime and 

higher dye concentration on a porous TiO2 layer. The introduction of electron 

withdrawing groups at the α-position of the phthalocyanine ring on PPc-1 decreased the 

HOMO level, which matched the requirement of DSSCs. The LUMO levels of PPc-1 

and PPc-2 are −3.67 and −3.44 eV, respectively. These LUMO energy levels were 

shallower than that of the TiO2 conduction band (−4.0 eV), suggesting that the electron 

injection from these LUMOs to the TiO2 conduction band is possible. The HOMO levels 

of PPc-1 and PPc-2 are −5.28 and −4.95 eV, respectively. Since the I−/I3
− redox potential 

is −4.9 eV, electron injection from the I−/I3
− redox level to the HOMO of PPc-1 is 

possible (dye regeneration). However, electron injection to the HOMO of PPc-2 may be 

difficult because of the small energy level difference (0.05 eV) between the I−/I3
− redox 

level and the HOMO of PPc-2. These sufficient energy level differences between the 

LUMO of PPc-1 and the TiO2 conduction band, and that between the HOMO of PPc-1 

and the I-/I3
- redox level help to enhance PPc-1 performances than PPc-2. We have 

proposed an approach to stain the TiO2 surface with symmetrical phthalocyanine, which 

can be synthesized much more easily than unsymmetrical phthalocyanine with 

carboxylic anchoring groups. This will provide a direction to photo conversion in IR 

regions where the synthesis of unsymmetrical phthalocyanine with carboxylic acids is 

much harder. 

  We found that TCO-less DSSCs consisting of FTS-MH treated with H2O2 

gave better PCE compared to those with untreated one. The increase in the Jsc was 
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explained by the lower interfacial resistance between H2O2 treated FTS-MH and 

porous titania. Another benefit from H2O2 treatment was the suppression of charge 

recombination between electrons in FTS-MH and I3
- in electrolyte. It has been 

already known that titanium has oxidized overlayer on its surface. The chemical 

reaction of FTS-MH surface by H2O2 further enhanced the formation of TiOx layer, 

leading to suppress the charge recombination of electrons in FTS-MH and I3
- in the 

electrolyte. Due to formation of the nano-titania on the sheets, the contact between 

TiO2 and metal grid collectors was improved, leading to iprovement of Jsc.  

  In the devices with flat structures, PCE was enhanced from 4.94% to 6.33% 

after the H2O2 treatment. Another enhancement was acquired from removing gap in 

the device by inserting plastic spacer, which increased IPCE in 300 – 400 nm regions 

up to 30 %. Overall efficiency of 7.25 % was observed.  

  In the devices with cylindrical structures, the same effect of H2O2 treatment 

resulting in formation of the nano-titania on the titanium sheets made the contact 

between FTS-MH and nanoporous TiO2 layer better and led to enhancement of Jsc. 

Suppression of electron recombination that improved Voc was also observed. PCE 

was enhanced from 5.76% to 8.59% after the H2O2 treatment. According to our 

knowledge, this result is highest PCE for cylindrical structure TCO-less DSSCs.  

 

 

6.2 Future Prospects 

We propose an approach of narrow gap electron injection from axial ligation of 

phthalocyanine dyes to TiO2 surfaces, which opens possibilities of other dyes with 

symmetrical structure to be used as sensitizer in DSSCs. Synthesizing symmetrical dyes 

are much easier than unsymmetrical structure with carboxylic anchoring groups. This 

report will provide a direction to photo conversion in IR regions where the synthesis of 

unsymmetrical phthalocyanine with carboxylic acids is much harder.  



CONCLUSION AND FUTURE PROSPECTS 

CHAPTER 6  80 | P a g e  
 

FTS-MH has been shown to have advantage in flat and cylindrical structure. This 

will open possibilities to use TCO-less with FTS-MH in tandem structure or hybrid dyes 

in cylindrical structure to achieve high efficiency DSSCs. 
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PPc-1 synthetizes process  
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PPc-2 synthetizes process 
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H2O2 treated FTS-MH and Untreated FTS-MH 

 

 

 

 

Glass paper as spacer and electrolyte holder 

 

 

 

 

  

H2O2 treated FTS-MH Untreated FTS-MH 



APPENDIX 

APPENDIX  84 | P a g e  
 

FTS-MH coated with TiO2 and Dye 

 

 

FTS-MH from Top side 

 

 

 

FTS-MH from back side 
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Cylindrical TCO-less DSSCs with FTS-MH 

 

 

Cylindrical TCO-less with FTS-MH before inserting the electrolyte 

 

 

 

Final cell after injecting the electrolyte and sealing with UV-resin.  
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FEP Heat-Shrinkable tube Specification 

 

 

Features  Excellent heat and cold resistance. 
 Temperature range for continuous no-load use 

FEP<-65 ~ +200oC. 
 Inactive in regard to almost chemicals and solvents. 
 Excellent resistance to weather and does not change 

with age. 
 Almost nothing sticks to it, and even if it does, it is 

easily to remove. 
 Flame-resistant. 
 Excellent electrical characteristics. 

Uses  Protective covering for electrical leads of 
thermistors, liquid transport equipment and 
applications which require chemical resistance and 
non-adhesiveness. 

 Protection of tiny elements such as sensors. 
 To give rolls and similar items non-adhesiveness. 
 Protective covering that give chemical resistance at 

high temperatures. 
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