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ABSTRACT

This paper presents a design methodology to apply
the approximate dual controller using the information
matrix maximization for self-sensing electromagnetic
suspension systems, in which the gap estimate is given
based on the speed electromotive force. The system is
an unstable non-minimum phase system, and we
employ the dual control system. Simulations are
presented to show that the dual control system follows
with the reference while the electromagnet is excited
to establish its quality identification for self-sensing
electromagnetic levitation system.

1 INTRODUCTION

Magnetic levitation technology provides a frictionless
feature. This system is employed for some applications
such as magnetic bearings, magnetic suspension balance
systems, and magnetically levitated vehicles. The
electromagnetic suspension system is inherently open-
loop unstable and needs to be controlled. In most of cases,
the stabilization is achieved with a displacement sensor
that detects the position of the suspended object. The
electromagnetic levitation which eliminates the position
sensors and estimates the potion from the currents in the
electromagnet is called the self-sensing electromagnetic
levitation. The self-sensing technique is preferable in
terms of the cost and reliability of the system.
Additionally simplification of the mechanism and
sensor/actuator collocation are achievable.

The self-sensing approaches are to design an
algorithm that transduces the voltage and current into the
position signal. One of the approaches is the state
estimation by using a state observer. This approach
utilizes speed electromotive force and was first proposed
by Visher [1,2]. A one-degree of freedom
electromagnetic suspension system can be modeled by a
single-input single-output linear time invariant (LTI)
model. The LTI model is controllable and observable. A
linear state observer can be used for the estimation of the
gap from the voltage and current. By using the estimated
gap, the object can be suspended. However the model has
a non-minimum phase zero and an unstable pole. This
characteristic leads to a poor stability robustness of the
self-sensing electromagnetic suspension control system.
Some researchers investigated the fundamental
limitations of the stability robustness [3, 4].

This paper presents a design methodology to apply
the approximate dual controller using the information
matrix maximization  [5,6] for self-sensing

electromagnetic suspension systems. The controller is
taking account of the dual property [7]. The controller
makes it possible not only to follow with the reference
trajectory but also to excite the electromagnets for the
identification of the system parameters. In the paper, we
show the modeling of the electromagnetic suspension
system in the section 2. In the section 3, we describe the
controller design methodology. In the section 4, the
numerical demonstrations are presented.

2 MODEL

We consider a one-degree of freedom EMS shown in
Fig. 1. The system is stabilized to control voltage applied
to the electromagnet. The actuator generates the
attraction force on the suspended object. And we assume
that the fringing effect is neglected, the permeability of
the magnetic material is constant, and the leakage flux is
neglected to derive the simple model. The dynamics of
the system can be given by:
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where x is the gap, M the mass, g the gravity acceleration,
v the input voltage, i the coil current, R the resistance, /
the average length of the iron core in the magnetic circuit,
Uo the permeability of free space, u, the relative
permeability of the iron core, A the cross sectional area,
N the number of coil turns, and ¢ the flux of the gap.
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Figure 1: Electromagnetic Suspension System
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3 CONTROLLER DESIGN

The dual controller in the paper consists of three
units: (a) Kalman filter to estimate the system parameters
by using the output and input. (b)Model predictive
control unit to calculate the control input. (¢) Excitation
unit to obtain the quality identification.

3.1  Auto Regressive Exogenous model

We assume that the control object is expressed as a
single-input and single-output auto regressive exogenous
(ARX) model given by:
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where y(k) is the system output, u(k) the system input,
a,i=1,--n,b,j=1,---n the system parameters,n,, n,
denote the number of lagged inputs and outputs, 6 the
parameter vector, Z(k) the regression vector, and &(k)
the white noise that has covariance matrix 0'2 .
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3.2 Parameter estimation

The parameter vector & of the ARX model is
estimated by using a Kalman filter. The filtering
algorithm are given by the following recursive equations:

3.3 Model Predictive Control

A Model Predictive Control (MPC) is formulated as
the minimization problem. We assume that we know the
system output y,,y ,,---,» . and input u_,---,u_, at time
k =0. The control input vector U, (k) is determined so
that the cost function is minimized:

U, (k)=argminJ (U, (k)) (11)
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where U, = (ucI u, - U, )T is the control input

vector, N the control horizon, r the reference trajectory,
0O, R the positive real weighting matrices, u, u, . the
hard constraints on the system input.

The MPC unit solves the minimization problem at
each sampling time £ to calculate the control input vector
U, (k).

3.4 Information matrix maximization[5, 6]

The maximization problem of the minimal eigenvalue
of the increment of the information matrix is formulated
as follows:
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where (k) is the estimated parameter vector, P(k) the 19
covariance matrix of @(k), o’ the covariance matrix for ~ Ymn =i SU mos K =1, N (19)
the noise £(k) representing a stochastic parameter drift. N
We assume that we have the initial estimated parameter ;”Q(y (k)—r)”z +”Ruk"2 <o (U.(k) (20)
vector 8(0) and the initial covariance matrix P(0). When
0 =0, the algorithm is identical to the recursive least & 21, 3(0)=y,
square algorithm and estimates the constant parameters.  Z(0)= (u_, u., V., v..) (21)
The estimated parameter vector 8 (k) is updated using the 3 "
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Figure 2: Dual adaptive control system



whereu, ,u,, -+, u, are the recalculated control inputs,
A (A)the minimum eigenvalue of the matrix 4, a the
weighing parameter. The magnitude of the electromagnet
excitation can be tuned by varying the parameter o .
When a=1, the vector U is identical to U, (the
solution is unchanged). When a > 1, the selected
strategy of the controller places importance on
“Identification”. In the equation (17), the term

éz(k)z" (%) (23)

represents the increment of the information matrix in N
steps to be related with the persistent excitation (PE)
condition[1,7]. The PE condition has an important role in
parameter estimation.

The excitation unit solves the maximization problem
at each sampling time k£ to calculate the control input
vector U(k) . And the first input element u, of (22) is
applied to the controlled object.

4 SIMULATION

In this section, numerical demonstrations for the self-

sensing magnetic suspension system are shown. The
system input and output are the voltage and current,
respectively.
The ARX model for the system is derived by using (1) -
(3). The parameter vector is & = ( 0.101 -0.210 0.101
2.970 -2.937 0.969)". Table 1 summarizes the system
parameters. Table 2 shows the controller parameters. In
the simulation, the problems (11)-15) and (16)-(22) are
solved by the toolbox YALMIP [8] of MATLAB. Figure
3 shows the response of the control system. Figure 4
shows the estimated parameters response. We set that the
reference gap is Imm and the coil resistance changes
from 0.30Q to 0.322Q). Although a slight variation of the
air gap appears at the initial period, the gap settles at the
steady state very stably by applying the suitable control
input to follow with the reference while the system is
excited by the control input to have the appropriate
identification.

5 CONCLUSION

This paper presented a design methodology to apply
the approximate dual controller by employing the
information matrix maximization for the self-sensing
magnetic suspension system. We showed the verification
of the control system by the numerical demonstrations.
The simulation results show that the suspended object is
well controlled, and the controlled object is excited by
the control input voltage to have quality identification at
the same time. And the results also show the stability
robustness of the control system against the disturbance.

Table 1: Dimensions of simulation test bench

Name Value
Permeability of free space 47rx10~7
Mass of the object 1.06kg
Nominal relative permeability 5000
Average length of the flux path 0.27m
Nominal air gap length Imm
Nominal current 1.027A
Maximum control current 10A
Coil turns 280
Coil resistance 03Q
Pole face area 0.0004 m?

Table 2: Controller parameters

Name Value
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Figure 3: Simulation results
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Figure 4: Estimated parameters





