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3 CONTROLLER DESIGN 
The dual controller in the paper consists of three 

units: (a) Kalman filter to estimate the system parameters 
by using the output and input. (b)Model predictive 
control unit to calculate the control input. (c) Excitation 
unit to obtain the quality identification. 

3.1  Auto Regressive Exogenous model 
We assume that the control object is expressed as a 

single-input and single-output auto regressive exogenous 
(ARX) model given by: 

( ) ( )kikyajkubky
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where ( )ky  is the system output, ( )ku  the system input, 

bjai njbnia ,1,,,1, == the system parameters, an , bn
denote the number of lagged inputs and outputs, θ  the 
parameter vector, ( )kZ  the regression vector, and ( )kξ  
the white noise that has covariance matrix 2

ξσ . 

3.2  Parameter estimation 
The parameter vector θ  of the ARX model is 

estimated by using a Kalman filter. The filtering 
algorithm are given by the following recursive equations: 
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where )(ˆ kθ  is the estimated parameter vector, )(kP the 
covariance matrix of )(kθ , 2

εσ  the covariance matrix for 
the noise )(kε  representing a stochastic parameter drift. 
We assume that we have the initial estimated parameter 
vector (0) and the initial covariance matrix )0(P . When

02 ≡εσ , the algorithm is identical to the recursive least 
square algorithm and estimates the constant parameters. 
The estimated parameter vector ( ) is updated using the 
error ( )ke  at time k . 

3.3  Model Predictive Control 
A Model Predictive Control (MPC) is formulated as 

the minimization problem. We assume that we know the 
system output nayyy −− ,,, 10  and input nbuu −− ,,1 at time

0=k . The control input vector )(kUc  is determined so 
that the cost function is minimized: 
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where ( )T
cNccc uuuU 21=  is the control input 

vector, N  the control horizon, r  the reference trajectory,
Q , R  the positive real weighting matrices, maxmin ,uu  the 
hard constraints on the system input.  

The MPC unit solves the minimization problem at 
each sampling time k  to calculate the control input vector

)(kUc .  

3.4  Information matrix maximization [5, 6] 
The maximization problem of the minimal eigenvalue 

of the increment of the information matrix is formulated 
as follows: 
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Figure 2: Dual adaptive control system 
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where 1u , 3u , , Nu  are the recalculated control inputs, 
( )Aminλ the minimum eigenvalue of the matrix A ,α the 

weighing parameter. The magnitude of the electromagnet 
excitation can be tuned by varying the parameter α . 
When 1=α , the vector U is identical to cU  (the 
solution is unchanged). When ≫ 1 , the selected 
strategy of the controller places importance on 
“Identification”. In the equation (17), the term  

( ) ( )∑
=

N

k

T kZkZ
0

 (23)

represents the increment of the information matrix in N  
steps to be related with the persistent excitation (PE) 
condition[1,7]. The PE condition has an important role in 
parameter estimation. 

The excitation unit solves the maximization problem 
at each sampling time k  to calculate the control input 
vector )(kU . And the first input element  of (22) is 
applied to the controlled object. 

4 SIMULATION 
In this section, numerical demonstrations for the self-

sensing magnetic suspension system are shown. The 
system input and output are the voltage and current, 
respectively. 
The ARX model for the system is derived by using (1) - 
(3). The parameter vector is (=θ 0.101 -0.210 0.101 
2.970 -2.937 0.969 T) . Table 1 summarizes the system 
parameters. Table 2 shows the controller parameters. In 
the simulation, the problems (11)-15) and (16)-(22) are 
solved by the toolbox YALMIP [8] of MATLAB. Figure 
3 shows the response of the control system. Figure 4 
shows the estimated parameters response. We set that the 
reference gap is 1mm and the coil resistance changes 
from 0.3Ω to 0.322Ω. Although a slight variation of the 
air gap appears at the initial period, the gap settles at the 
steady state very stably by applying the suitable control 
input to follow with the reference while the system is 
excited by the control input to have the appropriate 
identification.  

5 CONCLUSION 
This paper presented a design methodology to apply 

the approximate dual controller by employing the 
information matrix maximization for the self-sensing 
magnetic suspension system. We showed the verification 
of the control system by the numerical demonstrations. 
The simulation results show that the suspended object is 
well controlled, and the controlled object is excited by 
the control input voltage to have quality identification at 
the same time. And the results also show the stability 
robustness of the control system against the disturbance.  

 
 
 
 
 

Table 1: Dimensions of simulation test bench 

Name Value 

Permeability of free space 7104 −×π  

Mass of the object 1.06kg 

Nominal relative permeability 5000 

Average length of the flux path 0.27m 

Nominal air gap length 1mm 

Nominal current 1.027A 

Maximum control current 10A 

Coil turns 280 

Coil resistance 0.3 Ω  

Pole face area 0.0004 2m  

 

Table 2: Controller parameters 

Name Value 
2
ξσ  10  
2
εσ  2.4 × 10  

Q  1 

R  1 

maxu  -5 

minu  5 

α  1.0051 
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Figure 3: Simulation results 
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     Figure 4: Estimated parameters 
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