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Introduction

Periodontal diseases refer to a group of diseases affecting the 
periodontium, which includes the gingiva, periodontal ligament, 
and alveolar bone.  Periodontal disease commonly causes 
swelling and bleeding of the gingiva, and severe progression of 
the disease may lead to loss of attachment of the tooth.  For 
prevention and treatment of periodontal disease, it is important 
to identify periodontal disease in the early to moderate stages.  
Therefore, a simple and quick diagnostic technique is required 
to evaluate periodontal disease during mass examinations.

Periodontal disease is currently diagnosed by using the 
following traditional clinical assessments: probing pocket depth 
(PPD), bleeding on probing (BOP), probing attachment level 
(PAL), tooth mobility, and radiography.  All these assessments 
involve clinical examinations by dentists, and therefore, they are 
somewhat subjective and time consuming.  Although several 
microbial, biochemical, and genetic tests for disease diagnosis 

have been developed, these tests are regarded as supplementary 
analysis and are not routinely used in clinical practice.  
Furthermore, periodontal disease is caused by several complex 
factors, making it challenging to diagnose by using only one of 
these practical tests.  For example, most periodontal diseases are 
caused by pathogenic bacteria in the plaque; however, some 
gingival diseases are not induced by plaque formation.  In 
addition, immune reactions against pathogens vary between 
individuals.  Moreover, lifestyle and stress are some of the 
factors affecting the development of periodontal disease.1–3  
Therefore, monitoring of complex factors related to the oral 
condition of a patient is important for the diagnosis of 
periodontal disease.

Fourier transform infrared (FT-IR) microscopy is a technique 
used to analyze the chemical properties of a substance.  It 
measures the amount of radiation absorbed by a sample when 
excited by infrared light.  The IR spectrum obtained provides 
information regarding the functional groups of molecules and 
conformational properties of biological substances.  It has an 
intrinsic shape because it represents chemical constituents such 
as proteins, lipids, and nucleic acids.  The IR spectrum of a 
biological sample is formed by superposition of all infrared-
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active vibrational modes of all the molecules present in the 
sample.  Therefore, FT-IR has been recently applied to analyze 
biological samples for the following purposes: classification of 
bacteria,4–11 discrimination of cancer cells,12–20 detection of 
scrapie,18,21–23 and histopathologic recognition.24,25  Importantly, 
Xiang et al. used mid-infrared spectroscopy to analyze the 
gingival crevicular fluid (GCF) in order to determine differences 
between periodontitis, gingivitis, and normal sites.26

Whole saliva consists of a mixture of fluids such as water, 
proteins, and electrolytes secreted by the salivary glands; 
non-salivary components derived from the GCF; oral bacteria, 
including their enzymes and bacterial products; viruses and 
fungi; blood and serum cells, desquamated epithelial cells; and 
food debris.27,28  Therefore, it is thought that the saliva of patients 
with periodontal disease contains not only pathogenic bacteria 
and their products but also immunological proteins secreted 
during the biological response.  Saliva samples can be easily 
collected from patients, and therefore, it can be assessed for the 
diagnosis of periodontal disease during early-stage clinical 
trials.

Therefore, in this study, to establish a method for the early 
diagnosis of periodontal disease, we used FT-IR microscopy to 
analyze saliva samples from patients with periodontal disease 
and healthy volunteers based on the differences in the 
constituents of the two samples.  Partial least squares 
discriminant analysis (PLS-DA) was used for the discrimination 
of periodontal samples based on the second derivative spectrum.

Experimental

Sample preparation
We analyzed 22 saliva samples, which were collected from 12 

healthy volunteers (A – L) and 10 patients with periodontal 
disease (M – V).  In the patient group, the severity of periodontal 
disease ranged from slight illness to serious disease; moreover, 
the patients were in different stages of treatment (Table 1).  
Volunteers in the control group had no subjective symptoms of 
periodontal disease.

The saliva samples were collected according to the following 
protocol: (1) The subjects washed their mouths with tap water 
for 1 min, (2) they waited for 5 min, (3) they gargled with 
15 mL of physiological saline for 1 min, and (4) they spat the 
saline into a Falcon tube.  The saliva samples thus obtained 
were transferred to 1.0 mL microcentrifuge tubes (Eppendorf ).  
The samples were centrifuged at 10000 rpm for 10 min, the 
supernatants were discarded, 1 mL of saline was added, and the 
tubes were vortexed for 1 min.  This procedure was repeated 

twice.  Next, the supernatants were removed, 50 μL of pure 
water was added, and the contents of the tube were vortex-
mixed for 1 min.  Finally, 1.0 μL of the supernatant was spotted, 
at an approximate diameter of 1.0 mm, on a calcium fluoride 
plate.

FT-IR analysis
FT-IR spectra of the samples were obtained using a Perkin-

Elmer Spotlight 300 FT-IR imaging system.  At first, samples 
were prepared for spectroscopic measurements by drying saliva 
samples to minimize spectral contributions from water vapor 
and carbon dioxide.  Samples were put on CaF2 plate and were 
put into the sample chamber of the spectrometer system.  The 
sample chamber was purged with dry air for 1 h before FT-IR 
measurement.  This FT-IR system was equipped with a 
computer-controlled x-y stage, which can measure arbitrary 
sites on the sample.  In this study, IR spectra were measured 
with an aperture diameter of 200 μm at approximately 15 sites 
per sample, which were manually selected under the microscope 
to avoid oral cells (Fig. 1).  This system was equipped with a 
liquid nitrogen-cooled MCT (Hg-Cd-Te) line detector.  
Transmission/absorption spectra were obtained from 4000 to 
950 cm–1, with a spectral resolution of 6 cm–1 and 256 scans per 
site at room temperature.  All spectral data were converted into 
absorbance for further analysis.

IR data evaluation
The spectral data obtained were processed using R software.29  

The spectra were only used for wavelengths ranging from 2000 
to 950 cm–1.  To correct baseline differences, monomial fitting 
to raw spectra with baseline suppression by polynomial fitting 

Table 1　Characteristics of saliva samples obtained from 
patients with periodontal disease

Sample ID Lesion Treatment stage

M Established–Advanced Undergoing scaling
N Established–Advanced Undergoing scaling
O Advanced Received scaling
P Early–Established First medical examination
Q Established Undergoing scaling
R Established–Advanced Undergoing scaling
S Early–Established First medical examination
T Established–Advanced First medical examination
U Established First medical examination
V Established First medical examination

Fig. 1　(A) Photomicrograph of a saliva sample.  The shaded portions 
indicate oral cells.  (B) The pictures numbered 1 to 6 were some 
example areas that were manually selected to avoid oral cells.
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was performed using the baseline.modpolyfit function in the 
baseline package for R.30  Signal-to-noise (S/N) ratios were 
determined from the raw spectra (using the maximum value in 
the amide I region (1600 – 1700 cm–1) minus the mean value in 
the 1800 – 1900 cm–1 range as the signal and standard deviations 
in the 1800 – 1900 cm–1 region as the noise).  The data with S/N 
ratios less than 50 were discarded.  Finally, the 6 – 12 data were 
retained for each sample.  The second derivatives of raw IR 
spectra were calculated using a 9-point Savitzky–Golay 
algorithm.  Vector normalization was carried out for the second 
derivatives.10,12,21,23,31,32

IR data comparison
To compare the IR spectral data between the two groups, a 

two-way ANOVA of the log2 signal ratios was performed, which 
were defined before, and cluster analysis was carried out for the 
normalized second derivatives.  Two-way ANOVA indicated 
whether the variance in the log2-signals was associated with 
periodontal disease or normal samples.  To compare the shapes 
of the normalized second derivatives, cluster analysis was 
performed using normalized second derivatives between 2000 
and 1012 cm–1, which were averaged for each saliva sample.  
Spectral distances were calculated as the Euclidean distance, 
and Ward’s algorithm was used for hierarchical clustering.

PLS-DA
Dimension reduction was performed to construct a regression 

model for the multicollinear spectrogram data.  PLS-DA was 
performed for multivariate classification.  The normalized 
second derivative spectra between 2000 and 1012 cm–1 (165 
points) from all sites of all the samples were used for the 
PLS-DA.  PLS were calculated by using the plsr function in the 
pls package of R.33  The kernel PLS algorithm was applied for 
PLS.34,35  The latent vectors obtained by PLS were used as 
explanatory variables for regression.  Value 1 for periodontal 
disease and 0 for control were used as Y (class membership, 
discriminant variable).  The regression equation was as follows:

Ý = β0 + β1T1 ··· + β165T165

where Ý is the predicted Y, T1 to T165 are the latent vectors 
obtained by PLS, β1 to β165 are the regression coefficients, and 
β0 the intercept.  Y is categorical data represented by 0 and 1, 
but a normal Gaussian linear model was applied because of the 
differences in the stage of periodontal disease progression and 
intermediate symptoms.  The threshold of Ý was set to 0.5, and 
the samples with Ý > 0.5 were discriminated as periodontal 
disease samples.  The accuracy of the discrimination was 
calculated by leave-one-out cross-validation (LOOCV).  In 
LOOCV, one dataset is used as the testing data, whereas the 
other dataset is used as the training dataset to estimate the 
validation data, and this procedure is repeated the number of the 
data times.  In our study, data were obtained at several sites for 
each saliva sample.  The data derived from one site of a sample 
were similar to the others in the sample, and so, the LOOCV 
estimated higher accuracy.  Thus, when spectral data from a 
sample was used as the testing data, the other data from the 
sample were excluded from the training data.  The number of 
latent vectors used for the regression model was determined in 
order to attain the highest accuracy of LOOCV.

Results

IR spectra of the saliva samples
The average raw spectra of the control saliva samples (samples 

A – L) and periodontal disease samples (samples M – V) are 
shown in Fig. 2A, which were corrected baseline according to 
the range (1900 – 1000 cm–1) and were averaged in spectra of 
6 – 12 spots per sample.  Figure 2B shows the average 
normalized second derivatives.  These spectra showed some 
major absorbance ranges, which were important for 
discriminating cell components.  The most distinctive peak was 
between 1800 and 1500 cm–1, whose spectral features are 
dominated by the >C=O stretching absorption band of ester 
carbonyl (1738 cm–1) and the amide band of proteins.  The 
amide I band, which is mainly the amide >C=O stretching 
frequencies of the protein backbones, was observed between 
1700 and 1600 cm–1.  Furthermore, the amide II band was 
observed, which is mainly shaped by coupled N–H bending and 
C–N stretching vibrations between 1600 and 1500 cm–1.  The 
regions between 1300 and 1000 cm–1 represent characteristic 
absorbance bands, which are concerned with P=O double bond 
stretching modes of phosphate groups in the DNA/RNA 
backbone structure and in the teichoic and lipoteichoic acids 
present in the cell wall of gram-positive bacteria and with C–C 
stretching modes in the aromatic ring of carbohydrates.  
Moreover, the absorbance band between 1470 and 1350 cm–1 is 
associated with >CH2 stretching and bending vibrations, 
including the fatty acids of the cell membrane.  Spectral peaks 
other than those mentioned above were not assigned precisely, 
but these peaks provided important chemical information 

Fig. 2　(A) IR raw spectra and (B) its second derivative spectra from 
saliva samples.  Each line represents a spectrogram, which was 
averaged from spectral data obtained from one spot of a sample.  The 
red lines indicate periodontal disease samples, and the blue lines 
indicate control samples.
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specific to a sample.  Thus, the IR spectra of the saliva samples 
represented the complex of the absorbance bands derived from 
several biological components.

Raw IR spectra
The intensities of absorbance of the raw IR spectra in the 

periodontal disease samples were clearly larger than those of the 
control samples (Fig. 2A).  Figure 3 shows the differences in 
the log2-signal values of raw IR spectra, which were the 
maximum values between 1600 and 1700 cm–1 minus the mean 
value between 1800 and 1900 cm–1, for each sample.  The 
average of the log2-signal values in the periodontal disease 
samples (average: –5.30) was larger than in the control samples 
(average: –7.50), but samples G, H, and I had larger values than 
the other samples from the control group, and sample S had a 
lower value than the others in the periodontal disease group.  

Both variances of log2 signal, whether in the periodontal disease 
or control samples, were significant by ANOVA (p-value 
<2.2 × 10–16).  The difference in log2 signals between periodontal 
disease and control samples was significantly large, but the 
difference between individual samples was also large.

Normalized second derivatives
The properties of the normalized second derivative 

spectrograms were different between the periodontal disease 
and control samples (Fig. 2B).  Therefore, hierarchical cluster 
analysis was performed to compare the differences between the 
spectrograms.  Dendrograms showing three distinct groups are 
shown in Fig. 4.  Two periodontal disease samples, samples S 
and Q, were misclassified.  The shapes of these spectra were 
similar to the shape of the controls.

PLS-DA
The score plot of the first three latent vectors for projection of 

data in the PLS space is shown in Fig. 5A.  Two distinct groups 
were formed during the classification trial.  Figure 5B shows the 
plot of the loadings of the latent vectors 1 – 3 of PLS.  The 
contribution of the spectral region between 1700 and 1600 cm–1, 
derived from amide I, appeared large on all three latent vectors.

The latent vectors from 1 to 5 of PLS were used for regression 
analysis.  The predicted values Ý were plotted for each sample 
in Fig. 6.  The values obtained for the periodontal disease 
samples were clearly larger than those obtained for the control 
samples.  The variances in the samples were small, and most of 
the values did not overlap between the two study groups.  The 
accuracy for the discrimination of periodontal disease by 
LOOCV was 94.3% using PLS regression, with the threshold of 
predicted values Ý > 0.5.

Discussion

Difference between the IR spectra of saliva samples obtained 
from patients with periodontal disease and control subjects.  The 
results of this study showed that periodontal disease could be 
diagnosed by analyzing saliva samples using FT-IR microscopy.  

Fig. 3　The log2-signal values of raw IR spectra (Fig. 2A), which 
were the maximum values between 1600 and 1700 cm–1 minus the 
mean value between 1800 and 1900 cm–1.  Each point represents the 
value of one measured spot.  The dashed line represents the average 
value in each sample.

Fig. 4　Cluster analysis of normalized second derivative spectra of saliva samples.  The dendrograms 
show spectra-periodontal disease (M), control (B), and misclassified spectra (S).
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The IR spectra of the saliva samples were formed because of 
accumulation of the absorbance bands of individual 
biomolecules.  First, the differences in the absorbance on raw 
spectra reflected the differences in the quantities of the chemical 
components.  The absorbance of periodontal disease samples 
was clearly larger over the thorough spectrum, although all 
saliva samples were collected by using the same protocol 
(Fig. 2A).  Moreover, the log2-signal values, which were the 
maximum value minus the baseline value, were also larger in 
the periodontal disease group (Fig. 3).  If both quantity of the 
chemical components in saliva sample and control sample were 
equal, the intensities of the absorbance and log2-signal should 
be also equal.  But in this case, the absolute quantities of the 
chemical components are assumed to be larger in the periodontal 
disease samples than in the control samples.  In other words, the 
density of any chemical component of the saliva collected from 
a patient with periodontal disease was higher than that of saliva 
collected from a control subject.  Second, the differences in the 
shape of the normalized second derivatives reflected the mixture 
ratio of several components.  Thus, the shape of the normalized 
second derivatives differed between periodontal disease samples 
and controls (Fig. 2B).  The two distinct groups could be 
discriminated by cluster analysis using the normalized second 
derivatives except for S and Q (Fig. 4).  The mixture ratio of the 
components in the saliva is assumed to differ between 
periodontal disease and control samples.  Thus, the properties of 
the saliva in patients with periodontal disease appear to differ 
from the normal condition.  In fact, it has been recognized that 
gram-negative bacteria such as porphyromonas gingivalis, 
aggregatibacter actinomycetemcomitans, and prevotella 
intermedia propagate in the pockets of the gingival sulcus in 

patients with periodontal disease.2,36–38  Moreover, several 
salivary components such as enzymes, immunoglobulins, 
proteins, hormones, and other small substances may be present 
in the saliva of patients with periodontal disease.2,28  Several 
biological constituents were present in larger quantities in the 
saliva samples of patients with periodontal diseases than in the 
control saliva samples, and the mixture ratios of the components 
were different.  Thus, these quantitative differences in the 
components of the saliva samples were reflected as differences 
in the spectra between the two groups.  However, it is difficult 
to discriminate details of each component of the saliva samples, 
such as the mixed ratio of each component.  This is because 
saliva contains too many components to distinguish the intrinsic 
spectra derived for each independent material.  The detailed 
contents of the saliva cannot be clearly assessed by FT-IR 
analysis.  Regardless, the IR spectra of saliva samples are 
capable of diagnosing periodontal disease.

Putative explanation for misclassified IR spectra
Most of the samples of periodontal disease could be 

distinguished based on the differences in the IR spectrum.  
However, some samples could not be distinguished because 
individual variations in the distribution of each sample were 
large.  On comparing the log2-signal values (Fig. 3), the signal 
from sample S of periodontal disease was lower than those of 
the other periodontal disease samples.  Sample S was obtained 
from a patient clinically diagnosed with early-lesion periodontal 
disease (Table 1).  Therefore, we believe that the quantities of 
the saliva contents in sample S were only slightly different from 
those of the control samples, making the signal value similar to 
those of the control samples.  On the contrary, the signals of 
control samples G, H, and I were larger than those of the other 
control samples.  Therefore, it is likely these three samples 
indicate periodontal disease.

The results of the hierarchical cluster analysis by normalized 
second derivatives classified samples S and Q as controls 
(Fig. 4).  Of the second derivative spectra, the spectrum of 
sample S, especially in the range of 1300 – 1000 cm–1, was 
similar to those of the control samples.  As mentioned earlier, 
sample S also had a low signal value (Fig. 3), and it belonged to 
a patient clinically diagnosed with early-lesion periodontal 
disease (Table 1).  Therefore, the spectrum of sample S, that is, 

Fig. 5　(A) The PLS score plot and (B) the loadings from 2000 cm–1 
to 1000 cm–1 showing the first three latent vectors.

Fig. 6　The plot of predicted values by PLS-DA.  The first four latent 
vectors were used for PLS regression.  Values greater than 0.5 were 
discriminated as periodontal disease.  Each open circle represents the 
value of one measured spot.  The dashed line represents the average 
value in each sample.
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the mixture ratio of its components, was similar to those of the 
control samples.

The observations in case of sample Q were particularly 
interesting.  Sample Q was obtained from a patient clinically 
diagnosed with an established periodontal lesion (Table 1); 
furthermore, the signal value for sample Q was relatively high 
(Fig. 3).  The high signal value implied that large quantities of 
the chemical components were present in the saliva.  However, 
interestingly enough, the shape of the normalized second 
derivatives of sample Q was similar to those of the controls 
(Fig. 4); in other words, the mixture ratio of the various 
components of saliva sample Q was similar to that of control 
saliva.  This unusual finding might indicate another origin for 
periodontal disease.  For example, indigenous bacterium in the 
oral cavity could cause increased bleeding and gingival 
inflammation.  However, we cannot eliminate the possibility 
that sample Q may just have been a low-density sample because 
of a sampling error or individual variation.  Although the 
participants were carefully instructed to follow a particular 
protocol for providing saliva samples, they may not have 
followed the protocol properly in some cases.  In addition, 
sample Q could also belong to a person with inherently high 
moisture content in the oral cavity.  These individual variations 
might be influenced by factors such as age, gender, eating 
habits, and smoking status.

Samples H and I were derived from control samples, but 
showed unusually high signal values (Fig. 3).  However, the 
shapes of the normalized second derivatives were similar to 
those of the control samples (Fig. 4).  This situation is similar to 
that of sample Q.  It is difficult to determine the reason for the 
unusual findings in the case of these two samples.  To determine 
the reasons, we need to collect more samples with detailed 
individual information, including not only dental diagnosis but 
also behavioral habits.

Diagnosis by PLS-DA
Finally, supervised classification was carried out using 

PLS-DA.  The contribution of the spectral region between 1700 
and 1600 cm–1 derived from amide I, which is a protein, 
appeared to be large (Fig. 5B).  This indicated that the 
quantitative differences in the protein components of saliva 
affected PLS classification.  The predicted values Ý of the 
periodontal disease samples were clearly larger than those of the 
control samples.  The accuracy of classification by LOOCV was 
very high (94.3%).  Most of the misclassified spectra were 
attributed to samples H and S; thus, approximately 30% of the 
spectra were not diagnosed correctly.  The character of the 
spectra of these samples was different from what was expected 
of the control samples, and therefore, it is difficult to determine 
an absolute classification for them.

Nevertheless, it is thought that this methodology, involving 
FT-IR analysis and PLS-DA discrimination, is very efficient for 
the diagnosis of periodontal disease.  However, the low number 
of samples analyzed in this study is certainly a limitation 
because these samples do not represent the different types of 
periodontal diseases with different etiologies.  If the shape of 
the spectrum that corresponded to a certain diagnosis could be 
specified and the relevant type of information be accumulated, 
the method described in this study could be used for determining 
the causative factors of periodontal disease; moreover, it could 
be applied to several types of periodontal diseases or even other 
oral diseases.

Potential for diagnosis by using infrared spectroscopy
Our method involved analyzing the saliva samples and its 

constituent complex factors as a whole by FT-IR and using the 
findings to diagnose periodontal disease.  Periodontal diseases 
have complex etiologies.  Our method does not target specific 
molecules or components of the saliva samples—it assesses all 
the contents of the saliva.  This is because a precise diagnosis 
can be reached based on the differences in the quantities of the 
contents of the saliva.  However, when unusual spectral findings 
were obtained, it was difficult to determine their cause.  Another 
methodology or a dentist’s diagnosis would be required to 
elucidate the reason for this unusual finding.

Xiang and co-workers differentiated periodontitis and 
gingivitis with high accuracy (93.1%) by analyzing the GCF 
using mid-infrared spectroscopy.26  Their success might be 
explained by the fact that the GCF contains products directly 
related to periodontal disease, such as products and enzymes of 
the causative bacteria.  Using our system, we were able to 
diagnose periodontal disease with high accuracy by analyzing 
saliva samples with FT-IR microscopy.  Our result is interesting 
because saliva samples contain not only the GCF, but also 
bacteria from other oral regions such as the tongue coat.

Conclusions

In this study, we established a protocol to collect saliva samples 
from patients with periodontal disease and healthy volunteers 
and to perform FT-IR spectroscopy for these samples.  The 
obtained FT-IR spectra contained information about chemical 
structures, which might be related to the periodontal disease.  
PLS-DA, a multiple classification analysis, was utilized for 
discriminating between patients with periodontal disease and 
healthy volunteers.  Using this protocol, we succeeded in 
diagnosing periodontal disease from saliva samples, with high 
precision.  Further improved classification of periodontal disease 
should be achieved by applying our protocol to a larger number 
of samples.  Our study suggests the possibility that our method 
might prove useful for differential diagnosis of diseases of the 
oral cavity or other diseases if the oral environment is different 
in these diseases.
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