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1.1 Background 

 

1.1.1 Nano-materials 

The essential differences in physic and chemical properties of nano-materials , 

compared to the bulk phase had been realized in lots of scientific and technological 

areas. The size-dependent tunable electronic, optical, magnetic and mechanical 

properties of nano-materials were basis to the current attractive and growing 

applications of nano-materials.1	 The most attentive nano-materials were arose from 

silica, noble metals, polymers, semiconductors, metal oxides, and carbon. Among 

such nano-materials, silica nano-particles, gold nano-particles, polymer nano-particles, 

semiconductor quantum dots, carbon nanotubes, nano-diamonds, fullerenes, and 

graphene are theme of basis research, device technology and biomedical technology. 

2,3The fluorescence, magnetic resonance, positron emission, photo-thermal and 

photo-acoustic effects, surface plasmon, and Raman and surface enhanced Raman 

scattering (SERS) were supplied by the above nano-materials enable us to resolve 

various problems in chemical, physical and biology science. 4 

Synthesis of colloidal nano-particles with unique optical and electronic properties, 

well-defined surface chemistry, well -controlled size and shape- distributions is the 

basis of all such applications. The large surface to volume ratios of nano-materials 

and their surface modifications using various chemical and bio-conjugate reactions 

have expanded applications (Fig.1).5 

 

1.1.2 Silica nano-particles  

Silica nano-particles can be classified into mesoporous and solid or non-porous. 

Because of chemical and physical stabilities, hydrophilic surface, well-defined surface  
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Fig. 1 Properties and application of nano-particles. 
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chemistry, size-controlled synthesis rand large surface area, silica nano-particles have 

become common platforms for various chemical and catalytic reactions, and physical 

and biological applications. 6,7 

The Stöber process is a physical chemistry process for the generation 

of mono-disperse particles of silica.2  The process was discovered in 1968 by Werner 

Stöber et al. Tetraethyl orthosilicate was added to an excess of water containing a low 

molar-mass alcohol such as ethanol and containing ammonia. Then, the resulting 

solution is stirred.8 The resulting silica particles have diameters between 50 and 2000 

nanometers depending on type of silicate ester used, type of alcohol used and volume 

ratios. The reactions taking place are hydrolysis of the silyl ether to a silanol followed 

by condensation reactions.9 (Fig.2) 

Mesoporous silica nano-particles are synthesized by the sol–gel process, which is 

via polymerization of silyl ethers stabilized in amphiphilic templates supplied by 

surfactants such as cetyltrimethyl ammonium bromide. The pore-size of mesoporou 

silica nano-particles thus synthesized can be controlled by changing the pH of the 

solution condition and composition of the solvents.10,11 

 

1.1.3 Carbon materials 

Carbon materials have observed ever-increasing research attention since over 20 

years ago, when 0 D fullerene (C60) and 1 D carbon nanotubes (CNTs) were 

discovered. In 2004, the successful isolation of monolayer 2D graphene (GR) caused 

a widely worldwide revolution target to apply the unique structural and electronic 

properties of GR to improve the performance of GR-based composite materials for 

aiming applications.12 Therefore a great number of nano-structures have been 

composited with them and their derivatives. 
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Fig. 2 Transmission electron micrograph of silica nano-particles (2a) and 

Silica particles structure and surface (2b) 
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Carbon nanotubes (CNTs) were allotropes of carbon with a cylindrical 

nano-structure. Nanotubes had been constructed with length-to-diameter ratio of up to 

132,000,000: 1, significantly larger than for any other material. These cylindrical 

carbon molecules had unusual properties, which were valuable for nanotechnology, 

electronics, optics and other fields of materials science and technology. In particular, 

owing to their extraordinary thermal conductivity and mechanical and electrical 

properties, carbon nanatubes found applications as additives to various structural 

materials. For instance, nanotubes formed a tiny portion of the materials in so baseball, 

golf clubs, car parts or damascus steel.13 

Nanotubes were members of the fullerene structural family. Their name was 

derived from their long, hollow structure with the walls formed by one-atom-thick 

sheets of carbon, called graphene. There sheet were rolled at specific and discrete 

angles, and the combination of the rolling angle and radius decides the nanotube 

properties; for example, whether the individual nanotube shell was a metal or 

semiconductor. Nanotubes were categorized as single-walled nanotubes (SWNTs) and 

multi-walled nanotubes (MWNTs). Individual nanotubes naturally aligned themselves 

into ropes held together by van der Waals forces, more specifically, pi-stacking.14 

  A fullerene was a molecule of carbon in the form of a hollow sphere,ellipsoid, tube, 

and many other shapes. Spherical fullerenes were also called buckyballs, and they 

resemble the balls used in football (soccer). Cylindrical ones were called carbon 

nanotubes or buckytubes. Fullerenes are similar in structure to graphite, which was 

composed of stacked graphene sheets of linked hexagonal rings; but they might also 

contain pentagonal (or sometimes heptagonal) rings. 15 

The first fullerene molecule to be discovered, and the family's namesake, 

buckminsterfullerene (C60), was prepared in 1985 by Richard Smalley,   
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Fig. 3 The structure of carbon family. 
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Robert Curl, James Heath, Sean O'Brien, and Harold Kroto at Rice University. The 

name was a homage to Buckminster Fuller, whose geodesic domes it resembles. The 

structure was also identified some five years earlier by Sumio Iijima, from an electron 

microscope image, where it formed the core of a "bucky onion." Fullerenes have since 

been found to occur in nature. More recently, fullerenes have been detected in outer 

space. According to astronomer Letizia Stanghellini, "It’s possible that buckyballs 

from outer space provided seeds for life on Earth." 16,17 

  Graphene is an allotrope of carbon, in the form of , a two-dimensional atomic-scale, 

hexagonal lattice in which one atom forms each vertex. It was the basic structural 

element of other allotropes, including graphite, charcoal, carbon nanotubes and 

fullerenes. 18It could also be considered as an indefinitely large aromatic molecule, the 

limiting case of the family of flat polycyclic aromatic hydrocarbons.19 

  Graphene had many extraordinary properties. It was about 200 times stronger that 

steel by weight. Conducts heat and electricity with great efficiency and is nearly 

transparent. Researchers have identified the bipolar transistor effect, ballistic transport 

of charges and large quantum oscillations in the material.20 

 

1.1.4 Carbon materials composite 

In the last few decades, great efforts have been made to synthesize inorganic 

nanostructures with controlled shape, size, crystallinity and functionality. These 

materials were widely employed in applications like optics, electronics, storage, solar 

energy harvesting and electrochemical energy conversion and so on. In order to 

further enhance their properties, a great number of inorganic nanostructures have been  

composited with carbon family and its derivatives, which include metals like Au, 21 

Ag,22 Pd,23 Pt,24 Ni,25 Cu,24 Ru26 and Rh26 oxides like TiO2,27 ZnO,28 SnO2,29 MnO2,  
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 4b 

Fig. 4 Functionalize a gold nanoparticle with a thiol derivative of fullerene (4a) and 

G and GO supported on silica (4b). 
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30Co3O4,31Fe3O4,32 NiO,33 Cu2O, 34RuO2
35 and SiO2

36chalcogenides like CdS37 and 

CdSe.38  

At present, almost of these composite nano-structure are synthesized via blend be 

conjugated with surface groups, or post-synthesis surface groups which are exhibited 

many reports, and they shows broad application prospect. As shows (Fig.4):  

S. Barazzouk, S. Hotchandani reported a self-assembled photoactive antenna system 

containing a gold nano-particle as the central nanocore and appended fullerene moieties 

as the photoreceptive hydrophobic shell was designed by functionalizing a gold 

nano-particle with a thiol derivative of fullerene. The quenching of fluorescence 

emission as well as decreased yields of triplet excited state suggested the participation 

of excited singlet in the energy transfer to the gold nanocore. Application of 

electro-phoretically deposited Au−S−C60 nanoassemblies on optically transparent 

electrodes in the photo-electrochemical conversion of light energy has been illustrated. 

39(Fig. 4a) 

Q. Liu, J. Shi reported that they have demonstrated that G and GO supported on 

silica provide a versatile and high-performance platform for SPE towards various 

analytes ranging from small molecules of pollutants to biomolecules such as proteins 

and peptides. Notably, G bound silica is capable of extracting sticky proteins with 

large molecular weight and phosphorylated peptides, making them particularly 

suitable for handling biological samples for MALDI-TOF MS analysis. Our results 

further reveal the remarkable potential of G-based materials for sorption applications. 

40(Fig. 4b)  

 

1.2 This paper 

We have successfully achieved colloidal crystallization of polymer-grafted silica in 
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organic solvents and then immobilization in polymer matrix. 41-44Polymer grafting 

techniques provide a very versatile tool to tailor the surface of nanoparticles and thus 

the interfaces between nano-particles and the matrix polymers.45-49 In order to develop 

this area further, we utilize polymer to modify the silica surface, and then tether the 

silica with carbon family, target conveniently adjust the ratio of carbon molecules and 

nano-particles and fine-turning the proprieties. 

  We graft the fullerene and graphene with the polymer modified silica, respectively. 

After preparation of C60-tethered polymer-grafted silica (C60/polymer/ SiO2), the 

colloidal crystallization of the composite particles in organic solvent was investigated. 

Moreover, the silica -tethered polymer-grafted graphene (SiO2/polymer/graphene) was 

synthesized, and well dispersion was obtained. 

  This thesis consisting of four chapters is a summary of the author’s work. An outline 

of each chapter is described below. 

 

In chapter 1, in order to enable us to combine silica nano-particles and carbon 

molecules, we design and synthesize a difunctional polymer. 3-mercapto- propyl 

triethoxy silanes are extensively employed in condensation reactions, which thiol 

groups on the surface of silica nanoparticles. 4-azidobenzoly chloride both with acyl 

chloride and azido group are employed in react with polymer and π-conjugated 

molecule, respectively. Due to chemical and physical stabilities, PMMA are 

extensively employed in various areas. HEMA with almost same advantage with 

MMA, on the other hand, could react with both thiol groups. For the sake of adjust the 

ratio and control the performance, we put two functional groups on the terminal and 

the side chain, respectively. The silica nano-particles own stabilities chemical and 

physical properties and the 3-mercaptopropyl triethoxy silane also could be a transfer 
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reagent. So placed on the terminal is the best choice. On the other hand, the acyl 

chloride groups with little instability, placed on the side, in favor of the reaction with 

π-conjugated molecule. 

In Chapter 2, we show that synthesis of fullerene (C60)-tethered polymergrafted 

silica and colloidal crystallization of the particles was investigated. The particles were 

prepared by the reaction of C60 with 4-azidobenzoyl groups introduced in poly(methyl 

methacrylate-co-2-hydroxyethyl methacrylate). The reaction afforded bindings of C60 

in the range from 0.44×104 to 1.71×104 molecules/particle. The C60 amounts did not 

monotonously increase with 4-azidobenzoyl group on the particles, but decreased with 

mole fraction of methyl methacrylate in the copolymer. 

In chapter 3, we prepare C60-tethering polymer-grafted silica and colloidal 

crystallization in organic solvent were investigated. Critical volume fraction and 

reflection spectra were evaluated. Inter-sphere distances in the colloidal crystals mostly 

agreed with calculated values on assumption of fcc-closed packing. Therefore, it was 

suggested that the crystallization occurred due to electrostatic repulsion between the 

particles as well as those of colloidal silica particles in aqueous solution. 

In chapter 4, we have done a basic study of a graphene – polymer /SiO2 system, 

polymer-grafted silica spheres-tethered graphene nano-sheet composite material, 

which were prepared by the reaction of graphene with 4-azidobenzoyl groups 

introduced in poly (methylmethacrylate-co-2-hydroxyethyl methacrylate), synthesized 

via a radical copolymerization, followed by esterification of 2-hydroxyethyl 

metharylate moieties with 4-azidobenzoyl chloride and grafted with colloidal silica. We 

found that the graphene/poly(MMA-co-AEMA)/SiO2 was well dispersion in many 

solvents.  
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Chapter 1    

 

 

Synthesis of Trimethoxysilyl-capped and  

4-Azidobenzoyl Groups Modified Difunctional Polymer 

 

1.1 Introduction 

Polymer grafting techniques provided a very capable tool to modify the surface of 

nano-particles and thus the interfaces between nano-particles and the matrix polymers. 

These techniques provided control over the type of polymer to be grafted onto the 

particle surface, surface densities, and chain lengths at the nanometer scale.1 The 

techniques of covalently grafting polymer chains onto particles could be classified into 

“grafting from” and “grafting to”. The grafting from technique uses initiators that have 

been initially anchored to the particle surface, followed by the polymerization from the 

surface.2,3 On the other hand, the grafting to technique involved reacting the polymer, 

bearing an suitable functional group, with the particles to chemically added the polymer 

chains.4,5 Due to the steric hindrance increased with the already grafted chains, it 

becomes increasingly difficult for the incoming polymer chains to diffuse to the surface 

against the concentration gradient of the existing grafted polymers, which results in low 

graft densities.  

 

In chapter 1, in order to enable us to combine silica nano-particles and carbon 

molecules, we design and synthesize a difunctional polymer. Various trialkoxysilanes 

are extensively employed in condensed with the surface silanol group.6 

3-mercaptopropyl triethoxy silanes are extensively employed in condensation 
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reactions, which thiol groups on the surface of silica nanoparticles.7 The direct 

condensation of silane-functionalized molecules such as dye, DNA, siRNA, polymer, 

gold, QD, etc.4-azidobenzoly chloride both with acyl chloride and azido group are 

employed in react with polymer and π-conjugated molecule, respectively.8,9Due to 

chemical and physical stabilities, PMMA are extensively employed in various areas. 

HEMA with almost same advantage with MMA, on the other hand, could react with 

both thiol groups. 10,11 

For the sake of adjust the ratio and control the performance, we put two functional 

groups on the terminal and the side chain, respectively. The silica nano-particles own 

stabilities chemical and physical properties and the 3-mercaptopropyl triethoxysilane 

also could be a transfer reagent. 12,13 So placed on the terminal is the best choice. On 

the other hand, the acyl chloride groups with little instability, placed on the side, in 

favor of the reaction with π-conjugated molecule. 

 

1.2  Experimental Section 

1.2.1 Materials  

Methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA), (3- 

mercaptopropyl) trimethoxysilane, 2,2′-azobis(isobutyronitrile) (AIBN), 

tetrahydrofuran (THF), Chloroform, were obtained from Wako Chemicals Co. Ltd., 

Osaka, Japan 

 

1.2.2 Synthesis of trimethoxysilyl-capped and 4-azidobenzoyl groups modified 

difunctional polymer 

	 	 A typical run was as follows. A mixture of 12.0 mL (112 mmol) MMA, 0.68 mL 

(5.6 mmol) HEMA, 10 mg (0.07 mmol) (3-mercaptopropyl)trimethoxysilane, 16 mg 
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(0.17 mmol) AIBN, and 20 mL dry THF was put into a 50-mL flask and stirred at 

70 °C for 10 h in N2 atmosphere. After evaporation of THF from the mixture and 

precipitation with diethyl ether, drying under reduced pressure gave 7.2 g copolymer 

Poly(MMA-co-AEMA), of Mn 24,000 and MMA/HEMA mole ratio 14.7:1.0. The 

mole ratio was determined by the area ratio of resonance peak at 3.63 ppm assigned 

to methyl protons of MMA moiety to peaks at 3.87 and 4.15 ppm assigned to 

methylene protons of HEMA moiety on 1H NMR spectrum. 1H NMR (CDCl3): 0.87, 

1.05, 1.23 (m, CH3), 1.76–2.15 (broad, CH2, CH), 3.63 (s, OCH3), 3.87 (broad, 

COOCH2), and 4.15 ppm (broad, CH2OH). 

    

1.2.3 Synthesis of trimethoxysilyl-capped poly(methyl 

methacrylate--co-2-(4-azidobenzoyloxy)ethyl metharylate) 

Into a 50-mL flask, 2.0 mL N,N,N-triethylamine, 3.0 g  poly(MMA-co-HEMA), and 

30 mL dry chloroform were put, and the mixture was cooled on an ice bath. Chloroform 

solution 2.0 mL containing 3 g (17 mml) 4-azidobenzoyl chloride was added dropwise 

to the solution, followed by stirring for 6 h at room temperature. Filtration, evaporation 

of solvent, and precipitation with diethyl ether gave 2.45 g 2. 1H NMR (CDCl3): 0.87, 

1.05, 1.23 (m, CH3), 1.76–2.15 (broad, CH2, CH), 3.63 (s, OCH3), 3.87 (broad, 

COOCH2), 4.15 (broad, CH2OH), 4.32 (broad, COOCH2CH2OC=OC6H4N3), 4.55 

(broad, CH2OC=OC6H4N3), 7.18 (broad, o−CH2 (C=OC6H4N3)), and 8.09 ppm (board, 

m–CH2 (C=OC6H4N3)). 

 

1.2.4 Polymer characterization 

Number average of molecular weight (Mn) of the synthesized polymers were 

determined by a gel permeation chromatography (GPC) on the columns, TSK gel  
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Scheme 1  The synthetic route of poly(MMA-co-AEMA). 
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G4000H6, and G5000H6, Tosoh Co. Ltd., Yamaguchi, Japan, a 35 °C using THF as an 

eluent at the flow rate of 0.8 mL/ min calibrated with a polystyrene standard. Molecular 

weights were calculated with the aid of polystyrene standards.1H NMR spectra for 

solution samples were recorded on a Bruker AVANCE 400 (400 MHz), 5-10% 

(solutions) in CDCl3 with Si(CH3)4 as an internal standard were recorded at room 

temperature. 

 

1.3 Result and discussion 

In Scheme 1, The synthetic route of poly(MMA-co-AEMA) was shown. 

Trimethoxysilyl-terminated poly(MMA-co-HEMA)  was synthesized by a radical 

copolymerization of MMA and HEMA in the presence of (3-mercaptopropyl) 

trimethoxysilane of a chain transfer reagent using AIBN as an radical initiator at 70OC 

for 10 h in N2 atmosphere.14,15 

 For the 1HNMR spectra (Fig.5), the introduction of HEMA group was confirmed by 

the appearance of peaks at 3.87 and 4.15ppm, the introduction of MMA group was 

confirmed by the appearance of peaks at 3.65ppm. For the appearance of multiple peaks 

from 0.8 ~ 2.0ppm, it was suggested that the poly(MMA-co-HEMA)was synthesized 

successfully. The ratios of MMA to HEMA were determined from the area ratio of 

peaks at 3.87 and 4.15ppm to 3.65ppm. (Table 1)  

The number-average molecular weights of polymers were obtained from gel 

permeation chromatography (GPC) measurements. A typical GPC traces of the 

poly(MMA-co-HEMA) as show as in Fig. 6. For the appearance of peak at 8 min 

to10min, it was suggested that the Mn value of poly(MMA-co-HEMA) was 24,000 

and Mw/Mn was 1.58.The molecular weight distribution is narrow and unimodal, 

indicating that the polymerization was performed in a controlled manner.16,17 
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Table 1 1H NMR chemical shifts of Poly(MMA-co-HEMA). 

 

δ  (ppm) Assignment 

3.6 1 

3.8 , 4.1 2 

0.8 ~ 1.0 3 

1.5 ~ 2.0 4 

 

 

 

 

 

 

 

2 1 

3 4 3 4 
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3.65ppm 

3.87ppm 

4.15ppm 

1.00 1.44 

Figure 5 Typical 1H NMR spectra of poly(MMA-co-HEMA) with mole ratio of MMA/HEMA=1.9:1.0 
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 Fig. 6 Gel permeation chromatograms of Poly(MMA-co-HEMA) 

 

 

 

 

 

For the table 2, the polymer of Mn=11,000~24,000 with mole ratios of 
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MMA/HEMA in the range from 1.9:1.0 to 14.7:1.0 were obtained by changing feed 

ratio of the monomers (Fig.7-10). In order to reduce the number-average molecular 

weight influence on performance evaluate later, need to hold the Mn in a similar 

values. Due to changing feed ratio of the monomers, the polymer of Mn = 11,000 ~ 

16,000 were obtained as shows as No.1 to No.4. For research the influence of high 

number-average molecular weight, a polymer of Mn = 24,000 was also obtained as 

shows as No.5. 

In Scheme 1, The synthetic route of poly(MMA-co-AEMA) was shown. The 

reaction of 4-azidobenzoyl chloride with poly(MMA-co-HEMA) was carried out in the 

presence of N,N,N-triethyl amine at 4 °C. For the 1HNMR spectra (Fig 11), the 

introduction of 4-azidobenzoyl group into HEMA moieties in poly(MMA-co-AEMA) 

was confirmed by the appearance of resonance peaks at 4.32 and 4.55 ppm on 1H NMR 

spectrum, assignable to protons in ethylene group of HEMA moiety, and at 7.18 and 

8.09 ppm, assignable to protons in 4-azidobenzoyl group. Amounts of 4-azidobenzoyl 

group were determined by area ratio of peaks at 7.18 and 9.08 ppm to peaks at 3.87 and 

4.15 ppm, assignable to unreacted methylene groups of HEMA moiety. 18,19 

Theoretically, if all of HEMA group react with 4-azidobenzoyl chloride, the 

amounts of 4-azidobenzoyl group increased with HEMA fraction. However, just the 

sample No.4 react completely, the mole ratios of MMA/HEMA was 8.6 : 1.0, the as 

show in 1H NMR spectra (Fig.11). For the table 3, No.1 to No.4, the amounts of 

4-azidobenzoyl group increased with decreasing HEMA fraction in the 

Poly(MMA--co-AEMA) from 1.03 to 0.59 mmol/g, with conversion percent from 100% 

to 14%(Fig. 12).Yet, it was difficult for us to discuss the reason.  
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Table 2 Synthesis of Poly(MMA-co-HEMA) 

 MMA HEMA AIBN THF C
6
H

16
O

3
SiS m:n  

Mn/103 

No.1 3ml 

(28mmol) 

1.36ml 

(11.2mmol) 

1.6mg 

(0.17mmol) 

20ml 60 

(0.33mmol) 

2/1 

(11) 

No.2 6ml 

(56mmol) 

2.04ml 

(16.8mmol) 

1.6mg 

(0.17mmol) 

20ml 60 

(0.33mmol) 

4/1 

(13) 

No.3 6ml 

(56mmol) 

1.36ml 

(11.2mmol) 

1.6mg 

(0.17mmol) 

20ml 60 

(0.33mmol) 

6/1 

(15) 

No.4 3ml 

(28mmol) 

0.34ml 

(2.8mmol) 

1.6mg 

(0.17mmol) 

20ml 60 

(0.33mmol) 

8/1 

(16) 

No.5 12ml 

(128mmol) 

0.68ml 

(5.6mmol) 

1.6mg 

(0.17mmol) 

20ml 60 

(0.33mmol) 

14/1 

(24) 
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Probably there is favorable to react with Polymer chains of poly(MMA-co-AEMA) 

with high MMA fraction  were probably favorable to react with 4- azidobenzoyl 

chloride due to highly affinity with chloroform. However, while the number-average 

molecular weight was24,000 (No.5), about twice as No.1 to No.4, the amounts of 

4-azidobenzoyl group was decreased. Due to there is not enough samples with high 

the number-average molecular weight, so there is a difficult to for us to discuss the 

reasons here. Meanwhile, this result also suggested that there is a possible for us to 

control the target products via adjusting the ratios of HEMA to AEMA and the number 

-average molecular weight of polymer. 

 

1.4 Conclusion  

  In summary, chapter 1 has show that 4-azidobenzoyloxy groups introduced in 

poly(MMA-co-HEMA) [poly(methyl methacrylate-co-2-hydroxyethyl methacrylate)], 

synthesized by radical copolymerization, followed by esterification of 2-hydroxyethyl 

metharylate moieties with 4-azidobenzoyl chloride.  

Gel permeation chromatography (GPC) measurements for poly(MMA-co-HEMA) 

show that the number-average molecular weight of polymers. The molecular weight 

distribution is narrow and unimodal, indicating that the polymerization was performed 

in a controlled manner. 

 After discuss the relationship between products and and reaction conditions, we 

found that the polymer chains of poly(MMA-co-AEMA) with high MMA fraction 

were probably favorable to react with 4- azidobenzoyl chloride due to highly affinity 

with chloroform. When the number-average molecular weight was high, it did not 

conform to this law. This result also suggested that there is a possible for us to control 

the target products via adjusting the ratios of HEMA to AEMA and the number 
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-average molecular weight of polymers. 

 

 

 

 

 

 

 

 

Table 3 Synthesis of Poly(MMA-co-AEMA) 

 

Polymer 

Mole ratio   Mn/103 

             m/n 

4-N
3
C

6
H

4
 group    

  (mmol/g) 

Conversion  

Percent 

(%) 

2/1 11 0.59  14 

4/1 13 0.73  38 

6/1 15 0.86  52 

8/1 16 1.03  100 

14/1 24 0.22  40 
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Preparation of C60-tethered 

Polymer grafted silica (C60/polymer/SiO2) 

 

2.1  Introduction 

Fullerene has received much interest for applications in smart and functional 

materials owing to its characteristic properties, such as electron-accepting or -releasing 

capacity, high refractive index, high heat conductivity and absorption in the UV region. 

So far, a number of papers have reported fundamental and practical studies employing 

modified or unmodified fullerenes in applications such as solar cell devices, fillers and 

semiconductors.1–4 In most cases, a surface modification of fullerenes was performed to 

promote dispersion or to increase the solubility of the fullerenes in solution.5 However, 

surface modification by a covalent bond sometimes spoils the innate properties of 

fullerene. Furthermore, the addition of surfactants causes fullerene to leak from the 

final products and contaminate the environment. We have reported a polymer 

dispersant, poly(methyl methacrylate-co-2-naphthyl methacrylate) 

(poly(MMA-NMA)), effectively disperses fullerene in an organic solvent without 

spoiling the original properties of fullerene.6 

Silica is widely used as a raw material in many applications, including paints, fillers 

of plastics, carriers of catalysts, supports in heterogeneous organic synthesis and 

stationary phase of chromatography, owing to its non-toxicity, stability and availability. 

A recent development in colloid chemistry also made it possible to control the size of 

the colloidal inorganic particles ranging from nanometer to micrometer size.7 

Nanometer-sized colloidal silica is an especially attractive material  
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Fig. 13 Preparation of C60-tethered polymer-grafted silica(C60/polymer/SiO2) 

 

 

 

 

 

 

 

 

 

owing to its spherical shape, colorlessness and high stability in an aqueous solution. An 

aqueous solution containing colloidal silica <20nm is usually transparent. Therefore, 
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polymer composites consisting of fairly well-dispersed fullerene and silica 

nano-particles can result in the fabrication of unique functional materials, that is, 

silica-reinforced and heat-conductive transparent composites. 

  At present, almost of these composite nano-structure are synthesized via blend be 

conjugated with surface groups, or post-synthesis surface groups which are exhibited 

many reports, and they showed broad application prospect.8-15 

In Chapter 2, we showed that synthesis of fullerene (C60)-tethered polymer grafted 

silica and colloidal crystallization of the particles was investigated. (Fig. 13)The 

particles were prepared by the reaction of C60 with 4-azidobenzoyl groups introduced in 

poly(methyl methacrylate-co-2-hydroxyethyl methacrylate). The reaction afforded 

bindings of C60 in the range from 0.44×104 to 1.71×104 molecules/particle. The C60 

amounts did not monotonously increase with 4-azidobenzoyl group on the particles, but 

decreased with mole fraction of methyl methacrylate in the copolymer. 

 

2.2 Experimental Section 

2.2.1 Materials  

Colloidal silica aqueous sol, containing 20wt% SiO2 of 134 nmin diameter with a 

polydispersity 0.030, was kindly gifted by  Nikki Catalysts & Chemical Co. Ltd., 

Kanagawa, Japan.Fullerene (C60), Nanom purple ST, was purchased from Frontier 

Carbon Co. Ltd., Tokyo,  Japan.tetrahydrofuran (THF), diethyl ether, 1,2-dimethoxy 

ethane (DME),  toluene were obtained from  Wako Chemicals Co. Ltd., Osaka, Japan 

 

 

2.2.2 Preparation of poly(methyl methacrylate-co-2-(4-azidobenzoyloxy)ethyl 

metharylate)-grafted silica  
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Colloidal silica suspended in ethanol was prepared by solvent exchanging with 

azeotropic evaporation of water after addition of ethanol to the original aqueous sol. A 

mixture of 0.5 g Poly(MMA-co-AEMA), 50 mL colloidal silica ethanol suspension, 

containing1.0 g SiO2, and 50 mL DME was put into a 100-mL flask. After sonication 

for 30 m, the suspension was stirred at 90 °C for 5 h along with azeotropical removal of 

ethanol. Centrifugal washing with THF eight times and drying under reduced pressure 

gave 1.0 g Poly(MMA-co-AEMA)/SiO2, with 47.8 mg/g grafted polymer. 13C 

CP/MAS NMR: 10.3–25.2 (broad, −CH2– C(CH3)(C=O)−), –CH2–C(CH3)(C=O)–), 

44.5 (–CH2– C(CH3)(C=O)−), 40.8–62.0 (broad, O–CH3, O–CH2CH2–O), and 177.8 

ppm (C=O). 

 

2.2.3 Reaction of C60 with poly(methyl methacrylate-co-2-(4-azidobenzoyloxy) 

ethyl metharylate)-grafted silica  

Into 20 mL toluene, 50 mg C60 and 1.0 g Poly(MMA-co-AEMA)/SiO2 were put, and 

the mixture was stirred at 110 °C under a nitrogen atmosphere for 24 h. Centrifugal 

separation of resulting particles with toluene and drying under reduced pressure gave 

0.88 g 4. 13C CP/MAS NMR: 9.9–26.8 (broad, –CH2– C(CH3)(C=O)–), 

–CH2–C(CH3)(C=O)–), 44.6 (–CH2–C(CH3)(C=O)–) , 39.1–70.3 (broad, O–CH3, 

O–CH2CH2–O), 107.7–153.0 (broad, –C60), and 177.3 ppm (C=O). 

 

2.2.4 Characterization 

Amounts of grafted polymer on poly(MMA-co-AEMA)/SiO2 and C60-tethered 

poly(MMA-co-AEMA)/SiO2 were determined by weight decrease (Wpolymer) during  
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Scheme 2 the synthetic route of C60-tethered poly(MMA-co-AEMA)/SiO2. 
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δ (ppm) Assignment 
145.1-149.3 2 

107.3 3 

177.4 4,9 

44.4 5 

39.7 6 

9.9-27.6 7,8 

 
Table 4 13C NMR chemical shifts of poly(MMA-co-AEMA)-grafted silica 
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elevation from 170 to 420 °C on a thermogravimetric analysis. The amount of C60 

tethered on 4 was also determined by weight loss (Wc60), corresponding to C60 ignition, 

  Fig. 14 13C
 C

P/M
A

S N
M

R
 spectra of Poly(M

M
A

-co-A
E

M
A

) grafted w
ith SiO

2  
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during elevation from 550 to 800 °C. 13C CP/MAS NMR spectra for solid state samples 

were recorded on a Bruker AVANCE 300 (300 MHz) using a 7-mm rotor prove, 

Karisruhe, Germany respectively. 

 

2.3 Result and discussion 

We synthesized the poly(MMA-co-AEMA) in the chapter 1.In this chapter 2, 

Poly(MMA-co-AEMA) was reacted with silica nano-particles and C60, respectively In 

Scheme 2, the synthetic route of C60-tethered poly(MMA-co-AEMA)/SiO2 was shown.  

In order to determinate conveniently the grafted polymer and C60 on silica. We give 

priority to reaction with silica nano-particles. A mixture of poly(MMA-co-AEMA), 

colloidal silica ethanol suspension and DME was put into a flask, after sonication for 

30min. the suspension was stirred at 90OC for 1day with azetropical remove of ethanol, 

Centrifugal washing with THF six times and drying under reduced pressure. 

For 13C CP/MAS NMR spectra of Poly(MMA-co-AEMA) grafted with SiO2 (Fig. 

14) ,it was distinctly indicate that Poly(MMA-co-AEMA) graft on silica nano-particles 

by the appearance of resonance peak at 9.9 ~ 27.6ppm, 39.7ppm, 44.4 ppm, 107.3ppm, 

177.4ppm and 145.1~149.3ppm (Table 4).However, for 13C CP/MAS NMR spectra 

just could qualitative analysis, quantitative analysis for determinate the graft polymer 

on silica should via other determination method. 

  TGA (Thermal Gravimetric Analysis) is a useful procedure for the characterization 

of the organic grafting process. This technique allows the study of interaction strength 

between the attached organic groups and the surface with increasing temperature.  
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Fig. 15 Typical thermo gravimetic thermogram of poly(MMA-co-HEMA) 
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Fig. 16 Typical thermo gravimetic thermogram of poly(MMA-co-AEMA) 

Previous thermal analysis reports have shown that the molecular dynamics of the 
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polymer and the silica glass, typically of 10 ~ 15 nm pore size, affect the glass 

transition temperature of the polymer.  

The adsorbed amounts were measured using thermal gravimetric analysis (TGA) 

unzipping after initial cleavage of head-to-head linkages and AEMA moiety, reached 

with a TGA 2950 (TA Instruments, New Castle, DE). Samples of approximately 10 

~15 mg were placed in the sample tray and heated from an ambient temperature to 

800 °C at a rate of 1°C/min. Nitrogen was used as purge gas at 50 mL/min.  

    As shown in Fig. 15, sample weight loss during the thermal degradation of 

poly(MMA-co-HEMA) occurred in three distinct steps. The first step, attributed to 

unzipping after initial cleavage of head-to-head linkages, reaches a maximum weight 

loss rate at 120°C and resulted in -2% total weight loss.  

The second step, attributed to initial scission at vinylidene chain ends followed by 

unzipping, reached in the ranged from 270°C to 350°C and was characterized by a 

-10% sample weight loss.  

The third degradation step, due to unzipping after random chain cleavage, reached 

a maximum weight loss at 420°C, resulting in the decomposition of the remaining 

polymer. 

   As shown in Fig. 16, sample weight loss during the thermal degradation of 

poly(MMA-co-AEMA) occurred in three distinct steps. The first step, attributed to  

Fig. 8in the ranged from 120°C to 205°C and was characterized by a -10% sample 

weight loss. 

  The second step, attributed to initial scission at vinylidene chain ends followed by 

unzipping, reached in the ranged from 270°C to 350°C and was characterized by a 

-10% sample weight loss. 

The third degradation step, due to unzipping after random chain cleavage, reached 
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a maximum weight loss at 420°C, resulting in the decomposition of the remaining 

polymer. 

    As shown in Fig. 17, sample weight loss during the thermal degradation of 

poly(MMA-co-AEMA) graft with silica occurred in four distinct steps. The first step, 

attributed to unzipping after initial cleavage of head-to-head linkages and AEMA 

moiety, reached in the ranged from 120°C to 205°C and was characterized by a -1% 

sample weigh  

The second step, attributed to initial scission at vinylidene chain ends followed by 

unzipping, reached in the ranged from 250°C to 300°C and was characterized by a -1% 

sample weight loss.  

The third degradation step, due to unzipping after random chain cleavage, reached 

in the ranged from 300°C to 420°C, and was characterized by a -4% sample weight 

loss. 

The forth degradation step, due to unzipping after the polymer were absorbed into 

the silica surface chain cleavage, reached in the ranged from 490°C to 540°C, 

resulting in the decomposition of the remaining polymer. 

   For the table 5, the amounts of poly(MMA-co-AEMA) on silica as show from 

50.0 to 51.8 mg/g-SiO2(NO.1~No.4),In the case of high number-average molecular 

weight, the amounts of poly(MMA-co-AEMA) on silica was 57.8 mg/g-SiO2, it was  

ndicated that the amounts of polymer almost similar.(Table 5) 

For this result, the amount of polymer on silica did not depend on the ratio of  

MMA to AEMA, but increased with the increase of high number-average molecular 

weight. It was implied that the number of polymer grafted on silica surface have a 

limit. 
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Fig. 17 Typical thermo gravimetic thermogram of 

 poly(MMA-co-AEMA) grafted with silica 

 

 

 

 

 



50 
 

 

 

 

 

Table 5 Synthesis of Poly(MMA-co-AEMA)/SiO2 
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Polymer  
Mn/10

3
     m/n  

Grafted polymer 
on SiO2 /  

mg/g-SiO2 
4-N3C6H4 group  

on SiO2 

/µmol/ g-SiO2  

2/1  11  51.8  34.1  
4/1  13  50.5  36.9  
6/1  15  49.1  41.1  
9/1  16  50.0  51.5  

14/1  24  57.8  10.5  
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Into toluene, fullerene and polymer grafted silica were put, and the mixture was 

stirred at 110°C under a nitrogen atmosphere for 24h. Centrifugal separation of 

resulting particles with toluene and drying under reduced pressure. For 13C CP/MAS I 

NMR spectra of C60-tethered Poly(MMA-co-AEMA) grafted with SiO2(Fig. 18) ,it was 

distinctly indicate that C60 tethered on Poly(MMA-co-AEMA) grafted with SiO2 

nano-particles by the appearance of resonance peak at 120.5~142.7ppm.(Table 6) 

Likewise, quantitative analysis for determinate the tethered C60 on 

Poly(MMA-co-AEMA) via Thermal Gravimetric Analysis (TGA). 

   We studied powered samples in nitrogen atmospheres at a flow rate of 50 mL/min 

subsequent treatment of C60 to 800°C under nitrogen at heating rate of 1°C/min. As 

shown in Fig. 19, sample weight loss during the thermal degradation of C60 occurred in 

two distinct steps.  

The first step, attributed to demonstrates loss of a volatile component, reached in 

the ranged from 300°C to 540°C, was characterized by a 3-5% sample weight loss. 

The second step, attributed to unzipping delocalized π bond of C60, reached in the 

ranged from 550°C to 750°C ,  and resulting in the decomposition of the remaining 

C60. 

    As shown in Fig. 20, sample weight loss during the thermal degradation of C60 

tethered poly(MMA-co-AEMA) graft with silica occurred in five distinct steps.  

The first step, attributed to unzipping after initial cleavage of head-to-head linkages 

and AEMA moiety, reached in the ranged from 120°C to 205°C and was characterized 

by a -1% sample weigh The second step, attributed to initial scission at vinylidene 

chain ends followed by unzipping, reached in the ranged from 250°C to 300°C and was 

characterized by a -1% sample weight loss. The third degradation step, due to 

unzipping after random chain cleavage, reached in the ranged from 300°C to  
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δ (ppm) Assignment 
120.5-142.7 1 

145.1-149.3 2 

107.3 3 

177.4 4,9 

44.4 5 

39.7 6 

9.9-27.6 7,8 

 
Table 6 13C NMR chemical shifts of poly(MMA-co-AEMA)-grafted silica 
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Fig. 19 Typical thermo gravimetic thermogram of C60 
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 Fig. 20 Typical thermo gravimetic thermogram of poly(MMA-co-AEMA) grafted 

with silica and C60 tethered poly(MMA-co-AEMA) grafted with silica 

Poly(MMA-co-AEMA) grafted with silica 

C60 tethered poly(MMA-co-AEMA) grafted with silica 
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420°C, and was characterized by a -4% sample weight loss.The forth degradation step, 

due to unzipping after the polymer were absorbed into the silica surface chain 

cleavage, reached in the ranged from 490°C to 540°C, resulting in the decomposition 

of the remaining polymer. The fifth degradation step, attributed to unzipping 

delocalized π bond of C60, reached in the ranged from 550°C to 750°C, resulting in the 

decomposition of C60. 

  For the table 5, the amounts of C60 on poly(MMA-co-AEMA) grafted with silica as 

show from 1.90 to 7.37 mg/g-SiO2, that is, from 2.63 to 10.2 µmol/g-SiO2. 

Interestingly, amounts of tethered C60 decreased with mole ratio of MMA/HEMA in 

poly(MMA-co-HEMA), not simply with amounts of 4-azidobenzoyl group on 

poly(MMA-co-AEMA) grafted with silica. Probably, polymer chains with 4- 

azidobenzoyl groups on poly(MMA-co-AEMA) grafted with silica, prepared from 

high mole fraction of HEMA in poly(MMA-co-HEMA), might have high flexibility 

during the reaction of C60 with poly(MMA-co-AEMA) grafted with silica in toluene. 

In other words, 4- azidobenzoyl group in grafted polymer composed of high mole 

fraction of MMA moiety on poly(MMA-co-AEMA) grafted with silica could be less 

active for C60 bindings due to shrinking of polymer chains in toluene.  

 

2.4 Conclusion  

In summary, chapter 2 has show that the amounts of poly(MMA-co- AEMA) on 

silica as show from 50.0 to 51.8 mg/g-SiO2(NO.1~No.4). In the case of high 

number-average molecular weight, the amounts of poly(MMA-co-AEMA) on silica 

was 57.8 mg/g-SiO2, it was indicated that the amounts of polymer almost similar.  

Unexpected, the amount of polymer on silica did not depend on the ratio of MMA to 

AEMA, but increased with the increase of high number-average molecular weight.  
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Table 7 The amounts of C60 on poly(MMA-co-AEMA) grafted with silica 
 

Polymer  
 

Mn/103     m/n  

4-N3C6H
4 group 

in 
polymer   
/ mmol/g  

Grafted 
polymer on 

SiO2 /  
mg/g-SiO2  

4-N3C6H4 
group on 

SiO2  
/µmol/ 
g-SiO2  

C60 on product  
mg/g-SiO2  

µmol/g-SiO2  

2/1  11  0.59  51.8  34.1  7.374  10.24  
4/1  13  0.73  50.5  36.9  5.647  7.84  
6/1  15  0.98  49.1  41.1  3.746  5.20  
9/1  16  1.03  50.0  51.5  2.934  4.01  
14/1  24  0.22  57.8  10.5  1.896  2.63  
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It was implied that the number of polymer grafted on silica surface have a limit. The 

amounts of C60 on poly(MMA-co-AEMA) grafted with silica as show from 1.90 to 

7.37 mg/g-SiO2, that is, from 2.63 to 10.2 µmol/g-SiO2.Therefore,we guess that 4- 

azidobenzoyl group in grafted polymer composed of high mole fraction of MMA 

moiety on poly(MMA-co-AEMA) grafted with silica could be less active for C60 

bindings due to shrinking of polymer chains in toluene. 
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Chapter 3 

 

Colloidal crystallization of the C60 tethered poly(MMA-co-AEMA) 

grafted with silica particles in organic solvent 

 

3.1 Introduction 

Three-dimensional (3D) particle arrays structure, inter-sphere distance of which is 

comparable to visible light wave length, has been receiving much attention for 

promising application to optical devices, such as wave guide, sensor, and so on .1-6  So 

far, many approaches for fabrication of 3D particle arrays have been reported .1-22One 

of promising approaches is the fabrication employing colloidal crystals formed in 

solution, due to easy tuning inter-sphere space by changing the volume fraction and to 

exhibiting sharp and clear Bragg reflection. In most of cases, the fabrications have been 

carried out by using colloidal crystals formed in aqueous solution and immobilized in 

hydrogels.7,10.14-18 However, in the practical application, it is quite difficult to utilize the 

hydrogels for optical devices, because of containing much water fraction. In this 

respect, we have successfully achieved colloidal crystallization of polymer-grafted 

silica in organic solvents23-26 and then immobilization in polymer matrix19-22. Colloidal 

crystallizations in organic solvents are favorable for fabrication of 3D particle-arrayed 

structure by immobilization in polymer matrixes because of being able to utilize 

various polymerization reactions.  

Concerning colloidal crystallization in solution, in many cases, monodisperse 

colloidal silica, polystyrene, and poly(methyl methacrylate) are employed for colloidal 

particles because of giving stable crystallites. Among them, colloidal silica usually 

brings stable colloidal crystals in aqueous solution due to negatively high  
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Fig. 21Colloidal crystallization of the C60 tethered poly(MMA-co-AEMA) 

grafted with silica particles in organic solvent 
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surface charge. However, fabrication of 3D particle-arrayed optical device from 

colloidal crystals of silica has major shortcomings stemming from original property of 

silica, comparatively low refractive index, and dielectric constant. In this respect, we 

have reported that introduction of ferrocenyl groups in polymer grafted onto silica 

particles effectively increases refractive index of colloidal crystal system.27 

Meanwhile, fullerenes have been attractive and highlighted materials due to 

spherical π-conjugated molecule exhibiting characteristic properties, i.e., electron 

accepting or releasing abilities, high dielectric constant, high heat conductivity, thermal 

stability, high refractive index, radical trapping, UV absorption, and so on. Thus, C60 

and C60-based nanomaterials have been contributing to a variety of promising 

application to functional materials, such as high surface area particles and supports in 

catalysis 28, electron carriers in electronic devices29, and semiconductors 30,31. 

Furthermore, Tu and coworkers have recently reported that grafting of C60 into 

polyesters elevates refractive index to give the maximum value of 1.79 32. Therefore, 

incorporation of C60 into colloidal crystals could lead not only to improvement of 

refractive index but also to challenging fabrication of new functional materials, 

exhibiting specific properties of C60.  

In this chapter 3, preparation of C60-tethering polymer-grafted silica and colloidal 

crystallization in organic solvent were investigated (Fig. 21). Critical volume fraction 

and reflection spectra were evaluated. Inter-sphere distances in the colloidal crystals 

mostly agreed with calculated values on assumption of fcc-closed packing. Therefore, 

it was suggested that the crystallization occurred due to electrostatic repulsion between 

the particles as well as those of colloidal silica particles in aqueous solution. 

 

3.2 Experimental 
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3.2.1 Characterization of particle size distribution  

Particle size and its distribution were determined by a dynamic light scattering 

(DLS) on an Otsuka Electronics DLS-7000 spectrophotometer, equipped with a He–Ne 

laser (10 mW, 633 nm), Osaka, Japan. Reflection spectra of colloidal crystals were 

recorded on a multichannel spectrometer, Hamamatsu Photonics PMA-11, Shizuoka, 

Japan. 

 

3.2.2 Colloidal crystallization 

The C60-tethered polymer-grafted silica (C60/polymer/SiO2) particles were 

dispersed in acetonitrile. After ultrasonic-wave irradiation, the suspension was kept at 

room temperature. The formation of colloidal crystals was confirmed by iridescence 

caused by Bragg diffraction from the particle array with constant intervals. The 

inter-particle distance and the size of single crystals were determined by reflection 

spectroscopy. 

 

3.2.3 Critical volume fraction (φ0)  

In centrifuge tube, the C60-tethered polymer-grafted silica (C60/polymer/SiO2) 

particles were put and dispersed in acetonitrile. After ultrasonic-wave irradiation, the 

suspension was centrifuged, reject the supernatant. Then, add the acetonitrile 

dropwise, and ultrasonic-wave irradiation. The colloidal crystals were observed, after 

sit for a moment. When the colloidal crystals could not were observed, the solvent 

was measured by suction pipet. φ0(Fig.22) was presented by the following equation: 

X (g / ml) was weight of the composite in 1ml 
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Fig.22 Critical volume fraction(φ0) : Minimal volume fraction of   silica in 

colloidal crystallization . 

 

 

 

 

 

 

 

X (g /ml) = weight of the composite (g)/ volume of solvent was measured by suction 
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pipet (ml) 

Y (mg/ gSiO2) was the amount of polymer grafted with silica, Z (g/ml) was the 

amount of polymer of X (g /ml) 

Ｚ(g / ml) = X (g / ml)×Y / 1000 (g / gSiO2)  

W(g / ml) was weight of silica nano-particles in X (g / ml) 

W (g / ml) = X (g / ml) – Z (g / ml) 

The proportion of silica was 2.2(g / ml) and polymer was 1.0 (g / ml), Φ0was presented 

by the following equation: 

φ0  =  W(g / ml) ÷ 2.2 (g / ml) + Z (g / ml) ÷ 1.0 (g / ml) 

 

3.2.4 Observation of colloidal crystallization and determination  

The reflection spectra were measured at the 90° position from the cell surface by a 

multichannel spectral analyzer,PMA-11(Hamamatsu Photonics Co. Ltd., Hamamatsu, 

Japan), with a 150-W halogen lamp.  

  Colloidal crystallization of silica composite particles in organic solvent was 

observed by naked eyes and a digital camera.(Fig. 23)  Inter-sphere distance (dcal) in 

colloidal crystal was calculated from the volume fraction on assumption of face 

centered cubic (fcc) closed packing by Eq. (1) , 

(1) 

Where φ is volume fraction of polymer-grafted silica, dcalcd is neighboring inter-sphere 

distance and r is diameter of the particle.  The Inter-sphere distance (dobs) in the 

crystals was also determined according to Bragg formula by following equation : 

                                                           (2) 

 

 

dcalcd = 0.9047×r÷φ1/3 

n
d p
obs

λ

8
3

=
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Fig. 23.  Reflection spectrum measuring 
device. 

d = (3/8)0.5 
nsol 

 

λ 

 

λ：Peak wavelength / nm 
      (Incident angle; 0°) 
nsol：Refractive index 
      nsol = nsilicaφ + 
nsolvent(1-φ) 

… (1) d = 4.198×r ×(φ×100)-1/3 

r : Diameter of a silica particle / nm 
d : Interparticle distance / nm 
φ : Volume fraction 

Fig. 24. Face centered cubic model. 
 

… (4) 
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Fig..25 Particle size distributions of original colloidal silica 
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26a 

 

26b 

 

Fig.26 Particle size distributions of Poly(MMA-co-AEMA)/SiO2 (26a) 

and C60/ Poly(MMA-co-AEMA)/SiO2(26b) 

 

Where λp is the peak top wavelength on a reflection spectrum, n is average refractive  
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index of the suspension system calculated by Eq. (3) 

                  n = φ×nsilica+ (1- φ)×nsol                       (3) 

Where, nsilica and nsol are refractive index of silica and solvent, respectively, and φ is 

volume fraction of silica.(Fig. 24) 

 

3.3 Result and discuss 

Dynamic light scattering (also known as photon correlation spectroscopy or 

quasi-elastic light scattering) is a technique in physics that can be used to determine the 

size distribution profile of small particles in suspension or polymers in solution. It can 

also be used to probe the behavior of complex fluids such as concentrated polymer 

solutions. DLS was used characterize size of various particles including  

proteins, polymer, micells, carbohydrates, and nano-particles. If the system is mon 

o disperse, the mean effective diameter of the particles can be determined. This 

measurement depends on the size of the particles core, the size of surface structures, 

particles concentration, and the type of ions in the medium. 

We examined the particle size and particle size distribution of the silica 

nano-particles, poly(MMA-co-AEMA) grafted with silica nano-particles and C60 

tethered poly(MMA-co-AEMA) grafted with silica nano-particles by DLS. For the 

results Fig. 25, the average particle sizes of SiO2 was 134nm, poly(MMA-co- AEMA) 

grafted with silica nano-particles were in therange from 145 to 150 nm, being 

11~16nm large than that of the original silica. The particles size slightly became 

larger by polymer grafting, but distributions of size were still narrow (Fig. 26a). 

Herefore, we confirmed that aggregation between the particles no occurred during the 

reaction of poly(MMA-co- AEMA) with silica nano-particles. 
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Fig. 27 Typical photographs and reflection spectra of the crystal(φ =0.147) 
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Fig. 28 Typical photographs and reflection spectra  

of the crystals(φ =0.136and φ =0.122) 
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Fig. 29 Typical photographs and reflection spectra  

of the crystals(φ =0.114 and φ =0.106) 

 

 

The particles size of C60 tethered poly(MMA-co-AEMA) grafted with silica were 
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157~162nm being ca.12nm larger than those of poly(MMA-co-AEMA) grafted with  

silica, However those distribution were still narrow(Fig. 26b). Thus, It was observed 

that aggregation between particle of poly(MMA-co-AEMA) grafted with silica 

scarcely took place during the reaction of poly(MMA-co-AEMA) grafted with silica 

with C60. 

The authors have reported that poly(methyl methacrylate)- grafted silica particles 

formed colloidal crystals in polar solvents, such as CH3CN, acetone, and 

N,N-dimethylformamide. When spheres of C60 tethered poly(MMA-co-AEMA) 

grafted with silica nano-particles were dispersed in CH3CN formation of colloidal 

crystals was observed. Typical photographs and reflection spectra of the crystals were 

shown in Fig. 27. Color of the crystals of C60 tethered poly(MMA-co-AEMA)  

grafted with silica nano-particles with much amount of tethered C60 was dark green, 

which gradually became pale green with decrease of the C60 amount, probably due to 

absorption of C60 at near ultraviolet light region or tiny change of crystal lattice. (Fig. 

27-29) 

For the Fig. 27, reflection spectra of colloidal crystals formed in acetonitrile at φ = 

0.147, and decrease with the decrease of amount of C60 tethered on 

poly(MMA--co-AEMA) grafted silica nano-particels, the reflection spectra of 

colloidal crystals at φ = 0.136, φ = 0.122φ = 0.114φ = 0.106, respectively. (Fig. 28,29). 

Meanwhile, distinct reflection peaks due to Bragg diffraction was observed 500nm, 

518nm, 530nm, 538nm, 550nm, respectively. As follow increase with the decrease of 

amount of C60 tethered on poly(MMA--co-AEMA) grafted silica nano-particels, as 

shows in Fig. 27-29. 

In Table 8, critical volume fractions of C60 tethered poly(MMA-co-AEMA) grafted   
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Table 8 Critical volume fraction (ϕo) of C60/ polymer-grafted SiO2, 4, in 

colloidal crystallization in acetonitrile 

 

 
Particles 

 
m/n 

 
Mn 

A.P. 

mg/g-SiO
2
 

ϕo 

DMF CH3CN 

1  2/1  11,000  57  0.071  0.024  
2  4/1  13,000  50  0.060  0.022  

3  6/1  15,000  42  0.059  0.021  
4  9/1  16,000  50  0.048  0.020  
5  14/1  24,000  48  0.035  0.018  
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Table 9 Inter-particle distances in colloidal crystals of C60/polymergrafted 

silica in CH3CN 

 

Particle  
Volume 
fraction  

dcald/nm  λmax/nm  dobs/nm  

1  0.147  229  500  222  
2  0.136  235  518  231  
3  0.122  244  530  237  
4  0.114  250  538  241  
5  0.106  256  548  248  

 

 

 

 

 

 

 

 

 

 

 

with silica nano-particles, ϕo, being minimal volume fraction in the crystallization in   



75 
 

CH3CN and DMF were listed. Values of ϕo for colloidal crystallization in CH3CN 

were in the range from 0.018 to 0.022, being mostly comparable in the crystallization 

of poly(MMA)-grafted silica. The values almost no change means that the 

crystallization almost no shape change too. 

However, values of ϕo for colloidal crystallization in DMF in the range from 0.035 

to 0.071, being twice with C60 amounts on silica from 1.896 to 7.374 mg/g-SiO2.It was 

suggested that the C60 amounts on silica intensity influence of colloidal crystal in 

DMF. In the other words, these are a stronger interaction between C60 with DMF than 

CH3CN. The specific reasons for the phenomenon were still unclear. 

In Table 9, inter-sphere distances, dobs and dcal, in colloidal crystals of C60 tethered 

poly(MMA-co-AEMA) grafted with silica nano-particles in CH3CN were summarized. 

The observed values of dobs estimated by Eq. (4) were well coincident with dcal, 

which were evaluated on postulation of fcc-closed packing from volume fraction of the 

particles by Eq. (1).34 Therefore, these results indicated that the colloidal crystallization 

took place based on electrostatic repulsion between the particles to form fcc-closed 

packing, as well as ones of colloidal silica in aqueous solution. Colloidal crystallization 

of spherical particles in solution predominantly holds stable fcc structure rather than 

bcc packing.34 

 

Conclusions  

Colloidal crystallization of C60/polymer/SiO2 particles was observed in CH3CN, and 

DMF. Critical volume fraction in the crystallization was in the range from 0.018 to 

0.024 and from 0.035 to 0.071, respectively. It was suggested that these are a stronger 

interaction between C60 with DMF than CH3CN. It was suggest the application 

potential in sensor. On ther hands, color of the crystals of C60 tethered 
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poly(MMA-co-AEMA) grafted with silica nano-particles with much amount of 

tethered C60 was dark green, which gradually became pale green with decrease of the 

C60 amount. For this result that suggest the application potential of C60 tethered 

poly(MMA-co-AEMA) grafted with silica nano-particles in optical area. 

 Inter-sphere distances in the colloidal crystals mostly agreed with calculated values 

on assumption of fcc-closed packing. Therefore, it was suggested that the 

crystallization occurred due to electrostatic repulsion between the particles as well as 

those of colloidal silica particles in aqueous solution. 
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Chapter 4 
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Preparation of silica-tethered polymer-grafted graphene  

and determination of dispersion 

 

4.1 Introduction 

Graphene, a single-layer sp2-bonded two-dimensional carbon atom with a 

benzene-ring structure, has many unique physical, chemical and mechanical properties, 

has emerged in recent years as a novel and important class of materials.1 The quantum 

hall effect (QHE), high carrier mobility at room temperature (~10 000 cm2 V-1 s-1),1 

large theoretical specific surface area (2630 m2 g-1),2 good optical transparency 

(~97.7%),3 high Young’s modulus (~1 TPa)4 and excellent thermal conductivity 

(3000–5000 W m-1 K-1).5 In order to exploit these properties in various applications 

area, reliable and versatile synthetic technique has been researched to prepare graphene 

and its derivatives. One possible route would be incorporate graphene in a composite 

material. Up to now, graphene-based composites have been successfully made with 

inorganic nanostructures6-13, organic crystals14,15, polymer16-19, metal-organic 

frameworks (MOFs)20-22, biomaterials23-24, and carbon nanotubes (CNTs) 25-26 were 

intensively explored in applications. 

The most common approach to graphite exfoliation is oxidation to graphite oxide 

(GO) by strong oxidizing agents27,28. The partial restoration of the graphitic structure in 

accomplished by subsequent chemical reduction to chemically converted graphene 

(CCG)29-31, however the graphitic structure is not fully restored, and significant defects 

are introduced. Moreover, CCG is apt to aggregation.29,30Although the dispersion of 

graphene has been reported using N,N-dimethylformamide (DMF)32 and 

N-methylpyrrolidone (NMP)33, the concentrations are low (<0.01 mg.mL-1).  
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The Chrostopher E. reported a pristine graphene was prepared by exfoliating 

graphite in o-dichlorobenzene (DCB), a process that has been shown to produce 

graphene atoms in high yield. The choice of ODCB for graphite exfoliation was based 

on several criteria. First, ODCB is a common reaction solvent for fullerenes and is 

known to form stable SWNT dispersions presumably as a result of efficient via π-π 

interaction. Second, ODCB is a convenient high-boiling aromatic and is compatible 

with a variety of reaction chemistries. Third, Coleman and-co-workers have suggested 

that good solvents for graphite exfoliation should have surface tension values of 40-50 

mJ m-2. ODCB’s surface tension is 36.6 mJ m-2. Finally, ODCB, being aromatic, is able 

to interact with graphene via π-π stacking. 34  

Recently, some simple and general method for the covalent functionalization of 

pristine graphene was reported. The approach is based on azido groups, which upon 

photochemical and thermal activation, is converted to the C=C addition reaction the sp2 

C network in graphene to form the aziridine adduct. In this regard, we have successfully 

achieved polymer-grafted silica in organic solvents.35-36  

In chapter 4, we have done a basic study of a graphene – polymer /SiO2 system, 

polymer-grafted silica spheres-tethered graphene nano-sheet composite material, 

which were prepared by the reaction of graphene with 4-azidobenzoyl groups 

introduced in poly (methylmethacrylate-co-2-hydroxyethyl methacrylate), synthesized 

via a radical copolymerization, followed by esterification of 2-hydroxyethyl 

metharylate moieties with 4-azidobenzoyl chloride and grafted with colloidal silica. We 

found that the graphene/poly(MMA-co-AEMA)/SiO2 was well dispersion in many 

solvents 

 

4.2Experimental 

4.2.1 Preparation of graphene  
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Graphene were prepared by graphite particles (50mg) ODCB (20 ml) for 1h using a 

sonication probe. The mixture was settled for 1 day, and the supernatant was 

centrifuged at 4,400 rpm for 30min. The upper solution was collected and was used for 

the subsequent reactions. To determine the concentration of grapheme flakes, the 

solution was deposited by vacuum-filtering ODCB dispersions through alumina 

membranes, and dried under vacuum at 100 oC overnight. 

 

4.2.2 Reaction of graphene with poly(MMA-co-AEMA)-grafted silica 

Into 20 mL ODCB-graphene solution and 1.0 g composite poly(MMA-co-AEMA) 

/SiO2 was put, and the mixture was stirred at 110 oC under a nitrogen atmosphere for 30 

h.  Centrifugal separation of resulting particles and drying under reduced pressure 

gave 0. 90g composite graphene/Poly(MMA-co-AEMA)/SiO2. 

 

4.2.3 Determination of Structural of polymer-grafted silica spheres-tethered 
graphene 

The morphology of graphene and polymer/SiO2-grphene composite materials was 

observer by scanning electron microscory (SEM).The crystal structures of the samples 

were identified by X-ray diffraction (XRD) and Raman  

 

4.2.4 Determination of graphene on graphene/poly(MMA-co-AEMA)/SiO2 

   Amounts of grafted polymer on poly(MMA-co-AEMA)/SiO2 were determined by 

weight decrease during elevation from 170OC to 420OC on a thermogravimetric 

analysis. Amount of graphene tethered on graphene/poly(MMA-co-AEMA)/SiO2 was 

also determined by weight loss(W graphene),corresponding to grapheme ignition, 

during elevation from 500OC to 800OC. 
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Fig. 30 SEM images of synthesized graphene 

 

 

 

 

4.2.5 XPS of graphene/poly(MMA-co-AEMA)/SiO2 

100nm 1µm 



83 
 

X-Ray photoelectron spectroscopy (XPS) studies were carried out on a Surface 

Science Instruments S-probe spectrometer.. The X-ray spot size used in these 

experiments was approximately 800 µm × 800 µm. Pressure in the analytical chamber 

during spectral acquisition was less than 5 × 10−9 Torr. The take-off angle (the angle 

between the sample normal and the axis of the analyzer lens) was 55°. Spectra used to 

determine surface elemental compositions were acquired at an analyzer pass energy of 

150 eV. The high-resolution spectra were acquired at an analyzer pass energy of 50 eV. 

The XPS results are average values from analyzing three spots on at least two replicates 

of each sample type 

 

4.2.6 Determination of dispersion of graphene/poly(MMA-co-AEMA)/SiO2 

The dried product was first ground with a mortar and pestle and then added to the 

solvent and sonicated in an ultrasound bath cleaner for 1h.To allow direct comparisons 

between the dispersing behavior of the different solvents, a certain amount of solvent in 

such a way that the resulting nominal concentration was adjusted to 0.5 mg mL-1 for all 

of the solvents. In all of the solvents, the water content was below 0.1%.  

 

4.3 Results and discussion 
 
Determination of graphene synthesis and SiO2/polymer/graphene synthesis  

 As mentioned in the Experiment Section, for the SEM (Fig. 30), shows few-layer 

graphene and small flakes stacked on top. However, due to the aggregation effect under 

the dry condition, there is difficult to evaluate the layer number of  
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Fig. 31 SEM images of SiO2 tethered 

 poly(MMA-co-AEMA) grafted graphene 

 

 

 

 

 

 

 

 

 

1µm 
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 32a 

 32b 

Fig. 32 High enlargement factor SEM images: ×40,000 (32a) ×100,000(32b)   
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graphene exactly.  

The reaction of graphene with poly(MMA-co-AEMA)/SiO2 was carried out in 

ODCB at 90 oC under a nitrogen atmosphere for 30h. After that time, the resulting 

particles were homogenized for 1 hour followed by cup-horn sonication for 30minutes 

and centrifugal washed with ODCB 30 minutes at 4400rpm. The upper solution has a 

few back suspended matters, we surmise that it was non-reaction graphene. As for the 

possible presence of free-SiO2, remove the ODCB and drying under reduced pressure, 

add deionized-water and H-form type strongly acid cation exchange resin, settled for 

24h.The free-SiO2 conversion to hydrophilic SiO2, which can be filtered by 0.45um  

hydrophilic membrane. When there is no white precipitate appeared in the filtrate, pure 

polymer grafted SiO2-tethered graphene nano-sheet were observed. For the SEM (Fig. 

31), it was exhibited that the SiO2 grafted on the silica surface. 

  Before the he reaction between the Poly(MMA-co-AEMA) grafted with silica and the 

graphene ,we have probably estimate that the graphene is few layers. However, we 

could not estimate the layer number. For the SEM picture Fig. 32a, we could clear see 

that the silica nano-particles at reverse side, it was suggested that the graphene very thin. 

From the SEM picture Fig. 32b, it was suggest that the thich of graphene could be just 

2nm. 

  The evidence on the covalent bond formation between graphene and silica-tethered 

polymer-grafted graphene was provided by X-ray photoelectron spectroscopy 

(XPS).The fluorine to nitrogen atomic ratios were calculated from XPS determined 

surface elemental compositions before and after the reaction between the 

Poly(MMA-co-AEMA) grafted with silica and the graphene. Table 8 summarized the 

XPS peak assignment of the N1s core level spectrum of the Poly(MMA-co-AEMA) 

grafted with silica. Although the concentration on the low side, three peaks were  
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Table 10. XPS Peak Assignments of the N 1s Core Level Spectrum of the 

Polymer/SiO2 

S

m n

C C
OO OO

CH3 CH2CH2O

Si

C O

Na

O
O

O

Nb
Nc  

Binding Energy, eV 

Na Nb Nc 

 

 

401.5 

 

 

404.1 

 

 

398.7 

396 398 400 402 404 406

Binding Energy (eV)

 Fig. 33. The corresponding XPS N1s core level spectra of the Polymer/SiO2 
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Table 11. XPS Peak Assignments of the N 1s Core Level Spectrum of the 

Graphene/Polymer/SiO2 
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OO OO

CH3 CH2CH2O

Si
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Na

O
O

O

C C
Graphene  

Binding Energy, eV 

Na Nb Nc 

 

 

400.5 
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385 390 395 400 405 410

Binding Energy (eV)

 Fig. 34. The corresponding XPS N1s core level spectra of 

the Graphene Polymer/SiO2 
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Fig. 35 Pictures of graphene/poly(MMA-co-AEMA)/SiO2 

dispersion in water with different concentration. 
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exhibited in the spectrum of the Poly(MMA-co-AEMA) grafted with silica(Fig. 34). 

The two BE peaks at 404.1eV and 398.7eV, which are originated from Nb and Nc of the 

N3 group (‒Na=Nb
+=NC

‒).Another BE peak at 401.5eV, which are originated from Na of 

the N3 group (‒Na=Nb
+=NC

‒). It was suggested that Poly(MMA-co-AEMA) grafted 

with silica was synthesized succeed. 

  Table 11 summarized the XPS peak assignment of the N1s core level spectrum of the 

polymer grafted SiO2-tethered graphene. Although the concentration on the low side, 

just one peaks were exhibited in the polymer grafted SiO2-tethered graphene (Fig. 

35).The peak at 400.5eV, it is attributed to the N atom from N of the  

 (C-N-C), which is due to the decomposition of the azide. Before the reaction, the two 

BE peaks at 404.1eV and 398.7eV, which are originated from Nb and Nc of the N3 

group (‒Na=Nb
+=NC

‒), both peaks decreased significantly in intensity after reaction 

with the graphene flakes.The change of the N 1s spectrum after reaction with the 

graphene overlayer is consistent with conversion of Ar-N3 to Ar-N (i.e., loss of central 

and outer N atoms). 

 

Determination of dispersion of polymer grafted SiO2-tethered graphene 

As is known to all, graphene is difficult to disperse in many solvents, especially in 

water or ethanol. We found that the graphene/poly(MMA-co-AEMA)/SiO2 was well 

dispersion in water. As show as Fig. 35 the graphene/poly(MMA-co-AEMA)/SiO2 

were well dispersion, from 0.128mg/ml to 1.024mg/ml. It was expected to prepare low 

cost and stable performance conductive materials. 

As mentioned in the Experimental Section, the as-prepared graphene/poly(MMA- 

-co-AEMA)/SiO2 was dispersed in water and 8 organic solvents to a nominal 

concentration of 0.5mgmL-1 with the aid of bath ultrasonication, and the      
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 DMF Methanol Ethanol Ethylene 
glycol 
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sonicated 

    
 
 
 
 

After 24h 

    
 
 
 
 

After 48h 

    
 
 

Fig. 36 Time course of graphene/poly(MMA- -co-AEMA)/SiO2 in DMF, Methanol, 
Ethanol and Ethylene glycol. 
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Fig. 37 Time course of graphene/poly(MMA- -co-AEMA)/SiO2  

in Acetone and THF 
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Fig. 38 Time course of graphene/poly(MMA- -co-AEMA)/SiO2  

in Pyridine and Cyclohexane. 
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dispersions were then allowed to settle for several days. Fig. 36-38 shows digital 

pictures of all of the dispersions immediately after sonication (top) and 48h after 

sonication (bottom). For the just sonicated samples, it can be noticed that 

graphene/poly(MMA--co-AEMA)/SiO2 could be dispersed in almost all of the solvents, 

except cyclohexane (Fig. 38). However, acetone, THF and pydine dispersions 

displayed only short-term stability and precipitated completely in a matter of hours to a 

few days(Fig. 37), especially completed in 1h. By contrast, as prepared 

graphene/poly(MMA -co-AEMA)/SiO2 dispersions in four organic solvents (ethylene 

glycol, DMF, methanol, ethanol) (Fig. 36) were seen to exhibit long-term stability 

comparable to that observed for the dispersion of the same material in water.  

In the case of water and the four mentioned organic solvents, a small amount of 

precipitate was seen to develop only within the first few days after sonication 

(no additional precipitation was observed after such time), which we attribute to 

polymer grafted SiO2-tethered graphene material that could not be sufficiently 

exfoliated during the 1 h sonication period. In fact, longer sonication times tended to 

decrease the amount of precipitate. Under identical preparation conditions, it was 

observed that ethylene glycol and THF dispersions yielded somewhat larger amounts of 

precipitate in relation to those of water, DMF dispersions, suggesting that the former 

solvents possess a comparatively smaller dispersing ability. 

  The colloidal nature of the resulting polymer grafted SiO2-tethered graphene 

dispersions is further confirmed by two experiment typically conducted in colloid 

science: investigations of the Tyndall effect and the salt effect.(Fig. 39,40) A dilited 

polymer grafted SiO2-tethered graphene dispersion gives rise to the Tyndall effect, in 

which a laser beam passing through a colloidal solution leaves a discernible track as a 

result light scattering. Adding an electrolyte solution such as sodium chloride into a  
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Fig. 39 The Tyndall effect of graphene/poly(MMA- -co-AEMA)/SiO2 

 in water. 
 
 
 
 
 
 
 
 
 
 
 
 



96 
 

 
 
 
 
 
 
 
 

 

 

Fig. 40 The salt effect of graphene/poly(MMA- -co-AEMA)/SiO2. 
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polymer grafted SiO2-tethered graphene dispersion leads to immediate coagulation.  

 
Conclusion 

We have done a basic study of a graphene – polymer /SiO2 system, polymer-grafted 

silica spheres-tethered graphene nano-sheet composite material, which were prepared 

by the reaction of graphene with 4-azidobenzoyl groups introduced in poly 

(methylmethacrylate-co-2-hydroxyethyl methacrylate).For the XPS and SEM, it was 

suggested that few layer silica-tethered polymer-grafted graphene were obtained, and 

no aggregation occurred. We also found that the polymer grafted SiO2-tethered 

graphene was well dispersion in water and some organic solvents. By contrast, 

graphene just could disperse in little solvent. It was suggested that the dispersion was 

completely changed with tethered lots of silica. 
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General Conclusions 

 

  This thesis has presented a novel approach to connect the π-conjugated carbon 

molecules to nano-particles via difunctional polymer, which owning two function on 

side chain and the terminal, respectively. Targeting conveniently adjust the ratio of 

carbon molecules to nano-particles and fine-turning the proprieties, to develop this 

area further. 

Fullerene(C60)-tethered polymer-grafted silica spheres were successfully 

synthesized via reaction of C60 with 4- azidobenzoyl group in poly(MMA-co-HEMA) 

grafted on silica. Bindings of C60 on poly(MMA-co-HEMA)-grafted silica were 

confirmed by appearance of characteristic resonance peaks at 120–142 ppm, assignable 

to carbon atoms of C60, on a 13C CP/MAS NMR spectrum. The reaction afforded 

bindings of C60 in the range from 2.63 to 10.2 µmol/g-SiO2, corresponding to 0.44×104 

to 1.71×104 molecules/particle,on the polymer-grafted silica. Colloidal crystallization 

of C60/polymer/SiO2 particles was observed in CH3CN, and critical volume fraction in 

the crystallization was in the range from 0.018 to 0.024. Inter-sphere distances in the 

colloidal crystals mostly agreed with calculated values on assumption of fcc-closed 

packing. Therefore, it was suggested that the crystallization occurred due to 

electrostatic repulsion between the particles as well as those of colloidal silica particles 

in aqueous solution. 

We have done a basic study of a graphene – polymer /SiO2 system, polymer-grafted 

silica spheres-tethered graphene nano-sheet composite material, which were prepared 

by the reaction of graphene with 4-azidobenzoyl groups introduced in poly 

(methylmethacrylate-co-2-hydroxyethyl methacrylate).For the XPS and SEM, it was 

suggested that few layer silica-tethered polymer-grafted graphene were obtained, and 
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no aggregation occurred. We also found that the polymer grafted SiO2-tethered 

graphene was well dispersion in water and some organic solvents. By contrast, 

graphene just could disperse in little solvent. It was suggested that the dispersion was 

completely changed with tethered lots of silica. 
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