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Abstract

Many organisms have evolved molecular clocks to anticipate daily changes in their environment. The molecular
mechanisms by which the circadian clock network produces sustained cycles have extensively been studied and
transcriptional-translational feedback loops are common structures to many organisms. Although a simple or single
feedback loop is sufficient for sustained oscillations, circadian clocks implement multiple, complicated feedback loops. In
general, different types of feedback loops are suggested to affect the robustness and entrainment of circadian
rhythms. To reveal the mechanism by which such a complex feedback system evolves, we quantify the robustness and
light entrainment of four competing models: the single, semi-dual, dual, and redundant feedback models. To extract the
global properties of those models, all plausible kinetic parameter sets that generate circadian oscillations are searched to
characterize their oscillatory features. To efficiently perform such analyses, we used the two-phase search (TPS) method as a
fast and non-biased search method and quasi-multiparameter sensitivity (QMPS) as a fast and exact measure of robustness
to uncertainty of all kinetic parameters. So far the redundant feedback model has been regarded as the most robust
oscillator, but our extensive analysis corrects or overcomes this hypothesis. The dual feedback model, which is employed in
biology, provides the most robust oscillator to multiple parameter perturbations within a cell and most readily entrains to a
wide range of light-dark cycles. The kinetic symmetry between the dual loops and their coupling via a protein complex are
found critically responsible for robust and entrainable oscillations. We first demonstrate how the dual feedback architecture
with kinetic symmetry evolves out of many competing feedback systems.
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Introduction

Many organisms have evolved molecular clocks to anticipate

daily changes in the environment [1,2]. The molecular mecha-

nisms by which the circadian clock network produces sustained

cycles have extensively been studied and transcriptional-transla-

tional feedback loops are known as common structures to many

organisms [1]. Although a simple or single feedback loop is

sufficient for sustained oscillations [3], circadian clock systems

implement complicated feedback loops. A current problem is to

reveal the mechanism by which such a complex feedback system

evolves.

Mathematical models for circadian clocks have been proposed

and extensively studied [4–12]. In most studies, nominal or

convenient values are assigned to kinetic parameters, because

experimental data are lacking. The simulated results depend on a

particular choice of kinetic parameters, while not only network

topology but also parameter values alter the system’s features [13–

16]. To understand the global properties of circadian clocks, it is

necessary to search all plausible kinetic parameter sets that

generate circadian oscillations and to characterize the oscillatory

features over all of the parameter sets. A shortage of the parameter

search may lead to a wrong conclusion. To efficiently search

parameters, we developed the two-phase search (TPS) method,

which combines a random search with genetic algorithms to

achieve global search while reducing computational cost [17].

Robustness is the ability to resume reliable operation in the face

of different types of perturbations: parameter uncertainty,

environmental and genetic changes, and stochastic fluctuations

[18–20]. The importance for robustness is a functional criterion to

characterize the performance of biochemical networks [21], and it

can be used as a measure for determining plausibility among

different competing models, assuming that biological designs

enhance robustness. We proposed quasi-multiparameter sensitivity

(QMPS) as a numerical and fast measure of robustness to the

uncertainty of all kinetic parameters [22].

In general, feedback loops can be distinguished in terms of

topological features: loop length, loop redundancy, and coupling

types of multiple loops. It is known that a negative feedback with a

long reaction chain generates an oscillator more readily than one

with short chains [23]. By using TPS and QMPS, we demonstrated

that long-chain feedback loop has potential to present a robust

oscillator through the mechanism of distributed time delays [22]. In

engineering and biology, redundancy is the main pillar of system’s

robustness. Genetic redundancy enables reliable development

against fluctuating environment and mutations [24–27]. Redundant

metabolic pathway reduces the sensitivity to enzyme activity for the

flux and concentration of end products [22,28]. In circadian clocks,
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it is critically important to understand how multiple, complex

feedback loops are designed for robust oscillations. Stelling et al.

characterized the robustness of three types of feedback models: the

single, dual, and redundant feedback models by using multi-

parameter perturbation analysis, suggesting that the most robust

model is not the dual feedback model (employed by real biological

systems) but the redundant feedback model (a hypothetical model)

[15]. It may be a widely-recognized hypothesis, but a question

arises: how the dual feedback architecture survives against the

redundant feedback architecture despite less robustness of it.

On the other hand, the entrainment to a fluctuating environment

was numerically analyzed to validate mathematical models for

circadian clocks [5,6,8,10]. Gonze and Goldbeter investigated the

occurrence of various modes of dynamic behaviors as a function of

the forcing period and of the amplitude with respect to light-induced

changes in kinetic parameters [29]. Kurosawa and Goldbeter

examined how the entrainment of these rhythms is affected by the

free-running period (period under constant darkness) and by the

amplitude of the external light-dark cycle [30]. However, their

analyses largely depended on a particular choice of kinetic

parameters. Considering that kinetic parameters constantly fluctu-

ate within a cell, the network structure should be the main source of

the capability of entrainment. Therefore, global, firm analysis is

required to reveal how a particular structure in circadian clocks is

related to light entrainment.

By using rigorous numerical methods of TPS and QMPS, we

reveal the mechanism of how particular feedback architecture is

related to robustness and to entrainment to light-dark cycles in

circadian clocks. Furthermore, we demonstrate how the dual

feedback architecture evolves out of many competing feedback

systems, correcting or overcoming the existing hypothesis.

Results and Discussion

Biochemical Models
In many biological models feedback loops are connected in

different manners. Architectures of feedback loops are featured by

loop redundancy and coupling of multiple loops. To analyze how

the loop coupling logic affects robustness and entrainment, the

single, semi-dual, dual, and redundant feedback models were

constructed by simplifying or refining the feedback models

described elsewhere [4,5,12,15]. The network maps are shown

in Figure 1. The mathematical equations and their associated

parameters are shown in Tables 1 and 2, respectively.

Figure 1. Biochemical network maps of the circadian clock models with different types of loop coupling logics. A: The single feedback
model, B: the semi-dual feedback model, C: the dual feedback model, D: the redundant feedback model. The notation of CADLIVE [46–48] is used for
simplifying the diagram. The dashed circle represents nucleus.
doi:10.1371/journal.pone.0030489.g001
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The single feedback model (Figure 1A) is a simplified version of

Drosophila PER feedback model [4]. In this model, X gene expression

is negatively controlled by clock protein X. The single feedback model

is used as the reference or control. The clock protein in nucleus is

regarded as the output component from the circadian system as the

clock proteins control gene expressions in vivo. In the single feedback

model, X in nucleus (X(nuc)) is considered as the output component.

The semi-dual feedback model (Figure 1B) is a refined version of

the dCLK-CYC feedback loop in the interlocked feedback model

for Drosophila circadian clock [12]. In the semi-dual feedback model,

the synthesis of protein X is negatively regulated by the heterodimer

of X:Y, while the synthesis of protein Y occurs constitutively. In this

model, the X:Y complex in nucleus (X:Y(nuc)) is considered as the

output component. In Drosophila, X and Y correspond to dCLK and

CYC, respectively. CYC is reported to be abundant compared to

dCLK [31]. The question arises as to whether Y level in the semi-

dual feedback model contributes to the performance in robustness

and entrainment.

The dual feedback model (Figure 1C) is a simplified version of

the Drosophila PER-TIM feedback model [5]. In this model, the X

and Y feedback loops are coupled via the complex of X:Y and the

syntheses of both X and Y are negatively regulated by X:Y. In

Drosophila, X and Y correspond to PER and TIM. Unlike the semi-

dual feedback model, the Y loop in the dual feedback model is

closed to form a negative feedback control, where the Y

concentration oscillates with X. In this model, the X:Y complex

in nucleus (X:Y(nuc)) is considered as the output component. The

dual feedback model has the symmetric structure of X and Y loops.

By assigning the same values to the corresponding kinetic

parameters of both the X and Y loops (e.g., S1 to S3, D1 to D3),

Table 1. Dynamic models of competing circadian clock models.

Model name Equation

The single feedback model (m = 3) d½mRNA(X )�
dt

~S1
K1

h

K1
hz½X (nuc)�h

{D1
½mRNA(X )�

L1z½mRNA(X )�{D4½mRNA(X )�
1

d½X �
dt

~S2½mRNA(X )�{T1
½X �

U1z½X �
zT2

½X (nuc)�
U2z½X (nuc)�{D2

½X �
L2z½X �

{D5½X �
2

d½X (nuc)�
dt

~T1
½X �

U1z½X �
{T2

½X (nuc)�
U2z½X (nuc)�{D3

½X (nuc)�
L3z½X (nuc)�{D6½X (nuc)� 3

The semi-dual feedback model (m = 6) d½mRNA(X )�
dt

~S1
K1

h

K1
hz½X : Y (nuc)�h

{D1
½mRNA(X )�

L1z½mRNA(X )�{D7½mRNA(X )�
1

d½X �
dt

~S2½mRNA(X )�{B1½X �½Y �zB2½X : Y �{D2
½X �

L2z½X �
{D8½X �

2

d½mRNA(Y )�
dt

~S3{D3
½mRNA(Y )�

L3z½mRNA(Y )�{D9½mRNA(Y )� 3

d½Y �
dt

~S4½mRNA(Y )�{B1½X �½Y �zB2½X : Y �{D4
½Y �

L4z½Y �
{D10½Y �

4

d½X : Y �
dt

~B1½X �½Y �{B2½X : Y �{T1
½X : Y �

U1z½X : Y �zT2
½X : Y (nuc)�

U2z½X : Y (nuc)�

{D5

½X : Y �
L5z½X : Y �{D11½X : Y �

5

d½X : Y (nuc)�
dt

~T1
½X : Y �

U1z½X : Y �{T2
½X : Y (nuc)�

U2z½X : Y (nuc)�{D6
½X : Y (nuc)�

L6z½X : Y (nuc)�
{D12½X : Y (nuc)�

6

The dual feedback model (m = 6) The equations except No. 3 are the same as those of the semi-dual feedback model.

d½mRNA(Y )�
dt

~S3
K2

h

K2
hz½X : Y (nuc)�h

{D3
½mRNA(Y )�

L3z½mRNA(Y )�{D9½mRNA(Y )�
3

The redundant feedback model (m = 6) d½mRNA(X )�
dt

~S1
K1

h

K1
hz(½X (nuc)�z½Y (nuc)�)h

{D1
½mRNA(X )�

L1z½mRNA(X )�
{D7½mRNA(X )�

1

d½X �
dt

~S2½mRNA(X )�{T1
½X �

U1z½X �
zT2

½X (nuc)�
U2z½X (nuc)�{D2

½X �
L2z½X �

{D8½X �
2

d½X (nuc)�
dt

~T1
½X �

U1z½X �
{T2

½X (nuc)�
U2z½X (nuc)�{D3

½X (nuc)�
L3z½X (nuc)�{D9½X (nuc)� 3

d½mRNA(Y )�
dt

~S3
K2

h

K2
hz(½X (nuc)�z½Y (nuc)�)h

{D4
½mRNA(Y )�

L4z½mRNA(Y )�
{D10½mRNA(Y )�

4

d½Y �
dt

~S4½mRNA(Y )�{T3
½Y �

U3z½Y �
zT4

½Y (nuc)�
U4z½Y (nuc)�{D5

½Y �
L5z½Y �

{D11½Y �
5

d½Y (nuc)�
dt

~T3
½Y �

U3z½Y �
{T4

½Y (nuc)�
U4z½Y (nuc)�{D6

½Y (nuc)�
L6z½Y (nuc)�{D12½Y (nuc)� 6

[mRNA(X)] is mRNA for protein X, [X] protein X, and [X(nuc)] protein X in nucleus. [mRNA(Y)], [Y], and [Y(nuc)] are named in the same manner. [X:Y] is the binding complex
of X and Y, [X:Y(nuc)] the complex in nucleus. m is the number of equations for each model.
doi:10.1371/journal.pone.0030489.t001
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the dual feedback model shows a kinetic symmetry between the X

and Y loops.

The redundant feedback model (Figure 1D), which is not seen in

organisms, was presented as a competitive model to the dual

feedback model [15]. It has a symmetric structure between the X

and Y loops, where X and Y independently regulate the syntheses

of themselves. The total amount of X and Y in nucleus

(X(nuc)+Y(nuc)) is the output. The redundant feedback model was

mentioned to be the most robust oscillator for all the models.

Robustness Analysis
We investigated the mechanism by which different coupling

logics: the single, semi-dual, dual, and redundant feedback models

provide robustness to perturbation to an entire system. To extract

the global properties of those models, all plausible kinetic

parameter sets that generate circadian oscillations in constant

darkness are searched to characterize their oscillatory features. It is

important that the conclusion is independent of a particular choice

of kinetic parameter values. To this end, we used two-phase search

(TPS) method and quasi-multiparameter sensitivity (QMPS). For

details, see Materials and Methods.

The semi-dual feedback model
For the semi-dual feedback model, we simulated the QMPS of

the period and amplitude of the oscillatory behaviors of the output

component (X:Y(nuc)). Especially, we analyzed how the robustness

depends on the Y level. The kinetic parameter values were searched

by TPS so as to provide typical oscillatory behaviors: The period

and amplitude for the oscillation of the output component were set

to 23–25 h and to 2–6 nM, respectively. In the parameter search,

the total Y level was constrained within the specific range (less than

10 nM, between 10 and 200 nM, or more than 200 nM). The

search parameter values were varied by 0.1–10 fold with respect to

the reference values as shown in Table 2. For each range of the Y

level, a thousand of the solution parameter sets were obtained that

produce the given oscillatory features. For all the solutions, QMPSs

were calculated with respect to the period and amplitude of the

output component oscillations. The cumulative frequency distribu-

tions for QMPS are shown in Figure 2. The QMPSs for period and

amplitude decrease with an increase in the amount of Y, and their

QMPS distributions approach to those in the single feedback model.

With respect to robustness in oscillations, the semi-dual feedback

model can be comparable to the single feedback model, but cannot

overwhelm it.

The semi-dual feedback model was derived from the dCLK-

CYC feedback loop in Drosophila [12], where X and Y correspond

to dCLK and CYC, respectively. Our results predict that a high

amount of CYC leads to robust oscillations. Indeed, the

concentration of CYC is much higher than that of dCLK in

Drosophila [31]. In mammals, BMAL1 and CLK appear to

constitute a semi-dual feedback architecture [6], where X and Y

correspond to BMAL1 and CLK, respectively. The level of CLK is

higher than that of BMAL1 [32,33]. These observations indicate

that living systems have evolved to increase in the level of protein Y

in order to cope with parameter uncertainty.

The dual feedback model
The dual feedback model has the symmetric structure of the X

and Y loops. Here parameter r ($0) is introduced, which adjusts

the symmetry between X and Y loops in terms of kinetics. In TPS,

the search space for the kinetic parameters associated with the Y

loop (Si+2, i = 1,2; K2; Di+2, i = 1,2,7,8; Li+2, i = 1,2) is provided by r
and by the kinetic parameters associated with the X loop:

Si

1zr
ƒSiz2ƒSi(1zr) (i~1,2)

K1

1zr
ƒK2ƒK1(1zr)

Di

1zr
ƒDiz2ƒDi(1zr) (i~1,2,7,8)

Li

1zr
ƒLiz2ƒLi(1zr) (i~1,2)

ð1Þ

As the value of r decreases, the values of the kinetic parameters for

the Y loop approach to those for the X loop, increasing kinetic

symmetry. When the value of r is zero, the values of the kinetic

parameters associated with the X and Y loops are exactly the same

and the two loops are perfectly symmetric. When the value of r is

large enough ($99), the kinetic parameter values for both the X

and Y loops are independently assigned.

We simulated the QMPS of the period and amplitude of the

output component (X:Y(nuc)) of the dual feedback model with

different values of r. The kinetic parameter values were

searched by TPS so as to provide typical oscillatory behaviors,

where they were varied by 0.1–10 fold with respect to the

reference values as shown in Table 2. In addition, the search

space for the kinetic parameters associated with the Y loop is

further constrained by Eqs. (1). For each r value, a thousand of

the solution parameter sets were obtained that produce the

target oscillatory behaviors. For all the solutions QMPSs were

calculated with respect to the period and amplitude of the output

component oscillations. The cumulative frequency distributions

for QMPS are shown in Figure 3. A decrease in the r value

decreases the QMPS values with respect to both period and

amplitude, indicating that the kinetic symmetry of feedback

loops enhances the robustness of the oscillation to uncertainty of

multiple parameters. When r equals to zero, the dual feedback

model provides the most robust oscillator and greatly over-

whelms the single feedback model.

Here, we present the hypothesis that the dual feedback model

evolves toward the increased kinetic symmetry between the X and Y

loops. A dual feedback architecture is found as the PER-TIM system

in the Drosophila, and the symmetry between the two feedback loops

are frequently assumed [5,10,11]. Although it is unclear whether

these feedback loops are kinetically symmetric in vivo, many

experimental data suggested that the processes of PER and TIM

have the similar values of kinetic parameters. The E-box motif,

which is a target for transcription factors dCLK and CYC, is located

upstream of both the per and tim genes [34–37]. Therefore, the

dCLK:CYC complex seems to have almost the same affinities to the

per and tim promoters. The per and tim transcripts cycle in abundance

with similar amplitudes and phases [38]. The time courses of PER

and TIM are similar in shape and largely overlap [31,39]. These

experimental data support the hypothesis that the PER-TIM dual

feedback system is designed to hold the kinetic symmetry, providing

the robustness to uncertainty of kinetic parameters.

The redundant feedback model
The redundant feedback model has the symmetric structure of

the X and Y feedback loops. As shown in the section for the dual

feedback model, we use parameter r ($0). In TPS, the search

space for the kinetic parameters associated with the Y loop (Si+2,

i = 1,2; K2; Ti+2, i = 1,2; Ui+2, i = 1,2; Di+3, i = 1,2,3,7,8,9; Li+3,

i = 1,2,3) is determined by r and by the kinetic parameters

associated with the X loop:

Robust and Entrainable Oscillator
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Si

1zr
ƒSiz2ƒSi(1zr) (i~1,2)

K1

1zr
ƒK2ƒK1(1zr)

Ti

1zr
ƒTiz2ƒTi(1zr) (i~1,2)

Ui

1zr
ƒUiz2ƒUi(1zr) (i~1,2)

Di

1zr
ƒDiz3ƒDi(1zr) (i~1,2,3,7,8,9)

Li

1zr
ƒLiz3ƒLi(1zr) (i~1,2,3)

ð2Þ

The QMPS for the period and amplitude of the output

(X(nuc)+Y(nuc)) was analyzed. The kinetic parameters were

searched by TPS so as to provide typical oscillatory behaviors,

where they were varied by 0.1–10 fold with respect to the

reference values as shown in Table 2. In addition, the search space

for the kinetic parameters associated with the Y loop is further

constrained by Eqs. (2). For each r value, a thousand of the

solution parameter sets were obtained. For all the solutions

QMPSs were calculated with respect to the period and amplitude

of the output oscillations. The cumulative frequency distributions

for QMPS are shown in Figure 4. At a r value of more than 0.1,

the QMPS values increase with a decrease in the r value. At a r
value of smaller than 0.1, the QMPS values decrease with a

decrease in r.

To understand the complex behaviors shown in Figure 4, the

quantitative balance of the X and Y feedback loops c is defined by:

c~
½X (nuc)�mean

½X (nuc)�meanz½Y (nuc)�mean

, ð3Þ

where [X(nuc)]mean indicates the mean concentration for X in

nucleus and [Y(nuc)]mean that for Y in nucleus. When c is close to

Table 2. List of kinetic parameters for competing circadian clock models.

Parameter Definition Value

S2i{1 (i~1,2) Maximum rates for transcriptions 1.0 [nM h21]

S2i (i~1,2) Translation rate constants 1.0 [h21]

Ki (i~1,2) Affinity constants for transcriptions 1.0 [nM]

B1 Association constant 1.0 [nM21 h21]

B2 Dissociation constant 1.0 [h21]

T2i{1 (i~1,2) Maximum rates for transportations (cytoplasm to nucleus) 1.0 [nM h21]

T2i (i~1,2) Maximum rates for transportations (nucleus to cytoplasm) 1.0 [nM h21]

U2i{1 (i~1,2) Affinity constants for transportations (cytoplasm to nucleus) 1.0 [nM]

U2i (i~1,2) Affinity constants for transportations (nucleus to cytoplasm) 1.0 [nM]

Di (i~1,2,:::,m) Maximum rates for degradations 1.0 [nM h21]

Dizm (i~1,2,:::,m) Degradation rate constants 0.01 [h21]

Li (i~1,2,:::,m) Affinity constants for degradations 1.0 [nM]

h Hill coefficient 4.0 (fixed)

m is the number of equations for each model. Since the values of kinetic parameters are hardly measured in circadian oscillators, the followings are employed as the
reference values.
doi:10.1371/journal.pone.0030489.t002

Figure 2. Cumulative frequency distributions of QMPS for the oscillatory behaviors in the semi-dual feedback model. A: QMPS for
period, B: QMPS for amplitude. The level of protein Y was changed in the semi-dual feedback model: Y,10 nM (cross), 10 nM#Y#200 nM (circle),
Y.200 nM (square). The single feedback model (plus) is the control model.
doi:10.1371/journal.pone.0030489.g002
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zero, the effect of the X loop on the oscillator is weak, while the Y

loop is dominant. When c is close to 0.5, the effects of both the X

and Y loops are comparable. When c is close to one, the X loop is

dominant. The c distributions for the redundant feedback model

with respect to r are shown in Figure 5. When r is set to a large

value, the values of c are biased towards zero or one, indicating that

kinetic symmetry is not generated: the level of X in nucleus oscillates

with a negligible level of Y in nucleus, and vice versa. A value of c
approaches to 0.5 with a decrease in r. A r value of less than 0.01,

strong confinement to kinetic symmetry, is required to generate the

oscillations with the comparable levels of X and Y in nucleus.

As shown in Figure 4, the distribution of QMPS for the

redundant feedback model is the same as that of the single

feedback model at a large value of r, where c is almost zero or one

(Figure 5). Such an asymmetric redundant feedback model can be

the same as the single feedback model. Under a weak constrain to

kinetic symmetry or a r value of more than 0.1, QMPS increases

with a decrease in r. It is probably because the oscillatory

behaviors of the X and Y loops would interfere with each other,

i.e., the intrinsic cycles of the two loops are not consistent. Under

the strong constraint to kinetic symmetry or a r value of smaller

than 0.1, the QMPS values decrease with a decrease in r. When r
is set to zero, the frequency distribution is biased toward a small

value of QMPS. The redundant feedback model with exact kinetic

symmetry became a more robust oscillator to uncertainty of all

kinetic parameters than the single feedback model. The redundant

feedback model provides robustness, when the kinetics of both the

feedback loops is symmetric or either of the two feedback loops is

negligible or dominant (a virtual single feedback model). Under

the other conditions, the robustness is readily decreased, probably

because the cycles by the two feedback loops interfere with each

other.

The redundant feedback model has the potential to produce

more robust oscillation than that of the single feedback model.

However, the redundant feedback model seems to have difficulty

in evolving toward the kinetic symmetry of the two feedback loops,

because a break in the symmetry readily destroys the robust

oscillations (e.g. r = 0.1). This may be the reason that redundant

feedback oscillators are not seen in biology.

In the dual and redundant feedback models, the two feedback

loops should coordinate to oscillate. Otherwise, the cycles of both

the feedback loops interfere with each other. Kinetic symmetry is

thus required for robust oscillators. In the dual feedback model,

the two feedback loops are tightly coordinated by binding the two

proteins. In the redundant feedback model, the two feedback loops

are loosely connected at the transcription regulations. Different

types of loop coupling alter the robustness.

Comparison among the feedback models
In summary, we compared the QMPS distributions for the

single, semi-dual, dual, and redundant feedback models. The

QMPS distributions with respect to period and amplitude are

shown in Figure 6. The distributions for the single and semi-dual

feedback models are almost identical. When the r value is set to

zero, the QMPS values of amplitude for the dual and redundant

feedback models are comparable and lower than other models.

With respect to period, the QMPS values of the dual feedback

models are lower than any other model. The dual feedback model

can be the most robust oscillator.

In [15], the authors used the Monte Carlo simulations to

compare the robustness to uncertainty of all parameters between

the competing models: the PER single feedback model [4], the

PER-TIM dual feedback model [5], and the PER-TIM redundant

feedback model. They suggested that the redundant feedback

model is the most robust oscillator for these models and the dual

feedback model is less robust than the single feedback model.

However, our extensive analysis presents an alternative hypothesis

to the existing one: the dual feedback model has the potential to

provide the most robust oscillator to multiple parameter

perturbations. The parameter search in their work [15] was very

short, where they used only dozens of parameter sets with respect

to each model. In the Monte Carlo method, they run only 200

simulations for each parameter set. To reliably compare

alternative models, the efficient search for large parameter space

is required and at least ten thousand simulation runs are needed

for each reference parameter set [22].

Entrainment Probability Maps for the Feedback Models
Since the values of kinetic parameters constantly fluctuate

within a cell, the entrainment of circadian rhythms should not rely

on the fine-tuned values of them. To elucidate a mechanism by

which oscillations are entrained to light-dark (LD) cycles, we

performed the entrainment analysis [29] for all the kinetic

parameter sets used in the section of Robustness Analysis. In

Drosophila, light induces the degradation of clock protein TIM,

which allows circadian oscillations to entrain to a diurnal cycle

[40–42]. To consider the light-increased degradation rate for the

clock protein, the maximum rate for degradation of X was

Figure 3. Cumulative frequency distributions of QMPS for the oscillatory behaviors in the dual feedback models. A: QMPS for period,
B: QMPS for amplitude. The kinetic symmetry (r) was changed in the dual feedback model: r$99 (cross), r = 1 (circle), r = 0.1 (square), r = 0.01
(diamond), r = 0 (triangle). The single feedback model (plus) is the control model. A decrease in r increases the kinetic symmetry.
doi:10.1371/journal.pone.0030489.g003

Robust and Entrainable Oscillator

PLoS ONE | www.plosone.org 6 February 2012 | Volume 7 | Issue 2 | e30489



increased during light phase. The increase rate in the parameter

and the forcing period of LD cycles are denoted as d and f,

respectively. For each parameter set that produces typical

circadian rhythm in constant darkness, the region where

oscillations are successfully entrained is provided as a function of

f and d. The probability of entrainment at point f-d is determined

by counting the number of parameter sets that successfully entrain

to LD cycles with f and d. For details, see Materials and Methods.

For the single, semi-dual, dual, and redundant feedback models,

the entrainment probability map was drawn with respect to the

period of LD cycles (f) and the intensity of light (d). The

entrainment probability map for the single feedback model is

shown in Figure 7A. The single feedback model entrains 24 h LD

cycle, which is almost equal to the free-running period (the period

under constant darkness). When the period of LD cycles is far from

24 h, irregular oscillations (quasi-periodic and chaotic oscillations)

occur and cannot entrain to LD cycles. Entrainment occurs with

relatively weak light stimuli, while strong light causes irregular

oscillations. The maps for the semi-dual feedback model with

various concentrations of Y are shown in Figure S1. The change in

the level of Y does not dramatically affect ability of entrainment. At

a Y level of more than 200 nM (Figure 7B) the entrainment

probability map is similar to that of the single feedback model. In

the dual feedback model, at r of more than one, kinetic symmetry

increases the probability of entrainment (Figure S2). The

kinetically symmetric dual feedback model (r = 0) (Figure 7C)

readily entrains to LD cycles in the widest space of the forcing

period and light intensity. The dual feedback model with kinetic

symmetry is the most reasonable choice for light entrainment. In

the redundant feedback model, kinetic symmetry increases the

probability of entrainment (Figure S3), but the perfect kinetic

symmetry (r = 0) (Figure 7D) does not entrain to LD cycles more

than the single feedback model.

For all the models, forcing periods away from the free-running

period or strong light stimuli caused irregular oscillations. These

results are consistent with the previous works [29,30]. It is

important for successful entrainment to incorporate the forcing

period in intrinsic oscillations while avoiding irregular oscillations.

In the dual feedback model, the light-perturbed X loop and the

unperturbed Y loop are merged at the complex X:Y that regulates

the transcriptions of X and Y. This coupling mechanism is

suggested to effectively incorporate the forcing period into the

system, avoiding irregular oscillations. In the redundant feedback

model, since the X and Y loops separately regulate transcriptions,

the difference in the oscillations between the light-perturbed X

loop and the unperturbed Y loop is directly transmitted to the

transcription regulations, thereby causing irregular oscillations or

failure in the entrainment to LD cycles.

Key Devices for Robust and Entrainable Oscillators
The complex feedback system of the circadian clocks is one of

the most extensively studied systems, which generates the

robustness to the uncertainty of kinetic parameters and entrains

to periodic changes in the environment. However, it remains

unclear how such complex feedback loops are designed, while the

single or simple feedback can be a sufficiently robust and

entrainable oscillator. By performing global numerical analyses

by TPS, we demonstrated that the dual feedback model is the most

reasonable choice for creating a robust and entrainable oscillator

out of various types of loop couplings, which corrects or overcomes

Figure 4. Cumulative frequency distributions of QMPS for the oscillatory behaviors in the redundant feedback models. A: QMPS for
period, B: QMPS for amplitude. The kinetic symmetry (r) was changed in the redundant feedback model: r$99 (cross), r = 1 (circle), r = 0.1 (square),
r = 0.01 (diamond), r = 0 (triangle). The single feedback model (plus) is the control model. A decrease in r increases the kinetic symmetry.
doi:10.1371/journal.pone.0030489.g004

Figure 5. Frequency distributions of the c values for the
parameter sets that yield circadian oscillation. The frequency
distributions of the quantitative balance between X and Y loops (c) were
simulated, while changing the kinetic symmetry (r): r$99 (cross), r = 1
(circle), r = 0.1 (square), r = 0.01 (diamond). A decrease in r increases the
kinetic symmetry. c is the quantitative balance of the X and Y feedback

loops, which is defined by: c~
½X (nuc)�mean

½X (nuc)�meanz½Y (nuc)�mean

, where [X(nuc)]mean

indicates the mean concentration for X in nucleus and [Y(nuc)]mean that
for Y in nucleus. When c is close to zero, the effect of the X loop on the
oscillator is weak, while the Y loop is dominant. When c is close to 0.5, the
effects of both the X and Y loops are comparable. When c is close to one,
the X loop is dominant. At r = 0 (perfect kinetic symmetry), c is always
equal to 0.5. The distribution for r = 0 is not shown.
doi:10.1371/journal.pone.0030489.g005
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the existing hypothesis [15]. The dual feedback model, employed

by a real biological system, provides the most robust oscillator and

readily entrains LD cycles. Furthermore kinetic symmetry in the

dual feedback model enhances the robustness with respect to

uncertainty of multiple parameters and the ability to entrain to a

LD cycle, providing an insight on the mechanism by which the

dual feedback model evolves toward kinetic symmetry for

enhanced robustness and entrainments. We discovered smart,

intelligent devises hidden in the real biological circadian

oscillators. The key devices are the coupling of two feedback

loops by forming a protein complex and kinetic symmetry between

them, which generate remarkable robustness to perturbations

within a cell and enable entrainment to a wide range of light

signals.

Materials and Methods

Mathematical Comparison between Competing Models
In order to understand the mechanism by which a specific

regulation generates a particular cellular function, it is important

to compare the performance criteria between the competing

models: the model containing the specific regulation and that

without it. While system’s properties are affected by not only the

network structure but also the values of the kinetic parameters, the

conclusion of the comparison should be independent of a change

in parameters [15,22,43]. In competing models, the kinetic

parameter values are searched within a certain range by the

two-phase search (TPS) method to find all possible solutions that

generate target behaviors. TPS is presented to systematically

analyze the dynamic behaviors in a large parameter space by

searching all plausible parameter values without any biases [17].

TPS consists of a random search and an evolutionary search

(genetic algorithms: GAs) to effectively explore all possible solution

sets of kinetic parameters satisfying a target or desired dynamics.

The algorithm of TPS is described in Text S1 and Figure S4.

Our mathematical comparison method is basically the same as

mathematically controlled comparison introduced by Alves and

Savageau [43], where parameter search is randomly performed to

guarantee equivalence among alternative models, and then the

models are statistically compared with respect to the property of

interest. First, we search the values of the kinetic parameters

providing circadian oscillations to hold behavioral equivalence

among all feedback models. Second, we statistically compare the

distributions of QMPS among the feedback models. Alves and

Savageau employed random search to obtain the values of kinetic

parameters yielding biologically plausible behaviors, allowing fare

comparison among alternative models. Instead of random search,

we use TPS to greatly reduce computational cost. The

distributions of solutions obtained by TPS were demonstrated to

be statistically the same as those by random search [17].

Quasi-multiparameter Sensitivity (QMPS)
Generally a dynamic model for biochemical networks is

formulated by ordinary differential equations:

:
x~F(t,x,p), ð4Þ

where t is time, x is the vector whose elements are the variables for

molecular concentrations, p = (p1,p2,…,pn) is the kinetic parameter

vector, and n is the number of kinetic parameters. Let q(p) be a

given target function. A single-parameter sensitivity of the target

function with respect to a change in the ith parameter is defined

as:

si(q,p)~
Lq(p)

Lpi

pi

q(p)
~

L ln q(p)

L ln pi

: ð5Þ

A single-parameter sensitivity identifies sensitive or insensitive

reactions to a target function in a biochemical network, while it

yields only linear approximations of the target function to single

parameter perturbation. Single-parameter sensitivity analysis does

not estimate the robustness to the uncertainty of all parameters.

Assuming that the relative change in the target function is linear to

a change in each parameter, multiparameter sensitivity (MPS)

[44,45] is defined by:

MPS(q,p)j j2~
Xn

i~1

si(q,p)2: ð6Þ

For complex models (including Table 1), it is generally hard to

analytically compute MPS. As a practical solution, quasi-

multiparameter sensitivity (QMPS) is proposed, where the single-

parameter sensitivities are numerically simulated by providing a

small perturbation to a kinetic parameter. When each kinetic

parameter pi is perturbed as given by p’i~pi(1zD), MPS is

defined as the square sum of single-parameter sensitivities:

Figure 6. Cumulative frequency distributions of QMPS for the oscillatory behaviors in the competing models. A: QMPS for period, B:
QMPS for amplitude. The single feedback model (plus), the semi-dual feedback model with Y.200 nM (cross), the dual feedback model with r = 0
(circle), the redundant feedback model with r = 0 (square). r = 0 indicates perfect symmetry between two feedback loops.
doi:10.1371/journal.pone.0030489.g006

Robust and Entrainable Oscillator

PLoS ONE | www.plosone.org 8 February 2012 | Volume 7 | Issue 2 | e30489



lim
D?0

ln q(p’){ln q(p)

ln p’i{ln pi

, where D approaches to zero. On the other

hand, QMPS is defined by the square sum of
ln q(p’){ln q(p)

ln p’i{ln pi

,

where D is not nearly zero but a small value, e.g. D= 0.001. The

algorithm for computing QMPS is described in Text S2. In this

study the single-parameter sensitivities are calculated by setting the

value of D to 0.001. Since the calculated values are consistent at D
of less than 0.01, they can be used as the single-parameter

sensitivities.

QMPS is not only computationally efficient but also consistent

with the normalized variance for the target function obtained by

Monte Carlo method. In general the Monte Carlo method is used

to quantify robustness to multiple parameter perturbations, where

all kinetic parameters are simultaneously varied and the

normalized variance for the target function can be used as the

indicator for robustness. On the other hand, QMPS is theoret-

ically defined under the condition that a change in all parameter

values is infinitesimal, while QMPS is demonstrated to practically

be available under the condition that variations in all kinetic

parameters are less than 10%. By using many mathematical

models, we demonstrated that QMPS is consistent with the

normalized variance by the Monte Carlo method even if the rate

of variations in all kinetic parameters is set to as high as 10% [22].

QMPS is employed with TPS, thereby enabling the numerical

comparison of robustness among alternative or competing models.

First, we search the kinetic parameter values by TPS so as to

provide typical oscillatory behaviors: in constant darkness the

period and amplitude for the oscillation of the output component

are set to 23–25 h and to 2–6 nM, respectively. The fitness

function is described in Text S3. In general, oscillations with

approximately 24 h period and large amplitude are regarded as

typical circadian oscillation. The target period and amplitude are

provided based on experimental data and theoretical studies

[4,5,31], and their ranges are conveniently determined to obtain

many solutions. Narrow ranges provide only a small number of

solutions due to calculation complexity. Second, the QMPSs are

calculated for all the solution parameter sets. When comparing the

robustness of two alternative dynamic models, one model with a

lower value of QMPS is more robust than the other. In this

analysis the cumulative frequency is used as a function of the value

of QMPS squared in order to characterize the robustness among

alternative models with a variety of kinetic parameter values,

generated by TPS. The cumulative frequency (CF) of a QMPS

value x is given by:

CF (x)~f (Xƒx), ð7Þ

where X is a random variable and f represents the frequency that X

takes on a value less than or equal to x. According to this criterion,

a higher cumulative frequency distribution indicates higher

robustness and a higher cumulative frequency at a lower QMPS

provides higher robustness. When two cumulative frequency

curves to be compared intersect, statistical analysis by median is

Figure 7. Entrainment probability maps for different types of feedback models. A: the single feedback model, B: the semi-dual feedback
model with Y.200 nM, C: the dual feedback model with r = 0, D: the redundant feedback model with r = 0. r = 0 indicates perfect symmetry
between the two feedback loops. The color indicates the probability of entrainment given by Eq. (9), the ratio of the parameter sets that entrain to
light-dark cycles to all the parameter sets. Red color indicates a high probability, where the cycle readily entrains to the light-dark cycle; blue a low
one.
doi:10.1371/journal.pone.0030489.g007
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used instead of an intuitive analysis. The median corresponds to

the value of QMPS that provides a cumulative frequency of 0.5. A

low value of median provides high robustness.

Entrainment Probability Map
To elucidate a mechanism of how oscillations are entrained to

light-dark (LD) cycles, the entrainment analysis [29] is performed

for all the kinetic parameter sets, searched by TPS, that generate

typical oscillations in constant darkness. In Drosophila, light induces

the degradation of clock protein TIM, which allows circadian

oscillations to entrain to a diurnal cycle [40–42]. To consider the

light-increased degradation rate for the clock protein, the

maximum rate for degradation of clock protein X is increased

during light phase as follows:

D2
’~D2(1zd) with dw0, ð8Þ

where d is the factor that increases D2. In addition to the

degradation of X, in the semi-dual and dual feedback models, the

degradation of the complex of X and Y (X:Y) is enhanced in the

same manner as Eq. (8). The forcing period of LD cycles is defined

as f. Light and dark phases in the LD cycle are set to the same in

length. Using all the parameter sets that produce typical circadian

rhythms in constant darkness, the region where oscillation is

successfully entrained is provided as a function of f and d. The

probability of entrainment at point f-d is determined by:

Pr(f,d)~
1

N

XN

i~1

En(pi,f,d), ð9Þ

where pi is the ith parameter set, N is the total number of the

parameter sets, and En is the function that gives one when

successful entrainment occurs, otherwise zero. By ‘‘successful

entrainment’’, we mean that period and amplitude of oscillations

are constant (less than 1% and 10% of deviations, respectively) and

the period of oscillations is the same as the forcing period (less than

1% of deviation).

Supporting Information

Figure S1 Entrainment probability maps for the semi-
dual feedback model with various amounts of Y. A:

Y,10 nM, B: 10 nM#Y#200 nM, C: Y.200 nM. The color

indicates the probability of entrainment given by Eq. (9), the ratio

of the parameter sets that entrain to light-dark cycles to all the

parameter sets. Red color indicates a high probability, where the

cycle readily entrains to the light-dark cycle; blue a low one.

(PNG)

Figure S2 Entrainment probability maps for the dual
feedback model with various r values. A: r$99, B: r = 1,

C: r = 0.1, D: r = 0.01. E: r = 0. A decrease in r increases the

kinetic symmetry. The color indicates the probability of entrain-

ment given by Eq. (9), the ratio of the parameter sets that entrain

to light-dark cycles to all the parameter sets. Red color indicates a

high probability, where the cycle readily entrains to the light-dark

cycle; blue a low one.

(PNG)

Figure S3 Entrainment probability maps for the redun-
dant feedback model with various r values. A: r$99, B:

r = 1, C: r = 0.1, D: r = 0.01. E: r = 0. A decrease in r increases

the kinetic symmetry. The color indicates the probability of

entrainment given by Eq. (9), the ratio of the parameter sets that

entrain to light-dark cycles to all the parameter sets. Red color

indicates a high probability, where the cycle readily entrains to the

light-dark cycle; blue a low one.

(PNG)

Figure S4 Initial population for genetic algorithm (GA)
in the two-phase search (TPS) method. In this figure, the

dimension of parameter space is assumed to be two. L = (L1,L2)

and U = (U1,U2) are the lower and upper bound vectors,

respectively. RS stands for random search.

(PNG)

Text S1 The algorithm of the two-phase search (TPS)
method.
(PDF)

Text S2 The algorithm for computing quasi-multipa-
rameter sensitivity (QMPS).
(PDF)

Text S3 The fitness function for circadian oscillations.
(PDF)
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