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Abstract: A cyclic naphthalene diimide (cyclic NDI, 1), carrying a benzene moiety as linker 

chain, was synthesized and its interaction with G-quadruplex DNAs of a-core and a-coreTT 

as a human telomeric DNA, c-kit and c-myc as DNA sequence at promoter region, or 

thrombin-binding aptamer (TBA) studied based on UV-VIS and circular dichroism (CD) 

spectroscopic techniques, thermal melting temperature measurement, and FRET-melting 

assay. The circular dichroism spectra showed that 1 induced the formation of different types 

of G-quadruplex DNA structure. Compound 1 bound to these G-quadruplexes with affinities 

in the range of 106–107 M−1 order and a 2:1 stoichiometry. Compound 1 showed 270-fold 

higher selectivity for a-core than dsDNA with a preferable a-core binding than a-coreTT,  

c-kit, c-myc and TBA in the presence of K+, which is supported by thermal melting studies. 

The FRET-melting assay also showed that 1 bound preferentially to human telomeric DNA. 

Compound 1 showed potent inhibition against telomerase activity with an IC50 value of  

0.9 μM and preferable binding to G-quadruplexes DNA than our previously published cyclic 

NDI derivative 3 carrying a benzene moiety as longer linker chain. 
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1. Introduction 

Guanine-rich DNA sequences which mainly originate in important regions of the oncogene 

promoters, telomere, mRNA, ribosomal DNA (rDNA), and thrombin-binding aptamer (TBA) can form 

G-quadruplex structures [1–3]. G-quadruplex DNAs, formed at the telomeric end, can inhibit telomere 

elongation by telomerase, which are activated in 80%–85% cancer cells, leading to inhibition of telomerase 

activity [1,4]. G-quadruplex DNAs is known to be formed at promoter regions of the human oncogene 

that can regulate gene expression at the transcriptional level [3]. DNA aptamers bind to thrombin and 

inhibit thrombin-catalyzed fibrin, resulting in blood clotting [2]. Thus, guanine-rich sequences have 

become a very promising target for the development of new anticancer drugs and therapeutic applications, 

which was attracted a lot of research interest during the last few decades and a few of the resulting 

compounds have entered preclinical or clinical trials [3]. 

It has been reported that guanine-rich oligonucleotides could form G-quadruplexes via Hoogsteen 

hydrogen bonding among four guanine bases arranged in a square planar configuration [4]. G-quadruplex 

DNA shows diverse structural polymorphism; G-quadruplex DNA can be either parallel or antiparallel, 

even both conformations (termed hybrid) in some cases [5,6]. This G-quadruplex DNA can fold as a 

mixture of several different quadruplex forms depending on DNA sequence and extrinsic cation which 

offers a platform to induce and stabilize the quadruplexes by using small organic molecules [5,6]. This 

common structural feature poses challenges for the design of ligands with considerable selectivity toward 

one type of quadruplex over other G-quadruplex structures [6]. 

Small molecules that stabilize the G-rich single-strand DNA overhang into G-quadruplex can be 

considered as potential cancer and therapeutic agents [3]. A number of G-quadruplex-binding small 

molecules have been reported in the last few decades [3,7,8]. Several diverse structural ligands, including 

telomestatin, oxazole, cationic TMPyP4, anthraquinone, perylene, acridine, and ethidium derivatives 

have been investigated to evaluate their ability to interact with G-quadruplex DNA and observe their 

biological functions [3,7,8]. There are a number of macrocyclic structures that have been developed  

in the last few years as G-quadruplexes DNA binding ligands such as BQQ1, telomestain, oxazole, 

porphyrin, etc. [9], which is a well-established technique to improve the development of G-quadruplex 

DNA selective drugs. A common feature of these G-quadruplex-binding molecules is the presence of an 

extended aromatic ring system that allows binding through π-π overlap of terminal G-tetrads [5,9]. Large 

flat aromatic planar molecules stack on G-tetrads and show high binding selectivity [6]. Non-planar 

molecules that stack with G-quadruplexes are very rare and bindings are moderate [6]. Some of these  

G-quadruplex-binders include porphyrin derivatives, oxazoles, perylene derivatives and similar  

systems [10] that have fused π-ring systems within the molecule and showed various binding selectivity 

with the G-quadruplexes’ DNA structure. Nowadays, the researchers are focusing on developing  

G-quadruplex DNA structure-specific and selective binding ligands [6,9] which are important for drug 

development, cancer research and therapeutic application studies. 
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Naphthalene diimides (NDIs) are very potent G-quadruplex-binding ligands with high cellular 

toxicity, which is able to effectively stabilize the terminal G-quartet of a G-quadruplex by stacking 

interactions [11,12]. Over the last few years a number of NDI-based compounds have been developed 

in part by exploiting the available NDI-G-quadruplexes structures [13–21]. In our previous studies, we 

already reported interaction studies of some cyclic NDI derivatives and h-telo 22 G-quadruplex DNA 

which can inhibit telomerase activity at low concentration [10,22]. In our present work, we synthesized 

new compound 1 by cyclization with the linker chain of a tertiary amino group and amide group through 

benzene to compare the binding selectivity with our previously reported compound 3 [10] (Figure 1). 

Compound 1 is expected to show reduced binding to dsDNA and increased binding affinity for  

G-quadruplexes DNA because of its shorter linker substituents. We have also sought to compare the 

binding selectivity among the various structures of G-quadruplex DNA. We have characterized the 

binding selectivity and stability of 1 to G-quadruplexes’ DNA present in the promoter region (c-myc  

and c-kit), thrombin binding aptamer (TBA) and human telomeric region (a-core and a-coreTT) by  

UV-Vis spectroscopy, circular dichroism (CD) spectroscopy, thermal melting studies, TRAP assay and  

FRET-melting assay [23] experiments. 

 

Figure 1. Chemical structures of 1, 2 and 3 (3 taken from [10]). 

2. Results and Discussion 

2.1. UV-Vis Absorption Titration 

To obtain the binding constant and the number of bound molecules for the interaction of 1 and non-cyclic 

naphthalene diimide 2 with different DNA forms such as human telomere (a-core and a-coreTT) [4,24,25], 

promoter region (c-kit and c-myc) [26–28] and thrombin-binding aptamer (TBA) [29,30] their absorption 

spectra were investigated. Figure 2A shows a representative spectrophotometric titration of 1 with human 

telomeric G-quadruplex DNA (a-core) in K+ ion. It shows a maximum absorption at 384 nm. Addition of 

increasing amounts of G-quadruplex DNAs to 1 resulted in large hypochromicities (45%–60%) and a 

noticeable small red shift (3–8 nm) was observed. These spectral features are suggestive of end-staking 

binding rather than groove binding (Supplementary Figure S1). We observed isosbestic points at 392 nm 

and 395 nm of 1 for G-quadruplex DNAs and duplex DNA, respectively. The presence of isosbestic 

points indicated the equilibrium between the bound and free ligand. For comparison, we also investigated 

the interaction of 1 with dsDNA. Upon the addition of increasing amounts of dsDNA to 1, smaller 

hypocromic shifts (25%–30%) and red shifts (2–4 nm) were observed than for G-quadruplexes DNA, 

suggesting this compound is not a good dsDNA binder (Figure 2B). The Scatchard plot representing the 
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binding between 1 and a-core (KCl) is presented in Figure 2C. The Scatchard plot was analyzed by the 

McGhee-von Hippel Scatchard equation [31]. The solid line in Figure 2C represents the best fit of the 

experimental value to the McGhee-von Hippel equation. For dsDNA saturation of binding curves was 

not achieved; therefore, estimation of K values using the Scatchard equation was impossible. However, 

nK values were estimated using the Benesi-Hildebrand method [32]. Ligand binding affinity to dsDNA 

does not depend on the nature of the metal cation, such as sodium and potassium ions. In the presence 

of sodium and potassium ions compound 2 binds to dsDNA approximately 20 times stronger than 1. 

 

Figure 2. Spectral shifts of 5 μM 1 on titration with 0, 1.4, 2.9, 4.4, 5.8, 8.7 and 14 μM  

a-core (A) or 0, 2.0, 5.0, 10, 20, 30, and 40 μM dsDNA (B) in 50 mM Tris-HCl (pH7.4) and 

100 mM KCl. Scatchard plots for binding of 1 to a-core (C) and Benesi-Hildebrand plot for 

binding of 1 to dsDNA (D). 

The intrinsic binding constants (K) of 1 and 2 to G-quadruplexes DNA and dsDNA are summarized 

in Table 1. We already reported that 3 carrying a benzene moiety as longer linker chain showed higher 

binding affinity to either G-quadruplexes DNA or dsDNA than 2 [10]. In our present study, we also 

found similar binding constant trends for G-quadruplexes DNA in the range of 106–107 M−1 with n = 2, 

which are an almost five times higher binding affinity of 1 compared with the non-cyclic derivative 2. 

Comparing with 3 [10], 1 showed almost three times higher binding affinity to a-core and 70 times 

weaker binding to dsDNA. Compound 1 showed approximately 200 higher selectivity to G-quadruplexes 

DNA than the previously reported 3 [10]. The comparison suggests that the shorter cyclic linker chain 1 

showed higher specific binding to G-quadruplex DNAs than the previously reported longer linker chain 

compound 3 [10]. 
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Table 1. Binding parameters and melting temperatures of 1 and 2 with a-core, a-coreTT,  

c-kit, c-myc, TBA and dsDNA. 

DNAs 
1 2 Tm/°C  ∆Tm/°C 

10−6 K/M−1 n 10−6 K/M−1 n DNAs 1 2 

a-core (K+) 10 ± 0.5 a 1.5 1.6 ± 0.2 a 1.4 69 c 15 5 
a-core (Na+) 1.0 ± 0.04 a 2.2 0.73 ± 0.09 a 1.0 57 c - 1 

a-coreTT (K+) 6.1 ± 0.4 a 1.8 1.9 ± 0.3 a 1.3 63.5 c 18 - 
TBA (K+) 3.5 ± 0.2 a 1.4 0.49 ± 0.04 a 1.1 50.5 c 11 - 
c-kit (K+) 1.9 ± 0.18 a 1.4 0.74 ± 0.05 a 1.7 54 d 11 - 

c-myc (K+) 4.0 ± 0.3 a 1.7 1.5 ± 0.2 a 1.6 70 e 15 - 
dsDNA (K+) 0.037 b - 0.60 ± 0.04 a 2.8 49 c 0.3 12 
dsDNA (Na+) 0.037 b - 0.60 ± 0.08 a 3.0 49 c 0.3 12 

Condition: Binding constant (K): 50 mM Tris-HCl (pH 7.4) and 100 mM NaCl or KCl; a: Scatchard analysis (K);  
b: Bensi-Hildebrand analysis (nK); Thermal melting: [ligand]:[DNA] = 2:1, 50 mM Tris-HCl (pH 7.4); c: 100 mM 

NaCl or KCl; d: 20 mM KCl; e: 5.0 mM KCl. 

In comparison with our previous report [10], the linker chain of 1 and 3 may play an important role 

in the binding with G-quadruplexes DNA over dsDNA. The amide chains of 1 and 3 might be more 

effective in reducing binding with dsDNA because of the NDI moiety site blocks the aliphatic chain 

from intercalating in the benzene part. Moreover, the benzene part itself also prevents binding of 1 and 

3 from threading intercalations with dsDNA. However, as we have reported earlier [33], 1 and 3 showed 

affinity to calf thymus DNA (CT-DNA), Poly[d(A-T)]2 and Poly[d(G-C)]2 due to hydrophobic 

interaction between cyclic NDI derivatives and dsDNA. Compound 1 showed lower binding affinity to 

CT-DNA, poly[d(A-T)]2 and poly[d(G-C)]2 than 3 perhaps because of steric reasons, whereas, according 

to the computer modeling, the NDI moiety site of cyclic NDI derivatives incorporated to end staking 

onto the G-quartet. We have observed that 1 showed higher selectivity to G-quartet than 3 because the 

tertiary amino chain in the linker chain of 1 may have more compatibility to bind specifically with the 

G-quartet plane than the piperazine linker chain of 3. 

In the presence of sodium ions the binding affinities of both ligands to basket-type tetraplex structures 

were much lower than G-quadruplexes in potassium solution. We already explained that this might be 

due to the fact that basket type a-core crosses its oligonucleotide chain over the G-quartet diagonally and 

disrupts access of 1 to the G-quartet plane [10]. 

In our present study, all the G-quadruplexes DNA showed higher binding constants (K) with 1 than 

dsDNA. In potassium ion solution, 1 exhibited the highest binding affinity for mixed hybrid type a-core [24] 

with K = 1 × 107 M−1, whereas diminished the binding affinity to dsDNA with nK = 3.7 × 104 M−1. The 

binding data indicated that 1 has a 270-fold preference for a-core over dsDNA. Table 1 shows the binding 

constants (K) are K = 6.1 × 106 M−1 for a-coreTT (hybrid type-2) [25], K = 1.9 × 106 M−1 for c-kit 

(parallel propeller type) [27], K = 4.0 × 106 M−1 for c-myc (parallel type) [27], K = 3.5 × 106 M−1 for 

TBA (antiparallel chair type) [30] with 1, which represent a 165-, 51-, 108- and 95-fold binding 

preference over dsDNA (K = 3.7 × 104 M−1), respectively. The ratio of ligand per dsDNA used for binding 

was n = 3, a reasonable result considering that a typical intercalator covers two base pairs upon binding 

to dsDNA, in addition to the expected relative difficulty in binding at terminal sites. The binding number 
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of a ligand with G-quadruplexes DNA was estimated to be n = 2, which may agree with an end-stacking 

binding of 1 to the external G-quartet planes of quadruplexes. 

According to the above result, new compound 1 showed G-quadruplexes DNA structure-specific 

binding. Compound 1 showed the highest affinity to a-core DNA, which exhibits mixed type hybrid 

(hybrid-1 and hybrid-2) structures in K+ [24] and possessed more than two drugs staking plane and 

binding loops. Computer modeling showed that 1 was stacked and bound to a mixed hybrid structure at 

various G-quadruplex staking planes, whereas a-coreTT exhibited hybrid-2 [25] type structures which 

have two G-tetrads staking planes and two binding sites. For this reason we observed that 1 showed  

the highest affinity with a-core. TBA exhibited an antiparallel chair type [29,30] structure which has  

G-quartet staking planes and binding loops, while c-kit and c-myc exhibited parallel type [27] propeller 

structures which possess two G-quartet staking planes, but binding loops are unusual for 1. According 

to the binding data, new compound 1 was revealed to be a most preferable and specific binder to 

telomeric G-quadruplexes DNA than promoter regions’ G-quadruplex DNA as well as thrombin binding 

aptamer. The binding studies results are consistent with thermal melting studies where a-core showed 

the highest stabilization with 1. The binding site size (n values) obtained from binding studies of  

G-quadruplexes and 1 are consistent with the Job plot analysis from CD studies (Supporting Information 

Figure S2). 

2.2. Circular Dichroism (CD) Studies 

CD is a powerful method to differentiate the parallel, anti-parallel, and mixed-type secondary 

structure of G-quadruplex DNA. Compound 1 was interacted to investigate the effect of the compound 

binding on the conformation of the G-quadruplexes, which is shown in Figure 3. The CD spectrum of 

human telomere (a-core) G-quadruplex DNA showed a negative peak at 240 nm, a shoulder peak at 265 nm 

and a positive peak at 290 nm (Figure 3A) in buffer containing 100 mM KCl, supportive of a mixed 

hybrid type (hybrid-1 and hybrid-2) G-quadruplex structure [34,35]. The small positive peak at 265 nm 

was transformed increasingly into a negative peak at 260 nm together with an increase of the positive 

peak at 290 nm upon the addition of 1, suggesting the induction of a hybrid type structure. After addition 

of 1, a-core structure conformation changed a little from mixed hybrid type to hybrid-1 type [36]. In our 

previous study, we reported that in the presence of Na+ ions, telomeric DNA exists in an antiparallel 

basket-type conformation. Upon addition of 1, this antiparallel basket-type structure was also retained [10]. 

The CD spectrum of human telomere (a-coreTT) G-quadruplex in buffer containing 100 mM KCl 

exhibits a negative peak at 240 nm, a shoulder peak at 265 nm and a positive peak at 290 nm (Figure 3B) 

supportive of a hybrid-2 type G-quadruplex structure [34,35]. The small positive peak at 265 nm is 

transformed increasingly into a negative peak at 260 nm together with an increase of the positive peak 

at 290 nm upon the addition of 1, suggesting the induction of a hybrid type structure. After the addition 

of 1, a-core structure conformation changed a little from hybrid-2 type to hybrid-1 type [36]. 

In the presence of 100 mM KCl thrombin-binding aptamer (TBA, Figure 3C) exhibited a positive 

peak at 290 nm, and a negative band at 250 nm, supportive of an anti-parallel chair type G-quadruplex 

structure [30,37]. Upon the addition of 1, the negative peak transformed increasingly into at 260 nm 

together with an increase of the positive peak at 290 nm, suggesting that the binding of 1 apparently does 

not disturb the structure of TBA, which is consistent with previous reports [37]. 
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Figure 3. CD spectra of 1.5 μM of a-core (A); a-coreTT (B); TBA (C); c-kit (D); c-myc (E) 

in 50 mM Tris-HCl (pH 7.4), 100 mM KCl in addition of 1 (0, 0.38, 0.75, 0.80, 2.25, and 

3.00 μM) at 25 °C.  

Both c-myc and c-kit G-quadruplex (Figure 3D,E) exist in the presence of K+ ions as a parallel 

structure, which has a characteristic positive peak centered around 262 nm, a negative peak at 241 nm 

and a small shoulder peak at 290 nm [38,39]. After the addition of 1 to c-myc and c-kit G-quadruplex, a 

decrease of the CD peaks at 241 nm and 262 nm was observed, with no other significant change in the 

spectrum and the parallel structure was not change, which suggests ligand-dependent disruption of 

staking of G-quadruplex DNA. Upon the addition of 1, the c-kit structure shoulder peak at 290 nm 

increased little. This effect has also been observed previously by many research groups [40]. 

The Job plot analysis by CD studies (Supporting Information Figure S2) showed that CD studies  

of G-quadruplexes and 1 are consistent with binding studies where similar binding site sizes (n values)  

are obtained.  
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2.3. Thermal Melting Studies 

Thermal stabilization of various G-quadruplexes DNA and dsDNA in the presence of 1 was studied 

using the CD melting and UV-Vis melting experiment (Figure 4). Thermal melting of hybrid type 

telomeric quadruplex DNA (a-core and a-coreTT) was monitored at 290 nm in the presence of K+ [25].  

 

Figure 4. Melting profiles for a-core (A); a-coreTT (B); TBA (C); c-kit (D); c-myc (E) in the 

absence or presence of 1 in 50 mM Tris-HCl (pH 7.4); 100 mM KCl (A–C); 20 mM KCl (D); 

5.0 mM KCl (E) and [ligand]:[DNA] = 2:1. 

The Tm value was observed around 69 °C for a-core without 1 (Figure 4A). We observed that the 

interaction of 1 with telomeric DNA quadruplex enhanced the stability by 15 °C for a-core and 18 °C 
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for a-coreTT, which was approximately 3 °C higher for a-coreTT than a-core G-quadruplexes  

DNA (Table 1). Researchers already reported that thermal melting increased after addition of base to 

oligonucleotides [41]. In our previous report [10], we observed from the absorption spectra that 3 had the 

lowest binding affinity to a-core in sodium ion solution. Furthermore, dsDNA was monitored by  

UV-Vis melting studies. After the addition of a 1-fold 1 concentration, only a slight increase (up to  

0.3 °C) in thermal stability was observed (Table 1 and Supplementary Figure S3). These results 

underscore the fact that 1 selectively stabilizes telomeric quadruplex DNA as well as promoter and thrombin 

binding aptamer G-quadruplex DNA over dsDNA. In comparison with our previous report [10], 

compound 1 showed high stabilizing effect to a-core and very weak stabilizing effect to ds DNA. 

The melting temperatures of antiparallel chair type thrombin binding aptamer quadruplex DNAs 

(TBA) were monitored at 290 nm. Compound 1 increased the Tm of TBA by 11 °C (Table 1). These 

results are consistent with previously published articles [30,37]. The melting temperatures of parallel 

promoter quadruplex DNAs such as c-kit and c-myc were monitored at 263 nm [39,40]. In the case of 

the highly stable parallel c-kit and c-myc quadruplex DNA was highly stable at high salt concentration 

and a stable baseline curve was not achieved even above 90 °C, so it is not possible to measure an 

accurate Tm in this case, so we measured Tm for c-kit and c-myc at low salt concentration. Compound 1 

increased the Tm of c-kit by >11 °C at 20 mM K+ ion and the Tm of c-myc by >15 °C at 5 mM K+ ion 

solution (Table 1). This type of performance of c-kit and c-myc is consistent with previously published 

articles [39,40]. According to the above result, we can conclude that 1 preferably stabilizes telomeric 

quadruplex DNA than promoter and thrombin binding aptamer G-quadruplex DNA. CD melting results 

are consistent with binding and competition assay studies, where 1 showed preferable binding to human 

telomeric G-quadruplex. 

2.4. TRAP Assay 

Once the G-quadruplexes DNA stabilization was established for 1, it was important to test whether 

the molecule inhibits telomerase activity. To evaluate the abilities of these compounds to inhibit 

telomerase, the telomeric repeat amplification protocol (TRAP assay) [10,22] was carried out using 

various amounts of 1 (Figure 5). The assay clearly shows that 1 is a potent inhibitor of telomerase with 

activity in the submicromolar range (IC50) 0.9 μM. This result suggests that the TS-primer extends the 

length to form a tetraplex structure and 1 binds to it and stabilizes its structure to inhibit the telomerase 

reaction. The values obtained from the TRAP assay are comparable to those of previously reported 

derivatives [10,22]. A number of small ligands have been discovered to inhibit the function of telomerase 

by stabilizing G-quadruplexes DNA structures [7]. The excellent IC50 for telomerase inhibition by 1  

(0.9 μM) comes from its binding constant (K > 107 M−1). It is suggested that this macrocyclic compound 

1 may deserve biological assays with cancer cell lines to represent a suitable candidate drug target to 

DNA quadruplexes. 
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Figure 5. Telomerase inhibition by 1. The gel shows the effect of increasing concentrations 

of 1 (0, 0.1, 0.25, 0.5, 0.75, 1.0, 2.0, 3.0, 4.0 μM) on telomerase activity. Concentrations of 

2.0–4.0 μM 1 lead to the disappearance of all PCR products. IC50s were determined as 

follows: ligand concentration under half telomerase activity with no ligand. 

2.5. FRET-Melting Assay 

The sequence and structural selectivity of different DNA binding agents has been previously explored 

by use of a thermodynamically rigorous competition assay procedure introduced by Ren and Chaires [23,42]. 

In this method, different nucleic acid structures are assayed against a common ligand solution. This is a 

simple method to evaluate specificity toward quadruplexes [43]. It has been already reported that F21T 

showed a Tm value around 50 °C [23] that increased by 11 °C after incorporation of 1 with F21T. 

Comparison with other G-quadruplexes DNA is shown in Figure 6. Compound 1 displays a strong 

preference for binding to F21T quadruplex structure which corresponds to the human telomeric G-rich 

motif than other quadruplexes DNA structures. 

 

Figure 6. FRET-melting assay of human telomeric DNA (a-coreTT) (1.0 or 3.0 μM), 

promoter region’s DNA (c-kit & c-myc) (1.0 or 3.0 μM) and thrombin-binding aptamer 

(TBA) (1.0 or 3.0 μM) with F21T (0.2 μM) in the presence of 1 (0.4 μM). Experiments were 

performed at 25 °C in 100 mM Tris-HCl buffer pH 7.4 containing 150 mM KCl. 
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2.6. Computer Modeling 

The computer-modeling structures consisting of 1 with mixed hybrid types G-quadruplex DNA (a-core) 

are shown in Figure 7. In this article we proposed a model involving an end staking binding mode 

between 1 and mixed hybrid types G-quadruplex DNA (a-core), which are consistent with our previously 

published article [22]. The computer modeling showed that the 1 molecule stacked and bound to different 

G-quartet plane of mixed hybrid types G-quadruplex DNA (a-core). 

 

Figure 7. Computer modeling of 1 interaction with mixed hybrid G-quadruplex DNA structure (A–C). 

3. Experimental Section 

3.1. Materials 

The seven G-rich oligonucleotides: a-core (5′-AGGG(TTAGGG)3-3′), a-coreTT (5′-AGGG 

(TTAGGG)3TT-3′), TBA (5′-GGTTGGTGTGGTTGG-3′), c-kit (5′-AGGGAGGGCGCTGGGAG 

GAGGAGGG-3′), c-myc (5′- TGAGGGTGGGGAGGGTGGGGAA-3′) and dsDNA composed of two 

complementary strands: (5′-GGGAGGTTTCGC-3′) and (5′-GCGAAACCTCCC-3′) were purchased 

from Genenet Co. (Fukuoka, Japan) and used without further purification. The following extinction 

coefficients were used for quantification of nucleic acid solutions (unit of ε was M−1 cm−1): 114,000 for 

5′-GGGAGGTTTCGC-3′; 108,600 for 5′-GCGAAACCTCCC-3′; 228,500 for a-core (5′-AGGG 

(TTAGGG)3-3′); 245,100 for a-coreTT (5′-AGGG(TTAGGG)3TT-3′); 143,300 for TBA (5′-GGTTG 

GTGTGGTTGG-3′); 260,100 for c-kit (5′-AGGGAGGGCGCTGGGAGGAGGAGGG-3′); 229,900 for 

c-myc (5′-TGAGGGTGGGGAGGGTGGGGAA-3′). Before use, oligonucleotide solutions in  

50 mM Tris-HCl buffer (pH 7.4) containing 100 mM NaCl or KCl were heated to 95 °C and annealed 

by slowly cooling to room temperature. Guanine-rich telomere oligonucleotide sequence  

(5′-d-GGGTTAGGGTTAGGGTTAGGG3′), dual label with FAM (fluorescent donor) and TAMRA 

(fluorescent acceptor) at the 5′ and 3′ end, called ‘F21T’, respectively, were purchased from  

Sigma-Aldrich (St. Louis, MO, USA). The synthesis procedure of 1 was described in detail in a previous 

article [33]. Compound 2 was synthesized as described previously [44]. The 2.0 M KCl, and 5.0 M NaCl 

aqueous solutions were obtained from Life Technologies (Carlsbad, CA, USA). 1.0 M Tris-HCl  

(pH 7.4) buffer was obtained from Sigma-Aldrich. GoTaq Hot Start polymerase was purchased from 

Promega (Madison, WI, USA). TRAPese kit was obtained from EMD Millipore (Billerica, MA, USA). 
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3.2. UV-Vis Titration Experiments 

Absorption spectra were measured on a U-3310 spectrophotometer (Hitachi, Tokyo, Japan) with a 1 

cm path-length quartz cell and were recorded in the 200–600 nm range at 25 °C. UV-Vis absorption 

titrations were carried out by the stepwise addition of 200 μM/strand of G-quadruplexes DNA or dsDNA 

solution to a UV-cell containing 5.0 μM solutions of 1 or 2. The measurements were performed in a  

50 mM Tris-HCl buffer (pH 7.4) containing 100 mM NaCl or KCl. Binding data obtained from 

spectrophotometric titration of increasing concentrations of drug to a fixed concentration of DNA was 

cast into the form of a Scatchard plot of ν/C against ν. The Scatchard plot was analyzed by the Scatchard 

equation: ν/C = K(n–ν) [31], where ν is the stoichiometry (the number of ligand molecules bound per 

moles of base pair), C is the free ligand concentration, K is the observed binding constant, and n is the 

number of base pairs excluded by the binding of a single ligand molecule. For duplex oligonucleotides 

saturation of binding curves was not achieved, so K values were estimated using Benesi-Hildebrand 

method 1/ΔAbs = 1/(lΔε [ligand]) + 1/(nKlΔε [ligand]) × (1/DNA) [32] with the assumption that the 

ligand/oligonucleotide complex with 1:1 stoichiometry is formed (Table1), where Δε is a molar 

absorptivity change of ligand and l is 1 cm. Scatchard plots were prepared using absorption changes at the 

specific wavelength 383 nm upon the addition of various concentrations of dsDNA. Scatchard plots were 

prepared using the data in a range of approximately 30%–80% bound region of 1 and dsDNA. The 

binding data were analyzed with KaleidaGraph software, using the Levenberg-Marquardt algorithm to 

determine parameters Kb and n. 

3.3. Circular Dichroism (CD) Spectral Measurements 

Various concentrations (5.0 to 50 μM) of 1 or 2 were added to 1.5 μM/base pair G-quadruplexes DNA 

in a 50 mM Tris-HCl buffer (pH 7.4) containing 100 mM NaCl or KCl at 25 °C, and CD spectra taken 

at a scan rate 50 nm/min on a J-820 spectropolarimeter (Jasco, Tokyo, Japan). Other conditions were: 

response 2 s, data interval 0.1 nm, sensitivity 100 mdeg, band width 2 nm, and scan number 4 times.  

3.4. Thermal Melting Experiments 

Melting curves of G-quadruplexes DNA or dsDNA were measured on a Hitachi 3300 spectrophotometer 

(heating rate of 0.5 °C/min to 90 °C) or Jasco J-820 spectrophotometer (response, 100 mdeg; response, 

8 s; data collecting interval, 0.5 °C; bandwidth, 2 nm) equipped with a temperature controller, 

respectively. The melting curves based on circular dichroism (CD) at 290 nm of a-core, a-coreTT, and 

TBA, 262 nm of c-kit and c-myc or 260 nm of dsDNA were measured in 50 mM Tris-HCl (pH 7.4) 

containing 100 mM NaCl or KCl (for c-kit 20 mM KCl and for c-myc 5 mM KCl). A mixture of 1.5 μM 

a-core, a-coreTT, TBA, c-kit, c-myc, dsDNA and 3.0 μM of 1 or 2 was placed in a cell of 1 cm in light 

path length (total 3 mL). Ligand-DNA ratio was set at 2:1. 

3.5. TRAP Assay Experiments 

Telomeric repeat amplification protocol (TRAP) assay was performed using published procedure [10,22]. 

TRAPeze Telomerase Detection Kit from EMD Millipore was used. Briefly, TS forward primer was 

elongated by telomerase in TRAP buffer (20 mM Tris-HCl pH 8.3, 1.5 mM MgCl2, 63 mM KCl, 0.05% 
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Tween 20, 1.0 mM EGTA) containing 0.05 mM dNTPs, 0.4 μM TS primer, 0.4 μM primer Mixed (RP 

primer, K1 primer, TSK1 primer) and 2.0 units of GoTaq Hot Start polymerase. The mixture was added 

to freshly prepared 1 solution from 0.1 to 4.0 μM (0, 0.1, 0.25, 0.5, 0.75, 1.0, 2.0, 3.0, 4.0 μM) and a 

positive control containing no ligand. Firstly, the elongation step was carried out for 60 min at 30 °C and 

it was followed by 5 min incubation at 95 °C. Secondly, 35 cycles of PCR were performed (94 °C, 30 s; 

62 °C, 1 min; 72 °C, 1 min). Telomerase extension products were analyzed on a denaturing 12.5% 

polyacrylamide vertical gel prepared in 5 × TBE buffer (89 mM Tris base, 89 mM borate, and 1 mM 

EDTA, pH 8.0). The electrophoresis was run in 0.7 × TBE buffer for 2 h at 200 V. After electrophoresis 

gel was stained in 1 × GelStar Nucleic Acid Stain (Takara Bio, Shiga, Japan) in 1× TBE buffer for  

30 min and photographed. 

3.6. FRET-Melting Assay 

Fluorescence-based melting competition assays was performed using a previously published  

procedure [23]. In more recent experiments, a real-time PCR apparatus (MX3000P, Stratagene, La Jolla, 

CA, USA; or Sigma-Aldrich SYBR Green or DNA engine Opticon, MJ Research, Waltham, MA, USA) 

is used, allowing the simultaneous recording of 32–96 independent samples as first proposed by S. Neidle 

and co-workers [23]. The protocol used for our experiments is the following: a first step of equilibration 

at the lowest temperature (5 min at 25 °C) and a stepwise increase of 1 °C every minute for 72 cycles to 

reach 95 °C. The buffer 100 mM Tris-HCl (pH 7.4) containing 150 mM NaCl or KCl and 0.4 μM 1 was 

used for all experiments. The thermal denaturation profile of the oligonucleotide F21T (0.2 μM) and  

G-quadruplexes DNA (a-coreTT, TBA, c-kit and c-myc) (1.0 or 3.0 μM) were measured in the presence 

of 1 (0.4 μM). The ratio of F21T and G-quadruplexes DNA was used 1:5 or 1:15 at 0.4 μM 1. 

Fluorescence-based melting assays competition measurements were performed with F21T dual label 

with FAM (fluorescent donor) and TAMRA (fluorescent acceptor) at the 5′ and 3′ end from Sigma-Aldrich 

at a heating rate of 1 °C/min. The recording is performed after 1 min stabilization. Typically three replicate 

experiments were performed, and average values are reported. Finally, the amount of ligand bound to the 

DNA was quantified by fluorescence after the digestion of the oligonucleotide (λex and λem were set to 

490 and 520 nm for oligonucleotides, respectively). 

3.7. Computer Modeling 

Molecular modeling of these complexes was constructed by MOE 2011.10 

(http://www.chemcomp.com/). Compound 1 was placed on the binding site of mixed hybrid types  

G-quadruplex DNA (a-core) and energy minimization of these complexes was carried out. The 

molecular dynamics calculation of these mineralized complexes was further carried out until 1 was 

located in the binding site as stable condition. Finally, energy minimization of the complexes was 

obtained as shown in Figure 7. These calculations were used the force field of MMFF94x. 

4. Conclusions 

We have a synthesized new type of ligand 1, carrying a benzene moiety as linker chain and studied its 

interaction with different types of G-quadruplexes DNA. We have compared this study with our 
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previously reported 3 [10] which has a long linker chain than 1. Compound 1 exhibited high binding 

affinity in the range of 106–107 M−1 to G-quadruplexes DNA and reduced binding affinity to dsDNA. 

The binding data (Table 1) indicated that 1 has 270-fold preferential binding for a-core, 165-fold for  

a-coreTT, 51-fold for c-kit, 108-fold for c-myc, 95-fold for TBA over dsDNA. The binding 

stoichiometry of 1 for G-quadruplex is 2:1, suggesting a staking binding mode. Compound 1 revealed 

200-fold higher binding selectivity compared with our previously reported 3 [10]. We have observed 

that 1 revealed preferable binding to mixed hybrid types structure of telomeric G-quadruplex DNA  

(a-core) over parallel types of promoter region’s G-quadruplex DNA (c-kit and c-myc) and antiparallel 

chair types of thrombin binding aptamer (TBA). The CD spectra showed that 1 stabilized  

G-quadruplexes DNA structure. Upon the addition of 1 to a-core the CD spectra showed little change 

indicating a mixed hybrid structure and little changed to the hybrid-1 type G-quadruplex structure [36]. 

Thermal melting measurements indicated that 1 highly stabilized the G-quadruplexes DNA structure. 

Compared with our previous report [10], 1 increased ∆Tm by 5–8 °C. We have performed competitive 

assays in order to determine the binding selectivity among the G-quadruplexes DNA, and 1 showed highly 

preferable stabilization of human telomeric G-quadruplex sequence (F21T). This novel compound 1 can 

also inhibit the telomerase activity at low submicromolar concentration. These results indicated that 1 is 

an important class of G-quadruplex stabilizing ligand compared with dsDNA. 

Supplementary Materials 

Supplementary data (UV-Vis absorption spectra, Job plot analysis of CD spectra, UV-Vis melting 

curves of dsDNA and competition assay curves) associated with this article can be found, in the online 

version, at http://www.mdpi.com/1420-3049/20/06/10963/s1. 
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