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Abstract. So far, we have presented a method for text-prompted multistep speaker

verification using GEBI (Gibbs-distribution based extended Bayesian inference)

for reducing single-step verification error, where we use thresholds for acceptance

and rejection but the tuning is not so easy and affects the performance of verifica-

tion. To solve the problem of thresholds, this paper presents a method of proba-

bilistic prediction in multiclass classification for solving verification problem. We

also present loss functions for evaluating the performance of probabilistic predic-

tion. By means of numerical experiments using recorded real speech data, we

examine the properties of the present method using GEBI and BI (Bayesian inv-

erence) and show the effectiveness and the risk of probability loss in the present

method.

Keywords: probabilistic prediction, text-prompted speaker verification, Gibbs-

distribution-based extended Bayesian inference, loss functions in multiclass clas-

sification

1 Introduction

So far, we have presented a method for text-prompted multistep speaker verification [1,

2]. Here, from [3], text-prompted speaker verification has been developed to combat

spoofing from impostors and digit strings are often used to lower the complexity of pro-

cessing. From another perspective, the method focuses on reducing verification error

by means of multistep verification using Gibbs-distribution-based Bayesian inference

(GEBI) for rejecting unregistered speakers [2], where from the analysis of the proper-

ties, it is suggested that the tuning of the thresholds for acceptance and rejection is not so

easy and affects the performance. Namely, we have tuned the thresholds by the method

of EER (equal error rate) for FAR (false acceptance rate) and FRR (false rejection rate)

to be almost the same. Furthermore, the obtained values of the thresholds are not so easy

to be modified for different security or risk level of verification. To solve this problem,

this paper presents probabilistic prediction. Here, note that from [4] and our experience,

we can see that the probabilistic prediction in weather and climate forecasting allows

the users to decide on the level of risk they are prepared and to take appropriate action

within a proper understanding of the uncertainties. For introducing probabilistic pre-

diction into verification, we first formulate multiclass classification problem, and then
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Fig. 1. Diagram of text-prompted speaker verification system using CAN2s

apply Bayesian inference (BI) to obtain the probability. We also present loss functions

to evaluate the performance of the probabilistic prediction in multiclass classification

derived for verification problem, and then examine the properties and effectiveness of

the present method by means of using real speech signal.

Here, note that our speech processing system employs competitive associative nets

(CAN2s). The CAN2 is an artificial neural net for learning efficient piecewise linear ap-

proximation of nonlinear function [5], and we have shown that feature vectors of pole

distribution extracted from piecewise linear predictive coefficients obtained by the bag-

ging (bootstrap aggregating) version of the CAN2 reflect nonlinear and time-varying

vocal tract of the speaker [6]. Although the most common way to characterize speech

signal in the literature is short-time spectral analysis, such as Linear Prediction Cod-

ing (LPC) and Mel-Frequency Cepstrum Coefficients (MFCC) [7], the bagging CAN2

learns more precise information than LPC and MFCC (see [6] for details).

We show the method of probabilistic prediction in 2, experimental results and anal-

ysis in 3, and the conclusion in 4.

2 Probabilistic Prediction for Text-Prompted Speaker Verification

Fig. 1 shows an overview of the present text-prompted speaker verification system using

CAN2s. In the same way as general speaker recognition systems [7], it consists of

four steps: speech data acquisition, feature extraction, pattern matching, and making a

decision. In this research study, we use a feature vector of pole distribution obtained

from a speech signal (see [6] for details).

2.1 Multistep Speaker and Text Verification Using GEBI

Here, we show a brief explanation of multistep verification using GEBI (see [2] for

details). In order to achieve text-prompted speaker verification using digits, let S =
{si|i ∈ I [S]} and D = {di|i ∈ I [D]} denote a set of speakers s ∈ S and digits d ∈ D,

respectively, where I [S] = {1, 2, · · · , |S|} and I [D] = {1, 2, · · · , |D|}. Furthermore,

let RLM[M ] for M = S and M be a set of regression learning machines RLM[m] (m ∈

I [M ]), and each RLM[m] learns to predict a single-step verification as v[m] = 1 for the



acceptance of a speech segment of a speaker m = si or a digit m = di, and v[m] = 0
for the rejection. Here, let us suppose that we have speech segments of spoken digits

obtained by some appropriate segmentation method and this research focuses on the

multistep verification of spoken digit sequences.

For multistep verification of input sequence of spoken digits, we have proposed

Gibbs-distribution-based extended Bayesian inference (GEBI) as shown below for over-

coming the problem of Bayesian inference (BI) in speaker verification of unregistered

speakers (see [2] for details). Let v
[M ]
1:T = v

[M ]
1 v

[M ]
2 · · ·v

[M ]
t be an output sequence

of RLM[m] for the reference sequence m
[r]
1:T = m

[r]
1 m

[r]
2 · · ·m

[r]
T , we have recursive

posterior probability for t = 1, 2, · · · , T as follows,

pG

(

m
[r]
1:t | v

[M ]
1:t

)

=
1

Zt
pG

(

m
[r]
1:t−1 | v
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1:t−1

)βt/βt−1

p
(

v
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t | m
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t

)βt

, (1)
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)
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1
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(

m
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1:t−1

)βt/βt−1

p
(

v
[M ]
t | m

[r]
t

)βt

. (2)

where βt = β/t (t ≥ 1) and β0 = 1, and Zt is the normalization constant. Note that the

conventional BI is obtained for βt = 1(t ≥ 0) and we denote pB instead of pG for the

probability obtained by the above equations with βt = 1(t ≥ 0), while pG is obtained

for βt = 1/t (t ≥ 1) in the experiments shown below.

The verification by our previous method shown in [2] at t = T is given by

V
[M ]
1:T =

{

1 if pG

(

m
[r]
1:T | v

[M ]
1:T

)

≥ p
[M ]
θ

−1 otherwise
(3)

for speaker (m,M) = (s, S) and text (m,M) = (d,D), respectively. Here, p
[M ]
θ for

M = S and D are thresholds, and V
[M ]
1:T = 1 and −1 indicates acceptance and rejec-

tion, respectively. The verification of text-prompted speaker is executed by V
[SD]
1:T =

V
[S]
1:T ∧ V

[D]
1:T = 1 and −1 for acceptance and rejection, respectively. The performance

of verification depends on the thresholds p
[M ]
θ for M = S and D. To execute more

flexible verification than using thresholds, we introduce probabilistic probability into

the verification problem in the next section.

2.2 Probabilistic Prediction for Speaker and Text Verification

We introduce multiple classes to classify the verification results, and then introduce

probabilistic prediction for speaker and text verification.

Multiclass Classification for Speaker and Text Verification For speaker verification,

we consider the following three classes, where we suppose all elements in each input

and reference speaker sequence, respectively, consists of the same speaker;

c
[S]
+1 (Class of correct speakers): class of speakers satisfying s1:T = s

[r]
1:T (∈ S1:T ) for

the input s1:T and the reference s
[r]
1:T , where S is the set of registered speakers, and

S1:T denotes the set of s1:T whose all elements st (t = 1, 2, · · · , T ) are registered

speaker st ∈ S.



c
[S]
−1 (Class of incorrect speakers): class of speakers satisfying s1:T 6= s

[r]
1:T for s1:T , s

[r]
1:T ∈

S1:T .

c
[S]
0 (Class of unregistered speakers) : class of speakers satisfying s1:T 6= s

[r]
1:T for

s1:T 6∈ S[T ].

Here, note that these classes are determined for the pair of input and reference se-

quences.

For text (or digit sequence) verification, we consider the following N +1 classes of

T (= mN)-length digit sequence consisting of m times of N -length subsequences:

c
[D]
i for i = 0, 1, 2, · · · , N (Class of digit sequences with correct ratio being i/N ):

class of input d1:T and reference d
[r]
1:T digit sequences, which consist of m times of

N -length subsequence whose i digits are the same.

In order to simplify the explanation, let C [S] = {c
[S]
i | i ∈ I [C

[S]])} be the set of

speaker verification classes, C [D] = {c
[D]
i

∣

∣ i ∈ I [C
[D]]} be the set of text verification

classes, C denote C [S] or C [D], and I [C] denote I [C
[S]] = {−1, 0, 1} or I [C

[D]] =
{0, 1, 2, · · · , N}.

Note that these classes have the ordered indices which we utilize for probabilistic

prediction of multiclass classification derived for the verification. Namely, we can di-

vide two sets of classes, where one consists of the classes with the indices from i = i
[C]
θ

to i
[C]
max and the other consists of the remaining classes, where i

[C]
θ and i

[C]
max indicate

the threshold for verification and the maximum index of the classes in C, respectively.

Furthermore, as shown in 3.2, we have a possibility to have a class with a large classi-

fication error but a sum of adjacent classes has smaller error. Thus, in order to achieve

a reliable probabilistic prediction, we will combine some adjacent classes so that every

combined class has smaller classification error.

Probabilistic Prediction in Multiclass Classification In order to formulate the prob-

abilistic prediction of multiclass classification, let X [test] = {(xj , tj)
∣

∣ j ∈ I [test]} be

a test dataset, where xj is the jth data of the pair
(

m
[r]
1:T ,v

[M ]
1:T (m1:T )

)

determined by

the sequences of reference m
[r]
1:T and input m1:T , tj ∈ C indicates target class to be

classified, and I [test] = {1, 2, · · · , |I [test]|}. Furthermore, let pG(xj) denote the GEBI

probability pG

(

m
[r]
1:T

∣

∣

v
[M ]
1:T

)

given by (1). Then, from BI, we have the following pos-

terior probability

p
(

ci
∣

∣ pG(xj)
)

=
p
(

pG (xj)
∣

∣ ci
)

p(ci)
∑

cl∈C

p
(

pG(xl)
∣

∣ cl
)

p(cl)
, (4)

where p(ci) is the prior probability of ci ∈ C, and p
(

pG(xj)
∣

∣

∣
ci

)

denotes the likeli-

hood of the value of pG(xj) being for ci. Here, p
(

pG(xj)
∣

∣

∣
ci

)

can be estimated from



a training dataset X [train] = {(xj , tj)
∣

∣ j ∈ I [train]} involving xj independent and iden-

tically distributed (i.i.d) with respect to the data in the test dataset, and we usually use

p(ci) to be equal for all ci, while we can use specific values depending on the situation,

e.g., we can use p
(

c
[S]
0

)

= 0 for the situation where there is no unregistered speaker

expected.

With the above probability p(ci
∣

∣ pG(xj)) for ci ∈ C, the user or a decision maker

is expected to make flexible decision for verification as shown in 3.2.

2.3 Loss functions for Evaluating the Performance

We use the following loss functions to evaluate the performance of the probabilistic

prediction in multiclass classification extended from the loss functions for two-class

classification shown in [8]. First, we divide the multiple classes into two sets of classes:

one consists of a class with the maximum probability and the other of remaining classes,

where the index of the class in the former set is given by

iM (j) = argmax
i∈I[C]

p(ci
∣

∣ pG(xj)). (5)

Now, the average classification error (ACE) for iM (j) is given by

LACE =
1

n





∑

j∈I[test]

1{tj 6= ciM (j)}



 =
1

n





∑

{j|tj 6=ciM (j)}

1



 (6)

Here, 1{z} indicates an indicator function, equal to 1 if z is true, and to 0 if z is false,

{j|tj 6= ciM (j)} indicates the set of indices satisfying tj = ciM (j) for j ∈ I [test].
The negative log probability loss (NLP) for iM (j) is given by

LNLP = −
1

n

[

∑

{j
∣

∣tj=ciM (j)}

log p
(

ciM (j)

∣

∣ pG(xj)
)

+

∑

{j|tj 6=ciM (j)}

log
(

1− p
(

ciM (j)

∣

∣ pG(xj)
))

]

(7)

The first term of the right hand side becomes smaller for larger probability of correct

classification and the second term becomes smaller for smaller probability of incorrect

classification.

The negative log predictive density loss (NLPD) for evaluating regression perfor-

mance given by

LNLPD = −
1

n





∑

j∈I[test]

log p
(

tj
∣

∣ pG(xj)
)



 (8)

is considered to be applicable for evaluating the performance of probabilistic prediction

in multiclass classification.



3 Experiments

3.1 Experimental Setting

We have recorded speech data sampled with 8kHz of sampling rate and 16 bits of reso-

lution in a silent room of our laboratory. They are from seven speakers (2 female and 5

mail speakers): S = {fHS, fMS,mKK,mKO,mMT,mNH,mYM} for ten Japanese

digits D = {/zero/, /ichi/, /ni/, /san/, /yon/, /go/, /roku/, /nana/, /hachi/, /kyu/}.

For each speaker and each digit, ten samples are recorded on different times and dates

among two months. We denote each spoken digit by x = xs,d,l for s ∈ S, w ∈ W and

l ∈ L = {1, 2, · · · , 10}, and the given dataset by X = (xs,d,l|s ∈ S, d ∈ D, l ∈ L).
By meas of random selection from X , we have generated training dataset X [train] =

{(xj , tj)
∣

∣ j ∈ I [train]} for making the likelihood p
(

pG(xj)
∣

∣

∣
ci

)

given in (4) and test

dataset X [test] = {(xj , tj)
∣

∣ j ∈ I [test]} for evaluating the performance of probabilistic

prediction. A data xj indicates the jth data of
(

m
[r]
1:T ,v

[M ]
1:T (m1:T )

)

consists of refer-

ence and input sequences of T (= 15)-length spoken digits for T = m × N = 15
with m(= 3) times of N(= 5)-length digit sequences indicating some ID numbers. Of

course, xj ∈ X [train] and xj ∈ X [test] are not the same but should be independent and

identically distributed (i.i.d). To have this done, for each of training and test datasets,

we have generated 1,000 data for each combination of 3 classes of speaker sequences

involving correct, incorrect and unregistered speakers and 6 classes of digit sequences

involving i/N correct digits for i = 0, 1, · · · , N = 5. Thus, we have 18,000 data for

training and test datasets.

In order to evaluate the performance of learning machines RLM[M ] for predicting

unknown (untrained) data and the data of unregistered speaker, we employ a combina-

tion of LOOCV (leave-one-out cross-validation) and OOB (out-of-bag) estimate (see

[2] for details). For the regression learning machines, we have used CAN2s for learning

piecewise linear approximation of nonlinear functions (see [6] for details).

3.2 Experimental Results and Analysis

Experimental Result of Probabilistic Prediction First of all, we show the multi-

step probabilities in Fig. 2. As explained in [2], we have tuned the thresholds to be

(p
[S]
θ , p

[D]
θ ) = (0.80, 0.96) for GEBI and (0.99, 0.80) for BI to achieve EER (equal error

rate) at t = T = 15 for FAR (false acceptance rate) and FRR (false rejection rate) to be

almost the same. For this tuning, we also have employed thresholds (i
[S]
θ , i

[D]
θ ) = (1, 4)

for deciding the security level of correct verification, i.e., we assume that the data in

c
[S]
i for i ≥ i

[S]
θ = 1 and c

[D]
i for i ≥ i

[D]
θ = 4 should to be accepted in speaker and

text verification, respectively, and the other data should be rejected. In Fig. 2, we can

see that these threshold values seem reasonable but not so easy to be tuned.

By means of the probability prediction by (4), we have the probability p
(

ci
∣

∣ pG
)

=

p
(

ci
∣

∣ pG(xj)
)

and p
(

ci
∣

∣ pB
)

= p
(

ci
∣

∣ pB(xj)
)

as shown in Fig. 3. From Fig. 3(a),

we can estimate the probability of the classes depending on pG. For example, from the

left hand side of Fig. 3(a) for speaker verification, the probability of correct speaker
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Fig. 2. Experimental result of multistep probability of (a) GEBI and (b) BI for speakers (left) and

digits (right), where the curves of speakers denote RC (registered correct), UR (unregistered), RI

(registered incorrect). The plus and minus error bars indicate RMS (root mean square) of positive

and negative errors from the mean, respectively. The curves for different datasets are shifted

slightly and horizontally to avoid crossovers.

and unregistered speaker is expected for the value of pG larger than 0.86 and 0.04,

respectively, Furthermore, from the right hand side of Fig. 3(a) for text verification, the

ratio of correct digits is expected to be more than 5/5, 4/5, 3/5, 2/5, 1/5 for the value

of pG larger than 0.97, 0.93, 0.62, 0.19, 0.03, respectively, On the other hand, it is hard

to obtain the property of the probability for BI as shown in Fig. 3(b). This is owing to

the fluctuation of the mean value and the large variance of pB as shown in Fig. 2 and a

mathematical analysis is shown in [2].

Experimental Result of Losses and Remarks We show experimental results of losses

in Table 1, where LAVEθ
indicates AVE (average verification error) obtained for the

method using the thresholds given above. From the comparison of the losses between

GEBI and BI, we can see that GEBI has achieved smaller losses (bold face figures) for

almost all classes than BI, especially, it has achieved smaller mean values for all losses.

From the columns of LAVEθ
for GEBI, we can see that the mean verification error LAVEθ

is 0.004 and 0.032 for speaker and text verification, respectively, and they seem small

enough.
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Fig. 3. Posterior probability p
(

ci
∣

∣ pG
)

for (a) pG obtained by GEBI and (b) pB (= pG|βt=1) by

BI for speaker (left) and text (right) classification. The horizontal axis indicates pG or pB and the

vertical length of a colored bar indicates the probability of a class ci corresponding to the color.

Next, for the class index i = 4 in text verification, we can see that LACE = 0.844 is

very larger than others. This indicates that the probabilistic prediction for the class has

very low reliability. As shown in [2], these errors are owing that the discrimination of

the data in c
[D]
4 and c

[D]
5 are difficult which we can see in Fig. 2(a)(right) for the curves

of i/N = 5/5 and 4/5.

To solve this problem for more reliable classification, we combine the class c
[D]
4

and c
[D]
5 into a class c

[D]
4⊎5. Then, for a test data in c

[D]
4⊎5, we have LACE = 0.021 for

the prediction using GEBI. As a result, by means of using the classes c
[D]
i for i =

0, 1, 2, 3, 4 ⊎ 5, we have achieved LACE less than 0.076 with the mean 0.044. These

analysis and modification indicate that we have to understand and reduce the risk of

probability loss in using probabilistic prediction. From this point of view, we hardly use

the probabilistic prediction obtained by BI. We would like to analyse other losses in our

future research.



Table 1. Experimental result of losses for multiclass classification derived for speaker and text

verification. The losses are obtained for the test dataset consisting of input and reference se-

quences in the classes of speakers, c
[S]
i for i = −1, 0, 1, and texts (digit sequences), c

[D]
i for

i = 0, 1, 2, · · · , 5.

class LAVEθ
LACE LNLP LNLPD

index i GEBI BI GEBI BI GEBI BI GEBI BI

speaker

verification

1 0.002 0.046 0.002 0.029 223.2 5549.5 224.6 6538.9

0 0.011 0.050 0.061 0.748 7730.9 42052.3 7730.8 42308.0

−1 0.000 0.000 0.033 0.019 4420.7 18796.5 4427.7 19332.4

mean 0.004 0.032 0.032 0.265 4125.0 22132.8 4127.7 22726.5

text

verification

5 0.011 0.012 0.009 0.015 2708.1 5331.8 2736.4 5669.5

4 0.180 0.216 0.844 1.000 7378.3 4161.6 7455.7 8656.6

3 0.000 0.581 0.061 0.774 1293.7 4844.1 1476.9 11600.1

2 0.000 0.339 0.043 0.862 911.8 4694.2 996.1 12072.9

1 0.000 0.187 0.076 0.705 1291.0 5768.7 1323.5 8475.6

0 0.000 0.001 0.042 0.004 1297.7 3984.0 1345.5 4098.9

mean 0.032 0.223 0.179 0.560 2480.1 4797.4 2555.7 8428.9

Flexible Verification Using Probabilistic Prediction For text-prompted speaker ver-

ification, we can use the class index thresholds i
[S]
θ = 1 and i

[D]
θ = 4 ⊎ 5 for speaker

and text verification, respectively. Here, however, when the probability p
(

c
[S]
1

∣

∣ pG

)

or

p
(

c
[D]
4⊎5

∣

∣ pG

)

for an input sequence is not so bigger than 0.5, a decision maker has a

possibility to ask additional question to obtain much larger or much smaller probability

than 0.5.

For text verification, we can tune the threshold i
[D]
θ for accepting the input sequence

satisfying i ≥ i
[D]
θ indicating that more than or equal to i

[D]
θ correct digits out of N -

length sequence are expected. Here, the tuning of i
[D]
θ in the present method is easier

and understandable than in the previous method requiring the tuning of thresholds p
[D]
θ

in (3). Therefore, as an example of application, the tuning of i
[D]
θ has a possibility to be

flexibly used in verifying spoken digits of a specific speaker in a recorded tape, where

we do not need high security level.

4 Conclusion

We have presented a method of probabilistic prediction for flexible verification without

using thresholds for acceptance and rejection. After introducing multiclass classifica-

tion for classifying the verification results, the method utilizes BI to obtain the probabil-

ity. The method also uses loss functions for evaluating the performance of probabilistic

prediction. By means of numerical experiments using recorded real speech data, we

have examined the properties of the present method using GEBI and BI, and show the

effectiveness and the risk of probability loss in the present method.



References

1. Kurogi, S.,Ueki, T.,Mizobe, Y. and Nishida, T.: Text-prompted multistep speaker verification

using Gibbs-distribution-based extended Bayesian inference for reducing verification errors

Proc. ICONIP2013, Part III LNCS 8228, pp.184–192 (2013)

2. Kurogi, S., Ueki, T.,Takeguchi, S., Mizobe, Y.: Properties of text-prompted multistep speaker

verification using Gibss-distribution-based extended Bayesian inference for rejecting unreg-

istered Speakers, Proc. ICONIP2014, Part II, LNCS8835, pp.35–43 (2014)

3. Beigi, H.: Fundamentals of speaker recognition. Springer-Verlag New York Inc (C) (2011)

4. Slingo, J., Palmer, T.: Uncertainty in weather and climate prediction, Phil. Trans. R. Soc. A

Vol. 369, pp.4751–4767 (2011)

5. Kurogi, S., Ueno, T. and Sawa, M.: A batch learning method for competitive associative net

and its application to function approximation. Proc. SCI2004, Vol. V, pp.24–28 (2004)

6. Kurogi, S., Mineishi, S. and Sato, S.: An analysis of speaker recognition using bagging

CAN2 and pole distribution of speech signals. Proc. ICONIP2010, Part I, LNCS 6443,

pp.363–370 (2010)

7. Campbell, J.P.: Speaker Recognition: A Tutorial. Proc. the IEEE, Vol. 85, No.9, pp.1437–

1462 (1997)
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