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ABSTRACT 
Dye-sensitized solar cells (DSSCs) are now able to enter in to the commercialization stage after 

the profound researches carried over the past two decade after their successful inception in 1991. 

Some of the possible reasons for the popularity are their low cost of production, short energy 

payback time (EPBT), simple methods of fabrication and possibilities of fabricating on the 

flexible substrates. Cost of the solar cell is an important factor in implementing the DSSC’s use 

at the mass consumer level having mainly three possible ways to decrease the overall cost. One 

approach is to design the dyes with high molar extinction coefficient such as organic dyes or to 

increase the absorption range of the dyes for example black dye, which increases the DSSC 

efficiency or output power. Second one is to increase the life-time of DSSC, which can be done 

by improving the dye stability, proper sealing of DSSC and replacing the corrosive redox 

electrolyte. Third approach is to decrease the cost of materials implemented for DSSC 

fabrication such as designing the cheap dye material, removal of costly transparent conductive 

oxide (TCO) and costly catalytic Pt etc. TCO glass is one of the expensive elements in 

conventional DSSC architecture. In this step, past researches for the removal of TCO have been 

done. Back contact TCO-less DSSC using metal mesh have been reported by our group. Further 

the back contact TCO-less cylindrical DSSC architecture was reported using metal mesh owing 

to advantage of uniform solar harvesting from all directions, higher total output power in a day 

compared to flat conventional DSSC, easy to carry and install. The fabrication process involved 

in the cylindrical DSSC is a bit cumbersome and need simplification for the commercial 

exploitation. Therefore, the goal of my current research was to develop a new cylindrical 

architecture for DSSC which could solve some of the previously existing problems in cylindrical 

DSSC architectures. In this report, I will discuss mainly the following points. 

(1) Different flexible metal wires such as Copper (Cu), Stainless-Steel (SS) and Titanium (Ti) 

were employed to fabricate the novel cylindrical DSSC and we gave it a name as coil type 

cylindrical DSSC (C-DSSC). The fabrication steps involved were fast and easy. We have 

shown that the nature of the wire plays an important role on the performance of the solar 

cells. The effect of surface passivation on the metal wire surface with a thin layer of Ti 

was discussed. Electrochemical Impedance spectroscopy (EIS) analyses were done to 

investigate about the differential performance of the solar cell using different metal wires. 



(2) Relatively lower resistance, good flexibility, superior corrosion resistance and high 

temperature tolerance of Ti wire make it a better choice for C-DSSC. Here we presented 

the comparative study of the photovoltaic characteristics of the solar cells prepared with 

Ti wires having different diameters. The Ti wire surface was modified using hydrogen 

peroxide (H2O2). This surface treatment have been found to influence the adhesion as well 

as electrical contact between coated nanoporous titanium oxide (TiO2) and Ti-wires. The 

results were supported by X-ray diffraction (XRD), X-ray photoelectron spectroscopy 

(XPS) and scanning electron microscopy (SEM). 

 

(3) Diffused light performance is one of the application areas of DSSC where they can 

outperform to their inorganic solar cell counterparts. In this part we investigated the 1 

SUN and low light intensity fluorescent light performance of Ti wire based C-DSSC using 

ruthenium based N719 dye and organic dyes such as D205 and Y123. The cylindrical 

geometry gives an advantage above flat conventional DSSC i.e. it allows to use the 

reflectors to further enhance the output power. Therefore, we used different parabolic 

reflectors to tap diffused light for indoor applications. Effect of shape and size of the 

reflector geometry on the C-DSSC performance was also investigated. Optical simulation 

software Trace Pro 7.5.1 was also used to analyze the spectral distribution on the TiO2 

surface.  
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CHAPTER 1: INTRODUCTION 

 
1.1 General overview of solar cells 
           

             Renewable energy consists of the resources which continue to restore without human 

involvement. These resources include solar, wind, geothermal and hydro energies. Fossil fuels, 

such as coal and oil are non-renewable. They are produced when plant and animal matter decays 

within the earth-crust & this process takes a substantial amount of time to form usable fuel. These 

resources have proved their effectiveness for the progress of world economy. However, in the 

coming future the energy consumption and, therefore, total energy demand is going to increase 

with the ever increasing population. It has been reported that there will be need of about 28 TW 

by the year 2050 considering the similar rate of population growth and standard of human life[1-

3]. The environmental issues such as greenhouse gas emissions and their impact on weather and 

climate which are also one of the concerns of using the non-renewable energy resources have 

encouraged the research for advancement of green energy and implementation of energy saving 

green technologies. Moving towards the clean and environment friendly renewable energy 

resources would be the future of energy sector. Recent past have seen the high increase in the cost 

of coal and oil which also led to the intensive research in different renewable energy sectors 

focusing on reducing their manufacturing costs. There are different kinds of renewable energies 

such as wind energy, hydro energy, geothermal energy, solar energy, tidal energy etc. as shown in 

Figure. 1 [4]. These sources have ability to provide 3000 times the current global energy demand 

[5].  

 
Figure 1. Different types of renewable energies 
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The total electricity being generated is expected to increase 2.7 times from 2010 to 2035 as 

shown in Table 1 [6]. In this category solar photovoltaic (PV) system is now third most important 

renewable energy source after hydro and wind power. In 2013, its fast-growing capacity increased 

by 36% to a running total of 136 GW, worldwide. The solar cell is the main component of PV 

systems. It converts solar energy directly into the usable direct-current (DC) electricity. These 

solar cells when connected together known as PV modules & gives increased output power in the 

range of few watts (W) to megawatts (MW). The modules are combined with electrical 

components such as inverters, batteries, mounting systems etc. to form a PV system. There are 

mainly three different categories of solar cell family.  Single and polycrystalline silicon based solar 

cells are the first generation solar cells which are highly efficient and most popular. The second 

generation solar cells are thin film semiconductor (such as CIGS, CZTS, and CdTe etc.) based 

which are less efficient than first generation solar cells, however, their comparative manufacturing 

costs are less. The third generation solar cells which includes dye-sensitized solar cells (DSSCs), 

Organic solar cells and recently became popular solution processed organic-inorganic hybrid solar 

cells (OIHSCs) are most researched and standing on the door-steps of commercialization with 

some still remaining issues to be solved like cost, flexibility and durability etc. 

 

Table1.  World renewable energy use by type [6] 
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1.2 Flexible solar cells 

Development of next generation solar cells on the flexible substrates with the reduced cost of 

fabrication is now not only the one of the highly researched areas but is the demand of time also 

[7-10]. These kind of solar cells are making the way for low cost electricity. Apart from being 

flexible they are light in weight, unbreakable, suitable for both indoor and outdoor applications & 

can be easily integrated with different shape elements along with faster payback time than 

conventional solar cells [11]. Flexible substrates have been used for organic, inorganic and 

organic-inorganic hybrid solar cells mostly using roll to roll printing technologies. 

 

1.2.1 Silicon based flexible solar cells 

The use of thin Si (both crystalline and amorphous) wafers for making flexible solar cells is one 

of the researched area with typical efficiency value in the range of 6% to 13.7% [12-15]. Very 

recently Sun et.al have used Si thin films with less than 50 µm thickness for making highly flexible 

and stable solar cell to reduce the materials cost [16]. In recent years some startup companies for 

example United Solar Ovonic (Michigan, USA) and Flexcell (Switzerland) have been involved in 

high-volume production of flexible solar cells [11]. Kaneka (Japan) which is one of the leading 

solar cell company also manufactures thin Si wafer based solar cells and are highly in demand 

because of its low cost and fast energy payback time compared to bulk Si based solar cells. Above 

all these still there are areas to be improved such as traditional manufacturing processes and 

efficiency. To fabricate thin Si films the wire cutting process involved is not suitable to 

manufacture at mass level because of their brittleness. Also for making p-n junction the doping 

needs to be done at high temperature which is a costly process and includes the risk of damage to 

the thin Si wafers [16] which impose to develop new methods. 

 

1.2.2 CIGS based flexible solar cells  

Copper Indium Gallium Diselenide [Cu(InGa)Se2 (CIGS)] or chalcopyrite thin films solar cells are 

highly efficient amongst all of the inorganic thin film based photovoltaic devices. Efficiency 

around 20.3% has already been achieved on the rigid glass substrate. The research for fabricating 
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CIGS thin films on flexible substrates is being carried out since more than a decade [17]. Initially 

it was found to be difficult to achieve high efficiency on the flexible substrates, however, recently 

Azimi et al [18] have achieved efficiency around 18.7% on a polyamide film. There are so many 

companies and research institutes from USA, Europe and Japan which are involved in fabricating 

flexible CIGS based solar cells aiming towards reduction of fabricating cost keeping the 

photoconversion efficiency to be nearly the same. The methods currently being utilized for the   

preparation of the chalcopyrite absorber layer are sophisticated and expensive. Therefore, the focus 

is being directed on low-cost and vacuum-free processes such as electrodeposition using 

nanoparticle metal slurries as summarized in Table 2 [19].  

 

Table 2. CIGS fabrication on different flexible substrates 
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1.2.3 Plastic Solar cells  

After the discovery of semiconducting behavior in -conjugated organic materials (known as 

conducting polymers/conjugated polymers), there has been a lot of research utilizing this property 

in different electronic devices such as light emitting diodes (LEDs), field effect transistors (FETs) 

and solar cells. Organic semiconductors show significant advantage over their inorganic 

counterparts, e.g. solution processed thin films of the organic materials can be prepared by low-

cost methods such as drop costing, spraying, doctor blade coating, spin coating etc. This also gives 

the possibility of fabricating these devices on the flexible substrates such as conducting Indium-

Tin-Oxide coated polyethylene terephthalate (PET/ITO) films [20], metallic foils ( e.g. Stainless 

Steel, Titanium) [21-22], Silver nanowires (AgNWs) [23-26], carbon nanotubes [27-28] and 

graphenes [19-30]. This mechanical flexibility has further developed the interest for the 

applications in the areas of wearable electronics and robotics [31-32]. In fact, solar cells based on 

organic semiconductors are less expensive, easier to manufacture with more possibilities to tailor 

their material property. In this category bulk heterojunction (BHJ) solar cell, which is a distributed 

junction between polymers based donor and acceptor material [33] and dye-sensitized titanium 

oxide thin film, which is an artificial photosystem [34] have been popular for the flexible solar 

cells. Although they have less efficiency compared to inorganic flexible solar cells but are more 

popular due to their fast energy payback time and suitability for indoor aesthetic attributes. So 

many companies are now involved in commercializing the flexible DSSCs recently. Dyesol 

(Australia) is now providing dye-sensitized solar cells (DSSCs) based foldable, light weight solar 

panels for military applications [35] which is capable of working in wide range of lighting 

conditions. High efficiency is not always important in some of the applications, therefore 

consumers care more about the output power. The US based G24 innovation produces modules 

which are less than 1 mm thick with power capacity in range of 25 MW to 200 MW. They are 

manufacturing small flexible solar cells for various applications such as consumer electronics 

(wireless keyboard for Apple IPAD is recently popular), sensors & actuators and in retails. Israel 

based Solar 3G has developed flexible DSSC modules with 40% less cost per megawatt in 

comparison to silicon based solar cells [37].  The above discussion highlights some of the past and 

recent advances in the area of solar cells with a target to reduce the dependency on the non-

renewable energy resources. Further, solar cells are in great demand as the Sun is singular source 
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for unlimited energy. But the cost utilized in harnessing this energy into useful electricity needs 

cheap PV systems, which can be possibly achieved by thin film based inorganic-organic solar cells.  

 

1.3 Gratzel solar cell or Dye-sensitized solar cells (DSSCs) 

1.3.1 Introduction & general working principle 

DSSC works on the principle of photoelectric effect where light energy is converted to electric 

energy. This concept was first coined by the French scientist Edmond Becquerel [38] and since 

after that based on it several new concept came. The principle involved in PV system depends on 

capturing the available photons from the sunlight by the semiconductor surface. This results in 

generation of electron-hole pairs at the junction between two different semiconductor materials 

which causes in the formation of an electric potential across the junction responsible for 

dissociation of the exciton (or electron-hole pair) in to the free charge carriers. DSSCs are one of 

the attractive alternative to expensive solid semiconductor junction devices based on silicon. With 

recent progress in these new generation photovoltaics based on nanomaterials there are enormous 

opportunities for existing PV industries and researchers to use them for future energy based 

applications. The working principle of DSSC is different from conventional inorganic solar cells. 

It involves the photon absorption by the molecules then converting it to the electric charge without 

intermolecular transport of electronic excitation [39]. The light harvesting & the charge transport 

takes place separately, due to which the options for the light absorbing materials are more. These 

two process takes place simultaneously in inorganic solar cells which restricts the choice of the 

materials. The charge transport in DSSC is only due to the majority carriers whereas in inorganic 

solar cells it is due to both minority and majority carriers. The structure of the DSSC cell is shown 

in the Figure 2. Sensitizing dye molecules play a central role in the operation of DSSCs and 

controls the device performance since they are the actual harvesters of the photons. They can be 

visualized as the mimic of natural photosynthesis where dye molecules captures the light energy 

converting them to the usable chemical energy. The dye molecules are placed at the interface 

between electron transport (n-type semiconductors such as TiO2, ZnO, SnO2) and hole transport 

(redox electrolyte or a p-type semiconductor) material. The photogenerated electron are injected 

into the conduction band of n-type semiconductor and the hole thus formed in valence band of the 
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dye thus are filled by the electron from the redox electrolyte (HOMO level) or p-type 

semiconductor. 

 

 

 

 

 

 

 

 

 

1.3.2 Energy band diagram with involved process dynamics 

The energy band diagram with different processes involved is drawn in Figure 3. The performance 

of DSSC depends on the relative energy levels and the rate of the reactions involved at the 

sensitized TiO2 & electrolyte interface. The process involved can be written in the following form: 

        TiO2/S + hʋ → TiO2/S*                                                                           (1) 

        TiO2/S* → TiO2/S+ + ecb                                                                                                              (2) 

        TiO2/S+ + ecb → TiO2/S                                                                            (3) 

        TiO2/S+ + 3/2 I- → TiO2/S + 1/2 I3
-                                                                                       (4) 

        1/2 I3
- + e(Pt) → 3/2 I-                                                                                                                         (5) 

         I3
- + 2 ecb → 3I-                                                                                         (6) 

The average time scales involved in the respective processes are also shown in the Figure 3 [40]. 

Upon the photoexcitation, dye molecules reaches to the excited state (S*) and photogenerated 

electron are transferred to conduction band of semiconductor in pico to femto seconds (1&2). The 

dye is regenerated by the electrolyte (4) in microseconds. The recombination process involved the 

back transfer of the electrons from TiO2 surface to HOMO of the sensitizer (3) or with the redox 

Figure 2. Schematic diagram showing operations involved in the functioning of DSSCs. 
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electrolyte (6). These recombination process takes place in the time range of milli seconds. These 

recombination process needs to be suppressed to their minimum possible extent for the attainment 

of high performance of the solar cell. The normal process of I3
-/I- conversion is supported by the 

electron transfer from catalytic surface of platinum (Pt), which is an ion diffusion process. In all, 

for high efficiency of the DSSC, first the rate of electron injection must be faster than decay of the 

excited dye. Second the rate of dye regeneration from electrolyte must be faster than rate of back 

electron transfer from injected electron in TiO2 to excited dye, as well as the rate of reaction of 

injected electrons with electrolyte. Third one is the kinetics of the reaction at the counter-electrode 

(5). 

 

 

1.4 TCO-less Dye-sensitized solar cells 

DSSCs are undoubtedly a most interesting and feasible concept developed from the molecular 

photovoltaic effect [41, 42], for developing cost effective photovoltaic cells with high 

photoconversion efficiency to meet the global energy demand [43, 44]. Their emergence have led 

to the competition for solid-state junction solar cells. DSSCs offer cheap fabrication together with 

possibility of fabricating on flexible substrate. The recent progress in fabrication methods and the 

nanocrystalline materials has added the new opportunities in PV industry. For industrial 

application point of view, cost of production and ease of fabrication are crucial issues which are 

needed to be solved and requires attention of the researchers. Conventional DSSCs utilize a 

Figure 3. Schematic energy band diagram for DSSCs 
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transparent conducting oxide (TCO) electrode which is one of the bottlenecks towards the cost 

reduction and alone is responsible for 16% of overall cost for fabricating the DSSC based PV 

capacity of 1 MWpeak/year [45, 46]. Therefore, this have opened the research for developing new 

architectures without TCO in a manner to match the efficiency of standard DSSCs while reducing 

the cost [46–49]. TCO–less design apart from its advantages for fabrication in a variety of device 

architectures and enhanced areas of application avoids losses due to optical transmission enabling 

it to absorb light in the near infra-red (NIR) to IR wavelength region also. Kashiwa et al have 

reported all metal type flat DSSCs devoid of TCO completely having nearly similar 

photoconversion efficiency as compared to its TCO-based counterparts [46]. The design is typical 

back contact DSSC utilizing flexible Ti foil sputtered with Pt to work as a counter electrode as 

shown in Figure 4(a). Formation of working photoanode was done in an interesting manner. In this 

design first a layer of mesoporous TiO2 was coated on a glass slide. Then tetrapod-shaped ZnO 

was deposited using electrospray apparatus followed by sputtering of thick Ti as back current 

collector. This substrate then finally washed with HCl solution to make straight holes in the 

sputtered Ti layer due to the tetra-pod ZnO. This complicated fabrication process was further made 

easy by Yoshida et al [47]. They used flexible Stainless-Steel metal mesh sputtered with TiOx 

layer as working electrode as shown in Fig. 4(b). This TiOx layer was compensating the stress 

caused by the difference in the thermal expansion coefficient between the stainless-steel and 

Figure 4. (a) Typical back contact TCO-less DSSC using porous Ti (b) Typical back 
contact TCO-less DSSC using stainless steel mesh sputtered with TiOx layer 
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porous TiO2 layer, which helps to reduce the charge recombination. Research interest in TCO-less 

structure is relatively new. Figure 5 shows research for TCO-less design which was started since 

2006 only, and very few laboratories are involved in it. This figure shows the number of 

publications on DSSC, TCO-less design, Cylindrical DSSC and Cylindrical TCO-less design since 

1991. It indicates very few publications approximately around 49 on TCO-less architecture, which 

motivates the new architectures to be developed with more easily and comfortable fabrication 

processes especially compatible with existing industrial technologies.  

 

 

 

 

 

 

 

 

 

 

 

1.5 Cylindrical solar cells 

Cylindrical architecture of the solar cells is one of the attractive ways to harness the solar energy 

more effectively. Due to their shape and construction cylindrical PVs exhibit unique features that 

a flat or conventional PVs don’t have. Commercially, it has been implemented by some companies 

in Europe and US for example Sapagroup (Netherlands), Solaroad Technologies (US) etc . 

Solyndra, a US based startup company was one of the companies which started manufacturing 

solar cells which looks like a black fluorescent light tubes using CIGS 

(copper/indium/gallium/selenium) thin films with efficiency of 12 % to 14% [50]. However, later 

Pu
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n 

(%
)

Figure 5. Data obtained from web of science on 24 March 2015. It shows the 
number of publications since 1991.  
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on August 2011 due to high prices of the silicon solar cells led the company to shut down all its 

operating and manufacturing units as they were not able to compete with conventional silicon solar 

panels [51]. A cylindrical solar cell generates relatively more electricity as compared to the flat 

type commercial and industrial rooftop solar cells due to its device architecture. Some of its 

advantages are listed below: 

1. 360 degree light harvesting: This is one of the important advantage of cylindrical PV 

modules as they are capable of harvesting light from all the angles. There is no need of 

changing the direction of the solar cell, as cylindrical geometry allows equal light 

harvesting from all the angles throughout the day which can be seen from Figure 6. These 

solar cells have another advantage of absorbing the reflected light from the bottom of the 

surface, therefore, if implemented with reflecting bottom surface can produce more 

electricity. They can be spaced much more close together than conventional solar panels 

and enables more rooftop coverage with increased energy production. 

 

 

 

 

 

2. Less wind loading: Wind can easily pass through the cylindrical PV modules. These 

modules have shown their durability in countries such as Japan where typhoons are very 

strong. Some manufacturers have claimed that these modules can withstand wind strengths 

of up to force twelve [To measure wind speed Beaufort wind force scale is used, Force 12 

is condition of hurricane] 

Figure 6. Cylindrical shape of the solar cell allows both direct and reflected sunlight to be absorbed 
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3. Reduce sealing area: Efficient sealing is an important requirement to provide the 

durability to the solar cells and offers sufficient amount of cost burden. The cylindrical 

design of solar cells allow the sealing length which is less than a third from flat solar cell 

designs [52]. Technologically it is much simpler also to seal a tube than a conventional flat 

solar cell. 

 

1.6 Cylindrical TCO-less Dye-sensitized solar cell 

These solar cell architectures are the result of combining TCO-less DSSC concept with the 

cylindrical device architecture. The different configurations of cylindrical TCO-less came into 

picture in last few years and most of them were implemented using flexible metal substrate and 

wires as shown in Figure 7. Type A is the simplest way to fabricate cylindrical architecture based 

DSSCs. Both the counter and working electrode are kept parallel inside an electrolyte filled tube, 

but in this case light could be allowed to fall from only working electrode side, as counter electrode 

side would have shading effect. Type B~D architectures have no shading effect and can receive 

light from all the angles. Fan et al have designed the Type B using helical twisted working 

electrode (stainless-steel wire) coated with mesoporous TiO2 and counter electrode (Pt wire) with 

the same diameter [53]. Due to use of equal diameter wires twisting causes stress which effects 

the solar cell performance. Also it causes less exposure of light to the working electrode. Therefore, 

Type C was developed using relatively thinner wire working as counter electrode and wrapped 

over a straight thick photoanode [54, 55]. In these architectures Ti wire was used as working 

electrode and twisted Pt wire as counter electrode. Both the working and counter electrodes were 

in direct contact, therefore pressure at the interfacial contact plays an important role in solar cell 

performance. Also, the thread pitch distance impacts the exposure area and the mass transport.  

To avoid the pressure effect on the photoanode, Type D and Type E came into the picture 

[56-58]. Another advantage was the full exposure of the working photoanode, which can be 

considered as improvement over the Type A, B, & C. Type D is just an opposite architecture to 

Type C, as in this case working electrode was twisted and counter electrode is straight. Type E is 

also almost similar to type D, only difference is the twisted counter electrode in spiral shape. In 
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both of the types D and type E a large amount of Iodine based electrolyte as a redox was needed 

to be filled. All the structures mentioned from Type A to Type E are metallic wire based. The Type 

F and Type G uses the metal mesh coated with mesoporous TiO2. Type F is the typical TCO-less 

planar DSSC structure. In the Type G design, the metal mesh was rolled around the counter 

electrode made up of either mesh or rod coated with thin Pt layer [59, 60]. The cylindrical DSSC 

was fabricated using flexible metal mesh based photoanode, Ti rod sputtered with Pt as counter 

electrode and porous polymer film soaked with electrolyte into a cylindrical glass tube. 

 

 

1.6.1 Calculation of photoconversion efficiency for cylindrical solar cells: 

The calculation involved in the measurement of device performance of the cylindrical electrode 

based solar cells is quite different from planar solar cells and needed to be discussed properly. The 

active area is the key point in performance calculation as it is difficult to define the exact 

illumination area. The percentage photoconversion efficiency (PCE ɳ %) can be calculated as 

follows 

Figure 7. Different possible architectures used for cylindrical DSSC fabrication using 
metallic wires and mesh 
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                       (ɳ%) =
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
∗ 100 =

𝐽𝑠𝑐∗𝑉𝑜𝑐∗𝐹𝐹

𝑃𝑖𝑛
∗ 100  

Pout is the output power, Pin is the input power of the light source, Jsc is the short circuit current 

density, Voc is the open circuit voltage, FF is the fill factor.  Among all these parameters the Jsc 

is affected by the active area selection, which finally affects the PCE. Metal wire based DSSC 

usually have small surface area. The diameter used up to now by the researchers are mostly less 

than 0.5 mm. The variation of current density with the active area of irradiation at different current 

flow shown in Figure 8 [61]. 

 

 

 

 

It can be clearly seen that both of current density and active area under the consideration   

follows the inverse relation i.e.  Jsc will be high at small area of irradiation & will be less at large 

active area. For example for the current being flown of 1 mA in a device of 0.20 cm2 active area, 

Jsc is 5 mA/cm2 and for a small active area of 0.05 cm2 in a device with same current flow Jsc is 

as much as 20 mA/cm2. Therefore, exact active area for the device performance is needed to be 

evaluated. It is a general practice to take the projection area of the cylindrical curved surface as 

the active area. This method is adopted on the basis of assumption that a parallel light is irradiating 

to the cylindrical solar cell surface. The projected area is π/2 times less than actual surface area of 

the cylindrical solar cell, when half of the area is considered. Therefore, one has to be careful while 

Figure 8. Current density variation with the active area at different net current flow in the device 
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presenting the solar cell efficiency. Other complication occurs when the diameter of cylindrical 

surface changes with the thickness of  photoactive layer after coating, hence true illumination area 

is difficult to find [62, 63, 64-66]. Further, in the hollow cylindrical architectures such as Type D, 

E and G, some part of irradiating light after passing through first half could fall on the other half, 

which is generally not considered. In such cases the projection area of spiral photoanode [57, 67] 

or in some studies projection area of whole device was taken [68]. This becomes more complicated 

in case of metal mesh based cylindrical solar cells such as Type G design, as space between the 

mesh is also included in the active area [69], which might underestimate the device performance. 

To understand the actual active area some studies using imaging software has been done also [70]. 

To avoid all these discrepancies in measurement some studies have only shown total photocurrent 

obtained instead of current density [58, 53].   

 

1.7 Challenges & ideas to overcome 

Cylindrical TCO-less design has undoubtedly able to solve the issues related to cost of fabrication 

(as TCO is responsible for 16~24% of the total production cost [45]), flexibility requirement, 

aesthetic aspects and total mass of the module (64% of the total mass of module is due to TCO 

glass [71]). However, still there are lot of engineering efforts required to modify the various 

designs as shown in Figure 7 to further enhance the performance, durability and cost effectiveness. 

The Type B & C involves twisting of the wires, which may result in short circuiting. In structures 

like Type B, some porous polymer layer can be introduced so as to avoid the short circuiting and 

also it releases the stress between the wires twisted [53]. Another approach is the use of porous 

insulating layer such as SiO2 [57, 58, 68]. All the structures shown suffers from back side darkness, 

as only one half is under the illumination. The other half which is in darkness, increases the 

resistance and hence reduces the overall cell performance. Therefore, proper PV systems needed 

to be developed. In this case a light reflector can be used [80] to increase the output power. Further 

the reflector geometry is needed to be considered. Proper coating of TiO2 on the curved and flexible 

surfaces is an important aspect for the attainment of better performance of the device. Cracks are 

usually seen on the TiO2 films coated [57, 58, 70], tensile deformation of the substrate leads to the 

loss in adhesion of TiO2 film with the substrate [72, 73]. Generally the effect of tensile deformation 

is more on the nanoparticle coating [81], therefore coating of nanotubes and nanowires is 
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preferable as these are more tolerant to the tensile stress. However, for their coating on the metallic   

substrates like anodization conditions has to be optimized along with the control of thickness [74, 

75].  

              Further studies are needed to be done to check the mechanical property of the nanotubes 

and nanowires on the flexible substrates to improve the device performance. Sealing of the 

cylindrical solar cell is another important issue. Type A, D, E & G are usually sealed inside the 

glass tube, which is not flexible. Also the amount of electrolyte filled is very large, which effects 

the device performance. To circumvent these issues, one possible approach is the use of plastic 

heat shrinkable tubes which is expected to solve these problems i.e. it gives flexibility and also 

one can adjust its volume for the required amount of electrolyte [59, 60]. The other possible 

approach could be the development of solid hole conducting materials so that liquid electrolyte 

can be avoided, and problem such as light absorption by large amount of electrolyte can be 

removed. Another important issue is the counter electrode fabrication which is also need to be 

discussed. Its arrangement in the device architecture affects the cell performance. For example in 

Type C structure counter electrode is wrapped above the working electrode causing light hindrance. 

Also its pitch distance [53, 57], diameter [59, 78], surface roughness [76] and Pt layer thickness 

[77, 78] affect light absorption, mass transport and redox processes involved. In fact, for the better 

performance of the cell, counter electrode should possess a good conductivity and high catalytic 

activity. Therefore, a combination such as Pt nanoparticle on a graphene fiber or on carbon fiber 

[77, 79] can be implemented.  
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CHAPTER 2: INSTRUMENTATION & CHARACTERIZATION 
 

2.1 Characterization of solar cells 

Typically solar cells are characterized by the output photovoltage V and current I when illuminated 

with a spectral distribution at a certain temperature. Solar cells work like a battery when connected 

across the load as shown in Figure 1. When it is kept under the dark condition, there is no current 

flow in the circuit. When it is irradiated by the light it develops a voltage, or electromotive force 

(e.m.f.), analogous to the e.m.f of the battery in the circuit. The voltage is developed when there 

is infinite resistance connected across the load terminals, known as open circuit voltage Voc. The 

current drawn when there is zero resistance or the end terminals are connected directly, known as 

short circuit current Isc. For any other resistance RL in between zero and infinite resistance the 

solar cell develops a voltage V=IRL, where I is the current flowing in the circuit. The current 

generated due to illumination of the solar cell is approximately proportional to the active area, in 

that case short circuit current density Jsc is useful parameter. 

 

One can argue that how solar cell is different from conventional battery? The e.m.f of the battery 

is due to permanent electrochemical potential difference between the two phases in the cell, while 

in case of the solar cell e.m.f generated is from temporary change in electrochemical potential 

caused by irradiation. Therefore, the output power delivered by the solar cell will be variable 

depending upon the incident light intensity. Whereas in case of the battery the output power 

generated is almost constant. Another difference is the life time, in case of battery it stops working 

Figure 1. Solar cell can be in place of battery  
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when it is completely discharged. But in case of solar cell, in principle it can never exhaust, because 

it can be continuously recharged with light. Electrically the battery is modelled as a voltage source 

[1] whereas solar cell is better modelled as a current source [2].  

 

2.1.1 Current voltage measurements under standard test conditions 

The Standard Test Conditions (STC) are used for the performance evaluation of the solar cells. 

The result of this test gives the electrical output of the solar cells. These conditions are fixed and 

are as follows, 

 Cell temperature should be at 250C 

 Spectral irradiation is 100 mW/cm2 

 Spectral energy distribution is according to Air Mass (AM) 1.5 

 

As it shows the performance of the solar cell is dependent on temperature, irradiation intensity 

and spectral distribution of the light source, therefore, the same solar cell shows different 

performance under other conditions. In the present work, the photovoltaic measurements were 

carried out using solar simulator (KHP-1, Bunko-Keiki, Japan) equipped with a xenon lamp (XLS-

150A) with the irradiation power of 100 mW/cm2. The solar simulator spectrum and its power 

were adjusted using a spectroradiometer (LS-100, Eiko Seiki, Japan). The power of the incident 

light was also corrected using standard amorphous 

Si photo detector (BS- 520 S/N 007, Bunko-Keiki, 

Japan). 

 

What is Air Mass (AM) 1.5? 

Solar spectrum consists of wide range of 

electromagnetic radiations varying from 

ultraviolet, visible to infrared. When it travels 

through the atmosphere of earth its composition 

changes because of the presence of O2, H2O and 

CO2. The different radiations thus transmitted 

depends on the angle and length by which sunlight Figure 2. Schematic showing condition for 
AM 1.5. 
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passes through the atmosphere. The standard AM 1.5 spectrum is the solar spectrum at an 

incidence angle of 48.20 from zenith (i.e. when sun is directly overhead) as shown in Figure 2. 

 

2.1.2 Short circuit current density (Jsc) and Incident photon to current conversion 
efficiency: 

Short circuit current density is the largest current that can be drawn from a given solar cell. It 

depends on the incident light spectrum and some other factors as expressed by the following 

equation, 

                                  Jsc= ʃ q F(E) IPCE(E)dE,……………….. (1) 

Where q is the electronic charge, F(E) is the incident photon flux density defined as the number of 

photons of energy in the range E to E+dE incident on unit area in unit time. Incident photon to 

current conversion efficiency (IPCE) is the quantum efficiency which is defined as the probability 

that an incident photon of energy E will deliver how much electron to the external circuit. Its value 

equal to 1.0 (100 %) represents that one photon striking on the surface of solar cell is capable to 

deliver one electron to the external circuit.  IPCE depends on the absorption coefficient of the solar 

cell material, the efficiency of charge separation and the charge collection but does not depend on 

incident spectrum. Therefore, IPCE is an important quantity in describing solar cell performance 

Figure 3. IPCE of DSSC using N719 dye and iodine based electrolyte is compared to the solar 
spectrum. The Jsc can be obtained by integrating the product of the photon flux density and IPCE 

over photon energy. It is desirable to have high and broader IPCE for high Jsc 
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under different conditions. Figure 3 shows typical IPCE along with 1 SUN spectral irradiation. 

Plot of IPCE as function of the wavelength is also known as photocurrent action spectrum and 

represents the extent of photon harvesting along with the photon harvesting window.  IPCE can be 

expressed either as a function of photon energy or wavelength, λ. Energy (E) and wavelength (λ) 

can be related as,  

                                            E=hc/λ …………... (2) 

Where, h is Planck’s constant and c the speed of light in vacuum. 

 

2.1.3 Dark current and Current- Voltage Characteristics  

The current which flows in the solar cell in absence of light is known as dark current. In 

conventional solar cells as well as DSSCs too, it provides quantitative information about the 

recombination processes [3]. In the case of DSSC, the recombination involved are transfer of 

photogenerated electrons from TiO2 surface to the redox electrolyte or to the HOMO of the 

oxidized dye.  Although the processes involved are totally different, however, in both of the cases, 

lower the dark current higher will be the photocurrent. Therefore, in case of DSSC also the dark 

current characteristic can be modelled as in case of conventional solar cells. Solar cells behave like 

a diode in the dark, allowing large current to flow under forward bias (V>0) than compared to that 

under reversed bias (V<0). This feature of photovoltaic devices is also termed as rectifying 

behavior. It is expressed as follows, 

                                                 Idark(V) = Io {𝑒𝑥𝑝 (𝑞
𝑉

𝑛𝑘𝑇
) − 1}……………… (3) 

            Where Io is a constant associated with reverse saturation current, 𝑛 is ideality factor, k is 

Boltzmann’s constant and T is temperature in degrees Kelvin. Ideality factor is an important 

parameters for diodes and defines the quality of diode. This is the reason, it is also known as diode 

quality factor also.   

Equivalent Circuit of DSSCs. The equivalent electrical model for the DSSC is shown in the Figure 

4. It consists of a current source, a diode, capacitances, and the resistances. Ip is the photocurrent 

generated by the solar cell and modelled as current source. It is proportional to the irradiation 

intensity of the sunlight. The CPt and RPt are collectively the impedance to the charge transport on 
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the surface of the counter electrode. The CElec and RElec are the impedance to carrier transport 

through the ions in the electrolyte or in other words these are the electron transfer resistance of 

TiO2/dye/electrolyte interfaces. RW is basically the sheet resistance associated with the working 

electrode. RSH represents the shunt resistance, which is generally the resistance associated with the 

back electron transfer, also known as recombination resistance. Higher value of this resistance is 

preferable for the better performance of the solar cells. Therefore eq. 3 can be written in modified 

form as, 

                                                  Idark = Io {𝑒𝑥𝑝 (𝑞
𝑉+𝐼𝑅𝑠

𝑛𝑘𝑇
) − 1}…………… (4) 

Where Rs net series resistance which is given as, RPt + RElec + RW  

ISH is the current flowing through shunt resistance RSH. For better performance of the solar cell, 

this current should be low. It is given as 

                                                     ISH =  
𝑉+𝐼𝑅𝑆

𝑅
𝑆𝐻

…………………. (5) 

Therefore, net output current Inet can be given as [4-6], 

                                      Inet  =𝐼𝑃 - 
𝑉+𝐼𝑅

𝑆

𝑅𝑆𝐻
-  Io {𝑒𝑥𝑝 (𝑞

𝑉+𝐼𝑅𝑠

𝑛𝑘𝑇
) − 1}………… (6) 

 

 

 

 

 

 

 

 

 

 

Figure 4. Equivalent circuit diagram for DSSC 
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2.1.4 Open Circuit Voltage (Voc) 

This is the condition of a solar cell when there is no net current flow in the external circuit even 

under illumination by the light source. It is due to the high load resistance across the terminals of 

the solar cell. Thus the voltage developed across the load resistance is the open circuit voltage 

(Voc). In case of the DSSC, it is given by the difference in Fermi energy level of the TiO2 (n-type) 

and the energy level of the redox electrolyte or HOMO energy level p-type hole conductor as 

shown in Figure 5. Basically this is the driving force for the net charge transfer inside the DSSC. 

In broader sense it varies with several other factors. The general expression for Voc can be given 

as [7] 

                                           𝑉𝑂𝐶 =  (
𝑘𝑇

𝑒
) ln (

𝐼𝑃

𝑛 𝑘𝑐
)……………. (7) 

Where Ip is the photocurrent injected into the conduction band of TiO2, n is the photoelectron 

density in the conduction band of TiO2 and kC is rate constant of back electron transfer reaction 

from surface of TiO2 with the redox electrolyte. Therefore, Voc will be higher for higher value of 

the photocurrent generated. Also, if recombination rate increases the Voc decreases accordingly. 

The recombination rate further depends on the various other factors such as the thickness of the 

TiO2 layer [8] etc.  

 

 

 

 

 

 

 

 

 

 

Figure 5.  Energy band diagram for DSSC, redrawn from Chapter 1 
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2.1.5 Photoconversion Efficiency (PCE) 

The range in which the solar cell delivers power to the external circuit is from 0 to Voc. The solar 

cell power density, P is given as, 

                                                         P = JV……………………… (8) 

The point where value of P reaches maximum, is known as maximum power point. This value is 

obtained at voltage Vm and the corresponding current density Jm as shown in Figure 6. At this 

point thus resistance of the load would be Vm/Jm. Also, at this point one very important term for 

the solar cells can be defined, known as fill factor (FF). It is expressed as follows, 

                                                       FF =  
𝐽𝑚 𝑉𝑚

𝐽𝑠𝑐 𝑉𝑜𝑐
…………………….... (9) 

 

 

 

 

 

 

 

 

 

 

The FF defines the ‘square-ness’ of the J-V curve.  The efficiency ɳ of the solar cell is the ratio of 

the maximum power density obtained from the solar cell (i.e. maximum power point) to the 

incident power density, Pi as 

Figure 6. The current voltage (blue) and power-voltage (red) characteristics of a typical solar cell. The 
maximum output power is given by Jm*Vm, inner rectangle area. The outer rectangle area is Jsc*Voc. 
For maximum FF=1, the current-voltage curve follows outer rectangle. 
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                                        ɳ =  
𝐽𝑚𝑉𝑚

𝑃𝑖
…………………………………… (10) 

Efficiency can further be written in form of Jsc, Voc & FF as, 

                                        ɳ =  
𝐽𝑠𝑐 𝑉𝑜𝑐 𝐹𝐹

𝑃𝑖
……………………...………… (11) 

All these parameters, Jsc, Voc, FF and ɳ are important for characterizing the solar cell. All of these 

are defined for particular conditions. Some of the recent results for different type of solar cells are 

listed in the Table 1 [9]. 

 

Table1. Performance of some PV cells under 1 SUN condition 

Classification Efficiency(ɳ %) Area (cm2) Voc (V) Jsc (mA/cm2) FF (%) 

Si (crystalline) 25.6 ± 0.5 143.7 (da) 0.740 41.8 82.7 

GaAs (thin film) 28.8 ± 0.9 0.9927 (ap) 1.122 29.68 86.5 

Si (multicrystalline) 20.8 ± 0.6 243.9 (ap) 0.6626 39.03 80.3 

Perovskite (thin films) 20.1 ± 0.4 0.0955 (ap) 1.059 24.65 77.0 

DSSC 11.9 ± 0.4 1.005 (da) 0.744 22.47 71.2 

*ap = aperture area, *da = designated illumination area 

 

2.1.6 Electrochemical impedance spectroscopy  

Electrochemical impedance spectroscopy (EIS) is a method popularly used in electrochemistry for 

investigating the interfacial charge transfer between a solid electrode (as working electrode) and 

an electrolyte. A voltage is applied between working electrode (WE) and counter electrode (CE) 

with the assistance of the reference electrode (RE). The electrolyte provides the large conductivity 

and totally independent of drift phenomenon as in solid materials. Therefore, electrochemistry 

involves interfacial charge transfers mainly due to diffusion of reactants or products. With EIS, it 

is possible to study interfacial capacitance & charge-transfer resistance separately [10]. Impedance 

spectroscopy technique is popularly used in different classes of materials and devices. It is 

basically the frequency analysis of ac behavior of the materials such as inorganic, organic and 

biological. Generally in case of the solid state PV cells admittance spectroscopy is used.  
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Admittance is the reciprocal of impedance, therefore, almost same information can be 

drawn. Traditionally admittance spectroscopy consists of applying a reverse voltage and 

evaluating the energy levels of the trapped carriers or trap densities of states [11]. However, in 

case of photoelectrochemical systems EIS had been used [12, 13] since long time back. DSSCs 

are also a kind of photoelectrochemical systems and EIS can be used for getting information about 

electronic carrier concentration on the surface via Mott-Schottky plots and also about rates of 

interfacial charge transfer [14, 16]. In the case of solar cells, it is of great interest to know the 

mechanisms responsible for the photovoltaic performance between short-circuit and open-circuit 

condition (basically in forward bias directions, where energy extraction from the solar cell takes 

place). Therefore, exploring this region both in dark and under illumination with different light 

intensities, a variety of properties such as transport in the photoactive layer, contact, bulk and 

surface capacitance etc. can be studied.  

 

This method has been used in past few years for studying amorphous Si solar cell [17-19], 

thin film CdTe/CdS [20], GaAs/Ge [21, 22] and CdS/CIGS solar cells [23]. Similar approach has 

been also been used for the next generation solar cells like DSSCs [24-30] and organic solar cells 

[31, 32]. In the present work, EIS measurements were carried out using electrochemical interface 

(solartron 1287) and frequency response analyzer (solartron 1255B) connected to solar simulator 

(Yamashita Denso YSS 50A). The measurement was performed in the frequency range of 10-3–

105 Hz at room temperature. Impedance spectra were measured by applying a DC bias at constant 

current of 1 mA cm-2 and AC voltage with an amplitude of 10 mV. Z-View software (Solartron 

Analytical) was utilized for analysis of the EIS. Nyquist plot are basically representing the 

frequency response a system and displays the both of amplitude and phase angle in a single plot.  

A typical Nyquist plot for conventional DSSC is shown in Figure 7. It contains three semicircles 

in the order of decreasing frequency from left to right of the plot. The first semi-circle is the high 

frequency region. This corresponds to the resistance for the redox reaction at the counter electrode. 

Second in the mid frequency region corresponds to the resistance associated with 

TiO2/dye/electrolyte interface. The final and third semicircle which falls in low frequency region 

is attributed to the diffusion resistance within electrolyte [33]. 
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2.2 Characterization methods used to analyze photoanode 

The worldwide research interest in one-dimensional nanostructures have been generated since the 

discovery of carbon nanotubes [34]. Since after that many diverse materials and nanostructures 

has been explored and studied for their physical and chemical properties. The physical and 

chemical properties of nanostructures are affected not only by the intrinsic electronic properties 

but the factors such as size, shape and surface properties too. Interesting morphologies such as 

nanotubes, nanorods, nanofibers and nanosheets have been explored in diverse area of applications. 

Sodium titanate nanotubes has been used for biological applications [35], Na2Ti3O7 whiskers for 

photocatalysis [36], TiO2 nanowire arrays for photoelectrochemical application [37], TiO2 

nanotube arrays implemented for diverse applications such as solid-phase microextraction [38], 

quantum dot photovoltaics [39], and supercapacitors [40]. TiO2 nanostructures has been studied 

intensively because of its semiconducting and functional features.  

 

Amongst the many semiconductor metal oxides, TiO2 is distinguished candidate because 

of its high chemical and optical stability, nontoxicity, low cost, and corrosion resistance.  DSSCs 

use nanoporous TiO2 adsorbed with monolayer of sensitizing dye molecules to work as photoanode 

[41]. Nanostructures based on TiO2 can be grown on various substrates using different methods 

such as TiCl4 treatment [42], water-soaking treatment [43], hydrothermal treatment [44], etc. TiO2 

is widely popular in various applications due to its three main phases of rutile, anatase and brookite 

[45]. The anatase phase is preferred over other polymorphs for the solar cell applications because 

Figure 7. Typical Nyquist plot for the conventional DSSC 
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of low recombination of electron-hole pairs and high conduction band edge energy [46]. Therefore, 

to characterize the TiO2 phases and to understand the effect of these phases on applications such 

as solar cells, one need have the characterizing tools such as X-ray diffraction (XRD), X-ray 

photoelectron spectroscopy (XPS), etc. In the present work, we have used some of these techniques 

for characterization of anatase phase of TiO2 on the metallic Ti substrates which we used to 

fabricate the photoanodes. Therefore, below I would like to give a brief discussion about the 

methods and the principle involved in the techniques, and their use for characterizing our devices.  

 

2.2.1 X-ray diffraction (XRD) analysis 

When electromagnetic rays are allowed to fall on the surface of a material, some of its part will be 

reflected so that the angle of incidence is equal to the angle of reflection. In case of the crystalline 

materials, constructive and destructive interference between the rays reflected from the 

consecutive crystal planes will occur. The interference occurs when the incident rays have 

wavelength (λ) comparable to the spacing (2-3 A0) between the crystal planes. The condition for 

the constructive interference to occur is given by Bragg’s law: 

                                       nλ = 2dhkl sin θ……………………….eq (12) 

where, θ is the angle of incidence measured from the plane of reflection as shown in Figure 8(a), 

dhkl is the inter-planar spacing and n is the order of reflection. X-rays are generated when electrons 

moving at very high speeds directed to a metal target. These X-rays thus generated are of two types, 

one is known as white radiation and another is characteristic radiation. The characteristic 

radiations are used for generating the diffraction patterns and are denoted as Kα, Kβ, Lα, etc. Kα 

radiation has the highest intensity and commonly used in diffraction studies. Table 2 shows the 

wavelengths of Kα radiation of some target metals. If we go in more depth of the phenomenon 

involved, basically the X-rays are scattered when they interact with atomic electrons and 

interference takes place between X-rays scattered from different part of the atom. 
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      Table 2. Typical Kα value for different metal targets.  

 

 

The intensity Ihkl of the resulting radiation after scattering from a set of planes {hkl} can be written 

as 

                                          Ihkl ∝ F2
hkl…………………………………………. (13) 

Where, Fhkl is the structure factor and it depends on the constituent atoms and their scattering 

factors. The crystal structure determination is often time consuming and needs a lot of patience. 

At first, macroscopic symmetry of the crystal is determined, then the space lattice and its 

dimensions and finally the atomic arrangement within the unit cell. A typical XRD analysis involve 

the plot of reflected intensity vs 2θ as shown in Figure 9, which is recorded from a diffractometer.  

 

Target metal  Mo Cu Co Fe Cr 

Kα Wavelength, A0 0.71 1.54 1.79 1.94 2.29 

nm 0.071 0.154 0.179 0.194 0.229 

Figure 8.  (a) Diagram showing reflection from parallel planes (b) Typical XRD measurement setup. 
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The data thus obtained is compared with Joint committee on Powder Diffraction Standards 

(JCPDS) data files provided by International Center for Diffraction Data (ICDD).  In the present 

work we have used Ti wires wrapped around the slide glass as shown in Figure 10 for doing the 

XRD analysis of the wire surfaces. Ti crystal have different phases named as α, β, ω, δ, and γ [47].  

Commercially available Ti exists in the alloy form containing mainly two phases known as α phase 

(hexagonal closed pack) and β phase (body centered cubic) because they are stable phase of Ti 

while other phases are metastable. In case of pure Ti, α phase exists at room temperature and up 

to 882.3 0C, however, above this temperature it transforms to β phase. However, in case of different 

grades of Ti alloys both may exist together [48]. A typical XRD pattern obtained for α-Ti is shown 

in Figure 9, the peaks were matched using (JCPDS No. 44-1294) [49]. We have taken different 

diameter Ti wires and their surface was modified further using chemical treatments. The discussion 

on XRD patterns of each will be done in detail in the Chapter 4. 

 

 

 

 

 

 

 

Figure 9. Typical XRD pattern obtained for α-Ti 

Figure 10. Ti wire sample used for XRD analysis 
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2.2.2 X-ray Photoelectron Spectroscopy (XPS) 

X-ray photoelectron spectroscopy (XPS) is a surface analytical technique which provides 

qualitative and quantitative information about the electronic structure and/or chemical composition 

of the various materials. It is also known as electron spectroscopy for chemical analysis (ESCA). 

Here we have used the electromagnetic radiation to determine the ionization potential or work 

function of the material. Usually the X-rays (Mg Kα and Al Kα, with energy 1253.6 eV and 1486.6 

eV, respectively) are used to emit the electrons from the core energy levels. As we know that these 

electrons are held by nucleus, therefore, certain amount of energy from X-ray will be required to 

take out the electron. When this electron will be released and the extra energy will come out in it 

as kinetic energy as shown in Figure 11. In the case of semiconductor and metals the Fermi level  

 

 

of the sample and the spectrometer are aligned or in other words both sample and spectrometer is 

grounded. Since, spectrometer and sample will surely have different work function as shown in 

the Figure 11, and here the work function of the spectrometer should be known accurately.  

 

 

Figure 11. Basic principle for X-ray photoelectron spectroscopy 
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The spectrometers are calibrated with standard samples before the photoemission and its work 

function can be determined. Hence, the binding energy vs intensity graph for the unknown sample 

can be plotted, which is a typical XPS analysis result as shown in Figure 12 [50]. 

  

 

 

 

 

 

 

 

 

2.2.3 Scanning Electron Microscopy (SEM) 

Electron microscopy uses the focused beam of electrons accelerated through a potential and 

generated by thermionic emission from a metal filament. For example, an accelerating voltage of 

100 kV will produce electron wavelength of 3.7 * 10-3 nm. When this beam of electrons is incident 

(TiO2)

(Ti2O3)

(TiO) (Ti)

Figure 12. Typical XPS spectra for Ti 2p energy level for different Titanium valences. 
Right hand side figure denotes Ti wire sample arrangement used for XPS analysis in 
our experiments 

 

Figure 13. Ti wire sample arrangement used for XPS analysis in our experiments 
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on the material surface either they are diffracted, remain un-scattered or they will eject secondary 

electrons from the surface after interaction as shown in Figure 14 (a).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The diffracted and un-scattered electrons are used in X-ray diffraction (XRD) study and 

Transmission electron microscopy (TEM) analysis for imaging. The low-energy (<50 eV) 

secondary electrons emitted are used for scanning electron microscopy (SEM). The schematic 

diagram of a typical SEM experiment-setup is shown in Figure 14(b). Electron beams are 

Figure 15. SEM image of Ti wire surface before polishing (a) and Ti wire surface after polishing (b) 

Figure 14 (a) Interactions involved and (b) approximate experimental setup for SEM  
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condensed by condenser before focusing to a very fine point onto the sample using objective lens. 

The electron beams are scanned in a raster fashion across the sample using the scanning coils 

(generating magnetic fields). Secondary electrons thus emitted from the surface are detected and 

image of the material surface is predicted by the variable intensity of these secondary electrons. In 

the present work we have used SEM and FESEM (Field emission SEM) for analyzing the wire 

surfaces under investigation. Figure 15 shows the SEM image obtained for Ti wire before and after 

polishing of the surface. SEM is popularly used for measuring the thickness of the various layers 

of thin films [51]. We have also used SEM to see the thickness of TiO2 coated in case of our 

devices fabricated. The images are shown in experimental section of Chapter 3 and Chapter 4. 

 

 

2.2.4 Ultraviolet-visible (UV-vis) spectroscopy 

It refers to the use of ultraviolet (UV) and visible region of the electromagnetic radiations for 

getting the absorption and reflection properties of different materials such as transition metal ions, 

highly conjugated organic compounds, etc. The UV radiation ranges from 10 nm to 400 nm and 

visible radiation ranges from 400 nm to 760 nm. Generally UV region used for analysis is above 

200 nm. This spectroscopy is routinely being used in analytical chemistry. However, solid and 

gases may also be studied. The common instrumentation used for UV-Vis spectroscopy is drawn 

in Figure 16. It involves comparison of the intensity of light passing through a sample (I) to the 

intensity of light passing through reference (Io). The ratio I/Io is known as the transmittance, and 

usually expressed as a percentage (%T).  The absorbance, A, is then written as, 

                                            

A = -log10 (%T/100)……………….. (14) 

Figure 16. Block diagram showing instrumentation for UV-vis spectroscopy 
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In the present work, I have used UV-vis spectroscopy for calculating the dye loading 

(concentration of dye absorbed per unit square of the active area) of the device fabricated. The 

process involved is the dye desorption in equal volume of NaOH (0.1M), Ethanol, t-butyl alcohol, 

and acetonitrile. First a calibration curve is drawn using known concentration of the dye used as 

shown in Figure 17 (Step 1 & Step 2), then absorption spectra of the desorbed dye solution is taken 

& compared using the calibration curve for knowing the concentration. Finally the concentration 

of known desorbed volume thus obtained was divided by the total active area of the device. For 

example in Step 3, the sample S3 (57µm) has absorption peak value of 0.51728 (absorption peak 

seen for the highest wavelength), which corresponds to concentration of 34.48 µM. In this case 

volume of desorbed solution taken is 5 ml, which gives concentration of the dye desorbed as 172.4 

nmole. The active area of device is 0.5 cm2, hence dye loading is 344.12 nmol/cm2. The detailed 

discussion related to the effect of dye loading on device performance will be made in the chapters 

3 and 4. 

Figure 17. Steps involved in calculation for dye loading using UV-vis spectroscopy 
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CHAPTER 3: NOVEL TCO-LESS COIL TYPE 
CYLINDRICAL DYE SENSITIZED SOLAR CELLS 

3.1 Introduction 

Dye sensitized solar cells (DSSCs) have now reached the power conversion efficiency of 13% 

[1] since their invention in 1991 [2]. Low-cost of fabrication, simple manufacturing process 

along with some properties such as lightweight, flexible and performance in variable light 

conditions [3] have compelled the DSSC research to stand on the forefront of commercialization. 

The number of publications related to each component of DSSC have increased dramatically in 

past few years [4]. Although DSSCs are still lagging in conversion efficiencies compared to its 

inorganic solar cells counterparts such as crystalline silicon, amorphous silicon, CIGS and other. 

However, with the ongoing research in the field of taking DSSC from lab research to real life 

application using cost-effective transparent conductive-oxide less (TCO-less) architecture 

implemented mainly by the use of flexible substrates such as Titanium (Ti) and Stainless-Steel 

(SS) based mesh, foil and wires [5-8] have introduced DSSC as a strong contender for the solar 

cells towards commercialization. Fragile nature of the TCO and restrictions on shape variations, 

polymer based flexible plastic electrode for the DSSCs [12] have also been reported. However, 

due to lack of high temperature durability of polymers, we have reported stainless-steel mesh 

coated with gradient TiOx layer working as flexible working electrode [9]. This mesh based 

electrode has recently been utilized in our laboratory to fabricate DSSCs in the cylindrical device 

architecture [13]. The cylindrical DSSC was fabricated by inserting this flexible metal mesh 

based photoanode, metal rod as counter electrode and porous polymer film containing electrolyte 

into a cylindrical glass tube. Cylindrical TCO-less DSSCs offer additional advantage over flat 

standard DSSC such as self-light tracking, reduced sealing and installation costs. 

In the TCO-less DSSC device architecture, to reduce the cost of metal mesh 

fabrication,  some of the works pertaining to the fabrication of DSSCs based on metallic wires 

have also been reported in the recent past [13-16]. Liu et al. [15] have reported a device structure 

utilizing titanium wire in the spiral shape. In this structure the large amount of electrolyte 

inserted may be responsible for less absorption of incident light by TiO2 coated wire. Fu et al. 



48 

Figure1. Schematic representation for the fabrication of coil type TCO-
less cylindrical DSSC [8]. 

[16] have also reported the DSSCs having cylindrical architecture based on the metallic wires, 

however, we feel that in their architecture, the counter electrode (Pt wire) could hinder the 

incident light falling on to the photo electrode owing to the shading effect by top catalytic and 

current collecting electrode. Problems pertaining to such shading effect due to counter electrode 

leading to reduced photon harvesting have been realized and discussed already in the recent past 

[17-19]. Some researchers directed their efforts in this context with partial successes [15, 19]. 

However, in the case of complete removal of the shading effect, other issues such as large 

electrolyte insertion and complex fabrication process are still the existing technical barriers. 

Keeping these pros and cons in mind, we would like to report a novel TCO-less DSSC 

architecture to fabricate cylindrical DSSCs based on nanoporous TiO2 coated metal wires. The 

structure showed its effectiveness for roll-to-roll mass production compared to conventional and 

previous cylindrical DSSCs architecture reported so far. The machinery required and stages of 

production (such as, mount making, wire coiling, glass tube preparation, base preparation, 

sealing and assembly used in the incandescent lighting appliance production technology) is 

almost similar and can be easily adopted for the investigated coil type cylindrical architecture.  
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3.2 Experimental 

3.2.1 Device fabrication: Figure 1 exhibits the schematic of the processes involved in the 

fabrication of coil type cylindrical DSSC (C-DSSC). First a thin layer of titanium metal (240 nm) 

was sputtered on a cylindrical glass tube (outer diameter, 7 mm) followed by coating of a thin Pt 

catalytic layer (60 nm) to fabricate the counter electrode. A glass mesh (20 µm thick, Asahi glass 

Co. Japan) was then wrapped over the counter electrode to work as spacer along with serving the 

purpose of holding the redox electrolyte also. The metal wires were then wrapped by coiling 

them around the glass mesh. Figure 2 shows the different components used for the fabrication of 

solar cell in the present work. Nanoporous TiO2 D/SP (Solaronix SA) was coated over the 

wrapped wire. The TiO2 paste was diluted with ethanol (2.5:1) and mixed properly using mortar 

& pestle before coating on the wrapped wires. The TiO2 coated wire was gradually heated from 

room temperature to 4500C for 1 hour followed by sintering at this temperature for 30 min. The 

sintered electrode was allowed to cool down to 1000C and was subjected to sensitization with the  

dye cis-bis (isothiocyanato)- bis(2,20-bypyridyl-4,40-dicarboxy-lato) ruthenium(II)bis-tetrabutyl 

ammonium (Solaronix SA, Ruthenium 535 bisTBA abbreviated as N719) 0.3 mM in t-butyl 

Figure 2. Components used for fabrication of the device 
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alcohol and acetonitrile (1 : 1 v/v) for 24 hours at the room temperature. Figure 3 shows the 

molecular structure of the sensitizing N719 dye. The structure was then covered with heat 

shrinkable tube (ø = 9.5 mm, JUNFLON NF090, Junkosha Inc., Japan) which shrinks to (ø = 7.3 

mm) after heating at 1200C for 5 min. Finally electrolyte containing 50 mM iodine, 500 mM 

lithium iodide, 580 mM t-butylpyridine and 600 mM 1-ethyl-3-methylimidazolium dicyanamide 

in acetonitrile was filled inside the heat shrinkable tube containing the whole structure and sealed 

at the both ends. 

3.2.2 Metallic wires: The wires utilized for the present work were (1) commercially available 

Ti wire (ø=57 m), (2) stainless steel wire (SUS-316, ø=50 m), (3) Copper (Cu, ø=50 m), Ti 

coated Copper wire (Cu/Ti, ø=43 m) and (3) Ti sputtered stainless steel wire (SUS-316, ø=50 

m). All the metal wires used in this work were employed as received without any prior surface 

treatments until mentioned specifically. The thickness of the sputtered Ti on stainless-steel wire 

was kept 240 nm in all the cases. 

3.2.3 Current-Voltage measurement: Photovoltaic performance of the device was measured 

with a solar simulator (KHP-1, Bunko-Keiki, Japan) equipped with a xenon lamp (XLS-150A). 

The intensity of light irradiation was adjusted to AM 1.5 (100 mWcm-2). The solar simulator 

spectrum and its power was adjusted using a spectroradiometer (LS-100, Eiko Seiki, Japan). The 

exposure power was also corrected with standard amorphous Si photo detector (BS-520 S/N 007, 

Bunko Keiki, Japan), which has similar visible light sensitivity to the DSSC. The irradiation area 

of the device was calculated by multiplying the width of the wire wrapped with the diameter of 

Figure 3. Molecular structure for the N719 dye 
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Figure 4. Sample preparation for measurement of thickness using SEM 

the counter electrode. The device characteristics were measured without any mask and whole 

device was exposed to the simulated light source. Photocurrent action spectrum also known as 

incident photon to current conversion efficiency as function of wavelength for the devices 

prepared were measured with a constant photon flux of 1*1016 photon per cm2 at each 

wavelength in the direct current mode using the action spectrum measurement system connected 

to the solar simulator (CEP-2000, Bunko Keiki, Japan).  

3.2.4 Electrochemical impedance spectroscopy: EIS was carried out with a frequency 

response analyzer (Solartron Analytical, 1255B) connected to a Potentiostat (Solartron 

Analytical, 1287) under illumination of 100 mW cm-2 light using a Yamashita Denso YSS-50A 

solar simulator. EIS measurements were performed in the frequency range of 5 * 10-3 to 105 Hz 

at room temperature. The electrical impedance spectra were analyzed using Z-View software 

(Solartron Analytical). 
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3.2.5 Thickness measurement using scanning electron microscope (SEM): Thickness 

measurement for the cylindrical solar cell is quite different. First a mixture of Epoxycure epoxy 

resin (BUEHLER) and Epoxycure epoxy hardener (BUEHLER) in ratio of 5:1 was prepared. 

This mixture was then poured inside a cylindrical rubber cavity (a) as shown in Figure 4, and 

then solar cell was dipped into it and kept for 24 hours so that it can be fixed inside it once the 

mixture gets solidified (b). Finally the solidified part containing solar cell was cut down 

diametrically into small piece. The part taken for SEM analysis (C) was rubbed with sand papers 

and coated with a thin layer of gold (100 nm). Finally the thickness of the nanoporous TiO2 film 

coated on the different metal wires was estimated by taking the cross-sectional image using 

scanning electron microscope (JEOL, NeoScope JCM-6000). 

3.3 Results and discussion 

3.3.1 Working principle and cross-sectional view: 

Figure 5a shows schematic cross-sectional view of the C-DSSC device architecture. Typically, 

its working principle is similar to the conventional DSSC. Dye molecules adsorbed over the 

nanoporous TiO2 layer harvests the photons. Photoexcited dye molecules inject electrons into the 

conduction band of the TiO2 layer. Electrons are then transported towards the metal wire and to 

the external circuit leading to counter electrode (Ti/Pt). The oxidized dye is then reduced by 

I- present in the glass mesh soaked with electrolyte and this I- is reproduced by the reduction of 

I3
- with electrons from counter electrode (Ti/Pt). Figure 5b exhibits the scanning electron 

microscopic (SEM) image for the cross sectional view of the photoanode which was taken in 

order to determine the thickness of the nanoporous TiO2 layer coated on to the metal wire. 

Relatively less contrasting nanoporous TiO2 layer can be clearly seen which is mainly coated on 

the top of the metal wires and the spacing between the wires. At the same time, average 

thickness of this nanoporous TiO2 layer was found to be approximately 10 µm.  

3.3.2 Solar cell performance using different wires:  

The coil based cylindrical solar cells first fabricated using three wires namely Copper (Cu) which 

is highly conducting in nature [20], Titanium (Ti) wire which is highly resistive to corrosion and 

have high strength to density ratio [21] and  Stainless-Steel (SS) which is an alloy having good  
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Figure 5(a) Schematic cross-sectional view of the device. (b) Scanning 
electron microscope image of nanoporous TiO2 coated metal wire [8].

conductivity and good corrosion resistance properties [24]. From here onwards, wherever 

necessary we will use terminology such as Ti-cell for Ti wire based cylindrical solar cell and so 

for other wire based device also.  Figure 6 reveals the direct impact of electrical and physical 

properties of wires on the solar cell performance along with the resulting photovoltaic 

parameters as shown in the table 1. Since, copper is highly reactive in nature, therefore, the 

electrolyte which contains highly corrosive iodine ions (I- & I3
-) is damaging the Cu wire leading 

to poorest performance for the device with 0.23 % PCE. Similarly, SS and Ti because of their 

better corrosion resistance properties shows better performance. SS-cell showed highest PCE 

among these three wire based solar cell with PCE of 2.03%, FF of 0.49, Voc of 0.66 V and Jsc of 

6.21 mA/cm2. Low performance of Ti-cell compared to SS-cell can be explained by observing 

the dark current characteristics which shows the higher recombination in case of Ti-cell 

responsible for lower Jsc of 4.89 mA/cm2 and Voc of 0.59 V with poor FF of 0.39 compared to 

SS-cell.  
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Figure 6 (a) Current-Voltage and dark current characteristics of device fabricated 
using Stainless-steel (SS), Titanium (Ti), & Copper (Cu) wires. 

Table1. Photovoltaic performance for the devices (C-DDSCs) fabricated using different metal 
wires under investigation 

Cu-cell SS-cell Ti-cell 
Efficiency [%] 0.23 2.03 1.13 

FF 0.26 0.49 0.39 
Voc [V] 0.37 0.66 0.59 

Jsc [mA/cm2] 2.39 6.21 4.89 

3.3.2.1 Combining wire properties (a): The purpose here and after was to investigate the effect 

of combining the properties of two metals in a single wire on the solar cell performance. To 

accomplish this goal, a hybrid wire consisting of Cu (ø= 38 µm) externally coated with 5 µm   

layer of Ti (Cu/Ti) which was received from Nachi-Fujikoshi Corp., Japan. Figure 7 exhibits the 

photovoltaic characteristics for TCO-less C-DSSC fabricated using this hybrid wire (Cu/Ti-cell). 

It can be clearly seen that there is a large improvement in the photovoltaic parameters compared 

to Cu-cell. The Jsc of 9 mA/cm2, FF of 0.63, Voc of 0.66 V gives improved PCE of 3.72%. This 

is probably due to the passivating action of Ti, which is reducing the charge recombination and 
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hence resulting in the higher device performance. Hence after realizing the passivating action of 

Ti, we further did the same experiment on the SS wire and performed the detailed analysis to 

deeply understand our device performance. 

3.3.2.2 Combining wire properties (b):   Figure 8 shows photovoltaic performance of the coil 

based TCO-less cylindrical solar cells fabricated using different metal wires utilized for the 

fabrication of the photoanode along with the photovoltaic parameters shown in the Table 2. This 

Figure and Table 2 clearly indicate that nature of the wire plays an important role towards 

controlling the overall photoconversion efficiency of the device. Photoconversion efficiencies 

(ɳ %) were found to be in the order Ti < SS-steel (SS) < Ti-sputtered stainless steel (SS/Ti) wires. 

A remarkable enhancement in the photoconversion efficiency was observed for photoanode 

based on SS/Ti wires as compared to the cylindrical DSSCs fabricated using SS and Ti wires 

alone without surface passivation with pure Ti layer. This tremendous increase in the overall 

photoconversion efficiency of coil based cylindrical DSSC using SS/Ti was resulting from 

enhancement in the all of the photovoltaic parameters such as open circuit voltage (Voc), short 

circuit current density (Jsc) and fill factor (FF) as shown in the Table 2. Under simulated AM 1.5 

solar irradiation, this SS/Ti wire based DSSC exhibited a Jsc of 8.75 mA/cm2 with much 

improved FF of 0.63 and an enhanced Voc of 0.70 V resulting in to the overall photoconversion 

efficiency of 3.88%.  

Figure 7 (a) Current-Voltage characteristic for Cu/Ti-cell (inset shows the diameter 
of the wire) (b) IPCE of Cu/Ti-cell.  
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Table 2 Photovoltaic and EIS parameters for metal wire based TCO-less cylindrical 
solar cells under simulated solar irradiation. 

Parameter SS-cell SS/Ti-cell Ti-cell 
Efficiency (%) 2.09 3.88 1.12 

FF 0.50 0.63 0.40 
Voc [V] 0.65 0.70 0.64 

Jsc [mA/cm2] 6.38 8.75 4.35 
R1 (Ω) 35.47 36.43 25.97 
R2 (Ω) 100.2 88.38 56.43 
R3 (Ω) 391.2 188.1 2433 

Dye loading amount[nmol/cm2] 319.4 318.6 322.6 

Figure 8 Photo/dark current–voltage characteristic for DSSCs using different metal wires [8]. 

On the other hand Ti wire exhibited the poorest photovoltaic performance (ɳ = 1.12%) which 

was highly affected by the drastically hampered both of the Jsc and FF. Another striking 

difference can be noticed that photoanodes based on Ti and SS wires, the observed dark currents 

(leakage current) are much higher as compared to the photoanode based on SS/Ti wires. 

Therefore, this hampered dark current for SS/Ti could be attributed to the observation of higher 

Voc due to suppressed charge recombination. Thus sputtering of thin titanium over layer on the 
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Figure 9 Incident photon-to-current conversion efficiency (IPCE) curves for TCO-less 
coil based DSSCs using different metal wires [8]. 

stainless steel wire could be the possible reason for the reduced charge recombination as titanium 

coating forms charge recombination blocking layer [9].  

Since Jsc is one of major controlling factors of the overall photoconversion efficiency of our coil 

based cylindrical DSSCs with the nature of metal wires under investigation, spectral response of 

the DSSCs were also measured to elucidate this observed differential behaviour. Figure 9 depicts 

the incident photon-to-current conversion efficiency (IPCE) as a function of wavelength. It can 

be clearly seen that DSSC based on SS/Ti wire exhibits the highest IPCE (48%) at around 550 

nm (absorption maximum of N-719 on TiO2 surface) supports the highest observed Jsc in the J–

V curve as compared to DSSCs based on other wires. Lack of photon harvesting in the 300–400 

nm wavelength region could be attributed to the available electrolyte layer between the heat 

shrinkable tube and photoanode which is still large enough to absorb the appreciable amount of 

light by the electrolyte layer itself. Such kind of observations has also been made and reported by 

our group previously for the TCO-less cylindrical DSSCs based on SS-mesh [13].  
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Figure 10 (a) EIS spectra of coil based TCO-less DSSCs measured at AM 1.5 and constant 
Jsc of 1 mA/cm2 and (b) electrical equivalent circuit for impedance spectra [8]. 

The possibility of difference in IPCE could also be argued due to different extent of the dye 

loading on different metal wire surfaces coated with nanoporous TiO2. To check the validity of 

this reason, the amount of dye loading was also estimated using equal volume of NaOH (0.1 M) 

solutions of ethanol, t-butyl alcohol and acetonitrile as dye desorption solvent. The results 

pertaining to estimation of the extent of dye molecules as shown in Table 2 strictly ruled out this 

possibility as it shows approximately same amount of dye loading for all of the three metal wire 

based photoanodes. In order to understand observed differential photovoltaic behaviour for the 

photoanodes based on different metal wires particularly Jsc, EIS measurements were also 

conducted to investigate the interfacial charge transfer processes. To analyze the EIS spectra, 

adequate physical models and suitable equivalent circuits have been proposed and widely 

implemented to study interfacial electron transfer processes in DSSCs [23-27].  

Figure 10 exhibits the plot of real vs. imaginary part of the complex impedances (Nyquist 

plot) measured under AM 1.5 light illuminations at a constant Jsc of 1 mA/cm2. First impedance 

element (R1) in the high frequency region is attributed to the series resistance of the conducting 

layer such as metal wires in the present case, which do not show appreciable differences. The 
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resistance associated with first semi-circle (R2) is assigned to the charge transfer at the counter 

electrode, which was not an important factor for the observed differential behavior of the solar 

cell performance. The second semi-circle appearing in the mid frequency region is attributed to 

be originated from the charge-transfer resistance (R3) of working electrode/TiO2 and 

TiO2/electrolyte interfaces. There are two possible interpretations for the origin of this semi-

circle [28]. First is related to the proper electrical contact between the metal wire and TiO2 

nanoparticle while second interpretation is associated with charge recombination between TiO2

and electrolyte [26, 28].The most striking differences in the resistance for this second semi-circle 

was observed for the photoanodes using different metal wires in the present investigation. SS/Ti 

shows very small resistance (188 Ω) in this region as compared to Ti wire (2433 Ω) which can be 

explained by enhanced interfacial adhesion between working electrode and nanoporous TiO2. 

This facilitates the facile electron transport resulting into improved photovoltaic performance. 

The second possibility of large recombination resistance for Ti in our case can be ruled out since 

it shows relatively small Jsc and Voc as compared to the SS/Ti. The differential behaviour 

observed for photoanodes based on Ti and SS/Ti wires can be, therefore, explained by the 

presence of different extents of TiOx surface defects on the commercially procured Ti wire 

which might be passivated by sputtering of pure titanium on the stainless steel wire (SS/Ti) and 

are supposed to promote the better contact between the metal wire and nanoporous TiO2. Similar 

enhancement in the electrical contact formation between the substrate and nanoporous TiO2 by 

different kinds of surface treatments of metal foil for TiOx surface passivation resulting into 

improved photovoltaic performance has also been advocated by An et al [29]. 

3.3.2.3 Implementation on titanium wires:  

Thin Ti layer when sputtered on SS is working as a passivating layer and leading to enhanced 

solar cell performance for SS/Ti-cell. However, poor performance obtained with photoanodes 

fabricated using as supplied Ti wires could be attributed to the probability of existence of 

different extent of surface oxidized impurities which might be responsible for poor performance. 

To confirm this, we sputtered pure Ti on the surface of Ti wire and prepared device and 

measured its characteristics, shown as Ti/TiSp-cell in Figure 11 along with the photovoltaic 

parameters listed in the Table 3.  From the table 3 it can be seen that FF increased from 0.42 to 

0.54, Voc from 0.57 V to 0.66 V and Jsc from 3.00 mA/cm2 to 7.21 mA/cm2 after sputtering of 

pure Ti leading to overall increased in PCE from 0.71% to 2.57%. This increased performance 
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Figure 11. Photovoltaic characteristics after sputtering pure Ti on commercially available Ti 
leads to increase in performance of the device 

after Ti sputtering confirmed existence of impurities are the reason for poor performance with 

Ti-cell. Since after sputtering the effect of the surface impurities have been reduced. This 

interesting result lead us to deeply study the surface properties of Ti wire, which will be 

discussed in detail in the next chapter 4. 

Table 3 Photovoltaic parameters after sputtering pure Ti on commercially available Ti wire 

3.3.3 A closer look to irradiation area (different wire gap): Irradiation area is an important 

issue for our solar cells (cylindrical shape) as the working electrode involves the wrapping of 

wires manually by hand. The spacing between the wires, therefore, can’t be uniform as the wires 

are very fine and thin in diameter. The conventional area of irradiation is the width of the wire 

wrapped multiplied by the diameter of the glass tube over which these are wrapped. Here we 

have fabricated the three cells with approximately same active area using the same wire quality,    

Ti/TiSp-cell Ti-cell 
Eff[%] 2.57 0.71 

FF 0.54 0.42 
Voc[V] 0.66 0.57 

Jsc(mA/cm2) 7.21 3.00 
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Figure 12 (a, b, & c) Microscopic images of the wrapped wires used as working electrode (d) 
Image showing cracking in TiO2 layer when gaping is too large 

Figure 13 Photovoltaic characteristics for different wire arrangements 

(a) (b)
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however, the arrangement of wires and spacing between them were different as shown in the 

Figure 12. The gaps between the wires are even more than 100 µm, but in that case also the 

devices are performing well. Figure 13 shows the photovoltaic characteristics for all of the 

samples with its parameters listed in Table 4.  

Table 4 Photovoltaic parameters obtained using different arrangement of wires 

It shows nearly same performance for all the devices under consideration. Although, some 

differences in the photovoltaic performance associated with gap due to different arrangement of 

wires was observed but is not much prominent. However, when there was increase in the gap 

between the wires further the possibilities of cracking in the sintered layer of TiO2 was quite 

frequent as shown in Figure 12 (d). 

3.3.4 A closer look to irradiation area (different irradiation area) It is well know that 

resistance of the wire is directly proportional to its length. Figure 14 shows this effect on the 

performance of our fabricated devices. For larger area we need to wrap more wire thus more 

length of the wire will be used. The device with active area of 0.085 cm2 has FF of 0.71 which is 

less (0.53) for the device with more than two times active area (0.21 cm2) and seems to be the 

main factor for variable performance of the two devices. As FF decreases with increase in the 

series resistance, therefore, the increased wire length in case of 0.21 cm2 wrapped area is 

responsible for decreased value of FF. Although, there is decrease in value of FF, however, total 

PCE was not much affected. This is probably due to large area providing more photogenerated 

electrons to collect and also wires are working as current collecting grids, therefore overall PCE 

is almost same. 

SAMPLE1 SAMPLE2 SAMPLE3 
Eff [%] 3.04 2.68 3.38 

FF 0.64 0.61 0.61 
Voc[V] 0.71 0.65 0.67 

Jsc[mA/cm2] 6.61 6.57 8.30 
Active [cm2] 0.0850 0.0980 0.0900 
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Figure 14. Photovoltaic characteristics obtained using same quality 
wire with different wrapped area 

Table 5. Photovoltaic parameters obtained using same quality wire with different wrapped area 

3.4 Conclusions 

In conclusion, we fabricated a novel TCO-less cylindrical dye-sensitized solar cell with more 

ease and fast method of fabrication compared to other TCO-less DSSC architectures. Problems 

related to previous device architectures such as shading effect and complex fabrication process 

were minimized. It has been demonstrated that nature of wire and surface treatment plays an 

important role in controlling the device performance. EIS investigation revealed that in spite of 

charge recombination between TiO2/dye/electrolyte interfaces, better electrical contact between 

metal wires and nanoporous TiO2 plays a dominating role in controlling the overall photovoltaic 

Area-0.21centimeter square Area-0.085centimeter square 

Eff[%] 2.82 3.04 

FF 0.53 0.71 

Voc[V] 0.65 0.65 

Jsc[mA/cm2] 8.15 6.56 

Active [cm2] 0.2100 0.0850 

(a) (b)



64 

performance. Passivating nature of Ti metal was confirmed in case of Cu & SS wires with 

improved performance of the devices. Coating of thin pure Ti metal over SS wire as surface 

passivating and electron recombination blocking layer led to the dramatic enhancement in the 

photoconversion efficiency from 1.12% (Ti) to 3.88% (SS/Ti). The same passivating effect of 

pure Ti thin layer on commercially available Ti wire confirms existence of impurities on Ti wire 

surface. Further the effect of irradiation area on the device performance was also investigated.  In 

this context, gap between the wires were varied and it was found that even with spacing around 

100 µm the devices were showing nearly the similar performance for approximately same active 

area. However, when the wrapped wire area was increased it caused an increase of the resistance 

hence lowered the FF. Since metal wires are highly conducting in nature, they are working as 

current collecting grids also which led to approximately same PCE for the device with small 

wrapped area. 
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CHAPTER4:  INVESTIGATION OF TI WIRE BASED TCO-LESS 

CYLINDRICAL SOLAR CELLS 

4.1 Introduction 
Ever increasing world population, standard of human life and depleting precious fossil fuel 

reserves compel us to look for immense solar energy harvesting to meet with the huge future 

energy demands. Solar cells are one of the potential means to harness this solar energy directly in 

to usable electrical energy. Major part of current solar cell industry depends mainly on solid-state 

devices prepared from silicon and compound semiconductors. However, due to high cost of 

fabrication and high purity requirement limited its growth as compared to fossil fuels. Next 

generation solar cells based on mesoscopic titanium oxide (TiO2) due to its high chemical 

stability, nontoxicity, low cost and corrosion resistance is one of the attractive alternatives to 

silicon photovoltaics and is the heart of dye-sensitized solar cells (DSSCs) [1]. In conventional 

DSSC the nanoporous TiO2 is coated over the transparent conducting oxide (TCO) layer to form 

the scaffold for the dye adsorption [2]. Replacement of this TCO by other conducting substrates 

such as metal mesh, metallic foil and metallic wires [3-6] further reduces the DSSC fabrication 

cost and makes it not only a  strong contender for silicon photovoltaics but gives the flexibility 

towards the roll-to-roll mass production also. Metallic titanium (Ti) substrates are used 

preferably for flexible DSSC with high-temperature sintered TiO2 due to their low resistance, 

good flexibility, superior corrosion resistance and high temperature tolerance [7]. In this context, 

we have directed our efforts to combine the cylindrical device architecture with metal mesh and 

metal wire based photoanodes to fabricate TCO-less cylindrical DSSCs [8, 9]. Such a device 

structure offer advantages such as uniform solar harvesting throughout the day, high total output 

power in a day, less implication of wind and easy installation leading to low cost modules. In 

such metallic substrate based photoanode, facile electron transfer from TiO2 to the conducting 

surface is one of the major controlling factors to achieve high power conversion efficiency 

(PCE). To improve this electron transfer process, great deal of the attempts such as introduction 

of interfacial layers on the Ti and stainless steel (SS) foils [10-15] have been made in order to 

provide a better binding force to the TiO2 nanoparticle and  smooth untreated metallic substrates.  
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Yun et. al. [10] discussed the importance of the substrate roughness and its effect on DSSC 

performance. In the DSSC research, interfacial surface passivation has been extensively 

investigated for the TCO and metal foil substrates, with only few reports on metallic wires [11, 

12]. In our previously reported metal wire based novel cylindrical TCO-less DSSC (C-DSSC), 

[9] we discussed its advantages over the previous cylindrical architectures and the effect of 

different metal wire characteristics on the solar cell performance. It was realized that Ti wire is 

preferable over other metal wires owing to its less reactivity towards the ingredients of the redox 

electrolyte which is associated with the stability/durability of the DSSCs. However, use of the Ti 

wire to fabricate cylindrical photoanodes led to relatively poor photovoltaic performance as 

compared to the C-DSSCs based on stainless steel metal wires as discussed in the previous 

chapter. This could be attributed to the nature and surface properties of Ti-wires since Ti metal is 

reported to the form the surface oxide impurities [14, 15].  In this chapter, therefore, attempts 

have been directed to have the insight about change of Ti wire surface properties with the surface 

treatment and diameter variation, which directly affects the solar cell performance. This 

investigation shows the use of electrochemical impedance spectroscopy for getting optimum Ti 

wire diameter in order to enhance the C-DSSC performance. The X-ray diffraction (XRD), 

scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) analyses were 

also conducted to have further insight about the surface properties. 

4.2 Experimental 
Fabrication of Pt counter electrode 

A glass tube of diameter (ø=7 mm) was utilized for the fabrication of counter electrode. The 

glass tube was cut into the desired lengths for the C-DSSC fabrication. Proper washing of the 

tube was done with the detergent solution and water along with sonication for 10 minutes. The 

process was similarly followed by washing with acetone and isopropanol. After this UV-Ozone 

surface treatment (Filgen, Ozone killer, UV-253) was done to totally remove the organic surface 

contaminants. Thin titanium (240 nm) layer was then sputtered on the cleaned glass surface at 

the rate of 6 nm/min for 10 minutes followed by platinum sputtering at the same rate for 40 

minutes. Coating of Ti before Pt layer was conducted in order to provide adherence of catalytic 



70 

Pt layer on the glass tube. The glass tube thus obtained finally was utilized as cylindrical counter 

electrode. 

Fabrication of Photoanode  

The metallic wires utilized for working electrode were commercially available titanium wire 

having diameters of 57 µm, 100 µm and 150 µm (Nilaco, Japan). The schematic device 

architecture of C-DSSC fabricated for the present investigation is shown in Figure 1.  A 20 µm 

thick glass mesh (Asahi glass Co. Japan) was first wrapped over the Pt coated cylindrical glass 

tube serving as counter electrode which provides insulating separation between counter and 

working electrodes. Ti wire was then wrapped over the glass mesh holding it tightly. Nanoporous 

TiO2 layer was then coated over the wrapped wires and the whole structure thus prepared was 

subjected for baking inside the electric furnace (Muffle Furnace F0300, Yamato, Japan). Gradual 

heating of the TiO2 coated wire from room temperature to 4500C for 1 hour followed by heating 

at this temperature for 30 min formed nanoporous TiO2 scaffold. This was then allowed to cool 

down to 1000C and sensitized with the cis-bis-(isothiocyanato) bis(2,2’-bypyridyl-4,4’-

dicarboxylato) ruthenium(II) bis-tetrabutyl ammonium (Solaronix SA, Ruthenium 535-bisTBA  

Figure 1. Schematic representation of device architecture and electron transport 
in TCO-less C-DSSC [25]. 
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abbreviated as N719) from its 0.3 mM solution in t-butyl alcohol and acetonitrile (1:1 V/V) for 

24 hours at the room temperature to form the TCO-less cylindrical photoanodes.   

Ti wire surface treatment  

The as-received Ti wires were rubbed properly using the emery paper and washed with 

isopropanol to remove the surface impurities. The Ti wires were then dipped in to the hydrogen 

peroxide solution (H2O2, 30 weight %) at 950C for 30 min for surface treatment. These wires 

were then heated gradually from room temperature to 4500C in 1 hour and kept at this 

temperature for 30 min. The wires thus utilized for C-DSSC fabrication were as-received Ti wire 

with diameter 57 µm (Ti_57NT), rubbed Ti wires Ti_57, Ti_100, Ti_150 with diameter 57 µm, 

100 µm, 150 µm, respectively along with their respective H2O2 treated counterparts represented 

as Ti_57HP, Ti_100HP and Ti_150HP.  

Coil DSSC assembly 

This is the final step in C-DSSC fabrication. The photoanodes thus obtained were inserted into a 

heat shrinkable tube (ø=9.5 mm, JUNFLON NF090, Junkosha Inc., Japan). This tube shrinks 

from 9.5 mm to 7.3 mm after heating at 1200C for 5 min forming a small gap at the ends.  The 

electrolyte containing 50 mM iodine, 500 mM lithium iodide, 580 mM t-butylpyridine and 600 

mM 1-ethyl-3-methylimidazolium dicynoamide in acetonitrile was finally filled from the ends 

and the whole structure was sealed by epoxy resin. 

Photovoltaic measurements 

Photovoltaic measurements were carried out using solar simulator (KHP-1, Bunko-Keiki, Japan) 

equipped with a xenon lamp (XLS-150A) with the irradiation power of 100 mW/cm2. The solar 

simulator spectrum and its power was adjusted using a spectroradiometer (LS-100, Eiko Seiki, 

Japan). The power of the incident light was also corrected using standard amorphous Si photo 

detector (BS-520 S/N 007, Bunko-Keiki, Japan). Area of irradiation was kept same for all of the 

C-DSSCs (0.1 cm2), which is equal to the multiplication of width of the wire wrapped and the 

diameter of counter electrode. The photovoltaic characteristics were measured without any mask 

and whole device was exposed to the simulated light source. Incident photon to current 

conversion efficiency (IPCE) was measured with a constant photon flux of 1 x 1016 photon per 



72 

cm2 at each wavelength in the direct current mode using the action spectrum measurement 

system connected to the solar simulator (CEP-2000, Bunko Keiki, Japan). 

Electrochemical Impedance Spectroscopy  

Electrochemical impedance spectroscopic (EIS) measurements were carried out using 

electrochemical interface (Solartron 1287) and frequency response analyzer (Solartron 1255B) 

connected to solar simulator (Yamashita Denso YSS-50A). The measurement was performed in 

the frequency range of 10-3 to 105 Hz at room temperature. Impedance spectra were measured by 

applying a DC bias at constant current of 1 mA cm-2 and AC voltage with an amplitude of 10 

mV. Z-View software (Solartron Analytical) was utilized for analysis of electrical impedance 

spectra.  

Surface analysis and dye loading test 

The surface morphology of the Ti wires was observed through scanning electron microscope 

(SEM) (JEOL, Neoscope JCM-6000). X-Ray diffraction analysis (RINT-Ultima III, Rigaku, 

Japan) was performed in the range 200 to 900 for all the wires utilized for device fabrication. X-

Ray photoelectron spectroscopy (XPS) (Axis-His/Kratos, Shimadzu) was carried out on the Ti 

wires for having the further insight about the surface states of Ti. The amount of dye loading was 

evaluated by desorbing the adsorbed dye on the nanoporous TiO2 from solution consisting of 

equal volumes of NaOH (0.1 M), ethanol, t-butyl alcohol and acetonitrile followed by 

quantitation using spectrophotometer.  

4.3  Results and discussion 
Figure 1 shows the working principle involved in C-DSSC which is similar to typical back 

contact TCO-less DSSCs. Sensitizing dye anchored to the TiO2 nanoparticles of the cylindrical 

TCO-less photoanodes absorbs the sun light (photons). This leads to photo-induced electron 

injection from excited dye molecules to the TiO2 conduction band which travels to the Ti wire 

and finally to external circuit. The hole created at the dye ground state is filled by electron 

donation from I- of I-/I3
- redox couple of the electrolyte producing I3

-. I- in turn is regenerated by 

reduction of I3
- at the Pt counter electrode. Figure 2 exhibits the SEM surface micrographs of the 



73 

Figure 2. SEM images for Ti wires (a) as-received (b, c) after mechanical 
polishing and (d) after H2O2 surface treatment [25]. 

Ti wires utilized for the present work. The surface morphology of the Ti wire as-received was 

found to be changed exhibiting enhanced metallic luster after the mechanical polishing (Figure 

2(a, b)). The surface impurities (TiOx layer) which might be existing above the as-received wire 

surfaces due to oxidation of the Ti metal by environmental moisture, was etched after the  

mechanical polishing of surface using emery paper. The noticeable difference between untreated 

Ti wire and H2O2 treated wire can be clearly as shown in Figure 2(c, d) with the formation of 

highly dense TiO2 nanosheets due to the oxidation of metallic Ti by H2O2. A perusal of the 

Figure 2d corroborates that TiO2 under layer formed have thickness of around 50 nm with 

spacing between the nanosheets in the range of 100-200 nm. Nanosheet formation is expected to 
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Figure 3. XRD patterns obtained for 100 m thick mechanically polished Ti wire before 
(Ti_100) and after (Ti_100HP) H2O2 treatment. Ti and A refers to Titanium and anatase 
TiO2, respectively [25]. 

increase the specific area of Ti substrate because of its branched structure and improves the 

electrical contact between TiO2 nanoparticles and the Ti wire substrate compared to untreated 

wire surface. Similar kind of observation pertaining to the TiO2 nanosheet formation by the H2O2 

oxidation of Ti-foil has been made by Tsai et al also [13].  

In order to characterize surface properties of Ti-wires especially after the H2O2 surface treatment 

leading to nanosheet like surface morphology, XRD measurement was conducted for the 

mechanically polished Ti-wire before and after the H2O2 surface treatment. Figure 3 shows the 

typical XRD patterns consisting of characteristic peaks of Ti (JCPDS no. 44-1294) appearing at 

2 of about 35o (Ti-100), 38o (Ti-002), 40o (Ti-101) and 53o (Ti-102) [16]. Interestingly, upon 

H2O2 treatment additional peaks appearing at 2 of 25.2o (A-101) and about 48o (A-200) are also 

observed which are not present in the untreated Ti-wire. These peaks have been assigned to be 

the Anatase TiO2 as per the reference Anatase TiO2 (JCPDS no 84-1286) reported previously 

[17]. Therefore, it can be concluded that the nanosheet like morphological features appearing 

after the H2O2 treatment are basically the Anatase TiO2. 
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Figure 4. (a) Photo and dark current-voltage characteristics and (b) photocurrent 
action spectra for C-DSSCs based on photoanodes with Ti-wires of varying diameters [25]. 

Figure 4(a) shows the current-voltage (I-V) curves for the photoanodes fabricated using Ti wires 

with varying diameters utilized to fabricate C-DSSCs along with the photovoltaic parameters 

thus obtained shown in the Table 1. The solar cell based on 100 µm wire exhibited the best 

photovoltaic performance with a power conversion efficiency of 4.04%, which is much better 

than the photoanodes based on mechanically polished Ti-wires with diameters 57 µm 

(Ti_57~3.06%) and 150 µm (Ti_150~1.93%). At the same time, utilization of non-mechanically 

polished and as-received Ti-wire with diameter of 57 µm leads to much hampered 

photoconversion efficiency (Ti_57NT~1.03 %). From Table 1 it is clear that with the change in 

diameter of the wires there are changes in photovoltaic parameters. The high value of reverse 

saturation current for as-received Ti wire (Ti_NT) could be responsible for the lower short circuit 

current density (Jsc) of 3.82 mA/cm2 and open circuit voltage (Voc) of (0.60 V) leading to 

lowest photoconversion efficiency. This might be associated with the surface impurities which 

are present on the wire surface (as TiOx) seen through different SEM images obtained after 

polishing the surface in Figure 2(a, b). The surface impurity leads to poor adhesion and improper 

contact (necking) between coated nanoporous TiO2 on the wire surface hindering the electron 

transport and enhancing the charge recombination. To explain the different Jsc values observed 

for cylindrical photoanodes based on Ti-wires with varying diameters, photocurrent action 

spectra (IPCE as function of wavelength) was also measured.  The change in value of Jsc for 

these different photoanodes are in accordance with observed IPCE as shown in Figure 4(b). The 



76 

maximum value of IPCE was observed at the wavelength about 550 nm (absorption maximum 

for N-719 on TiO2) demonstrating that the observed photocurrent is the result of photoexcited 

electron injection from the dye N-719 to the conduction band of TiO2 followed by the electron 

transport. 

Table 1 Photovoltaic and EIS parameters for C-DSSCs based on cylindrical photoanodes 

fabricated using Ti-wires of different diameters.    

Ti_57NT Ti_57 Ti_100 Ti_150 

Eff [%] 1.03 3.06 4.04 1.93 

FF 0.45 0.59 0.64 0.47 

Voc[V] 0.6 0.62 0.65 0.57 

Jsc[mA/cm2] 3.82 8.39 9.74 7.13 

Dye loading (nmol/cm2 ) 322.66 319.4 321.74 332.83 

R1 (ohm) 25.97 24.94 14.48 12.48 

R2 (ohm) 56.43 42.99 15.89 50.18 

R3 (ohm) 2433 105.5 71.82 128.5 

The differential behavior of observed Jsc for different photoanodes could be either due to 

different extent of recombination or contribution from extent of dye molecules attached on the 

nanoporous TiO2 coated on the Ti-wire surfaces. To clarify these aspects, estimation of dye 

loading was performed, which indicates almost similar amount of dye adsorption for all of the 

four photoanodes as summarized in Table 1. Therefore, the differences in recombination could 

be one of the plausible explanations for the observed Jsc values as a function of wire diameter. A 

careful analysis of the Table 1 indicates that observed performance of solar cells are mainly 

controlled by fill factor (FF), which is directly affecting the solar cell efficiency. The reason for 

better fill factor of Ti_100  than Ti_57 could be due to decrease in resistance of Ti_100, which is 

contributed from increased cross-sectional area and less length of  Ti_100 wire required for 

fabricating the same irradiation area (since resistance is directly proportional to length and 
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-2 
Figure 5. EIS spectra for C-DSSCs measured at AM 1.5 and constant Jsc of 1mA cm [25].. 

inversely to cross sectional area). On the other hand, the same analogy seems not to be supported 

in case of Ti_150 and there might be some other reasons behind this. To have a further insight 

about differential behavior of FF for photoanodes based on Ti-wires of different diameters, EIS 

investigations were carried by plotting real verses imaginary part of complex electrical 

impedances (Nyquist plot) as shown in the Figure 5. There are mainly three resistances 

associated with C-DSSC as described in detail in our earlier publication [9].  

 These resistance have been estimated using equivalent circuit as shown in the inset of Figure 5 

and are shown in the Table 1. Resistance R1 is associated with the series resistance of the solar 

cells and causes reduction in the FF and is due to the resistance of the wire working as current 

collecting substrate.  From Table 1 it can be seen that the value R1 which is smaller for both of    
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Figure 6. Schematic representation for implication of TiOx surface impurities on 
Ti wire surface resistance and electron transport with large (a) and small (b) 
TiOx layer [25]. 

Ti_150 (12.48 Ω) and Ti_100 (14.48 Ω) compared to Ti_57 (24.94 Ω), supports the order of FF 

for Ti_100 (0.64) > Ti_57 (0.59) but such trend seems not to be applicable for Ti_150 (0.47). It 

means the behavior of Ti_150 cannot be simply explained by only taking the series resistance of 

the wire in to consideration and their might be due to some other controlling factors.  The second 

resistance element R2 is due to charge transfer at the counter electrode which does not provide 

conclusive information to explain the observed difference in C-DSSC performances since same 

counter electrode has been used for all the cases. The poor fill factor for Ti_150 (0.47) could be 

most probably attributed to the higher value of R3 (128.5 Ω) compared to 71.82 Ω and 105.5 Ω 

for Ti_100 and Ti_57, wires respectively. Origin of this R3 is associated with charge transfer 

resistance of working electrode/TiO2 and TiO2/electrolyte interfaces.  High value of R3 is 

suggesting the poor electrical contact between coated nanoporous TiO2 and the wire utilized for 

photoanode preparation [18, 19]. Similar high value of R3 (2433 Ω) is observed for Ti_57_NT 

with decreased FF.  Therefore, the extent of adhesiveness between the nanoporous TiO2 metallic 

substrate seems to play a dominant role towards controlling the FF as well as recombination in 

all the DSSC prepared from the coil based TCO-less photoanodes. It has been reported that 
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Figure 7. Normalized XRD pattern for Ti-wires with different diameters [25]. 

surface impurities like TiOx adversely affect the proper electrical contact between the TiO2 

nanoparticle and substrate leading to hindered charge transport [14, 15]. Therefore, it can be 

thought that change in the diameter or surface treatment affect the extent of this available TiOx 

surface impurities on the Ti-wires which controls the charge transport and affect the photovoltaic 

performance as shown in the Figure 4. This has been schematically shown in the Figure 6. 

Variable amount of TiOx formation and impurity on the wires of different diameter was further 

analyzed using XRD investigations as shown in Figure 7. Ti_57 after mechanical polishing 

(Ti_57NT) exhibits relatively pure Ti surface which leads to increase in relative peak intensity of 

(002) as compared to (101). Relatively much decreased intensity of (002) peak for Ti_150 

clearly indicates for the availability of largest amount of TiOx when compared with Ti_57 and 

Ti_100, hence less pure Ti surface. Therefore, results pertaining to the differences in intensity of 

main (002) peak of pure sputtered Ti (Hexagonal closed packed phase) [20] relative to (101) 

peak conclude for differential amount of surface oxidized impurities or TiOx on wire surface. 

Similar kind of observations has been made by Rajesh et al [21] for quantifying silver foil purity 

also using relative XRD peak intensities. Figure 8 shows the high-resolution XPS spectra of the 

Ti 2p peaks for Ti_100, Ti_150 and Ti_100HP to have a deeper insight about the formation of 

differential amount of TiOx. The Ti 2p3/2 spin-orbital splitting photoelectrons for Ti_100HP is  
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Figure 8. High-resolution XPS spectra of the Ti 2p peaks for Ti_100, Ti_150 and Ti_100HP [25]. 

located at 459.2 eV which is in agreement with the reported values for Anatase TiO2 (Ti4+ normal 

state) [22]. It has been reported that spin-orbit splitting components are located in the range of 1-

2 eV below the binding energy of Ti4+ (normal) state corresponding to the Ti2+ and Ti3+ states 

indicative of TiOx formation [23]. In the case of Ti_100 it is shifted towards lower binding 

energy of 458.8 eV and with further increase in diameter to 150 µm wire (Ti_150) it exhibits 

even more down-shift at 458.5 eV clearly corroborating that Ti_150 surface is more prone to the 

formation of TiOx compare to Ti_100. The observation that H2O2 surface treatment of Ti-wire 

leads to dramatic change in the surface morphological properties leading to generation of 

nanosheet like structure with enhanced surface area (Figure 2d) and they are basically the 

Anatase TiO2 as confirmed by XRD results (Figure 3) prompted us to investigate their 

implication on photovoltaic behavior. The photovoltaic parameters for all of the H2O2 surface 

treated wires are summarized in the Table 2. It can be clearly seen that H2O2 treatment has 

favorable effect on improving the photovoltaic performance as compared to their respective un-



81 

Figure 9. (a) Photovoltaic characteristics and (b) photocurrent action spectra for 
C-DSSC fabricated using 100 µm Ti-wire before and after the H2O2 surface treatment 
[25].  

treated counterparts. The effect of H2O2 treatment is least for 57 µm (9.47 % increase in 

efficiency) and with the increase in diameter or surface area of wire the effect is more prominent 

and surprisingly most effective for 150 µm (58.03% increase in efficiency). However, due to 

large surface area and formation of relatively larger extent of TiOx could be attributed to hinder 

towards the attainment of best solar cell efficiency using Ti_150HP as compared to Ti_57HP and 

Ti_100HP. Figure 9 exhibits the comparative photovoltaic characteristics for 100 µm Ti wire 

(Ti_100) based C-DSSC before and after the H2O2 treatment (Ti_100HP) for which we have 

observed the best photovoltaic performance. A perusal of this Figure 9(a) clearly corroborates 

 that Jsc is the main contributing factor for increased photoconversion efficiency of 4.71% from 

4.04% since Voc and FF are not being affected appreciably. To explain the enhanced Jsc value 

observed for cylindrical coil based TCO-less photoanodes utilizing 100 m Ti-wire before and 

after the H2O2 surface treatment, photocurrent action spectra was also measured as shown in the 

Figure 9(b).  It can be seen that peak IPCE value have increased from around 55% to 65% at 

about 550 nm wavelength and is attributed to the enhanced Jsc of H2O2 treated Ti-wire. One of 

the possible reasons for the enhanced Jsc could be due to enhanced dye loading since wire 

surface area was found to be increased by Anatase TiO2 nanosheet like microstructures which is 

in direct contact with the nanoporous TiO2 layer utilized for the dye adsorption [24]. To confirm 

this assumption, extent of dye adsorption was also estimated and shown in the Table 2. Increase 
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in the dye loading from 321 (Ti_100) to 365 (Ti_100HP) nmol/cm2 upon H2O2 surface treatment 

verifies the increase in Jsc and IPCE values.  

Table 2 Photovoltaic parameters after H2O2 treatment on 57µm, 100µm and 150µm Ti wire 

based C-DSSC. 

Ti_57HP Ti_100HP Ti_150HP 

Efficiency [%] 3.35 4.71 3.05 

FF 0.51 0.58 0.65 

Voc[V] 0.61 0.65 0.65 

Jsc[mA/cm2] 10.87 12.58 7.23 

Dye loading (nmol/cm2 ) 356.88 365 372.09 

4.4 Conclusion: 
In summary, it has been shown that surface properties of the Ti wires play an important role in 

controlling the performance of C-DSSCs. Investigations pertaining to the EIS revealed that 

extent of TiOx surface impurities varies with the diameter of the wire which is responsible for the 

variable adhesion of coated nanoporous TiO2 and Ti wires. It showed that TiO2/dye/electrolyte 

interfacial charge transfer resistance was mainly affected by the diameter variation, which is 

maximum for untreated Ti_57NT wire due to large amount of surface impurity. This resistance is 

reduced to a comparatively less value after mechanical polishing of the wire surface. The 

variable amount of TiOx as function of wire diameter was further probed by XRD and XPS 

investigations also. Both investigations confirmed the existence of variable amount of TiOx on 

the different wire surfaces which was effecting our device performance. Solar cell performance 

first increased from 57 µm Ti wire to 100 µm and then decreased with further increase in 

diameter to 150 µm. C-DSSCs fabricated with photoanode utilizing mechanically polished Ti 

wire exhibited a considerable enhancement in solar cell efficiency from 1.03 % to 3.06 %. H2O2 

surface treatment further improved the photoconversion efficiency from 4.04 % to 4.71%, which 

is due to the formation of Anatase (A-101) nanosheet like structures as confirmed by XRD and 



83 

XPS studies enhancing surface area and good contact assisting the enhanced dye loading and 

facile charge transport, respectively. 
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CHAPTER 5: INDOOR LIGHT APPLICATION OF COIL TYPE 
CYLINDRICAL DYE SENSITIZED SOLAR CELL 

UTILIZING REFLECTORS 

5.1 INTRODUCTION 

Dye-sensitized solar cells (DSSCs) have gained popularity among the researchers in the recent 

years because of the use of low-cost materials along with the possibility of fabricating upon 

flexible substrates [1-4]. Amongst the approaches adopted to fabricate flexible DSSCs, use of 

flexible photoanode as working electrode consisting of transparent conductive oxide (TCO) 

coated plastic films are most common [5]. This TCO layer is an expensive element and limits the 

DSSC for the mass level productions [6]. With the removal of this TCO and combining DSSC 

with the advantages of cylindrical geometry as reported in past [7, 8] led to fabrication of low 

cost DSSCs having the capability of light harvesting throughout the day. Another interesting area 

of application of   DSSCs is to use it for the indoor lights under fluorescent or diffused light. This 

is the area where DSSCs can outperform inorganic materials based solar cell such as amorphous 

silicon based solar cell and Copper Indium Gallium Selenide (CIGS) solar cells [9]. We have 

already reported one of the fast and easy way to fabricate TCO-less DSSC based on titanium (Ti) 

wire as coil type cylindrical DSSC (C-DSSC) compatible to current incandescent lighting 

appliance production technology [7] using ruthenium (Ru) metal based N719 dye. The ruthenium 

metal is rare earth material and quite expensive [10]. Therefore, other alternatives to metal 

complex based dyes are organic dyes not using rare earth metals having vast possibility of 

molecular design [11, 12] has got a good deal of attentions inn the recent past. Apart from this, 

organic dyes exhibit high molar-extinction-coefficient which increases the light harvesting 

efficiency [13] even in thin films having their potentiality in the solid-state DSSCs fabrication. 

Absorption spectra of the dyes play an important role in controlling the performance of 

the DSSC under white light as well as fluorescent light illuminations [10, 15]. Performance of 

the cylindrical DSSC under white light and diffused light has been studied by Fu et al with 

emphasis on improving the output power in presence of different reflector geometries such as 

parabolic, semi-elliptical, V-groove and semi-circular advocating the superiority of the parabolic 

reflectors [14].  In this chapter, investigation pertaining to the evaluation of performance of 
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TCO-less C-DSSCs under low intensity fluorescent light illumination using commercially 

available ruthenium based N719 and organic dyes such as D205 and Y-123 have been made. 

Results of electrochemical impedance spectroscopy (EIS) are discussed to explain the 

differential solar cell performances. Therefore, we have used parabolic reflectors combined with 

C-DSSC fabricated using different sensitizing dye to investigate their performance under low 

intensity fluorescent light illumination. The solar cell performances in the presence and absence 

of parabolic reflector was also measured and compared.  

5.2 EXPERIMENTAL 

Device fabrication Figure 1 shows the schematic diagram for the cross sectional view of      

C-DSSC fabricated in this work. Fabrication steps are explained in detail elsewhere [8]. Ti-wire 

with 100 µm diameter used as working electrode was wrapped in the shape of a coil. The TiO2 

layers coated on the wrapped metallic wires after sintering at 450oC were subjected to absorption 

with the three sensitizing dyes (N719, D205 and Y123) having structure as shown in the Figure 2. 

The dye bath solution for the dye adsorption on the nanoporous TiO2 was consisted of N719 (0.3 

mM) in t-butyl alcohol and acetonitrile (1:1 V/V), D205 (0.5 mM) in t-butyl alcohol and 

Figure 1. (a) Vertical Cross-sectional view of the C-DSSC (b) C-DSSC with the 
thickness of different elements used 
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acetonitrile (1:1 V/V) and Y-123 (0.1 mM) in ethanol. The dye adsorption time for N719, D205 

and Y-123 was 24 hours, 4 hours and 16 hours, respectively.  Electrolyte with 50 mM Iodine, 

500 mM lithium iodide, 580 mM t-butylpyridine and 600 mM 1-ethyl-3methylimidazolium 

dicyanamide in acetonitrile was used. Different concentrations of iodine such as 10 mM and 

0.1mM were also further utilized for the C-DSSC performance analysis under varying Iodine 

concentration. 

Current-voltage (I-V) measurements and experimental setup 

The measurements were done using solar simulator (KHP-1, Bunko-Keiki, Japan). For 1 SUN 

and diffused light measurements a xenon lamp (XLS-150A) was utilized. Fluorescent lamps 

were also used for indoor light study of the C-DSSC performance. The intensities used were 

around 0.2 mW/cm2, 0.3 mW/cm2, 0.4 mW/cm2 and 0.5 mW/cm2 (Toshiba ,Japan). Figure 3 

shows the experimental setup utilized for the measurement using the parabolic reflectors. The 

parabolic geometry leads to maximum power input at the focus point as drawn in Figure 3(d). 

Therefore, for the best performances of C-DSSC measurements were done at focus point of the 

reflector. A reflecting film (Alanod solar, Miro-Sun, KK, Germany) was pasted on a parabolic 

surface designed using 3D printer to make the parabolic reflectors as shown in Figure 4. 

Different parabolic reflectors of equation such as 1/10 X2, 1/20X2 and 1/40 X2 were used as 

shown in Figure 3(c). 

Overview of Trace Pro 7.5.1(Used for simulation study) Trace Pro 7.5.1 program designs the 

various optical systems. It traces the rays to calculate the illumination distributions throughout 

the system. Models in the program are created by importing lens design from CAD files, or  

Figure 2 Molecular structure of the dyes used in this work. 
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Figure 3. (a) Area of irradiation when reflector was used (b) Top view for the measurement 
done (c) Different reflectors used (d) Schematic showing the rays goes to focus after 
reflection 

directly creating solid geometry within it. In the current study, we modeled our C-DSSC while 

adding the optical properties of the elements above mesoporous TiO2 for checking the input 

power distribution on the TiO2 surface. Different equation based parabolic reflectors were also 

modeled. The parameters for spectral irradiation of 1 SUN and fluorescent lamps were added for 

simulating the light sources. Both parallel and spherical sources were simulated for the study. 

Figure 4. Reflectors used in the experiment 
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Figure 5 (a) Current-voltage characteristic of the C-DSSC (b) IPCE of the cell (c) 
Transmission of the electrolyte layer (d) white light performance of the cell with and 
without reflector at different intensities 

5.3 RESULTS AND DISCUSSION 

5.3.1 White light performance using N719 dye 

The typical current-voltage (I-V) characteristic for the optimized C-DSSC fabricated is shown in 

Figure 5(a).The electrical parameters like short circuit current density (Jsc) =10.24 mA/cm2, 

open-circuit voltage (Voc) = 0.66 and fill factor (FF) =0.54 were obtained for this C-DSSC 

leading the power conversion efficiency of 3.68%. This performance was obtained under white 

light illumination intensity of AM 1.5 (100 mWcm2) without any mask. The area of irradiation 

taken to calculate short circuit current density (Jsc) and efficiency is the width of TiO2 coated on 

the wires multiplied with the diameter of the glass tube used, which is commonly adopted by 

other research groups also [14]. Figure 5(b) shows the incident photon to current conversion 

efficiency (IPCE) which is up to 50% with maximum at around 550 nm (absorption peak for 

N719 dye). Low IPCE in the wavelength region of 300-400 nm is due to the absorption by the 
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Figure 6. Spectral distribution for 1 SUN (dash green color), Fluorescent lamps with 
different intensities and absorption spectra for N719 dye (solid line in black) 

iodine electrolyte in this region. This can also be clearly seen in Figure 5(c), which shows the 

transmission spectra of the electrolyte as it goes down to zero transmission value just below 450 

nm. Figure 5(d) gives the change in the normalized efficiency with and without reflector, which 

shows better performance using the reflector especially at intensities below 1 mW/cm2. This low 

intensity region is an important region for application of DSSCs compared to inorganic solar 

cells [9].  

Figure 6 shows spectral irradiation distribution of AM 1.5 sunlight and fluorescent lamps along 

with the absorption spectra for N719 attached to the TiO2 surface. It clearly shows that there is 

far better spectral matching between absorption of N719 and fluorescent lamp light in the range 

of 350-750 nm compared to that of white light (intensities are in arbitrary unit).This matching 

plays the main role for the better PCE of DSSCs compared to inorganic solar cells under 

fluorescent lights [15]. 

5.3.2 Performance of C-DSSCs under fluorescent lamp using N719 dye  

After satisfactory performance of the C-DSSC using N719 dye with white light, its performance 

was also analyzed under illumination using low intensity fluorescent lamp. With the use of the 

reflectors both of the efficiency and total output power was increased as shown in the Figure 7. 

This figure shows the best performance using reflector with equation 1/10 X2 compared to other 

reflectors fabricated using different equations. Although all of the reflectors used for this had 

same projection area, however, difference in performance could be seen. This might be attributed  
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Figure 7. Performance of C-DSSC (N719 dye) utilizing reflectors of different equation 

Figure 8. Input power distribution on the surface of TiO2/Dye using parallel light
source with 0.3 mW/cm2 intensity 

to differences in the input power distribution on the surface of the TiO2. To confirm this we did 

some simulation study using Trace Pro 7.5.1 by preparing optical model of our C-DSSC. The 

refractive index of the constituent layers which are above TiO2/Dye surface such as heat 

shrinkable tube & electrolyte was used to prepare the model & finally the input power 

distribution on the TiO2/Dye surface was analyzed and total power was calculated. For this 

purpose first a parallel light source was used with input power intensity of 0.3 mW/cm2. In this 

simulation study there is no loss of light energy hence the distance between the light source and 

reflector surface doesn’t affect the simulation results in case of parallel light source. 
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Figure 9. Input power distribution on the surface of TiO2/Dye using spherical light

source with 100 mW/cm
2
 intensity 

Table 1. Calculated input power on TiO2/Dye (Reflectors are with projection area of 2*3cm2) 

(1/10)X2 (1/20)X2 (1/40)X2 

Average Input Power (mW/cm2) 0.328 0.325 0.326 

Total input power(mW) 0.112 0.111 0.111 

The results obtained for this are shown in Figure 8. The different intensities are shown 

with different colors according to the chart on the left of each plot. It shows approximately the 

same total input power as listed in Table 1 on the TiO2/Dye surface with the use of all the 

reflectors. In principle it should not be the possible since we are getting different efficiency & 

output power, therefore, input power should be different. To completely understand we thought 

about the real time experimental situation, where light is not parallel but falling on the object 

surface from all direction. Hence, we simulated the same C-DSSC model with the use of 

spherical source with intensity of 100 mW/cm2, keeping it at fixed distance from bottom of the  
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Figure 10. (a) Current-Voltage Characteristics using reflectors with 
different projection area (blue line is for 3 cm long & red line is for 5 
cm long reflector) 

reflector in all the cases. Here, we found that total input power on the surface of TiO2/Dye using  

1/10 X2 equation based reflector was maximum while it was minimum in case of reflector made 

using 1/40 X2 as listed in Table 2. This possibly explains the reason for getting different results 

using different reflectors.  

Table 2. Calculated input power on TiO2/Dye (Reflectors are with projection area of 2*3cm2) 

(1/10)X2 (1/20)X2 (1/40)X2 

Average Input Power (mW/cm2) 16.59 14.71 11.97 

Total input power(mW) 5.97 5.29 4.30 

5.3.2.1 Effect of change in area of the reflector  

This is an interesting result obtained in case of the C-DSSCs using reflectors with different 

projection area. We found that when we increased the length of the reflectors the output power  
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was increasing as shown in the Table 3. We have taken 3 cm and 5 cm long reflectors with the 

same width as shown in Figure 10. In cases of both the reflectors the PCE obtained for the same 

intensity was approximately the same. 

Table 3 Photovoltaic parameters of C-DSSC using reflectors with different projection area 

3cm_0.304mW/cm2 3cm_0.419mW/cm2 5cm_0.304mW/cm2 5cm_0.417mW/cm2 

Efficiency 

[%] 11.21 11.47 11.13 12.57 

FF 0.74 0.75 0.75 0.76 

Voc[V] 0.57 0.58 0.60 0.62 

Jsc[mA/cm2] 0.08 0.11 0.07 0.11 

Area[cm2] 0.36 0.36 0.60 0.60 

Output 

Power (mW) 0.012 0.017 0.020 0.031 

However, the output power in case of larger reflector i.e. for 5 cm long reflector was higher than 

3 cm long reflector which is due to increase of input power on the surface of the TiO2/Dye with 

the larger reflector. Table 3 shows output power of the same C-DSSC was increased from 0.012 

mW to 0.020 mW when intensity of 0.304 mW/cm2 was used with increase in reflector area. 

Similarly, with the use of approximately 0.417 mW/cm2 intensity the output power for the same 

C-DSSC was increased from 0.017 mW to 0.031 mW. However, PCE obtained in all cases was 

nearly the same for the same intensity used. 

5.3.3 C-DSSC performance using different dyes (N719, D205 & Y123) 

Figure 11 shows the photocurrent density-voltage (J-V) curves for the C-DSSCs using different 

sensitizing dyes measured at AM 1.5G condition along with their photovoltaic parameters shown 

in the Table 4. The C-DSSC sensitized using N719 dye exhibits best efficiency of 4.02 % 

outperforming the results obtained for D205 and Y-123 as 3.36 % and 2.30 %, respectively.  
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Figure 11. IV and dark current characteristics of the devices using different dye. 

Table 4. Photovoltaic parameters for the C-DSSCs at 100mW/cm2 

*Value shown in parenthesis exhibits the average data for each parameter along with standard

deviation for three independent cells fabricated under identical conditions. 

The open circuit voltage (Voc) in the case of N719 dye based C-DSSC is 0.69 V, which is quite 

higher than 0.62 V and 0.58 V of D205 and Y-123, respectively. This is mainly due to higher 

N719 D205 Y-123 

Efficiency[%] 4.02 

(3.66±0.32) 

3.36 

(3.06±0.26) 

2.30 

(2.3±0.02) 

FF 0.71  

(0.66±0.04) 

0.70 

(0.64±0.05) 

0.72 

(0.72±0.005) 

Voc[V] 0.69 

(0.66±0.03) 

0.62 

(0.62±0.01) 

0.58 

(0.57±0.01) 

Jsc[mA/cm2] 8.18 

(8.2±0.32) 

7.77 

(7.68±0.24) 

5.50  

(5.55±0.07) 
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recombination in the case of D205 and Y-123 based solar cells as can be seen in dark current 

characteristics shown in the Figure 11. This is in agreement with the previous reports showing 

higher recombination in organic dyes compared to Ru complex based N719 dye [13]. The fill-

factor (FF) which is mainly affected by the adhesion between coated nanoporous TiO2 and Ti 

substrate [16], is almost same for all of C-DSSCs based on different dyes used in the present 

investigation.  

Figure 12 exhibits the incident photon to current conversion efficiency (IPCE) for the different 

devices. The higher value of IPCE about 60% for N719 based device compared to around 50% 

and 30% for D205 and Y-123 based C-DSSCs, respectively, is in accordance with the observed 

Jsc values shown in the Figure 11. In all of the dyes the light absorption window is almost the 

same as can be seen in Figure 13, which shows solid-state UV-Visible electronic absorption 

spectra of the dyes adsorbed on the nanoporous TiO2 thin film. This indicates that nearly similar 

light harvesting capability for dyes N719 and D205 except Y123, however, different 

recombination leads to different IPCE and Jsc.  

To have further insight about the reason behind the different recombination, EIS 

measurement was also performed at the constant current of 1 mA/cm2 under 1 Sun illumination  

Figure 12. IPCE curve obtained for the devices. 
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Figure 13. UV-Vis spectra on the TiO2 thin film for the dyes used. 

as shown in Figure 14 (a). The electrical equivalent circuit along with the different resistances is  

shown in Figure 14 (b) which was determined as per the previous reports [17]. R1 is the 

resistance to the electron flow in the Ti wire, which should be almost the same for all of the 

devices since Ti wire with same length and diameter was used to fabricate the different C-DSSCs. 

R2 is resistance related to charge transfer through counter electrode and responsible for the 

different fill factor (FF), which seems to be not a deciding parameter for different solar cell 

performance. R3 is the charge transfer resistance at TiO2/Dye/electrolyte interface, which is 

72.11 Ω for N719 based device compared to D205 (139.6 Ω) and Y123 (147.10 Ω). This 

resistance is mainly responsible for higher recombination in both of the organic dye based device 

in comparison to N719 based device. 

To effectively utilize the C-DSSCs due to its cylindrical geometry, its top and bottom 

both of the surfaces are needed to be illuminated at the same time. As shown in the Figure 11, 

the solar cell performance under white light performance was only due to the top surface of the 

C-DSSC, which has contributed to the electrical power generation and the bottom surface which 

was under diffused or no light might have increased the resistance of the solar cell. Therefore, 

the parabolic reflectors were taken to tap the diffused light for fluorescent lamp lights as shown 

in Figure 15(a) & (b). It is well known that the parabolic geometry leads to the maximum power  
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input at the focus point and the reflector used in this work reflects above 90% of light falling 

vertically from the top. Therefore, it allows to utilize the reflected light effectively for the bottom 

surface of the C-DSSCs. All the measurements were done with the utilization of reflector have 

Figure 14. EIS measured at constant current of 1mA/cm2 under 1 SUN. 

Figure 15. Experimental set up for the measurement done. 
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Figure 16. (a) Performance of the devices with reflector. (b) Performance of device 
using N719 dye 

irradiation area as the width of TiO2 coated surface multiplied with length of the reflector, which 

is the projection area of C-DSSC on the reflector surface.  

Figure 16a exhibits the performance of all of the devices at different light intensities in the 

presence of a parabolic reflector. It shows the similar trend as observed under the white light 

illumination but with much enhanced photoconversion efficiencies. The C-DSSC based on N719 

dye shows efficiency around 15 % at 230 µW/cm2 (1533 Lux) and it increases up to 30 % at 500 

µW/cm2 (3333 Lux). With the use of reflector the solar cell performance has increased almost 

two times compared to that of without reflector as shown in Figure 16(b).  D205 and Y123 based 

DSSC shows nearly same performance at 230 µW/cm2 and with the increase in the intensity 

there is little improved performance by the D205 based C-DSSC. This poor performance due to 

organic based dyes is probably due to the higher recombination, which are becoming more 

prominent under low intensity fluorescent lights. The resistance R3 in Figure 14 increases with 

the decrease in the intensity [18, 19] which enhances the recombination more for the organic 

dyes in comparison to N719 based device. The IV-curve for the best solar cell using N719 dye 

with and without reflector geometry at 1533 Lux intensity is shown in Figure 17 along with the 

average photovoltaic parameters shown in the Table 5. It can be seen from this figure and Table 

5 that all of the photovoltaic parameters such as Jsc, Voc, FF, efficiency and out-put power were 

found to be enhanced when parabolic reflector was used during the photovoltaic characteristic 

measurement. Results thus obtained in this present work was also compared with the 

commercially available amorphous silicon based solar cells [20] for low intensity in-door 

applications. The output power of 34.40 µW/cm2 obtained with reflector at 1533 Lux in the  
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Table 5 Photovoltaic parameters for the device using N719 dye at 1533 LUX. 

Without Reflector With Reflector 

Efficiency[%] 6.05  

(5.61±1.6) 

14.95  

(12.79±1.6) 

FF 0.47  

(0.48±0.07) 

0.68  

(0.65±0.04) 

Voc[V] 0.47  

(0.45±0.05) 

0.57 

(0.55±0.03) 

Jsc[µA/cm2] 63.86  

(59.94±6.5) 

89.35 

(80.46±6.2) 

Output Power(µW/cm2) 13.90  

(12.98±3.66) 

34.40 

(28.96±3.8) 

*Value shown in parenthesis exhibits the average data for each parameter along with standard

deviation for three independent cells fabricated under identical condition. 

present work seems to exhibit the satisfactory performance when it was compared to amorphous 

silicon based solar cell under the fluorescent light at 200 Lux giving out-put power of 7 W/cm2 

varying linearly up to >1000 Lux. 

Figure 17. Performance of the device at around 1500 LUX using N719 dye. 
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5.4 CONCLUSIONS 

Ti coil based TCO-less cylindrical DSSC have been fabricated and used for indoor light 

applications. Performance under both of the white and fluorescent light was measured with and 

without reflector. Different parabolic reflectors having equations of 1/10 X2, 1/20 X2 and 1/40 X2

were fabricated using 3D printer and utilized effectively to enhance both efficiency and the total 

output power. C-DSSC was optically modelled using Trace Pro 7.5.1 optical simulation software 

in order to investigate the distribution of input power on the cylindrical photoanodes of the      

C-DSSCs. Based on this optical simulation, it was found that main reason for high output power 

with reflectors is due to increase in the input power on TiO2/Dye surface. C-DSSC using Ru 

metal based N719 dyes showed better performance compared to organic dyes such as D205 and 

Y123 both in 1 SUN as well as fluorescent light illuminations. The C-DSSC based on N719 dye 

giving the efficiency of 4.02 % under 1 SUN was dramatically improved to about 30 % under 

fluorescent light illumination with the intensity of 0.5 mW/cm2. The TiO2/Dye/electrolyte 

interface resistance was responsible for the variable device performance. The output power 

obtained at around 1500 LUX showed satisfactory performance of C-DSSC implemented with 

the reflector in comparison to commercially available amorphous Si based solar cells. 
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CHAPTER 6: GENERAL CONCLUSIONS 

Possibility of fabrication of dye-sensitized solar cells (DSSCs) on the flexible substrates was 

explored and a new cylindrical solar cell architecture using the metallic wires named as C-DSSC 

was proposed. The main idea was to develop a cost effective and industrially viable cylindrical 

solar cells for large area applications. Efforts were directed to remove the existing problems in 

previous device architectures such as shading effect and complex fabrication process along with  

improvement of its performance in this novel device architecture. In addition, use of these solar 

cells for indoor light application using parabolic reflectors with some optical simulation was also 

demonstrated.  

In the first chapter of the thesis, I did some literature survey on the flexible solar cells which 

gave me an idea and possible area of research in DSSC. The TCO-less cylindrical architecture 

owing to its advantages such as uniform solar harvesting, higher total output in day as compared 

to conventional flat solar cell along with its cost effectiveness have shown its potential for 

commercialization and also less research in this area motivated to develop a new architecture.  

In the second chapter, I gave a brief introduction on characterization techniques used in 

analyzing a typical DSSC. A short literature survey along with principle underlying the working 

principle of different characterizations tools used in the present work was done 

Chapter three deals with my beginning of experimental work regarding proposal of novel 

device architecture along with confirmation of it’s functioning. In this context, fabrication of a 

novel TCO-less cylindrical dye-sensitized solar cell with more ease and fast method of fabrication 

was demonstrated and compared to other previous TCO-less DSSC architectures. It has been 

shown that nature of wire and surface treatment plays an important role in controlling the device 

performance. EIS investigation revealed that better electrical contact between metal wires and 

nanoporous TiO2 was controlling the overall photovoltaic performance. Various aspects related to 

performance of our device such as passivating nature of Ti and its effect on the performance of 

our solar cell was conducted in detail leading to observation 3.88% photoconversion efficiency 

using SS/Ti (stainless-steel sputtered with titanium). 
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Chapter four was mainly focused on performance of our solar cell using Ti wire only to 

find some answers of the queries which came in the previous chapter related to use of Ti as 

substrate. Ti wire was obvious choice also due to its low resistance, good flexibility, superior 

corrosion resistance and high temperature stability which was suitable for C-DSSC fabrication. 

Here it was found that mechanically polished Ti wire exhibited a considerable enhancement in 

solar cell efficiency from 1.03 % to 3.06 %. H2O2 surface treatment further improved the 

photoconversion efficiency from 4.04 % to 4.71%, which is due to the formation of anatase (A-

101) nanosheet like structures enhancing surface area and good contact assisting the enhanced dye 

loading and facile charge transport, respectively. 

Finally, chapter five showed an important application of DSSC for generating electricity 

under indoor light conditions. The cylindrical geometry allows the use of reflectors to tap the 

diffused and reflected light, hence keeping this in mind I showed that C-DSSC can be used more 

effectively using the parabolic reflectors. C-DSSC was optically modelled using Trace Pro 7.5.1 

and it was found that main reason for high output power with reflectors is due to increase in the 

input power on TiO2/Dye surface. Different dyes such as N719, D205 & Y123 were taken to 

evaluate the effect on the performance of C-DSSCs under low intensity fluorescent light 

illuminations. Fluorescent light with intensities (0.1 mW/cm2 to 0.5mW/cm2) were used for 

comparative study of solar cell performances. In the end, the output power obtained for C-DSSCs 

at 1500 LUX illumination exhibited comparable performance with that commercially available 

amorphous Si based solar cell. 
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FUTURE PROSPECTS 

The idea and knowledge gained about the surface properties of metallic wire and use of these 

metallic wires for developing cylindrical TCO-less DSSCs could be used with some high 

performing dyes such as black dye and zinc porphyrin dye (in case of conventional flat DSSC the 

PCE using these is 11 % & 13% respectively) and dye cocktails along with suitable electrolyte 

combination could possibly enhance the C-DSSC performance even further. Another important 

aspect is to implement the Ti substrate in future to some other fields of solar cell especially in 

case of solution processed organic-inorganic hybrid solar cells (OIHSCs). In OIHSCs, a TCO-

less architecture with these metallic substrates could be a breakthrough. Recent past has 

witnessed that solution processed organic-inorganic hybrid solar cells (OIHSC) have now 

reached photoconversion efficiency (PCE) of about 20 % which is almost equal to the CIGS and 

expected to reach up to crystalline silicon (25%) solar cells. Now demand of time is a real big 

challenge to bring this lab research to common society considering the cost, stability and 

environmental concerns.   

Overall cost depends directly on fabrication cost and inversely on the efficiency 

and its stability. Therefore, by adopting TCO-less device architecture in combination with high 

PCE of OIHSC would rather make it easier to enhance efficiency of TCO-less cylindrical solar 

cells. Although there are few reports on fabricating the OIHSCs on PET/ITO and stainless steel 

wires, however, reported PCEs are very low, therefore, still have sufficient rooms for the further 

improvement. Also, the long term stability owing to the high moisture sensitivity of OIHSC due 

to improper sealing could be solved with the use of heat shrinkable tube and cylindrical 

geometry.  
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